
 E C E N 6 2 5 3 A d v a n c e d D i g i t a l C o m p u t e r D e s i g n
Reorder Buffer

The function of the reorder buffer is to put the instructions back in the original program
order after the instructions have finished execution possibly out of order. The reorder
buffer maintains an ordered list of the instructions. Instructions are added at one end of
the list when they are dispatched and they are removed from the other end of the list when
they are completed. In this way, instructions will be completed in the same order as they
were dispatched.

The implementation of the reorder buffer is usually a circular buffer (similar to I/O buffers
in operating systems) as shown in fig. 4-28b, p. 179. The dispatch stage increments the
tail pointer to add instructions to the list. The complete stage increments the head pointer
to remove instructions from the list. When the head pointer catches up to the tail pointer,
the buffer is empty. When the pointers get to the end of the buffer, they wrap around again
to the beginning of the pointer. If the tail pointer wraps around and catches the head
pointer, the buffer is full.

An entry in the reorder buffer must contain enough information so that the complete stage
can determine whether an instruction should complete. A typical entry might look as in
fig. 4-28a, p. 179.

The Busy bit is not really required since the head (complete) and tail (dispatch) pointers
are used to keep track of where “busy” entries are.

The Issued bit is probably not necessary either since complete does not care when instruc-
tions are issued.

The Finished bit is essential information for complete since instructions that have not fin-
ished cannot be allowed to complete. The finished bit must be written when an execution
pipeline writes its result onto one of the forwarding busses. This requires the execution
unit to have a pointer into the reorder buffer for each instruction that is finished.

The instruction address must be saved in case the instruction causes an exception. After
the exception is handled, the PC will be restarted with the instruction address. Also,
branch instructions may need the instruction address to determine the PC during recovery
from a mispredicted branch.

The rename register number is essential for complete to know which rename register to
write into the architected register. The rename register number can also be used to check
the Valid bit in the rename register file to see if an instruction has finished. This would
make the Finished bit unnecessary.

The reorder buffer would be a convenient place to store the logical (architected) register
number also. Complete needs the architected register number to write into the architected
register file.
Reorder Buffer March 10, 2003 page 1 of 2

 E C E N 6 2 5 3 A d v a n c e d D i g i t a l C o m p u t e r D e s i g n
The Speculative and Valid bits may not be necessary depending on how recovery from
mispredicted branches is implemented. Speculative instructions can never get to the head
of the reorder buffer because previous instructions (including branches) must complete
first. Thus a branch will already be resolved and recovery initiated if needed before any
(control dependent) instructions after the branch are allowed to complete. If control
dependent instructions are removed from the reorder buffer during recovery, the Valid bits
are unnecessary; otherwise, the control dependent instructions must be marked invalid so
that they can be ignored when they reach the head of the reorder buffer.

The reorder buffer must accomplish the following operations.

1. Allocate: The dispatch stage reserves space in the reorder buffer for instructions in pro-
gram order.

a. The tail (dispatch) pointer selects a location(s) in the reorder buffer.

b. The essential information is loaded into the reorder buffer (for example: Instruc-
tion address, rename register, architected register).

c. The tail pointer is incremented.

2. Wait: The complete stage must wait for instructions to finish execution.

a. All instructions at the head of the reorder buffer that are finished (or that have
valid rename registers) are selected for completion.

b. Completion stops at the first unfinished instruction.

3. Complete: Finished instructions are allowed to write results in order into the archi-
tected registers.

a. copy rename register into architected register.

b. deallocate rename register by setting rename and architected register Busy = 0.
Deallocate reorder buffer by incrementing the head pointer.
Reorder Buffer March 10, 2003 page 2 of 2

	Reorder Buffer
	1. Allocate: The dispatch stage reserves space in the reorder buffer for instructions in program order.
	a. The tail (dispatch) pointer selects a location(s) in the reorder buffer.
	b. The essential information is loaded into the reorder buffer (for example: Instruction address, rename register, architected register).
	c. The tail pointer is incremented.

	2. Wait: The complete stage must wait for instructions to finish execution.
	a. All instructions at the head of the reorder buffer that are finished (or that have valid rename registers) are selected for completion.
	b. Completion stops at the first unfinished instruction.

	3. Complete: Finished instructions are allowed to write results in order into the architected registers.
	a. copy rename register into architected register.
	b. deallocate rename register by setting rename and architected register Busy = 0. Deallocate reorder buffer by incrementing the head pointer.

