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Abstract

Shared-memory parallel programs can be highly non-
deterministic due to the unpredictable order in which shared
references are satisfied. However, deterministic execution is
extremely important for debugging’ and can also be used
for fault-tolerance and other replay-based algorithms. We
present a hardware/software design that allows the order of
memory references in a parallel program to be logged effi-
ciently by recording a subset of the cache traffic between
memory and the CPU ‘s. This log can then be used along
with hardware and software control to replay execution.

Simulation of several parallel programs shows that our de-
vice records no more than 1.17 MB/second for an application
exhibiting fine-grained sharing behavior on a 16-way multi-
processor consisting of 12 MIP CPU’S. In addition, no probe
effect or performance degradation is introduced. This repre-
sents several orders of magnitude improvement in both per-
formance and log size over purely software-based methods
proposed previously.

1 Introduction

Debugging parallel programs can be very difficult. Un-
like sequential programs, truly parallel programs are
highly non-deterministic due to interleaved access to
shared memory. As a result, a bug may not reappear
when the program is run with the same inputs, and may
disappear when timings are changed due to insertion of
monitoring code. A summary of difficulties and poten-
tial techniques is presented in [11].

One of the most fundamental techniques for debugging
sequential programs is the ability to re-run the pro-
gram with the same inputs and have it fail in the same
way. This paper describes a mechanism for providing
this ability on a shared-memory multiprocessor, even
for programs which exhibit very fine-grained sharing be-
havior.

We present a design for a combined hardware/software
subsystem that allows fine-grained parallel executions
to be replayed without introducing any probe effect

and without recording an impossibly large amount of
data. This is done without requiring modifications to
the source code.

Since our methods build considerably on previous work,
we begin by surveying replay techniques for sequential
and multiprocessor architectures. Section 3 describes
the class of parallel architectures we are targeting. Sec-
tion 4 discusses our methods for recording event histo-
ries, and Section 5 describes the hardware that is used
to realize these methods.

Section 6 describes experimental data from several sim-
ulations, which is used to evaluate the size required by
our trace data, the speed required by our hardware data
collection device, and a number of other parameters. Fi-
nally we conclude with a summary of the strengths and
weaknesses of our approach.

Space constraints have required us to omit some details,
particularly of parallel replay with the partial order log-
ger and the hardware design; the interested reader is
referred to [1] for more details.
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Sequential programs are generally deterministic for long
periods of time; non-determinism occurs infrequently
due to input data, results of system calls, and interrupts.
The first two can be logged by simply recording the
input or result.

Interrupts are asynchronous and therefore to record pre-
cisely when they occurred requires knowing precisely
which instruction they followed. This has been solved

with a device known as an instruction counter, which
is decremented by one for every instruction executed.
When an interrupt occurs, the instruction counter can
be saved, giving the precise point in the program exe-
cution stream (in terms of the number of instructions
executed). When the instruction counter reaches zero,
a trap is generated. To re-execute the program deter-
ministically, the instruction counter is loaded with the
number of instructions that preceded the interrupt; then
it will reach zero and trap at precisely that point, and
the effects of the original interrupt handler can be sim-

ulated.

Hardware instruction counters have been implemented
experimentally [3] as well as in the HP Precision RISC
architecture [7]. They can also be simulated in software
by counting the number of backward branches and com-
bining this count with the value of the program counter
[12].

Instruction counters can also be used to make multi-
threaded uniprocessor applications repeatable, since the
contents of the instruction counter can be recorded ev-
ery time a scheduling operation is performed.

2.1 Replaying Parallel Programs

In multiprocessors, shared memory interleaving is truly
concurrent, and a more complex scheme is required. A
number of software-based schemes have been proposed

or implemented. The Recap system design[14] proposes
modifications to the compiler that instrument the code.
Any reference that might be to a shared location is fol-
lowed by a short instruction sequence that copies the
value read into a log and increments the log pointer.

Since there is a separate log for each process, this scheme
has the advantage of allowing arbitrary subsets of the
processes to be recorded and replayed, and parallel re-
play is easy. On the other hand, since every read from
a potentially shared location must be recorded, the logs
can become very large — the authors estimate their
scheme would consume 1 MB per second on a 1 MIP
VAX 11/780. This means that 1 MB per second must

be transferred from each processor cache into the main
memory log area, which will cause significant perfor-
mance degradation as well as probe effect. Another
source of both performance loss and probe effect is the
extra instructions that must be executed for each read

of potentially shared data.

An alternative approach is to record version numbers
of objects rather than their values, and to ensure on
replay that the correct version is read. This is the ap-

proach taken in the Agora distributed debugger [6]. Ver-
sion number logging is also used in Instant Replay for
the BBN Butterfly [9]. Instant Replay requires that
all shared data objects be accessed through procedures
which lock the object, update its sharing state, and
write an entry into the per-process log. This works well
for programs with medium-grain interactions mediated
through high-level objects like monitors and message
queues which already incur the performance overhead

of procedure call and locking. However, fine-grained
use of shared memory causes performance degradation

and requires changes to the code which “bracket” shared
memory access with calls to Instant Replay’s logging op-
erations. Thus to have debuggable code, “the program-
mer can balance the reduction of parallelism incurred
when locking for long periods of time with the overhead

of frequently executing the locking primitives.”

In summary, all software-based methods proposed suf-
fer from at least two of the following defects: signifi-

cant amounts of probe effect, a significant amount of
time and space overhead, or an assumption that shar-
ing is coarse grain and occurs infrequently. Programmer
modifications of the code may also be required.

The support for fine-grained sharing is one of the pri-
mary advantages of shared-memory multiprocessors,
and probe effect can significantly complicate debugging.
We therefore pursue a hardware-based solution which
eliminates probe effect and allows the processors to ac-
cess the shared memory at the full speed supported by
the bus and memory subsystem.

3 Machine Model

For the bulk of this paper, we will assume that the
machine architecture in question is a shared-memory
bus-based 16-way multiprocessor. Each processor has
a 128KB write-back cache with a 4 or 16 byte line
size. The coherency protocol maintains sequential con-
sistency by snooping and invalidation. Our results are
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1 Op CPU-Cache Interaction Bus Transaction Op CPU-Cache Interaction Bus Transaction

r read hit none w write hit to private line none

R read miss READ w write miss READ-MODIFY
Wi write hit to shared line INVALIDATE

Wr I capacity write-back WRITE-REPLACE WJu coherency write-back WRITE-UPDATE
P capacity purge none I invalidation none

Figure 1: Notation for Cache Operations. The Op column indicates the abbreviation used for the operation; the
corresponding CPU-Cache interaction and resulting bus transaction are shown. The first group of operations are

those which occur in the local cache in direct reponse to a read or write to the designated line by the CPU. The
second group are indirect operations are performed by the local CPU when freeing a line (P and Wr), or in response
to bus events generated by another CPU (VVU and 1).

applicable to this general class of machines; variations quired by cache capacity or coherency, and when a cache

of several binary orders of magnitude in cache size, line writes a line, all other processors invalidate it in their
size, and the number of processors are possible, and we cache. A shared bus signal is asserted when a processor

discuss the relevance of these parameters where appro- reads a line that is present in another processor’s cache.

priate.
The following list describes the bus transaction types

Processors are assumed to be RISC design, with most and their characteristics. In parentheses it is noted

instructions referencing registers rather than memory. whether the transaction requires an address (one cycle),

The bus is assumed to be pipelined, with read requests data (two or four cycles), or both. In square brackets

placed on the bus on one cycle and results read three the notation used for the cache operations correspond-

cycles later. For instance, a 10 MHz bus with a eight ing to the bus transactions is shown. This information

byte wide data-path and a 16 byte cache line is assumed is summarized in Figure 1.

to be able to sustain 3.3 million transactions second. It
is also assumed that the identity of the processor making
each bus request is available. ●

Our machine model is largely based on the Sequent
Symmetry, with the exception of our assumption of
RISC processors [10]. We chose the Symmetry because
its pipelined bus and relatively large number of proces-
sors for a snoopy cache machine would push the limits
of our techniques. We also consider two other bus/cache
architectures: the DEC SRC Firefly [17] and the IEEE
Futurebus [18]. When differences between our standard
model and these architect ures require different solutions
from those proposed, we will comment on the modifica-
tions required to support them. By considering three
different bus architectures, we demonstrate the robust-
ness of our scheme. ●

The Firefly is generally less demanding because it has
fewer processors, making bus performance less critical.
This is reflected in the Firefly’s use of write-through
rather than write-back, and its lack of bus pipelining,
yielding a bandwidth that is roughly one third of the
Symmetry ’s.

We assume a write-back/write-invalidate protocol: ●

dirty lines are not written through to memory until re-

READ [~]: The processor reads a location which is
not cached. An address is presented on the bus;
three cycles later the cache line words appear con-
secutively on the bus. (address and data)

If the line is in another cache and is unmodified, the
shared line is asserted and the line is marked non-
exclusive in all caches, and all cached copies are
marked shared. If the line is in another cache and
is modified, the owning cache performs a WRITE-
UPDATE[wu] .

If a line must be replaced to read this line, it is
written back if dirty [Wr] or purged if clean [P].

READ-MODIFY [~]: This is equivalent to a read
followed by an invalidate, but a bus cycle is saved
since the address is only presented once. This cor-
responds to a write miss, since the cache line must
be read before an individual word can be modified.
(address and data)

If a line must be replaced to read this line, it is
written back if dirty [Wr] or purged if clean [P].

INVALIDATE[W’i]: If a processor wishes to write a
line that is non-exclusive, it puts the address on
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the bus, and all other caches invalidate the line.
(address only)

The invalidation in the other caches is labeled 1.

WRITE-REPLACE [w~] : If a dirty cache line is
flushed, it must be written back to main memory.
An address is presented, followed by the successive
words of the cache line. (address and data)

WRITE-UPDATE[J4’u]: If another CPU reads a line
which is dirty in another cache, the read from mem-
ory is preempted and the modified data is placed
on the bus by its owner (indicated by Wu in the
owner’s cache stream). The data is read by the re-
questing cache controller and written back to main
memory, and the line is marked non-exclusive if
the original transaction was a READ, or the line
is flushed in the writer and marked exclusive in
the reader if the original transaction was a READ-
MODIFY. (consumes no additional cycles)

often make use of diagrams showing the sequence
of operations in the local ~aches of the ‘CPU ‘s. These
diagrams may or may not show the purely local events

(r, w, P, and 1). The operations will generally be sub-
scripted with the cache line address. WRITE-UPDATE
and WRITE-REPLACE transactions are collectively re-
ferred to as write-back transactions [B].

4 Event Tracing Methods

In this section we describe two alternative methods for
making parallel executions repayable, without going
into the details of how these methods would be imple-
mented in hardware. Section 5 describes their imple-
mentation in detail.

Since we are assuming a RISC CPU design, each data
reference corresponds to exactly one instruction, and
each instruction to at most one data reference. Instruc-
tion fetches are ignored because all code is assumed
to be read-only, so instruction fetches can not cause
any non-determinism. This means that every mem-

ory reference can be uniquely identified by the instruc-
tion counter of the issuing instruction and the proces-
sor number of the issuing processor. In our diagrams
we will show multi-processor executions as streams of

cache operations, with each operation identified by a

local instruction counter. An event in the execution of
a processor occurs at a particular instruction, identified
by its instruction counter value.

In a parallel program, events within a process are to-
tally ordered, and processes are partially ordered with
respect to each other. In a shared memory multipro-
cessor, it is reads and writes to shared memory which
create this partial order. The point at which a reader

process reads a data value follows the point at which the
writing process wrote the value; similarly, writes follow
the reads which they destroy. The partial order is called
the happens before relation, denoted by the “-+” sym-
bol.

In Figure 2, B33 -+ A4, CgS + AS, and (due to transi-
tivity and total ordering within a processor) 6’95 + AIO.
However, A5 and B35 are concurrent, since neither hap-
pens before the other, but they must both precede As.
For more details on partial orders and their relation to
debugging see [8, 5, 15].

Our initial approach was to provide version logging
(as in Instant Replay or Agora) in the hardware, but

this would have required extensive modifications to the
cache, considerable increase in bus traffic to transmit
version numbers, and a directory that could accommo-
date a version number for each (potentially) shared line.
So although version logging has many attractive fea-
tures, we abandoned it because of these defects.

The alternative to version logging is event logging, in
which the relative order of non-deterministic events is

logged and forced to repeat itself on replay. Since the
events occur in the same order, the values generated by
the execution will be the same. All of our schemes are
variations on this theme. Note that we will only deal
with non-deterministic events caused by shared-memory
parallelism; we assume that individual processes are de-
terministic. This can be achieved in an orthogonal fash-
ion through the use of instruction counters or other tech-
niques as described in Section 2.

4.1 Cache Traffic as an Event Stream

The cache reduces the number of bus transactions by
several orders of magnitude. Our approach is to log
a subset of the cache-to-memory transactions. On re-
play we guarantee that these events occur in an order
indistinguishable from the original execution. Since we
have only logged cache-to-memory traffic, we must take
the references that were satisfied by the cache into ac-

count to demonstrate that our replay algorithm works
correctly.

In Figure 2 we showed all memory accesses by the pro-
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Figure 2: A Happens Before relation induced by memory operations of three processors. The dark circles represent
operations that result in bus transactions. The number above the circle is the instruction counter value of the issuing

instruction.

cessors. Due to caching only some of these will be broad-
cast on the bus, but any memory access which might
create an inter-processor dependency in the happens
before relation will be broadcast, because a write of a
shared cache line will cause an INVALIDATEtransaction
to be broadcast, and a read of a previously written line
will miss in the cache because the line has been previ-
ously invalidated or flushed, and will therefore generate
a READ transaction. Additional bus transactions may
be generated which are not relevant to the partial order
between the processors; we will describe the effects of
these transactions shortly.

A partial order exactly captures the required synchro-
nizations between processors as they access memory.
On the other hand, recording the partial order requires
recording the order of accesses to each line, and can be
very expensive to collect and process. We present two
different schemes for simplifying the logging procedure.
The first converts the partial order into a total order.

This requires the processors to execute serially on re-
play, but has the advantage of requiring a minimum of
hardware. The second scheme records a subset of the
partial order and allows significant parallelism on replay.

In either case, due to the non-deterministic interaction
between caches, it is necessary to record the point at
which the cache operations occur. This is done by

recording the instruction counter, which precisely lo-
cates each memory reference. In the total order, the
memory addresses can be ignored. In the partial order,
addresses must be considered as well, because the par-
titioning of the address space into lines is being used to
allow pot ent ial parallelism of memory access.

4.2 Recording a Total Order

If all bus transactions are logged by recording the CPU
number and the instruction counter in a sequential
buffer, a total order is placed on the bus transactions
in the original execution. In order to guarantee correct-
ness the memory accesses that occur between bus trans-
actions must be replayed in the same (or an equivalent)
order. First, changing the order of the operations be-
tween bus transactions could cause different coherency
traffic; second, replacements and misses may occur in
different places on replay, and these operations must be
satisfied without affecting the correctness of replay.

Because we have a total order on the bus transactions,
we will replay the CPUS sequentially. This will result
in a slow-down by as much as 16, but for debugging
and recovery, this is acceptable if replay starts from a

relatively recent checkpoint. The correct order for se-
quential replay is to allow the first processor in the log
to run up to the instruction preceding the instruction
that caused that processor’s next bus transaction.

This is shown in Figure 3: on replay, segment 2 must run
to completion before the write to location 1 that begins
segment 3 is executed; otherwise, the read of location 1
could get the wrong value. However, because location
1 is invalidated in processor B, we know that there can
not have been any references to location 1 before the

next logged event of processor B. Therefore it is safe to
run the rest of segment 2 before beginning segment 3.

Note that we always run the CPUS in the order of their
log events up until one instruction before the next logged
event for that CPU. The exception comes at the begin-
ning,where processors run from instruction O Up to the
end of the first interval, since they are guaranteed to be
deterministic prior to their first shared memory access.
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(a) Concurrent execution of bus events.

B:16, A:l, B:18, A:9, A:5, B:,23, . . .

(b) Order in which events arrive at the logger.

B:l 7, A:,2, B:22, A:4, A:cw, B:co

(c) Information written to the log.

B: O-17, A:O-2, B:18-22, A:3-4, A:5-co, B:23-co

(d) Resulting sequential replay schedule.

Figure 3: A parallel execution and its replay schedule.
The replay schedule of (d) is also shown by the segments
labeled O through 5 in (a).

The first log entry, B:l 7, is not actually completed until
the second bus transaction is initiated by B. It is only
at this point that we know that B must be run up to in-
struction 17, one instruction before the one that caused
the next bus transaction. This “look-ahead” makes it
necessary to wait for the next transaction from a CPU
before completing that CPU’s current log entry. An al-
ternative would be to simply record the event stream of
Figure 3(b), but this would require post-processing of
the log, which we would like to avoid.

4.2.1 Removing Transaction Runs

Note that when the same CPU issues two successive
bus transactions, on replay it will be allowed to exe-
cute up to (but not including) the instruction gener-
ating the first transaction, and immediately afterward
up to the instruction generating the second transaction.
This leads to the first optimization: when two succes-
sive transactions are from the same CPU, the first one
can be discarded.

A
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B

W!ikm m3............................................................................................................
km(z)

‘@’@”@6 @l‘6(3...........................................................................................................
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Figure 4: Three Memory Reference Streams Involving
a Write-Back

4.2.2 Removing Writeback ‘hansactions

Since WRITE-UPDATE’Sare fully overlapped with READ
or READ-MODIFY transactions, they are a potential
problem for the logger because they do not consume any
bus cycles. If both the WRITE-UPDATE and the READ
transaction must be logged, this would require the log-
ging device to be capable of twice the peak speed that
would be required in the absence of WRITE-UPDATE.

All write-backs (WRITE-UPDATE and WRITE-REPLACE
transactions) can be removed from the log by the fol-
lowing reasoning: since the line was dirty, it was not in
any other cache. Therefore, any reference to the line by
a processor that follows the write in the original execu-
tion will also follow it on replay, since the reference must
be logged and will occur in the log after the write-back
transaction (see example 1 in Figure 4). Any reference
to the line that precedes the write-back in the original

execution must either precede an INVALIDATEthat pre-
cedes the write-back (see example 2), or it must itself
have been logged and then flushed before the writer ref-
erenced it (example 3).
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Figure 5: Legal and Illegal Dependencies Between Slices

4.3 Recording the Partial Order

In the total order scheme we do not examine the ad-
dresses that are being referenced — in essence we are
treating the memory as though it were only a single
location, and any read that follows a write during ex-
ecution must follow it on replay. However, this is not
really true: if we look at memory at a finer granularity,
namely the cache line size, much of this “false sharing)’
effect is eliminated: Wil by processor A and R2 by
processor B can occur in any order, since they reference
different memory locations.

Dynamically scheduling the processors from the partial
order graph induced by the cache traffic would yield
maximum parallelism, but the overhead would also be
extremely high. We have adopted a scheme that sac-

rifices some potential parallelism on replay in favor of
a more compact log and much lower replay overhead.
We break the partial order into “slices” which are run
in parallel, consisting of a certain number of instruc-
tions for each processor. As long as these slices obey
the constraints of the partial order, the result of run-
ning the slices consecutively will be the same as the
original execution. Essentially, instead of serializing the
entire execution as in the total order scheme, we insert
a barrier synchronization between each slice.

Figure 5 shows the characteristics that must be main-
tained by the slices: a processor can depend upon an
event in a previous slice, but it may not depend upon
an event in a future slice or an event in the same slice
(except when the event is local to the processor in ques-
tion).

Basically, both loggers listen to the bus and record the
bus transaction type, the processor that generated the
transaction and its current instruction count. In addi-
tion, the partial order logger records the cache line that
was affected by the transaction. The total order logger
has four main components: The page status table, the
instruction count table, the log buffer, and the logging

disk. In addition to the four components for the total
order logger, the partial order logger also has an event

buffer and a scheduler queue.

5.1 Instruction Count Information

Since the logger records the current instruction counter
(IC) of the CPU generating the event, some provision
must be made for transferring the IC from the CPU
to the logger via the bus. Instead of transmitting a
complete instruction count across the bus which would
require at least 32 bits per transaction, each CPU keeps
track of the number of instructions executed since the
previous cache transaction, and only transmits the dif-
ference (the IC-delta). The width of the IC-delta is 12
bits. In the extremely rare event that a CPU does not
cause a bus transaction to occur in 4096 instructions, it
will generate an INVALIDATEto a line in a page owned
by the logger. This delta ouerjlo w pseudo-transaction
causes the IC-delta to be transmitted over the bus.

5.2 Non-Shared Transactions

The logger ignores transactions to memory that are
guaranteed to be non-shared (e.g., instruction fetches).
This is accomplished by comparing every address on
the bus to the page status table. The page status ta-
ble has one bit for every page in the physical address
space. If the bit is 1, the page is sharable, otherwise
it is non-sharable and references falling on the page are
not logged. The page status table is managed by the op-
erating system as it does virtual memory management.

5 Detailed Design
5.3 Storing the Log

Both the partial order and the total order log are created
by recording cache to memory transactions. In order to
record the necessary events a logging device is attached
to the memory bus. The logging device performs the
logging function by interacting with the operating sys-
tem and by listening to the memory bus.

A log consists of a series of log records. Each record
contains a CPU number (4 bits) and an IC-delta (12
bits) which on replay contains the number of instruc-
tions that the CPU can execute until it must suspend
and wait for the logger to start it again.
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Figure 6: Total Order Logger

On replay a CPU executes the number of instructions
specified in the next event. Thus, the logger uses the
current IC-delt a to complete the last record for the CPU
that caused the current event. This is accomplished by
the instruction count table, which has one entry per pro-
cessor. Each entry contains a log record number which
is a pointer to the last event for the given processor.

When a loggable event occurs the instruction count ta-
ble completes the previous record and creates a new log
record for the current event and its address overwrites
the old log record number in the instruction count table
for the processor that caused the event.

In parallel with filling up the RAM log buffer the logger
moves the completed records to a disk on the logging
device. If the log buffer approaches capacity (which
means that there is an incomplete record in the log
buffer which is blocking the movement of the records
from the buffer to the disk) the logger will perform a
delta request pseudo-transaction to the processor to get
an IC-delta for the incomplete log record (this is done
by sending an INVALIDATEfor a line on a page owned
by the logger). The processor will perform a delta over-
flow pseudo-transaction, which will reset its instruction
counter and put its current IC-delt a on the bus.

Ievent I1.-d
data next

I Event Buffer I
“.1 id I Ia

SymmBus

Figure 7: The Partial Order Logger

event type and address make the event “loggable.” The
logged transactions are READ, READ-MODIFY, and IN-
VALIDATE. If the event should be logged it passes to
the instruction count table which processes the event as
described above.

5.5 Total Order Playback

Once a total order schedule has been created, the log-
ger can be used to playback the execution that created
the schedule. For this the log buffer is loaded with
the logged events. Each log event contains a processor
number and an IC-delta. The logger starts the proces-
sor indicated by the processor number of the current
log record and loads the processor’s instruction counter
with the IC-delta of the current log record.

The processor will execute IC-delta number of instruc-
tions and then perform a delta overflow transaction
while putting itself into a hold state. The logger will
then retrieve the next log record and continue playback.

5.4 The Total Order Logger
5.6 The Partial Order Logger

The simplest way of ensuring that playback will be de-
terministic is to gather a total order log. This log con-
tains the schedule for replaying the processors one at
a time in the order determined by the cache transac-
tions. The log is created by the total order logger (see

Figure 6).

For each event the logger, in parallel, determines if the

While the total order logger requires minimal hardware,
it restricts playback to running only one processor at a
time. If, on the other hand, more analysis is done and
the partial order implied by the events is recorded, a
significant speedup may be possible. The partial order
logger performs such analysis with a surprisingly small
amount of hardware.
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The partial order logger (see Figure 7) determines
whether events are loggable as does the total order log-
ger. Once a transaction is considered loggable, the pro-
cessor number, IC-delta, address, and transaction type
are put into the event buffer.

The events are pulled out of the event buffer by the
scheduler-. The scheduler processes the events and puts
schedule siices into the log buffer. Log buffer overflows
are handled in the same manner as for the total order
logger.

Each slice is a set of processor number and IC-delta
pairs. The entire set of processors in the slice may be
played back at the same time. The only difference be-
tween the total order logger and the partial order logger
for playback is that the partial order logger will start
each processor in the slice at once and will not execute
another slice until they have all reached the IC-delta
specified.

5.7 The Partial Order Scheduler

The heart of the partial order logger is the scheduler.
It is the scheduler’s task to translate the events com-
ing from the bus into a series of slices. The scheduler
(see Figure 8) is composed of a circular queue of slices
controlled in a SIMD fashion. As events come from the
event buffer they are pushed onto the tail of the queue.
The scheduler will then percolate the events toward the
head of the queue. When the head of the queue is ‘(full”
it will consist of all the events that can be scheduled in
one slice.
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Figure 9: A logical view of a slice of the Scheduler

Each slice (see Figure 9) in the scheduler is composed
of four main components: the lookup register, virtual

presence register, control flags, and associative memory.
The lookup registers are connected in a circular queue.
At any time one lookup register is designated as the
head and another as the tail of the queue. The virtual
presence register (VPR) is a p-bit wide bit addressable
register, where p is the number of processors in the sys-
tem. The control flags are used to control the actions of
an individual slice. The associative memory holds the
actual event information once it has been stored in a
given slice.

Each event enters the scheduler by being inserted into
the lookup register which is the current tail of the queue.
The event is then checked to see if it belongs in the tail’s
queue. If it doesn’t, it is shifted to the left (towards the
head of the queue) and the next event can be loaded
into the tail slice.

Basically, a read event can be moved toward the head of
the queue iff no other event in the slice is a write to the
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Figure 10: The Scheduler state at the end of every time

step. Slices that have been written to the instruction
count table are to the left of the the thick line. The
tail-slice is indicated by a caret.

same address. A write event can be moved toward the
head of the queue ifl no other event in the slice is either
a read or a write to the same address. Writebacks are
entered into the scheduler to keep it consistent, but are
not entered into the log.

The slices are controlled by a microprogram which in
conjunction with the control flags determines what ac-
tion each slice will take during one of the six microcy-
cles. Using standard technology about 16-32 slices can
be put on a chip making a 50ns microcycle time real-
istic. Even at peak bus usage, transactions will only
arrive at 300 to 400ns intervals [17, 10, 16].

The example in Figure 10 shows the state of the sched-
uler at the end of every real time step for the partial
order indicated. The events in the partial order are all
bus transactions. Notice that when Wi2 is stored in
the second slice, it sends a virtual presence bit to the
left. When it reaches the head-slice, the leftmost slice,
the head-slice will write out the schedule and move one
slice to the right. At time step 5, Wil enters the sched-
uler. At time step 6, both WiI and Rz are searching for
the correct slice to occupy. Notice that Wil moves to
the left of B2 even though it followed B2 in real-time.

This is because B2 and Wil are not dependent on each
other.

5.8 Bus transactions for logging

In order to capture the required information the logger
must be able to determine which processor is initiating
each bus transaction and what kind of transaction is
taking place. For split-transaction busses (such as the
Futurebus [18]) the processor number is obtainable. For

pipelined buses (such as the Symmetry [10]) there is ex-
tra bandwidth on the unused address pins. For systems
that hold the bus during the entire memory transaction
(such as the Firefly [17]), there is enough extra band-
width during the idle cycles to put the processor number
and the IC-delta on the bus.

5.9 Bus transactions for playback

The delta overflow pseudo-transaction is used to do
playback efficiently. When a processor’s instruction
counter reaches zero it interrupts the processer and it
writes to a special memory location on the logger. This

signals the logger that the processor is ready for its next
schedule. The processor then reads the new IC-delta
from a location on the logger.

6 Simulation

In order to determine the expected size of the log and
various other parameters (such as the number of slices
in the partial-order logger), we used a simulation of 16
MIPS Co. R2000 CPUS running at 12 million instruc-
tions per second on a shared memory bus to generate
traces [13]. This simulator generates every memory ref-
erence from the 16 machines for each instruction fetch,
data reference, barrier, and lock.

The multiprocessor trace was then fed into a cache sim-
ulator which managed coherency for an infinite sized
cache. Reads and writes are handled in the obvious
way. Locks and unlocks each generated only one write
each which reduces the amount of coherency traffic for
those applications that used locks. However, the num-
ber of processes queueing on each lock was small and
thus the distortion was small. Barriers were handled
by producing a write for each barrier and a read for all
processes currently waiting on the barrier.
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Program Line CPU Bus Write Compulsory Log
Name Size References Transactions Backs Misses Entries

Verify 4 100,000,000 1,150,000 243,000 326,000 586,000

Verify 16 100,000,000 1,600,000 530,000 200,000 900,000

Genie 4 44,000,000 310,000 91,000 40,000 171,000

Genie 16 44,000,000 300,000 93,000 26,000 182,000

Figure 11: Simulation Results. Each application was run with4 and 16 byte cache line sizes. Listed are rates per
second of total CPU-to-cache references, bus transactions, write-backs, compulsory misses on non-shared dat a (local
variables and read-only segments), and the resulting number of 2-byte log entries. Note that the last three columns
approximately equal the number of bus transactions.

We ran simulations for two different workloads: VERIFY,
a logic verifier that used locks and fine-grained paral-
lelism; and GENIE,a PLA layout program that used bar-
riers and coarse-grained parallelism. By running these
simulations with 4 and 16 byte cache lines we were able
to generalize our analysis by comparing the collected
statistics with the literature (in particular [4]).

6.1 Size of Logs

Obviously the most crucial factor for the success of our
system is the size of the generated logs. The pipelined
Symmetry bus operates at 10 MHz, or about 3.3 M bus
transactions per second. Since our log entries are two
bytes, this means that at 100’% bus utilization we would
be logging 6.6 MB/second. This is well within the ca-
pacity of current memory and disk technology.

However, real bus utilization is substantially lower. To
evaluate this we ran simulations that modeled the ef-
fect of the logger, and kept statistics on the number
of logged bus transactions, the number of shared bus
transactions, and the number of read-only and private
bus transactions. Measured total miss ratios were be-
tween 0.5 and 2’%, with shared references making up 8
to 1470 of all CPU-cache references. 5?Z0of all shared
references generate cache misses that must be logged,
so that about 0.5% of all references are logged.

The results of our simulations are summarized in Fig-
ure 11. As expected, the fine-grained application
(VERIFY) required substantially more log entries than
the coarse-grained application (GENIE). Increasing the
cache line size leads to false sharing causing an increase
both in writebacks and in total log entries; this effect is
primarily seen in VERIFY.

Were it not for our idealized memory system, the rate

of bus transactions would be further reduced by con-
tention; thus these rates are an upper bound for these
applications. Even with these pessimistic assumptions,
the worst case measured was 900K log events per sec-
ond, or 1.8 MB per second with 2-byte log entries.

For a Symmetry, a 64 MB RAM buffer would hold be-
tween 0.5 and 3 minutes of log activity (for VERIFYand
GENIE,respectively); with a 500 MB dedicated disk this
would be 3.5 to 24 minutes. This is sufficiently long
to allow periodic checkpointing of the application to
take place, as is already done by many long-running
compute-intensive tasks to guard against machine fail-
ures.

The above figures reflect a substantial reduction in
log size due to elimination of writeback transactions:
about half of all shared-memory bus transactions cause
a write-back to occur, indicating that on average shared
objects are read and modified by one CPU, and then
another, rather than being read by a large number of
CPUS before being written.

Note that a further reduction in total order log size can
be obtained by the elimination of successive operations
by the same CPU: measurements show that approxi-
mately 12’ZOof all log events are eliminated.

6.2 Size of Instruction Count Deltas

The delta in the successive instruction counts sent to the
logger by each processor were measured to determine
how many bits would be required in the log and on the
bus. Figure 12 shows the results: there were no deltas of
more than 16 bits, meaning that processors executed no
more than 65536 instructions between bus transactions.
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6.3 Effect of the Number of Slices

For the partial order logger, the largest hardware ex-
pense is the associative memory and attached logic that
implements the slices. To evaluate the number of slices
needed, we simulated the operation of the partial or-
der logger for 16, 256, and an infinite number of slices.

With a finite number of slices, when the queue overflows
the earliest slice will be written to the log even though

more events could be inserted into it, resulting in a loss
of parallelism on replay. By comparing the amount of
parallelism achieved with infinite slices to that achieved
with finite slices, we can decide how many slices are
worth their cost in hardware.

Figure 13 shows that the difference between 16 slices
and infinite slices is extremely small. Regardless of the
number of slices, schedules with three processors dom-
inate. The extra parallelism achieved by infinite slices
with large numbers of processors is clearly irrelevant
compared to the average schedules achieved.

Thus 16 or even fewer slices will serve very well, allowing
the entire partial order logging logic to be embedded on
a single low to moderate density chip.
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Figure 13: Effect of the number of slices on parallelism
available for replay.

7 Conclusions

We have presented a hardware-assisted scheme for de-
terministic playback of mult iprocessor executions. Un-
like software-based schemes proposed or implemented to
date, our scheme is virtually free of probe effect: logging
is done in hardware using extra bandwidth available on
the bus. Because logging is centralized on a board with

its own dedicated memory and optional disk, there is no
effect on available resources for the CPUS.

Our detailed simulations have shown that the amount of
log data is small enough that even for programs that ex-
hibit very fine-grained sharing behavior, several minutes
of program history can be kept. Because the logging
process does not intrude upon or degrade normal exe-
cution, logging can be done continuous y during normal
operation. If a bug occurs, the programmer can replay
the last several minutes of execution repeatedly until
the bug is found. If the logging device is being used for
fault-tolerance purposes, the log can be used to recreate
the exact system state prior to the crash.

Previous debuggers for parallel programs have not been
able to perform well with programs that make maxi-
mal use of available parallelism, because of overheads in
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both time and space to perform logging. By reducing
log entries to 2 bytes, we are able to keep up with a
pipelined multiprocessor bus like the Symmetry’s even
when it is running at full speed.

Our system allows “debug mode” to be the default and
allows all the available parallelism on the machine to be
used without compromising access to high-level debug-
ging facilities.
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