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Abstract. ConceptNet is a very large semantic network of commonsense knowledge 
suitable for making various kinds of practical inferences over text.  ConceptNet cap-
tures a wide range of commonsense concepts and relations like those in Cyc, while its 
simple semantic network structure lends it an ease-of-use comparable to WordNet.  To 
meet the dual challenge of having to encode complex higher-order concepts, and main-
taining ease-of-use, we introduce a novel use of semi-structured natural language frag-
ments as the knowledge representation of commonsense concepts.  In this paper, we 
present a methodology for reasoning flexibly about these semi-structured natural lan-
guage fragments.  We also examine the tradeoffs associated with representing common-
sense knowledge in formal logic versus in natural language.  We conclude that the 
flexibility of natural language makes it a highly suitable representation for achieving 
practical inferences over text, such as context finding, inference chaining, and concep-
tual analogy. 

1   What is ConceptNet? 

ConceptNet (www.conceptnet.org) is the largest freely available, machine-useable 
commonsense resource.  Structured as a network of semi-structured natural language 
fragments, ConceptNet presently consists of over 250,000 elements of commonsense 
knowledge.  We were inspired dually by the range of commonsense concepts and 
relations in Cyc (Lenat, 1995), and by the ease-of-use of WordNet (Fellbaum, 1998), 
and hoped to combine the best of both worlds.  As a result, we adopted the semantic 
network representation of WordNet, but extended the representation in several key 
ways.   

First, we extended WordNet’s lexical notion of nodes to a conceptual notion of 
nodes, but we kept the nodes in natural language, because one of the primary 
strengths of WordNet in the textual domain is that its knowledge representation is 
itself textual.  ConceptNet’s nodes are thus natural language fragments which are 
semi-structured according to an ontology of allowable syntactic patterns, and ac-
commodate both first-order concepts given as noun phrases (e.g. “potato chips”), 
and second-order concepts given as verb phrases (e.g. “buy potato chips”).  

Second, we extended WordNet’s small ontology of semantic relations, which are 
primarily taxonomic in nature, to include a richer set of relations appropriate to 
concept-level nodes.  At present there are 19 semantic relations used in ConceptNet, 
representing categories of, inter alia, temporal, spatial, causal, and functional 



knowledge. By combining higher order nodes with this relational ontology, it is 
possible to represent richer kinds of knowledge in ConceptNet beyond what can be 
represented in WordNet (Fig 1.).  For example, we can represent a layman’s com-
mon sense observation that “you may be hurt if you get into an accident” in Con-
ceptNet as EffectOf(“get into accident”, “be hurt”).  Note that because the knowl-
edge representation is semi-structured natural language, there are often various ways 
to represent the same knowledge.  This is a source of ambiguity, but as we will ar-
gue in this paper, maintaining some ambiguity lends us greater flexibility for reason-
ing.   
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Fig. 1. An excerpt from ConceptNet’s semantic network of commonsense knowledge. Rela-
tion names are expanded here for clarity. 

Third, we supplement the ConceptNet semantic network with some methodology for 
reasoning over semi-structured natural language fragments. This methodology pre-
scribes techniques for managing the ambiguity of natural language fragments, and 
for determining the context-specific similarity of nodes.  For example, sometimes 
we want the nodes “buy food” and “purchase groceries” to be synonymous in an 
inference chain, and other times, not. 

Fourth, we supplement the ConceptNet semantic network with a toolkit and API 
which supports making practical commonsense inferences about text, such as con-
text finding, inference chaining, and conceptual analogy. 

In a related paper (Liu & Singh, 2004a), we describe how ConceptNet was cre-
ated, how it is structured, how it compares with other commonsense knowledge 
bases, and how it has been used and evaluated.  This paper begins with a few perti-



nent details of the system but largely focuses on the knowledge representation aspect 
of ConceptNet, that is, how to reason over concepts expressed as semi-structured 
natural language fragments.  We also speak more generally about the suitability of 
natural language as a knowledge representation for commonsense reasoning. 

This paper is structured as follows.  First, we give a brief history of the origin and 
structure of ConceptNet.  Second, we discuss the affordances and limitations of 
representing commonsense knowledge in natural language, particularly in regards to 
its suitability for making practical commonsense inferences about text.  Third, we 
present some methodology for reasoning about semi-structured natural language 
concepts in ConceptNet.  We conclude with a summary of contribution. 

2   Origin and Structure of ConceptNet 

We explain briefly the history of ConceptNet with respect to the Open Mind Com-
monsense (OMCS) Project, how ConceptNet was mined from the OMCS repository 
of sentences, and how ConceptNet’s nodes and edges are structured. 

2.1 Origin 

ConceptNet is a machine-usable resource mined out of the Open Mind Common-
sense (OMCS) corpus (Singh et al. 2002), a collection of nearly 700,000 English 
sentences of commonsense facts collected from over 14,000 contributors from 
around the world, over the past three years. 

CRIS (Commonsense Robust Inference System), ConceptNet’s earliest predeces-
sor, mined predicate argument structures from OMCS, where arguments were semi-
structured natural language fragments, and used this for conceptual expansion (Liu 
& Lieberman, 2002).  Since then, we finalized the ontology of semantic relations 
and added an inference toolkit that is distributed with the semantic network to sup-
port some practically useful textual inferences tasks.  Recently, we also added meth-
ods for automatically comparing and reconciling natural language nodes to make 
inference more flexible and robust. 

ConceptNet is produced by an automatic process which applies a set of ‘com-
monsense extraction rules’ to the semi-structured English sentences of the OMCS 
corpus. The key to being able to do this is that the OMCS website already elicits 
knowledge in a semi-structured way by prompting users with fill-in-the-blank tem-
plates (e.g. “The effect of [falling off a bike] is [you get hurt]”).  A pattern matching 
parser uses roughly 40 mapping rules to easily parse semi-structured sentences into 
an ontology of predicate relations, and arguments which are short fragments of Eng-
lish. These arguments are then normalized to conform to preferred syntactic pat-
terns. Certain stop-words and stop-parts-of-speech are filtered out, and the verb and 
nouns are reduced to their canonical base forms. A small part-of-speech-driven 
grammar filters out non-compliant text fragments (thus only a subset of the OMCS 



knowledge is used in ConceptNet) to ensure all arguments conform to these syntac-
tic constraints.   

2.2 Structure 

ConceptNet nodes are natural language fragments semi-structured to conform to 
preferred syntactic patterns which fall into three general classes: Noun Phrases 
(things, places, people), Attributes (modifiers), and Activity Phrases (actions and 
actions compounded with a noun phrase or prepositional phrase, e.g.: “turn on wa-
ter,” “wash hair.”).  In the normalization process, verbs are stripped to their base 
form, the count of nouns is stripped, and parts-of-speech which have lesser semantic 
value like determiners (e.g. “a”, “the”, “two”) and modals (e.g. “might”, “could”, 
“may”) are stripped. A portion of the concept grammar is given as part-of-speech 
patterns in Table 1. 

Table 1. Grammar for Partially Structuring Natural Language Concepts 

Node class A portion of the grammar Examples of valid nodes 
Noun Phrases NOUN; NOUN NOUN; ADJ NOUN; 

NOUN PREP NOUN 

“apple”; “San Francisco”; “fast 

car”; “life of party” 

Attributes ADJ; ADV ADJ “red”; “very red” 

Activity 

Phrases 

VERB; VERB NOUN; ADV VERB; 

VERB PREP NOUN; VERB NOUN 

PREP NOUN 

“eat”; “eat cookie”; “quickly 

eat”; “get into accident”; “eat 

food with fork” 

 
ConceptNet edges are described by an ontology of at present 19 binary relations 
shown below in Table 2.  These relations were chosen because the original OMCS 
corpus was built largely through its users filling in the blanks of templates like ‘a 
hammer is for _____’.  Thus the relations we chose to extract largely reflect the 
original choice of templates used on the OMCS web site. 

Table 2. Semantic Relation Types currently in ConceptNet 

Category Semantic Relations – (and an explanation) 

Things IsA – (corresponds loosely to hypernym in WordNet) 
PropertyOf – (e.g. (PropertyOf “apple” “healthy”)) 
PartOf – (corresponds loosely to holonym in WordNet) 
MadeOf – (e.g. (MadeOf “bottle” “plastic”)) 

Events FirstSubeventOf, LastSubeventOf – (e.g. (FirstSubeventOf “act in play” “learn script”)) 
EventForGoalEvent – (e.g. (EventForGoalEvent “drive to grocery store” “buy food”)) 
EventForGoalState – (e.g. (EventForGoalState “meditate” “enlightenment”)) 
EventRequiresObject – (e.g. (EventRequiresObject “apply for job” “resume”)) 

Actions EffectOf – (e.g. (EffectOf “commit perjury” “go to jail”)) 
EffectOfIsState – (e.g. (EffectOfIsState “commit perjury” “criminal prosecution”)) 
CapableOf – (e.g. (CapableOf “police officer” “make arrest”)) 

Spatial OftenNear –  (e.g. (OftenNear “sailboat” “marina”))  
LocationOf – (e.g. (LocationOf “money” “in bank account”)) 



Goals DesiresEvent, DesiresNotEvent – (e.g. (DesiresEvent “child” “be loved”)) 

Functions UsedFor – (e.g. (UsedFor “whistle” “attract attention”)) 

Generic CanDo – (e.g. (CanDo “ball” “bounce”)) 
ConceptuallyRelatedTo – (e.g. (ConceptuallyRelatedTo “wedding” “bride” “groom” ) 

 
As illustrated by the examples in Table 1, the semantics of the predicate relations in 
ConceptNet are quite informal.  Even for a particular semantic relation, the syntactic 
and/or semantic type of the arguments are not formally constrained, though some 
predicate names imply some typing (e.g. EventForGoalEvent, EventForGoalState, 
EventRequiresObject).  In general, the usage and scope of each semantic relation 
can be best and most intuitively ascertained by looking at the original choice of 
templates used on the OMCS web site (At: http://openmind.media.mit.edu) 

3 Commonsense Reasoning in Natural Language? 

In this section, we discuss some of the strengths and weaknesses of representing and 
reasoning with commonsense knowledge in natural language. 

3.1  Where logic excels 

There is an important representational tradeoff between logic and natural language.  
Logic is precise – its symbols are unambiguous, and inference amounts to deductive 
theorem proving. Its strength lies in its stable and systematic way of evaluating and 
maintaining the truth of expressions.  In technical domains with little ambiguity 
where precision is important, logic is a superb framework.  But what about the 
vague notion of a “common sense” domain?  Cyc, for example, represents its com-
monsense knowledge in a language called CycL, which is essentially a second-order 
logical language with second-order features such as quantification over predicates.  
John McCarthy first outlined the basic approach of representing commonsense 
knowledge with predicate logic in his classic paper, “Programs with Common 
Sense” (1958).  Examples given in the paper seem quite appealing for their ele-
gance. For example, you can represent the statement, “if you are at your car and you 
drive from home to the airport, then you are at the airport,”  using the following 
logical statement: canachult(at(I,car), go(home,airport,driving), at(I,airport)).  Yet 
the development and application of commonsense reasoning systems using the 
logical approach has turned out to be not so straightforward as this example might 
suggest.  To make this example really work requires a substantial amount of 
additional logical scaffolding, to precisely define the terms used in the statement and 
their interrelationships, which has turned out to be a task of daunting complexity. 



3.2  How do people represent and reason? 

There seems to be a divergence between the logical approach to reasoning and what 
is known about how people reason. Human commonsense reasoning has a number of 
properties that distinguish it from traditional logical reasoning, and that have 
inspired various extensions to the logical approach. Most notably, commonsense 
knowledge is largely defeasible and context-sensitive.  People have no problem 
believing that “birds can fly,” even though they know that “penguins are birds who 
cannot fly”, and that “birds with broken wings cannot fly.” 

One explanation for why human reasoning is defeasible and context-sensitive is 
Lakoff and Johnson’s prototype theory of human categorization (1980), which 
argues that people define categories based on its most central and characteristic (and 
often caracaturistic) example or prototype.  Whereas ontologists would like to define 
all members in a category as being equal in membership, define a category as 
having sharp boundaries, and define membership by a set of common features, 
empirical work on human categorization shows this to not be true.  People confer 
membership in a category to varying extents, often draw fuzzy boundaries for a 
category, and group members into a category based on how members resemble each 
other. Fehr & Russell’s empirical study of common sense emotions reveals the 
extent that prototypes play in our categorization of emotions (1984).  Logical 
notation is rigorous, and is completely amenable to ontologies, strict boundaries, and 
clean definitions, but has trouble with the inexactness and highly nuanced nature of 
human prototype categorization.   

In addition, whereas logical reasoning is deductive, human reasoning is largely 
inductive, abductive, and empirical, where (over-)generalizations from known 
experiences plays a prominent role.  One reason why humans are such successful 
inductive reasoners is that we collect a very large number of features in observing 
objects and events, thus providing a wealth of information from which patterns can 
emerge.  Whereas the logical tradition excels at deductive reasoning, it has had 
much difficulty formalizing induction, and attempts to do so have generally 
involved great complexity, cf. (Flach, 1995). While logic is a highly precise and 
expressive language, it has difficulty modeling the imprecise way that human 
categorize and compare things based on prototypes, and also difficulty emulating 
human reasoning which is largely inductive and highly associative. 

3.3  Natural language as a lingua for common sense 

Such concerns led us to consider using natural language expressions as more central 
components of a commonsense knowledge representation. In our work with 
ConceptNet, we are exploring natural language as a lingua for representing common 
sense.  In many ways, natural language fragments are a much more flexible and 
accessible representation for common sense.  Whereas logical symbols have no a 
priori meaning outside of their immediate definition, words and expressions 
automatically inherit meaning from the way they used in our culture.  Because we 



don’t have to first read off the axioms in which they play part to interpret word 
symbols, the representation becomes much simpler to author and inspect.  Consider 
that Cyc employs logicians to author its knowledge, while ConceptNet was 
automatically mined from a knowledge base of English sentences contributed by 
14,000 people over the web, many of whom have no computer science background.  
Cyc, posed in logical notation, does indeed contain very high quality knowledge.  
Still, accessibility and lowered complexity of authoring is a great boon, because it 
enables new kinds of knowledge acquisition, like the OMCS web site.  It may be 
appropriate to give the caveat at this point in the paper that unlike logic, natural 
language and thus, ConceptNet’s reasoning, will not have a complete formal 
semantics, evading exactness and absolute truths. 

By posing common sense in natural language, we can benefit from the implicit 
conceptual framework of human language.  For example, WordNet is a lexical-
conceptual framework which gives us the subsumption relationships between words. 
This lexical hierarchy allows us to heuristically infer the related between two nodes.  
For example, in ConceptNet, “buy food” and “purchase groceries” are two 
intrinsically similar nodes. Computational resources like WordNet, Longman’s 
Dictionary of Contempory English (LDOCE), Beth Levin’s English Verb Classes 
(1993), and FrameNet (Fillmore & Baker, 2001) reveal the various synonym and 
subsumption relationships between “buy” and “purchase” and between “food” and 
“groceries.”  Allowing us to quantify the semantic similarity between two nodes or 
symbols affords us the ability to reason inductively over concepts, and almost by the 
very nature of representing knowledge in  natural language, we are categorizing 
objects and events like people do.  Whereas logic is a synthetic representation, 
creating and manipulating symbols in a closed world, natural language is an 
empirical representation, juggling concepts that are already defined and related in a 
human language. 

Ambiguity is a particular aspect that needs to be dealt with when reasoning in 
natural language.  In logic, it is approached as something negative, to be eradicated.  
But human language is full of ambiguity, and perhaps ambiguity is one of the 
greatest strengths to human language.  Remember that the reason why there is 
ambiguity in words is because we have such a wealth of knowledge backing various 
interpretations of that word, and having this background knowledge for free is 
hardly a bad situation.  What is necessary is a way to bound and manage the 
ambiguity of natural language fragments so that unambiguous computer algorithms 
can manipulate them in a systematic way.  In the next section, we will present a 
methodology which prescribes ways of managing the ambiguity of concepts 
represented in natural language. 

Natural language has its weaknesses as a representation for common sense 
knowledge.  Whereas a logical symbol is concise, there may exist many different 
natural language fragments which mean essentially the same thing, and may seem 
equally suitable to include, and so in this sense logic can be seen as more 
economical. It is also sometimes more difficult to be precise in natural language.  
For example, what is the precise color of a “red apple?”  In logic, we might be able 
to formally represent the range in the color spectrum corresponding to a “red apple,” 
but in natural language, the word “red” is imprecise and has various interpretations.  



Consider the differing colors which map to “red apple” versus “red wine” versus 
“red hair.”  WordNet has tried to address this issue of semantic leakage by imposing 
boundaries on word called word senses.  In many cases, such boundaries are very 
clear, as in the case of homonyms (e.g. river bank versus financial bank), but in the 
case of more systematic polysemies (e.g. WordNet has different senses for a short 
sleep versus a long sleep), it is clear that such boundaries are artificial. 

Thus far, we have argued that representing common sense in natural language is a 
good idea because the implicit conceptual framework of human language makes 
nodes and symbols meaningful by default, gives us a way to quantify the similarity 
of nodes and symbols, and is thus more amenable to inductive reasoning. We have 
argued that natural language is a more accessible representation for authoring.  In 
addition to these points, we would like to add that natural language as a 
representation is highly desirable when the goal of the application is to reason over 
text.  One of the primary applications of commonsense knowledge bases is to draw 
inferences about text.  Using a logical framework of commonsense like Cyc to 
reason about text is quite complex.  Text, which is inherently ambiguous, must first 
be mapped into Cyc’s unambiguous logic, which is often problematic.  There must 
be rules to map every variety of textual expression into an ontology of logical 
concepts, and this generally requires a very deep (and very hard to build) semantic 
parser.  By maintaining a natural language knowledge representation, we can more 
readily reason about text, requiring only a surface parse of the text to extract all the 
contained concepts. Now all the diverse ways of expressing the same concept come 
in handy for concept recognition. 

We now move on to the next section, where we present a methodology for 
reasoning over semi-structured natural language fragments.  This will flesh out some 
of the discussion in this section. 

4 Methodology for Reasoning over Natural Language Concepts 

In this section, we present some methodology for reasoning over semi-structured 
natural language fragments used in ConceptNet.  All natural language concepts in 
ConceptNet possess a rich intrinsic semantics, based on the meaning they inherit 
from human language.  For example, creating the concept “fast car,” and accepting 
the caveat that we consider chiefly the most common interpretation, we instantly 
know (tempered with an uncertainly model) that this is a type of “fast vehicle,” a 
fast form of transportation, a car with a speed, a concept that bears family resem-
blance to “slow car” and to “fast bullet,” and a myriad of other inferences could be 
made from the very certain to wildly speculative.  If we can tolerate the interpreta-
tional ambiguity by taking the most common interpretation, we can situate the con-
cept within the conceptual framework of human language and see how the concept 
bears similarities to other concepts in numerous ways – similarities that can be com-
puted using computational resources.  The following subsections present methodol-
ogy for computing pair-wise similarities between concepts, and flexible inferencing. 



4.1 Computing conceptual similarity 

The basic premise of concepts as natural language fragments is that their interpreta-
tion is situated within the conceptual framework of language.  For each concept, 
there is a way to decompose that concept into first-order atomic concepts by apply-
ing a surface parse. For the structure of concepts in ConceptNet, please refer to the 
syntactic grammar of concepts given in Table 1.  The first-order atomic concepts 
will consist of simple noun phrases (note that the grammatical class “Noun Phrases” 
from Table 1 contains both simple and compound members), simple prepositional 
phrases, simple attributes, and simple verbs.  

To compute the meaning of a concept, the concept is first decomposed into first-
order atomic concepts, while preserving the dependence relationships between the 
concepts.  For example: “buy good cheese” decomposes into “buy,” “good,” and 
“cheese” where “good” is an attribute of “cheese” and “cheese” plays the thematic 
patient role to “buy.”  Note that this is only a surface parse.  Liu’s Bubble Lexicon 
(2003) would support deeper parses and more highly nuanced interpretations (e.g. 
“fast car” can be interpreted variously with “fast” describing the car’s top speed, the 
car’s speed of motion, the speeding rating of the car’s tires, et cetera), but this is left 
for future work.  After a concept is decomposed, each atom is situated within the 
conceptual frameworks of WordNet, Longman’s Dictionary of Contempory English 
(LDOCE), Beth Levin’s English Verb Classes, and FrameNet. We chose to maintain 
these multiple representations because we are concerned that the inferential distance 
within any single resource will be overly biased.  For example, the atoms “good” 
and “cheese” and “buy” are mapped onto the lexical entry for cheese in WordNet 
and LDOCE, and the verb “buy” is mapped into the lexicons of Levin’s Verb 
Classes, and FrameNet.  The meaning of a concept is represented as a collection of 
pointers from the decomposed concept’s atoms into each of the semantic resources 
of WordNet, LDOCE, Levin Verb Classes, and FrameNet. 

To compute the similarity of two concepts, we produce a heuristic score by 
comparing corresponding atoms (verb matching verb, noun modifier matching noun 
modifier, etc.) of the two decomposed concepts using each of the semantic 
resources.  First, within each resource, a similarity score is produced for each pair of 
corresponding atoms.  WordNet, LDOCE, and FrameNet’s inheritance structure for 
verbs can be structured as semantic networks in which inferential distance is given 
to be proportional to the number of hops away (we heuristically weight isA and 
synonym links differently). For example, in WordNet’s subsumption hierarchy, the 
inferential distance between “apple” and “food” is proportional to 3, because 
“apple” isA “edible fruit” isA “produce” isA “food”.  LDOCE also gives 
morphological relationships, which helps with action/state variations such as “relax” 
versus “feel relaxation.”  A similarity score should be inversely proportional to 
inference distance. In Levin’s Verb Classes, each verb belongs to multiple 
alternation classes.  Inferential distance here is proportional to the percentage of 
alternation classes shared.  The weighted sum of the similarity scores is produced for 
each atom using each of the resources is taken.  Weights on each semantic resource 
should be proportional to the predictive accuracy of that resource.  Weights on 



atoms should be proportional to the relative importance of the different atom types.  
For example, a noun modifier is generally not as important as the noun it modifies.   

The particular coefficients used in heuristic similarity vary with different 
semantic resources, and change depending on the context of the reasoning task.  
Some similarity percentages of concepts are computed in ConceptNet as given in 
Table 3. (Assuming default importance weights on verbs, modifiers, noun phrases, 
and prepositional phrases.) 

Table 3. Some pairwise similarities in ConceptNet 

“apple” ~ “red apple” (76%) “buy food” ~ “purchase groceries” (69%) 

“big dog” ~ “animal” (53%) “relax” ~ “feel relaxation” (72%) 

“red” ~ “red apple” (36%) “have accident” ~ “get into accident” (64%) 

 
Of course computing conceptual similarity using lexical inferential distance is very 
difficult, as demonstrated in Table 3.  Without additional insight into how a concept 
is generally interpreted by default (which would require a difficult, deep parse), we 
can only make heuristic approximations as to the relative contributions of the verb, 
noun phrase, attribute, and prepositional phrase to the meaning of a concept.  In 
future work, we hope to further exploit knowledge in WordNet glosses and 
FrameNet frames to further nuance similarity scoring.  However, our knowledge-
based scoring of concepts based on inferential distance already goes beyond some 
previous work in reconciliation of natural language fragments, such as notably, 
William Cohen’s WHIRL system (2000), which uses TF-IDF, a statistical vector 
similarity metric. 

4.2 Flexible Inference 

One of the strengths of representing concepts in natural language is the ability to add 
flexibility and fuzziness to improve inference. We again give the caveat that 
inferences in semantic networks are not logical deductions like in Cyc, but rather are 
based on graph reasoning methods like spreading activation (Collins & Loftus, 
1975), structure mapping (Gentner, 1983), and network traversal.  Graph-based 
reasoning is associative and thus not as expressive, exact, or certain as logical infer-
ences, but it is much more straightforward to perform, and useful for reasoning prac-
tically over text.  In this section, we demonstrate three kinds of flexible inference in 
ConceptNet: context finding, inference chaining, and conceptual analogy. 
 
Context finding. One task useful across many textual reasoning applications is 
determining the context around a concept, or around the intersection of several con-
cepts.  The GetContext() feature in the API makes this easy.  For example, comput-
ing the top ten concepts in the contextual neighborhood of  “go to bed” yields “take 
off clothes,” “go to sleep,” “sleep,” “lie down,” “lay down,” “close eye,” “turn off 
light,” “dream,” “brush tooth,” and “snore.” 



The contextual neighborhood around a node is found by performing spreading ac-
tivation from that source node, radiating outwardly to include other concepts.  The 
relatedness of any particular node is not just a function of the number of links away 
it is, but also considers how many paths there are from that node to the source node, 
and the directionality of the edge.  In addition, pairwise similarity of nodes indicates 
the mutual information between the two nodes, allowing similar nodes to be aggre-
gated, leading to a more accurate estimation of contextual neighborhood.  For ex-
ample, in the above example, the co-presence of “sleep” with “go to sleep” and “lay 
down” with “lie down” mutually promote each other higher up the list of relevant 
concepts. 

How has GetContext() been applied for practical commonsense reasoning? Musa 
et al.’s GloBuddy system (2003) is a dynamic Berlitz phrase book that uses Con-
ceptNet’s GetContext() feature to generate a topical collection of phrases paired 
with their translations.  For example, entering “restaurant” would return phrases like 
“order food” and “waiter” and “menu,” and their translations into the target lan-
guage.  Now suppose we feed in all the extracted concepts in a particular passage of 
text into GetContext() and take their intersection.  GetContext() used in this way 
serves as a “topic spotter” of sorts.  Eagle et al. (2003) used ConceptNet and this 
method to gist conversation topics from overheard conversations. 
 
Inference chaining. Another basic type of inference that can be done on a graph is 
building inference chains:  Traversing the graph from one node to another node via 
some path of connectedness.  This is not logical inference per se but a simplification 
of modus ponens transitive reasoning.  The FindPathsBetween() feature in the Con-
ceptNet Practical Reasoning API supports building inference chains.  Temporal and 
spatial chains are particularly good examples.  For example, ConceptNet can gener-
ate all the temporal chains between “buy food” and “fall asleep.” One chain may be: 
“buy food”  “have food”  “eat food”  “feel full”  “feel sleepy”  “fall 
asleep.”  Each of these chains can be seen as being akin to a “script.” Being able to 
compute the pairwise conceptual similarity is particularly crucial to the robustness 
of inference chaining, because it makes these chains “fuzzy.”  Suppose that we 
started with “buy steak” instead of “buy food,” and suppose there is no temporal 
knowledge about what happens after “buy steak.”  By knowing that “buy steak” is a 
special case of “buy food,” since “food” subsumes “steak,” we can now make the 
inference “fall asleep.” 

Liu et al.’s Emotus Ponens (2003) system performs affective text classification 
using a slightly different representation than ConceptNet.  It uses essentially infer-
ence chaining for assessing the affect of a concept.  Consider that a small subset of 
the concepts in ConceptNet are first affectively classified into one of six affect cate-
gories (happy, sad, angry, fearful, disgusted, surprised).  The affect of any unclassi-
fied concept can be assessed by finding all the paths which lead to each of these six 
affectively known categories, and then judging the strength and frequency of each 
set of paths.  This is the graph-based equivalent of a k-nearest-neighbor classifier. 
 
Conceptual analogy. A third practical textual inference task is finding concepts 
which are structurally analogous.  In the ConceptNet Practical Reasoning API, there 



is a GetAnalogousConcepts() feature that returns a list of structurally analogous 
concepts given a source concept.  Structural analogy is not just a measure of seman-
tic distance.  For example, “wedding” and “bride” are semantically close but struc-
turally unlike.  Structurally, a “funeral” is much more like a “wedding.” Here is 
another example.  Typing “couch” into the GetAnalogousConcepts(), examples of 
top results returned include “sofa,” “chair,” “bed,” “seat” because they share similar 
properties and have similar functions.  We are employing structure-mapping meth-
ods (Gentner, 1983) over the ConceptNet graph to generate these simple conceptual 
analogies.  Just like we’ve done with the GetContext() feature, it is also easy to 
contextually bias the GetAnalogousConcepts() feature.  We can prefer to see analo-
gous concepts which fall within a particular domain (defined by another GetCon-
text()), or by biasing the numerical weights of particular semantic relations, we can 
emphasize functional similarity versus object attribute similarity versus temporal 
similarity. As with context finding and inference chaining, conceptual analogy is 
make flexible by using computed node similarity as glue to prevent missed struc-
tural similarities.  For example, if functionOf(“massage”, “feel relaxation”) and 
functionOf(“meditation”, “unwind”), knowing that “feel relaxation” and “unwind” 
are very similar prevents GetAnalogousConcepts() from overlooking this shared 
property of “massage” and “meditation.” 

Liu et al. are using this same idea of finding what concepts have in common to 
augment the aforementioned Emotus Ponens system. The basic idea behind this 
augmentation is that certain kinds of structural analogy, such as concepts sharing 
PropertyOf’s, IsA’s, and UsedFor’s, can be predictive of affective similarity.  They 
hope that expanding concepts with analogous concepts can expand the coverage of 
the system and thus improve the performance of the affective classification. 
 
A word on evaluation. Traditionally, it is quite difficult to produce useful stand-
alone objective evaluations of knowledgebase quality.  While we have performed 
some evaluative analysis over ConceptNet and written about it in (Liu & Singh, 
2004a), it is often equally insightful to see evaluations of ConceptNet in the context 
of how they improve intelligent applications.  We and others at our lab have devel-
oped a host of applications using early versions of ConceptNet. We survey these 
applications in (Lieberman et al., 2004). These seem to be entirely new kinds of 
applications, in that it is difficult to imagine how they could possibly be built with-
out making use of commonsense inferences over natural language text. Many of 
these projects are evaluated and we invite the reader to follow the literature if he/she 
is interested in these in-context evaluations of ConceptNet. 

5   Conclusion 

Presently the largest freely available commonsense resource, ConceptNet comes 
with a knowledge browser, and a preliminary set of tools to support several kinds of 
practical inferences over text.  ConceptNet follows the easy-to-use semantic network 



structure of WordNet, but incorporates a greater diversity of relations and concepts 
inspired by Cyc. 

To maintain an easy-to-use knowledge representation, while at the same time in-
corporating more complex higher-order commonsense concepts and relations, we 
chose to represent concepts as semi-structured natural language fragments.  This 
novel use of language as knowledge representation can very elegantly represent both 
first-order (e.g. “apple pie”) and second-order concepts (e.g. “bake apple pie”), and 
unlike logical symbols, the a priori meaning of the words make it possible to quan-
tify the implicit similarity of two concepts. 

In this paper we presented some novel methodology for computing the pairwise 
similarity of concepts using a variety of lexical resources such as WordNet, 
LDOCE, FrameNet, and Levin Verb Classes.  We showed how computing the simi-
larities between concepts enables more flexible and robust inferences.  We also 
looked more broadly at the knowledge representational tradeoffs between formal 
logic and semi-structured natural language, and concluded that the flexibility af-
forded by natural language made it a highly suitable representation for a system 
whose goal is to make practical inferences over text. 

That ConceptNet is already being widely used in a number of research projects 
such as those surveyed in (Lieberman et al., 2004) is testament to the resource’s 
practicality and usefulness to researchers with no background in linguistics or com-
monsense reasoning. We hope that this paper has encouraged the reader to consider 
using ConceptNet within their own projects, and that it will spur further thinking 
about semi-structured natural language as a serious representation for reasoning. 
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