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Abstract

A technique for constructing embedded grammar-based parsers in C++ was described in
[1]. This paper presents an extension to that technique which allows parsing actions to be
specified directly as part of the grammar, rather than indirectly (as function calls).

1.  Introduction

The Parser class library1 defines a set of related classes which may be used to build parsing grammars
within a C++ program. Extensive use of operator overloading enables these grammars to be specified with a
syntax very similar to the familiar yacc format. The library includes features such as lazy evaluation of termi-
nals, user-defined resolution of shift-reduce and reduce-reduce conflicts, polymorphic value assignments to
terminals and non-terminals, context-sensitive parsing, and the embedding of actions within a parser.

The library as presented in [1] has one major limitation – the specification of actions to be performed during
parsing is restricted to embedded pointers to functions. When a parsing rule is successfully matched, these
function pointers (suitably encapsulated in Action class objects) are dereferenced and their corresponding
functions called.

Because function definitions in C++ cannot be nested, the use of function pointers to specify parser actions
necessarily implies that the code corresponding to the actions must be physically separate from the grammar
in which those actions are used. Although it produces clean and modular code, this style of building parsers is
somewhat tedious. More importantly, the resultant embedded grammars are considerably more difficult to
understand than the equivalent yacc specification.

This paper introduces an additional set of classes which implement a C-like interpreted language suitable
for specifying parser actions. Statements in the language are converted to an expression tree encapsulated in a
class object. Such "expression" objects can then be included as part of an embedded grammar.

2.  The Deferred Expression Idiom

Van Wyk [2] describes a technique for building a set of classes which encode and solve simultaneous equa-
tions specified in a declarative manner within a C++ program. The technique overloads common operations
such as addition, subtraction and equality test, causing such operators not to perform the corresponding oper-
ation, but to generate an object which represents the operation. Such representative objects can then be passed
to a suitable modified constraint solver [3] in which the operations they represent may be evaluated at need.

In a similar manner, the classes described in this paper used overloaded operators (in this case, virtually all
of the operators in the C++ language) to generate an object representing the parse tree of the expression. This
expression object belongs to a class derived from the root Parser class, and hence the original expressions
used to generate it may be incorporated seamlessly into any embedded grammar built with the Parser library.
Figure 1 illustrates the technique, components of which are described in Sections 3 through 8.

During parsing, expression objects (like the Action objects they supersede) are matched trivially against
the input stream. That is, as part of a rule to be matched, expression objects are ignored and therefore con-
sume none of the input stream.

Once a rule has been successfully matched, each of its components are evaluated by calling their virtual
Evaluate() method, which must be added to the Parser base class. In order to initiate this match-evaluate
sequence, a new method, Parse(), is added to the Rule class. This method attempts to match the grammar

1As described in [1] and available by anonymous ftp from bruce.cs.monash.edu.au in the directory
/pub/damian/Parser.shar.Z.uu



rooted at its parent Rule against the input stream and, if successful, evaluates the resultant parser tree and re-
turns its final value.

Terminals and rules within the grammar evaluate trivially (that is, their Evaluate() methods do nothing)
whilst objects of class Action call the function associated with them. Calling the Evaluate() method of one
of the new expression objects causes the entire expression tree contained in it to be evaluated, effectively exe-
cuting the original expression embedded in the grammar.

#include "Parser.h"

main()
{

RegexToken INT("[0-9]+");
RegexToken IDENT("[A-Za-z_][A-Za-z0-9_]*");

Token LSQ("[");
Token RSQ("]");
Token PLUS("+");

Rule ArrayDecl;
Rule ArraySize;

ParserOstream CERR(cerr);

ArrayDecl = IDENT + IDENT + LSQ + ArraySize + RSQ +
(
IF (S4 > 0)

( CERR << "Valid length" << ENDL),
ELSEIF (S4 == 0)

( CERR << "Dubious length" << ENDL ),
ELSE

( CERR << "Invalid length" << ENDL ),
SS =  ( IF (S4 > 0) ( S4 ), ELSE (1) )

)
;

ArraySize = INT +
( SS = S1 )

| INT + PLUS + INT
( SS = S1 + S2 )

;

int arrayLength = ArrayDecl.Parse(pstream(cin));
}

Figure 1: Use of deferred expressions in an embedded parser..

3.  The ParserExpr Base Class

In order to simplify the construction and evaluation of expression trees, all classes representing deferred
expressions are derived from a common base class, ParserExpr, which is in turn directly derived from the
root class Parser. Hence ParserExpr objects can be placed in embedded parser specifications, just like
Token, Rule and Action objects.

The ParserExpr class extends class Parser by adding two protected members, lhs and rhs, of type
ParserExpr*. These members are used to implement the (predominantly binary) expression tree, although
some derived classes add additional members to handle N-ary expressions such as cascaded ifs (see Section 8).
The ParserExpr class provides a constructor which initializes its two members (to zero, by default). The
constructor is protected, ensuring that the base class itself is never instantiated.



Classes corresponding to useful operations can then be derived from the ParserExpr class, by redefining
their virtual Evaluate() methods. This method computes and returns the value of the expression rooted at
the current object. See Sections 5 through 8 for examples. Note that the virtual Match() method of each de-
rived class can be inherited from the ParserExpr  base class without redefinition, because
ParserExpr::Match() is defined to match any input stream trivially (that is, simply to return the value of
the object's this pointer.)

Instances of derived expression classes are created within a grammar by defining the appropriate over-
loaded operators (again, see Sections 5 through 8 for examples).

class ParserExpr : public Parser
{
protected:

ParserExpr * lhs;
ParserExpr * rhs;

ParserExpr(ParserExpr * left = 0, ParserExpr * right = 0)
: lhs(left), rhs(right)  {}

public:
virtual Parser * Match(Context c)

{ return this; }
};

Figure 2: A base class for representing deferred expressions.

4.  Embedding References To Grammar Components

The basis of most useful parser actions is the manipulation of values matched by individual terminals or
rules during the parse. To this end, parser specification languages typically provide a mechanism for referring
to the current value of individual components of a rule. In the yacc specification language, for example, these
references are known as $1, $2, etc., and correspond to the values of first, second, etc. components of a right
hand side of a rule. The left hand side of a rule can also be referred to, as $$.

To create such references within the deferred expressions described in this paper, a special class,
ParserVar, is derived from class ParserExpr. A ParserVar object contains an integer member, index,
indicating the ordinal position within the current parent rule of the component being referred to. When the
Evaluate() method of such an object is called, it interrogates the Context object passed as its argument
and returns the value of the appropriate component of the parent rule. This is equivalent to evaluating
$index in a yacc specification. Figure 3 illustrates the necessary class definition.

class ParserVar : public ParserExpr
{
private:

int index;
public:

ParserVar(int i) : index(i)    {}
ParserVar(Value v) : index(-1) { this->Data = v; }

virtual Value & Data(Context c)
{
if (index>0)  return c.Parent->Component(index)->Data;
if (index==0) return c.Parent->Data;
if (index<0)  return this->Data;

}
};

Figure 3: A class for representing grammar component values.



Two values of the member index are reserved for special purposes. If index is zero, the ParserVar
refers to the value of the parent rule of the current context, and hence is equivalent to $$ in a yacc specifica-
tion. If index is negative, the ParserVar object represents a literal value, which is stored in the Data mem-
ber (inherited from class Parser) of the object. The capacity to store values literally (as well as by reference) is
critical, as it permits expressions containing literal values to be embedded in a grammar. Class ParserVar
provides a special constructor, which takes a literal value as its single argument, stores it in its Data member,
and automatically sets index to -1.

It is convenient to predefine certain frequently used instances of class ParserVar in order to simplify the
construction of appropriate grammars. As the use of the dollar sign as the first character of an identifier is not
permitted in the proposed ISO/ANSI C++ standard, in the Parser class library the character 'S' has been
used to replace it, yielding SS for $$, S1 for $1, S2 for $2, etc. Figure 1 illustrates the use of these globals in
deferred expressions.

5.  Embedding Deferred Assignments

Experience indicates that the single most common expression embedded in a Parser grammar is the sim-
ple assignment, such as:  SS = S1  (which assigns the value of the first component of a rule to the rule itself;
effectively passing a value back up the parse tree.)

This deferred assignment must be carried out when the rule has been successfully matched and is being
evaluated. Hence the assignment operator of class ParserVar is overloaded as shown in Figure 2. Note the
overloading for an argument of type Value. This enables literal values to be used as the assigned value in a
deferred assignment, once they have been suitably encapsulated in a ParserVar object.

ParserAssignment & ParserVar::operator=(ParserExpr & pe)
{

return * new ParserAssignment(this,&pe);
}

ParserAssignment & ParserVar::operator=(Value v)
{

return * new ParserAssignment(this,new ParserVar(v));
}

Figure 4: A deferred assignment operator.

The ParserAssignment class is derived from ParserExpr and stores pointers to a ParserVar (the tar-
get of the assignment) and a ParserExpr (representing the value to be assigned) in its lhs and rhs mem-
bers. When a ParserAssignment object is evaluated, it executes the deferred assignment, as indicated in
Figure 4. As is standard in C and C++, the evaluation of the assignment returns the assigned value, so that
deferred assignments may be chained or otherwise embedded in larger expressions.

class ParserAssignment : public ParserExpr
{
public:

ParserAssignment(ParserVar * lhs, ParserExpr * rhs)
: ParserExpr(lhs,rhs)  {}

virtual Value Evaluate(Context c)
{ return lhs->Data(c) = rhs->Evaluate(c); }

};

Figure 5: A class for representing deferred assignments.

Similar classes representing other deferred assignment operations can easily be created by adding the cor-
responding overloaded operator to the ParserVar class, creating the corresponding deferred assignment
class, and redefining the Evaluate() method of the new class to perform the appropriate operation.



6.  Embedding Other Binary Operations

The same approach can be used to create other types of deferred binary operators by creating suitable ex-
pression classes (for example, deferred addition as presented in Figure 6.) Note the structural and functional
similarity between the ParserAddition and ParserAssignment classes. In fact, the only difference be-
tween the two is that ParserAddition objects are created using a global overloaded operator (since such
operations are not required to be class methods, as is the overloaded assignment operation.) Again notice the
two versions of the operator with literal arguments.

class ParserAddition : public ParserExpr
{
public:

ParserAddition(ParserExpr * lhs, ParserExpr &* rhs)
: ParserExpr(lhs,rhs)  {}

virtual Value Evaluate(Context c)
{ return lhs->Evaluate(c) + rhs->Evaluate(c); }

};

ParserExpr & operator+(ParserExpr & pe1, ParserExpr & pe2)
{

return * new ParserAddition(&pe1,&pe2);
}

ParserExpr & operator+(ParserExpr & pe1, Value v)
{

return * new ParserAddition(&pe1,new ParserVar(v));
}

ParserExpr & operator+(Value v, ParserExpr & pe2)
{

return * new ParserAddition(new ParserVar(v),&pe2);
}

Figure 6: A class for representing deferred additions.

7.  Embedding Deferred Output

Yet another common action during parsing is output. In C++, I/O is handled via overloaded binary opera-
tors. The paradigm is easily reproduced for deferred expressions by creating two new classes (see Figure 7).
This section presents an implementation of deferred output (the more common operation required during a
parse) but the technique is readily adapted to implement deferred input as well.

 The first additional class required is ParserOstream, which is used to encapsulate ostream objects1 using
a private reference. Note that ParserOstream need not be derived from ParserExpr. However doing so al-
lows a ParserOstream object to be used as a test condition in a deferred selection construct (see Section 8 be-
low).

The second necessary class, ParserOutput, is used to represent complete deferred output operations and
must be derived from class ParserExpr. A ParserOutput object stores a reference to an ostream and a list
of pointers to ParserExpr objects, whose values are to later to be evaluated and written to the ostream.

A ParserOutput  object is created when the overloaded left shift operator (operator<<) of a
ParserOstream object is called with an argument of type ParserExpr. An overloaded left shift operator is
also added as a method of class ParserOutput, to permit chaining of output operations (as demonstrated in

1In fact, this class is not strictly necessary, as the global left shift operator could be overloaded for arguments of type
ostream& and ParserExpr&. However, such an approach would preclude the use of literal values as the second
argument in a deferred output operation, since operator<<(ostream&,Value&) is already overloaded to implement
undeferred output of Value objects.



Figure 1). Each left shift operation causes a pointer to the second argument (a ParserExpr) to be added to
the list in the ParserOutput object. The completed ParserOutput object is then included in a particular
Rule, which is subsequently parsed. As with all other deferred expressions the ParserOutput object
trivially matches during the parse phase and then performs the required deferred output when its
Evaluate() method is called.

class ParserOutput : public ParserExpr
{
private:

ostream & os;

DynamicArray<ParserExpr*> expression;
int last;

ParserOutput(ParserOstream & pos, ParserExpr & expr)
: os(pos.os), last(0)
{  expression[last] = & expr;  }

public:
virtual ParserOutput & operator<<(ParserExpr & expr)

{
expression[++last] = & expr;
return *this;

}

virtual Value Evaluate(Context c)
{

for (int i=0; i<=last; i++)
os << expression[i]->Evaluate(c);

return os.good();
}

};

class ParserOstream : public ParserExpr
{
friend class ParserOutput;
protected:

ostream & os;

public:
ParserOstream(ostream & theos)

: os(theos) {}

virtual ParserOutput & operator<<(ParserExpr & expr)
{  return new ParserOutput(os,expr);  }

virtual Value Evaluate(Context)
{  return os.good();  }

};

Figure 7: Classes to support deferred output.

8.  Embedding Control Structures

One important binary operation that must treated slightly differently is the sequencing operation:
operator,(). By itself, there is no reason that sequencing of expressions could not be accomplished simply
by defining a global operator,() function that returns a ParserSequence object. However, it is also desir-
able to provide conditional sequencing – a deferred if statement – and this requires somewhat more sophisti-
cation from the comma operator.



Instead of being declared as a global function, the comma operator is defined as a virtual method of class
ParserExpr itself (as in Figure 8). In addition, another overloaded sequence operator is defined, taking a sec-
ond argument of class ParserAlternative. Objects of this class represent the alternative actions in a
(cascaded) if construct. This additional comma operator simply produces an error message in the general case,
but will be redefined to do something more useful in the ParserIf class presented below.

class ParserExpr: public Parser
{

...        // As before
public:

virtual Parser & operator,(ParserExpr & pe)
{ return new ParserSequence(this,&pe); }

virtual Parser & operator,(ParserAlternative & pe)
{

FatalError("ELSEIF or ELSE without preceding IF.");
return *this // Never executed

}
};

Figure 8: The virtual sequence operator for ParserExpr.

In order to permit the use of selection statements within deferred expressions, a special class, ParserIf, is
created. Unlike most of its sibling classes, ParserIf contains two dynamic arrays of ParserExpr pointers,
enabling it to store a series of alternate conditions and actions. A helper class, ParserAlternative, is also
required, but need not belong to the ParserExpr hierarchy. Figure 9 illustrates the necessary code.

Selection constructs are created using the global IF() function. This creates a ParserIf object and initial-
izes its first condition to point to the function argument. The expression to be returned (if the deferred condi-
tion evaluates to non-zero) is then passed to the ParserIf object using the function call operator. This two
step approach produces a syntax very similar to the standard C/C++ syntax (see Figure 1), except that brack-
ets are used to contain the body of the deferred if, rather than braces.

Another significant difference is that a ParserIf object represents an expression rather than a statement,
hence its result may be used in subsequent expressions (see Figure 1 for an example). Thus the deferred if also
provides the functionality of the ternary operator (?:). Indeed, this particular situation is one in which seems
to have been overlooked1 by Stroustrup and Ellis in their prohibition [4] of an overloaded operator?:().

Class ParserIf redefines the virtual sequence operator it inherits from class ParserExpr, so that any
ParserAlternative object which follows a deferred if expression are appended to the list of possible
condition/expression pairs.

ParserAlternative objects are created through the global function ELSEIF(), and contain pointers to a
deferred condition and a corresponding deferred expression2. These pointers are appended to the respective
lists in the preceding ParserIf. ParserAlternative objects may also be created using the global function
ELSE(), in which case their condition pointer is set to zero, which the method ParserIf::Evaluate()
subsequently interprets as "always succeed".

9.  Conclusion

The techniques presented in this paper greatly improve the usability of the Parser classes presented in [1].
The approach illustrated can be extended to any binary or unary C++ operator which can be overloaded.
Other extensions which might be considered include support for deferred function calls, other control struc-
tures (in particular, loops), and support for a dynamic record type (as an extension of the Value class).

1This is not intended as a criticism: this application of operator overloading is quite esoteric and was hardly likely to
suggest itself to the hardworking language designers.
2 Class ParserAlternative is structurally and functionally very similar to class ParserIf.  Objects of class
ParserAlternative are creating with a one argument constructor which stores a pointer to the deferred condition,
and completed using their own operator() to store a pointer to the corresponding deferred expression.



The concept of deferred expressions also has wide application beyond this particular problem domain.
Applications in the areas of lazy evaluation, extensible interpreters, and declarative or self-modifying styles of
programming will readily suggest themselves to the reader.

class ParserIf: public ParserExpr
{
private:

DynamicArray<ParserExpr*> condition;
DynamicArray<ParserExpr*> expression;
int last;

public:
ParserIf(ParserExpr & cond)

: last(0)
{  condition[last] = & cond;  }

Parser & operator()(ParserExpr & expr)
{  expression[last] = & expr;  }

virtual Parser & operator,(ParserAlternative & pa)
{

condition[++last] = pa.condition;
expression[last] = pa.expression;
return *this;

}

virtual Value Evaluate(Context c)
{

for (int i=0; i<=last; i++)
if (!condition[i] || condition[i]->Evaluate(c))

return expression[i]->Evaluate(c);
return 0;

}
};

ParserIf & IF(ParserExpr & condition)
{

return * new ParserIf(condition);
}

ParserAlternative & ELSEIF(ParserExpr & condition)
{

return * new ParserAlternative(condition);
}

ParserAlternative & ELSE(ParserExpr & expression)
{

return (new ParserAlternative(0))->operator()(expression);
}

Figure 9: Code to support deferred selection constructs.
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