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ABSTRACT 
 
Some behaviour of computer game agents can be naturally 
expressed as collections of rules and knowledge bases. General-
purpose rule-based languages provide high-level constructs for 
expressing complex conditional behaviour. We examine the run-
time kernel of RC++, a rule-based language developed for game 
AI, to explore the costs associated with adopting general-purpose, 
rule-based approaches for computer game production. The kernel 
of RC++ is the RETE* algorithm, an extension of the RETE 
algorithm with better time characteristics, but also able to exhibit 
the beneficial properties of TREAT (a low memory cost alternative 
to RETE) when required. RETE* achieves this functionality and 
performance by employing (i) asymmetric deletion, (ii) dual 
tokens, and (iii) a dynamic beta-memory cut mechanism. The 
dynamic beta cut allows the RETE/TREAT trade-off to be 
exploited by users. Theoretical and empirical performance 
comparisons for RETE, TREAT and RETE* are provided. The 
implications for the utility of rule-based programming for the 
computer games industry is discussed, and we conclude that there 
is still some way to go before rule-based programming can be 
employed in the game-making process. 
 
INTRODUCTION 
 
Rule-based programming is a natural approach to specifying agent 
behaviour: rules define conditions on internal state (interpreted as 
sensory information or memory stores) and associated actions that 
can alter memory or produce actions in a virtual world. General-
purpose rule-based languages (in contrast to simple, relatively 
stateless, scripting languages) provide powerful pattern-matching 
constructs that automate some of the programming tasks associated 
with rule execution. Both the SOAR architecture, which has been 
used to develop ‘bots’ for Quake II (Laird and van Lent, 99), and 
our own work on RC++ (Wright and Marshall, 00), a rule-based 
language implemented for Sony’s PlayStation2 architecture, are 
g̀eneral-purpose’ rule-based languages of this type. Our aim in this 

paper is to explain what is occurring ‘under the hood’ in such 
systems, using the execution kernel of RC++ as representative 
example. We believe it is important to inform other game 
developers of our experience working with rule-based languages, 
and present some of the difficulties of the approach in a production 
setting. 
 
The organisation of the paper is as follows. First, in the major 
section of this paper, we describe the advantageous properties of 
RETE*, the RETE variant at the heart of RC++, and present 
theoretical and empirical investigations of its performance. Second, 
we discuss the implications for deploying rule-based languages in 
game production. 
 
1 RETE 
 
The RETE algorithm is a network-based algorithm designed to 
speed the matching of patterns with data. The original RETE was 
developed by Forgy, and is the execution kernel of the rule-based 
language, OPS5 (Forgy, 81; Forgy, 82), which is the language basis 
of both the SOAR architecture and the RC++ language. In rule-
based languages, patterns constitute rule conditions. Rules are 
executed, or "fired", if program data, or "working memory" (WM), 
can be consistently matched with rule conditions. The RETE 
algorithm decides rule firing. RETE employs a static discrimination 
network, generated by the language compiler, that represents data 
dependencies between rule conditions. RETE avoids unnecessary 
recalculation of condition matches during addition of data to WM 
by storing intermediate matches at network junctures called beta-
memories. Addition and deletion of data to and from WM is 
symmetric in RETE: the sequence of operations to delete data is the 
same as those to add data. RETE trades space for time: results of 
matching are incrementally cached in memory for subsequent re-
use. 
 
The RETE algorithm has compile-time and run-time parts. At 
compile-time the left-hand sides (LHS) of rules are compiled to a 
discrimination network represented by an op-code language. The 
RETE network is a data-flow network, and represents data 
dependencies between rule conditions. At run-time data items 
representing changes to the contents of WM, called "change 



 
 

 
 

tokens" (ctokens), enter the network at the root and are processed 
through the network. Ctokens represent either additions to WM or 
deletions from WM. The network contains two types of node: test 
nodes and join nodes, and two types of associated run-time 
memories: alpha-memories that store atomic "data tokens" 
(dtokens) for input to top-level join nodes, and beta-memories that 
store complex dtokens (concatenations of atomic tokens) at join 
nodes. The dtokens stored in alpha-memories correspond to the 
contents of WM. Test nodes test values of ctokens, whereas join 
nodes compare values between an entrant ctoken and existing 
dtokens. 
 
For example, consider the RC++ rule: 
 
RULE PickupObject 
 [Goal ^Status active ^Type holds 
^Object ?w] 
 [Object ^Name ?w] 
 NOT [Monkey ^Holds ?w] 
-> 
 ADD [Goal ^Status active ^Type pickup 
^Object ?w] 
ENDRULE 
 
The rule specifies three conditions, two that check the existence of 
data in WM, and a NOT condition that checks for non-existence of 
data in WM. The conditions compile to the RETE network shown 
in figure 1. 
 

A0
Test "Goal"
Test "active"
Test "holds"

Test "Object" Test "Monkey"
A1 A2

B1
Join
AND
3==1

B2
Join
NAND
3==3

Add "PickupObject"

instantiation to CS list
 

Figure 1: RETE network 
 
The first layer of the network is the set of test nodes that determine 
whether a ctoken partially matches one of the rule conditions 

(nodes A0, A1, and A2). For example, the ctoken: 
 
+[Goal active holds ladder] 
 
represents the addition of a data item to WM. It enters the network 
at the root and is processed in a depth-first manner through the 
network. The token passes the first test corresponding to the first 
rule condition at A0, but fails the other tests. Hence, the token 
enters the next level of the network as the LHS of the AND join 
node B1 only. Node B1 checks whether there is a shared value 
between a ctoken entering from the LHS (resp. RHS) of the join 
and stored dtokens in the RHS (resp. LHS) memory (in general, a 
join node may check for an arbitrary number of shared values). For 
example, consider that the alpha-memory associated with node A1 
contains the dtokens: 
 
[Object chair] 
[Object ladder] 
 
The join is specified as (AND 3==1) (see figure 1), which means 
that the third attribute of a LHS token must match the first attribute 
of a RHS token. Therefore, the ctoken  
 
+[Goal active holds ladder] 
 
from the LHS will join with the second item of the alpha-memory. 
The join corresponds to the shared rule variable "w" that appears in 
the first and second conditions of the example RC++ code. The 
matching LHS and RHS tokens are joined to form a complex token; 
in this case: 
  
[[Goal active holds ladder] 
[Object ladder]] 
 
This token is stored as a dtoken in the join’ s beta-memory and a 
copy passed as a positive ctoken to the next level of the network.  
 
Join nodes incrementally compute matches between the memories 
on their input edges and store the results as complex tokens in beta-
memories. The number of matches between a new entering token 
and the existing stored state on the opposite input edge determines 
the number of new complex tokens. In this example, the resulting 
complex token is stored in beta-memory, β1. Here it will stay until 
either of the constituent atomic tokens are deleted from the 
network. If new tokens enter the RHS of node B2 the stored state 
may be repeatedly reused, avoiding the need to recalculate the join. 
Figure 2 shows the position of alpha and beta-memories within the 
network and their contents. 
 
The resulting ctoken copy must now be processed through the 
network. It enters the LHS of join node B2 in figure 1. B2 is a 
NAND node that implements a check for non-existence. If a match 
is not found between an entrant LHS (resp. RHS) token and 
existing RHS (resp. LHS) dtokens in the associated alpha or beta-
memory then the entrant token is allowed to pass through the 
NAND join. Otherwise, token progress through the network is 
halted. In this example, there is no match between the new complex 
token entering on the LHS and: 
 
[Monkey chair] 
 
stored in alpha-memory, α1 (see figure 2). The token therefore 



 
 

 
 

passes all the discrimination tests in the network, which means that 
all rule conditions are satisfied by this particular combination of 
items in WM. The combination is represented by the complex 
token, now called a "rule instantiation", in which the rule variable 
"w" is bound with the value "ladder". The instantiation is added to 
the conflict set (CS) (the set of rules scheduled to fire) for 
execution of the action part of the rule. Execution of rule actions 
creates new tokens to be processed through the network that may 
add, delete or modify WM. The RETE processing cycle repeats 
until no more rules fire and the program terminates. 
 
Deletion is cost symmetric to addition in RETE. For example, the 
negative ctoken: 
 
-[Goal active holds ladder] 
 
 

alpha0 alpha1 alpha2

beta1

beta2

[Goal active holds ladder] [Object chair]
[Object ladder]

[Monkey chair]

[[Goal active holds ladder]

[[Goal active holds ladder]
[Object ladder]] 

[Object ladder]]

Add "PickupObject"
instantiation to CS list

 
Figure 2: Alpha and beta-memories 

 
represents a deletion of a data item from WM. Quoting  Forgy 
(1982): "The tag in a token indicates how the state information is to 
be changed when the token is processed. The + and - tokens are 
processed identically except: (i) The terminal nodes use the tags to 
determine whether to add an instantiation to the conflict set or to 
remove an existing instantiation. When a + token is processed, 
information is added; when a - token is processed, an instantiation 
is removed. (ii) The two-input nodes [join nodes] use the tags to 
determine how to modify their internal memories. When a + token 
is processed, it is stored in the internal memory; when a - token is 
processed, a token with an identical data part is deleted. (iii) The 
two-input nodes use the tags to determine the appropriate tags for 
the tokens they build. When a new output is created, it is given the 
tag of the token that just arrived at the two-input node." Negative 
token processing removes all stored state that is dependent on the 
existence of the data part of the token. A complete description of 
the RETE algorithm is presented by Forgy (1982). 

2 TREAT 
 
The TREAT algorithm (Miranker, 89) also decides rule firing. 
However, TREAT does not use a discrimination network and does 
not cache intermediate results at network junctures; instead, pattern 
matches are recalculated as required. The only stored state is WM 
and the conflict set (CS). Deletion is inexpensive in TREAT, 
compared to RETE, because the same sequence of operations that 
occurred during an addition need not be performed during deletion. 
TREAT is addition/deletion asymmetric. The extra time cost 
incurred during addition, compared to RETE, due to the lack of 
precalculated intermediate matches, is offset by the time saved 
when data is deleted from WM. TREAT trades time for space: 
matching results are not cached for subsequent re-use, and hence 
the memory cost of TREAT is significantly less than RETE. The 
additional claim for TREAT is that for most rule programs faster 
execution can be achieved by not maintaining beta-memories and 
avoiding the associated expensive deletion (i.e., it is possible that 
TREAT may be superior in both time and space). A TREAT 
extension, called LEAPS, is the execution kernel of VENUS 
(Browne et al., 94). LEAPS has better space complexity 
characteristics compared to both RETE and TREAT (Miranker et 
al., 90) and is therefore suited to rule firing on very large databases. 
LEAPS does not fully enumerate the whole conflict set but instead 
processes a single rule instantiation per cycle. 
 
The development of the TREAT algorithm was motivated by three 
observations on RETE: (i) beta-memories redundantly store the 
same state (e.g., see β1 and β2 in figure 2), (ii) the CS contains 
much of the information stored in beta-memories, albeit in an 
unstructured list, (iii) deletion is expensive due to the need to 
remove state stored in beta-memories. TREAT maintains alpha-
memories but does not maintain beta-memories, and deletion, 
wherever possible, is processed by direct examination of the CS for 
removal of invalidated rule instantiations. In consequence, addition 
of a token requires full computation of all joins that would 
otherwise have been cached in RETE beta-memories. Deletion, 
however, requires search of the CS for complex tokens representing 
rule instantiations that contain the data item to be deleted. If a 
match is found the instantiation is directly removed from the CS. 
This is a much less costly process than deletion in RETE, under 
reasonable assumptions, such as a relatively small CS size. 
 
If rule conditions were only positive, the TREAT algorithm would 
be relatively simple; however, complications arise due to the 
presence of negative conditions that test for non-existence. A new 
positive token may match a negative condition and potentially 
result in the withdrawal of rule instantiations from the CS that 
depend on the non-existence of the new token. However, in this 
case, the CS cannot be directly searched to remove instantiations 
because complex tokens only represent the presence of data items, 
not the absence of data items. Therefore, TREAT temporarily 
considers negative conditions to be positive, and uses the token to 
build new instantiations, which then may be matched against 
instantiations in the CS. If a match occurs the instantiation is 
removed.  
 
A new negative token may match a negative condition and 
potentially result in the addition of new rule instantiations to the CS 
(i.e., a non-existence condition becomes satisfied through the 
removal of a data item). In this case, TREAT cannot search the CS 
directly, and must also recompute intermediate beta-memories to 



 
 

 
 

add new instantiations.  
 
This summary has ignored implementation details; however, the 
main characteristics of TREAT are the lack of beta-memories, and 
use of the CS to directly remove instantiations. A complete 
description of the TREAT algorithm is presented by Miranker 
(1989). 
 
 

... alpha(n)

beta1

beta2

beta(n)

alpha1 alpha2 alpha3

...

 
Figure 3: General and simplified RETE network 

 
3 A Model of TREAT and RETE 
 
Miranker (1989) provides a simple mathematical model of join 
processing in order to compare RETE and TREAT processing 
costs. That analysis is now extended and modified to more clearly 
understand the differences between RETE and TREAT, and 
prepare for the analysis of RETE*. The following simplifying 
assumptions are made: (i) only positive conditions are considered, 
(ii) only a single rule is considered (i.e., various optimisations due 
to test and join sharing between rules are ignored), (iii) constant 
matching probabilities approximate the highly variable and 
dynamic result of joins, (iv) an atomic ctoken enters the network at 
a single point, and hence the corresponding dtoken is stored in one 
and only one alpha-memory, (v) searching a memory to delete a 
token costs the same as searching a memory in order to compare 
and generate a new complex token, (vi) CS search costs are 
ignored, and (vii) each discrimination network is of the form shown 
in figure 3. Many of these assumptions are invalidated in practice; 
despite this, the resulting mathematical model remains useful for 
approximate reasoning about the relative performance of the 
algorithms. 
 
3.1 TREAT Model 
 
TREAT token addition requires full computation of all relevant 
beta-memories (which, of course, are temporarily stored in a 

scratch pad, not stored between processing cycles and not 
associated with nodes in a network). The order of join 
consideration in TREAT may be dynamic, as there is no compile-
time discrimination network to impose a static ordering on joins; in 
consequence, the alpha-memory a token first enters is irrelevant to 
the analysis. Assume a ctoken enters at α. It must be compared 
against the contents of α1 (see figure 3). K1, the number of 
comparisons required in a network with two alpha-memories is: 
 

11 aK =  
 
where a1is the size of α1. If a network has three alpha-memories, 
TREAT must form β1 and compare its contents against α2. The size 
of β1 depends on a0 and a1, and the probability that a token from the 
LHS memory will match a token in the RHS memory, which 
depends on the type of join and the contents of WM. Assume 
constant matching probabilities and denote the probability that a 
token from βn-1 will match a token from αn as pn (where n>0 and 
β0=α0). Therefore, the size of β1 is:  
 

111 1 apB =  
  
The number of comparisons in a network of three alpha-memories 
is: 
 

2112 aBKK +=  
 
that is: 
 

21112 apaKK +=  
 
Hence, by induction, the recurrence relation, n = 2, 3, ...  
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which can be rewritten as the function: 
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where n>0 and p0=0. Deletion of a token in TREAT requires 
removal of the dtoken from the correct alpha-memory. Using 
assumption (iv), average cost of deletion in TREAT is: 
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The memory cost of TREAT is the total size of the alpha-
memories: 
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However, this is an underestimate, as it ignores the CS, and other 
temporary state.  
 
3.2 RETE Model 
 
RETE has beta-memories and therefore token entry point is 
important for determining addition and deletion costs. The analysis 
begins by determining the size of β1. 
 

1101 paaB =
 

 
The size of β2 depends on the size of β1 and the probability of 
matching with tokens in α2 (see figure 3).  
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and in general: 
 

∏
=

=
n

j
jj paanB

1
0)(

 
 
If a ctoken enters at α0 it must be compared against the contents of 
α1. Therefore, Rm,n, the number of comparisons required for a 
ctoken entering the mth alpha-memory in a network with n+1 
alpha-memories, is: 
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because RETE is identical to TREAT if a token enters the network 
at the first or second alpha-memory. The number of comparisons 
required when adding a token at α2 is: 
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This equation requires some explanation. First, the ctoken enters 
α2. It must be compared against the contents of β1 in order to 
generate new complex dtoken additions to β2: this cost accounts for 
the first term. Second, new additions to β2 must each be compared 
to the contents of α3. The new additions to β2 are B(1)p2 because 
one new token entered α2, and the probability of a match between 
the contents of β1 and α2 is p2. This explains the second term of the 
equation. Similarly, any new additions to β3 must be compared 
against α4, and so forth. The last term expresses the general pattern. 
Substituting for B(1): 
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By induction and rewriting as a function: 
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Unlike Miranker (1989), however, the analysis prohibits a token 
from entering more than one alpha-memory (this would violate 
assumption (iv), also used in the TREAT model).  
 
The function R(m,n) demonstrates that the presence of beta-
memories does not reduce processing costs when a token enters a 
discrimination network at α0 or α1. In this case, cached state is 
unused. However, if a token enters the network at a "later" entry 
point the presence of pre-calculated matches in beta-memories 
helps to avoid an exponential increase in the number of 
comparisons required. However, ignoring worst-case CS size, 
RETE has greater memory cost, which is the sum of the size of 
alpha and beta-memories.  
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where N(n) is the memory cost of a RETE network with n+1 alpha-
memories. Conditional on matching probabilities, beta-memories 
may, in general, increase exponentially with network size. Note 
that N(n) is an underestimate for true RETE memory costs because 
it assumes that complex dtokens consume the same space as atomic 
dtokens. 
 
To compare RETE with TREAT assume that the cost of RETE 
token addition is the average cost of adding the token to each 
alpha-memory. In practice tokens exhibit a skewed entry point 
distribution.  
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Miranker assumes RETE deletion costs the same as RETE addition. 
In fact, as implied in (Forgy, 82), RETE deletion costs more. An 
entrant negative token at a join node causes: (i) matching of the 
negative token against the opposite memory at the join node to 
generate new, negative complex tokens (a process identical to that 
during addition), and (ii) a search of the current memory to remove 
dtokens that match the negative token (extra operations that do not 
occur during addition). In consequence, the comparison between 
TREAT and RETE can be made more advantageous to TREAT if 
the additional RETE deletion costs are included. The cost of the 
additional search of beta-memories is: 
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And, again, averaging over entry points: 
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hence, cost of RETE deletion is: 
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Table 1 summarises the equations that model TREAT and RETE. 
 
 

 TREAT RETE 

Cost of adding a token K(n) R(n) 

Cost of deleting a token D(n) R(n)+S(n) 

Memory cost M(n) N(n) 

 
Table 1: Equations that model TREAT and RETE time and space 

costs in a network of n+1 alpha-memories 
 
3.3 A Crossover Point 
 
Miranker (1989) quotes values of a=25.6 and p=0.039 for the 
average size of alpha-memories and the average matching 
probability at joins respectively for typical rule programs. 
Obviously, rule programs exhibit a wide range of alpha-memory 
sizes and matching probabilities; therefore, the following analysis 
can only be indicative.  
 
Figure 4 shows RETE and TREAT time costs on arbitrary data set 
conforming to an ‘average’ rule-based program. The data set was 
randomly initialised to conform to the quoted averages. The cost of 
adding and deleting is summed and shown on the y-axis. In 
consequence, a further assumption is introduced: the number of 
additions and deletions exactly balance during a program run. The 
number of alpha-memories, shown on the x-axis, represents a 
measure of rule complexity. A greater number of alpha-memories 
correspond to a greater number of rule conditions. As expected, 
TREAT requires less comparisons when the presence of RETE 
beta-memories makes little difference during addition (i.e., rules 
with very few conditions, n=1, n=2). However, RETE "catches up" 
with TREAT: a crossover point is reached as network complexity 
increases. After the crossover point the deletion savings avoided by 
TREAT are more than offset by the additional costs of not 
maintaining beta-memories. The results suggest that TREAT has 
better average run-time performance than RETE when rules require 
less than 6-7 alpha-memories on average. The claim and 
justification for TREAT is that most rule programs conform to this 
constraint. A superior analysis would investigate a large sample of 
randomly generated data sets to investigate the distribution of 
crossover points. 
 
Nayak et. al. (1988) present empirical results comparing RETE and 
TREAT on SOAR (Laird et. al., 87) production rules (SOAR is 
based on the OPS5 production system), with an average of 9 
conditions per rule. Their results show that, "while RETE seems to 
be better than TREAT in most cases, there are some situations 
under which TREAT is comparable to RETE and may even be 
better." These empirical results conform to the derivation of a 
RETE/TREAT crossover point. It is generally thought that (i) rules 
with few conditions, combined with (ii) a volatile WM, are 
favourable conditions for TREAT style processing. The model 
explains (i) but fails to explain (ii) due to the restrictive assumption 

of constant matching probabilities. 
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Figure 4: Indicative comparison of RETE (2R(n)+S(n)), TREAT 

(K(n)+D(n)), and RETE* (R(n)+S(n)), and the RETE/TREAT 
crossover point 

 
4 RETE* 
 
The RETE* algorithm is the execution kernel of RC++ (Wright and 
Marshall, 00), a rule-based extension to C++. RETE* maintains 
beta-memories; however, the RETE* algorithm is addition/deletion 
asymmetric: deletion costs less than addition, although deletion, in 
general, is more expensive than TREAT deletion. RETE* is also 
slightly faster than RETE on addition due to the presence of "dual 
tokens". RETE* employs a dynamic beta-memory cut that 
maintains a fixed upper-bound on total run-time beta-memory size. 
If the upper-bound is specified as zero, RETE* functions as a 
flavour of the TREAT algorithm. Hence, TREAT is a special case 
of RETE*. Users may explicitly control the time/space trade-off as 
exhibited by the two extremes of RETE (maintain all beta-
memories) and TREAT (maintain no beta-memories). The '*' in 
RETE* denotes that the memory allocated to beta-memories ranges 
from 0 to n bytes. 
 
RETE* aims to speedup standard RETE and allow users to exploit 
the RETE/TREAT crossover point. RETE* employs three main 
mechanisms to lower the time and space costs of RETE: (i) 
asymmetric deletion, (ii) dual tokens, and (iii) dynamic beta cut. 
Each is described in turn. 
 
4.1 Asymmetric deletion 
 
RETE is inefficient on deletion. Consider that a negative ctoken 
enters the LHS of an AND join node Bn. RETE performs two 
computations: (i) the ctoken is compared against the contents of αn, 
and a complex negative ctoken is formed for each possible join; 
and (ii) the beta-memory, βn, is searched for any matches between 
the new complex negative ctokens and existing stored complex 
dtokens; if a match is found, the stored state is deleted. Each newly 
generated ctoken is passed to the next level of the network, node 
Bn+1, and the deletion process continues. For example, if n new 
ctokens are generated there are n depth-first traversals of the sub-
network below the join.  
 
RETE* deletion is based on the observation that computation (i) is 



 
 

 
 

almost always redundant. To understand why, consider that the 
negative ctoken entering a network fragment is: 
 
-[Goal active holds ladder] 
 
And the dtokens in βn are: 
 
[[Goal active holds ladder] 
[Object red ladder]] 
 
[[Goal active holds ladder] 
[Object yellow ladder]] 
 
That is, βn contains two complex dtokens, each of which contains 
the atomic token to be deleted. Consider also that αn contains: 
 
[Object red ladder] 
[Object yellow ladder] 
 
and join at node Bn is between the third attribute of the LHS input 
and the second attribute of the RHS (AND 3==2). Standard RETE 
deletion proceeds by computing the join and generating two 
negative complex ctokens: 
 
-[[Goal active holds ladder] 
[Object red ladder]] 
 
-[[Goal active holds ladder] 
[Object yellow ladder]] 
 
Each ctoken is then compared against the contents of βn and if a 
match is found the stored state is deleted.  
 
In contrast, RETE* does not form the complex negative tokens, 
does not compute the join, and therefore avoids multiple traversals 
of the subnetwork. Instead, memory βn is directly searched. If the 
negative token partially matches stored state, the stored state is 
deleted. For example the negative ctoken: 
 
-[Goal active holds ladder] 
 
partially matches both complex dtokens in βn and therefore both 
dtokens are deleted. The result is identical to RETE deletion, 
except the costly join computation is avoided. In consequence, 
negative complex tokens are not passed to the next level of the 
network; instead, the original negative ctoken is passed, and the 
same method may then be used to delete state from subsequent 
beta-memories. If no match is found between the negative token 
and contents of a beta-memory the deletion process backtracks to 
the last unprocessed edge in the network as normal. 
 
NAND nodes introduce exceptions that slightly complicate the 
RETE* deletion scheme. NAND nodes check for non-existence. 
The case of a negative token entering a NAND node introduces the 
complication. When a negative token enters from the LHS of a 
NAND node the RETE* deletion scheme may operate as described. 
However, if a negative token enters from the RHS then the removal 
of a data item could satisfy a non-existence condition, generate new 
complex tokens, and potentially result in new instantiations in the 
CS. Hence, RETE* deletion operates as RETE deletion for this 
case and the join is computed. Table 2 summarises the situation. 
  

Negative 
token entry 
point 

New 
instantiations in 
CS possible? 

Deletion scheme 

LHS AND No Direct deletion 
(RETE*) 

RHS AND No Direct deletion 
(RETE*) 

LHS NAND No Direct deletion 
(RETE*) 

RHS NAND Yes Join computed and 
complex negative 
tokens generated 
(RETE) 

 
Table 2: RETE* deletion cases 

 
Therefore, in three out of the four possible deletion cases RETE* 
avoids join computation during deletion. Under the assumptions of 
the model, deletion in RETE* does not cost: 
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In consequence, RETE* has better overall time performance than 
RETE and hence the crossover point between RETE* and TREAT 
is reached in smaller size networks RETE* performance is always 
better than RETE performance due to cheaper deletion costs. 
 
Scales (1986) first introduced the idea of asymmetric deletion to 
optimise RETE (normally called ‘deletion optimisation‘). However, 
there are two differences between Scales  ̀deletion scheme and the 
RETE* deletion scheme. First, Scales’  scheme does not extend to 
NAND nodes (i.e., the LHS NAND case is processed as a normal 
RETE deletion). Second, although join computation is avoided, 
copies of deleted complex dtokens are passed as ctokens to the next 
level of the network. Therefore, if a negative ctoken causes direct 
deletion of n dtokens then n new ctokens are generated requiring n 
traversals of the sub-network. But the generation of multiple 
complex ctokens is redundant. In contrast, RETE* deletion passes 
only the original ctoken to the sub-network and thereby avoids 
multiple traversals. The original ctoken contains sufficient 
information to match against parts of invalidated dtokens in later 
beta-memories.  
 
Scales reports a run-time speedup of RETE processing of 28% on 
the SOAR ‘eight puzzle’  program using the inefficient version of 
asymmetric deletion. Asymmetric deletion represents a significant 
time saving over the original RETE algorithm. 
 
4.2 Dual Tokens to Avoid Join Computation 
During Addition 
 
A negative token entering a NAND node from the RHS is a special 
case for deletion. A further observation is that a positive token 
entering a NAND node from the RHS is also a special case for 
addition. In this case the only possible effect is to remove dtokens 
from beta-memories and potentially withdraw instantiations from 
the CS; in all other cases of positive token processing the result is 



 
 

 
 

to add new state to the network. Consider that the RHS input to a 
NAND node is the positive token: 
 
+[Object yellow ladder] 
 
The LHS input memory of the NAND node is: 
 
[Monkey chair] 
[Monkey ladder] 
 
and the NAND tests whether the first attribute of LHS token is the 
same as the second attribute of a RHS token (NAND 1==2). If a 
token entering from the LHS matches with RHS state then the 
token will not drop through to the next level of the network. 
  
If a token enters from the RHS and matches with LHS state then 
RETE forms the complex negative ctoken: 
 
-[[Object yellow ladder] 
[Monkey ladder]] 
 
(More precisely RETE generates a negative complex token if the 
‘match count’  of the matching LHS token increases from 0 to 1. 
Otherwise, the state in subsequent beta-memories has already been 
deleted by a previous token that matched the same LHS token. For 
more details see (Forgy, 82).) The current beta-memory is searched 
and matching dtokens removed. The ctoken drops through to the 
next level of the network and deletes any subsequent stored state. 
In other words, a positive token entering the RHS of a NAND node 
can act like a deletion.  
 

Positive token 
 entry point 

New 
instantiations in 
CS possible? 

Addition scheme 

LHS AND Yes Join computed and  
complex positive  
tokens generated 

(RETE) 

RHS AND Yes (as above) 

LHS NAND Yes (as above) 

RHS NAND No Direct deletion via  
dual tokens  
(RETE*) 

 
Table 3: RETE* addition cases 

 
RETE* deletion is faster than RETE deletion because, in most 
cases, join computation can be avoided. Similarly, it is possible to 
avoid join computation for the special case when addition acts like 
deletion. To do so requires the generation of dual tokens. Dual 
tokens are now described followed by an explanation of how they 
are used to avoid join computation during token addition. 
 
Dual tokens represent the non-existence of data items in WM, 
unlike normal tokens that represent existence. NAND joins 
generate dual tokens when a LHS token drops through to the next 
level of the network. For example, consider that the LHS input to a 
NAND is: 
 
+[Monkey ladder] 

and the NAND join is as before (NAND 1==2). Assume also that 
the RHS memory is empty; therefore, no matches can occur, the 
non-existence condition is satisfied, and the token may pass. 
RETE* appends a dual token to the positive token, creating a 
complex token with a dual part. The dual token represents the fact 
that there was not a data item in the RHS that had the value 
"ladder" for its second attribute: 
 
+[[Monkey ladder] 
-[Object 2 ladder]] 
 
The dual part of the complex token is highlighted in bold. Note that 
dual tokens are partially specified: they do not completely specify 
attribute values (i.e., the only values specified are those that did not 
exist in order for the non-dual part of the token to pass the NAND 
test). As a further example, consider that the LHS input to a NAND 
is: 
 
+[Monkey ladder red heavy] 
 
and the NAND join is: 
 
NAND  
1,1==1,2  
1,2==1,1 
1,3==2,3  
 
Where "(a,b) == (c,d)" is a join between the bth attribute of the ath 
atomic token of a LHS complex token with the dth attribute of the 
cth atomic token of a RHS complex token. Generated dual tokens 
always contain the same number of atomic tokens as those in the 
RHS input memory. In this example, the resulting ctoken with dual 
part is: 
 
+[[Monkey ladder red heavy] 
-[[Object 2 ladder 1 red] 
[Object 3 heavy]]] 
 
Hence, rules with NOT conditions will generate instantiations in 
the CS that have trailing dual tokens that represent the non-
existence of data items in WM.  
 
The class name of dual tokens cannot be obtained from dtokens in 
the RHS input memory because there are circumstances when that 
memory will be empty. Therefore, the RC++ compiler assigns node 
indices to each node, unique for every NAND join, zero otherwise, 
and constructs a class name table, indexed by the node index, 
which contains a list of the class names that may reside in the RHS 
input memory of the particular NAND node. Dual tokens may 
therefore be constructed even when a RHS input memory is empty. 
 
Dual tokens are used to implement direct deletion in the case that a 
positive ctoken enters the RHS of a NAND node. In this case, 
instead of computing the NAND join the beta-memory is directly 
searched for any matches between the positive ctoken and dual 
tokens within dtokens; if a match is found the dtoken is deleted. 
The positive ctoken is then passed to the sub-network and 
processing continues. Any subsequent dtokens with matching duals 
are also deleted. Table 3 summarises the RETE* addition cases. In 
only one out of the four possible addition cases can RETE* avoid 
join computation during addition (the mirror image of RETE* 
deletion). In consequence, RETE* addition will always be slightly 



 
 

 
 

faster than RETE addition, assuming that the cost of dual token 
creation is offset by the avoidance of some join computations. 
However, the speedup is achieved at the expense of extra storage of 
dual tokens. The theoretical model of RETE processing does not 
model NAND nodes; however, it is reasonable to assume that 
RETE* addition savings will be significant in networks with a high 
number of NAND joins with frequent RHS positive token entry. 
Section 5.1 presents empirical results for a program called 
"manners" that confirms this conjecture. 
 
4.3 Dynamic Beta Cut 
 
Ignoring CS storage RETE has worst-case space complexity of 
O(Wn-1), where W is the number of data items in working memory, 
and n is the number of rule conditions, whereas TREAT has space 
complexity of O(W). RETE has exponential space complexity, 
whereas TREAT has linear space complexity. The space 
requirements of RETE are a hindrance to its use in large databases 
(Miranker et al., 90) and embedded systems with low memory 
availability, such as home entertainment systems. To alleviate this 
problem, RETE* allows an upper bound on beta-memory 
consumption to be specified by language users. Beta-memories are 
discarded and retained at run-time depending on the current 
memory consumption. If a beta-memory is absent during token 
processing but is required to compute a join, RETE* recalculates 
the beta-memory. If the recalculation itself depends on prior joins 
with absent beta-memories, RETE* also recalculates, popping back 
up the network until either a stored beta-memory is found, or the 
alpha-memory layer is reached. Hence, users have control over the 
trade-off between speed of execution and memory consumption. 
Further, if the upper bound is set to zero, no beta-memories are 
stored, and RETE* functions as a flavour of the TREAT algorithm: 
every new token entering the network results in full join 
computation (with static join ordering). In addition, when tokens 
are deleted from the network RETE* need not search absent beta-
memories, or compute joins; instead, the negative token is matched 
against the contents of the CS and instantiations directly removed. 
Therefore, in some cases, RETE*, with a low upper bound on beta-
memory size, will benefit from the inexpensive deletion associated 
with TREAT. However, a guaranteed upper memory limit cannot 
be specified for total run-time memory consumption because alpha-
memories are necessary to represent the contents of WM. Therefore 
as more tokens are added to a network, the size of RETE* alpha-
memories continues to increase. In addition, pathological scenarios 
may occur when the CS becomes very large, which itself has worst-
case space complexity O(Wn-1). Therefore, in order to fully tackle 
the combinatorial space problems associated with rule languages it 
will be necessary to investigate further space saving techniques, 
such as avoidance of full enumeration of the CS (Miranker et al., 
90). 
 
Pseudo-code for the beta-memory deletion algorithm is as follows: 
 
1. while memory consumption exceeds memory upper limit and 
undeleted beta-memories exist 
 1.1 find beta-memory with lowest 'order’  
 1.2 delete contents of beta-memory 
   1.3 set beta-memory valid flag to false 
2. end while 
 
The algorithm requires an ordering function that assigns a 
numerical value to each beta-memory. The memory with the lowest 

order is deleted first. The abstract order may be implemented in 
different ways to support different deletion schemes. For example, 
our first trial implementation of the beta cut uses a "most recently 
modified" heuristic that orders according to how recently memories 
have contributed to rule instantiation computation. This ordering 
requires a timestamp mechanism to be implemented in the RETE 
network, such that modifying a beta-memory (adding or removing 
a token) or performing a read on a beta-memory updates its ‘last 
modified’  timestamp. 
Deleted beta-memories are recalculated on demand. That is, when 
RETE* requires the contents of an absent beta-memory, the join 
between the two associated input nodes is computed and the 
required beta-memory formed. If one or more of the input 
memories are also absent, the current recalculation task is pushed, 
and further recalculations are performed higher in the network. The 
pseudo-code below describes the process: 
 
1. if beta-memory for comparison is not valid 
   1.1 push beta-memory onto recalculation stack 
   1.2 while more beta-memories on recalculation stack 
      1.2.1 pop beta-memory from recalculation stack 
      1.2.2 determine preceding network node through beta-
memory’ s backpointer 
      1.2.3 perform full join on left and right input memories and put 
results in beta-memory 
   1.3 end while 
2. end if 
 

Entry point, 
 join type,  
ctoken type 

Recalculate  
absent LHS 
beta-memory? 

Recalculate 
absent RHS  
beta-memory? 

LHS, AND, + N Y 

LHS, NAND, + N Y 

LHS, AND, - N 
(token drops  
through) 

N 

LHS, NAND,- N 
(token drops  
through) 

N 

RHS, AND, + Y N 

RHS, NAND, + N N 
(token drops  
through) 

RHS, AND, - N N 
(token drops  
through) 

RHS, NAND, -  Y Y 

 
Table 4: Recalculation cases for beta-memories 

 
The stack-based approach allows backward chaining through 
invalidated beta-memories to the original alpha-memories. 
Recovered beta-memories are only deleted if the upper memory 
limit has been exceeded and once the originally absent beta-



 
 

 
 

memory is no longer required. Therefore, temporary "scratch pad" 
memory requirements may exceed the specified upper bound. If 
temporary memory requirements are still too high for the 
application the upper bound may be further decreased. Demand-
driven recalculation of beta-memories requires the introduction to 
the RETE network of "validity" flags for beta-memories and 
backpointers from join nodes to input nodes. 
 
Table 4 describes all cases for ctoken processing when an absent 
beta-memory is encountered. Special action must be taken in some 
cases. Cases where the ctoken can immediately drop through are 
indicated (inexpensive TREAT style deletion). Entry of a negative 
ctoken at the RHS of a NAND node requires recalculation of both 
the right beta-memory and the left beta-memory (if both absent), in 
order to calculate match counts (see footnote 1). 
 
Implementation of the beta cut with a recency heuristic requires 
very little run-time overhead (validity flag checking, and timestamp 
updates), and some extra information from the compiler (node 
depths and node backpointer offsets). The result is a rule-based 
execution kernel that allows users to trade time for space according 
to the application constraints. However, like any memory paging 
mechanism (the beta-memories are "paged" in and out of memory) 
there is the possibility of pathological scenarios where the same 
sets of beta-memories are repeatedly re-deleted and re-stored over 
the run of a program. 
 
5 EMPIRICAL RESULTS 
 
The preceding analysis predicted that the performance of RETE 
and TREAT is problem dependent: some rule programs will run 
faster under RETE than TREAT and vice-versa. In addition, we 
expect that RETE* should perform better than RETE under all 
circumstances, and that RETE*(0) (RETE* with 0 bytes allocated 
to beta-memories), which is a flavour of TREAT, will perform 
better than RETE and RETE* on some rule programs. The results 
presented below confirm these expectations. 
 
5.1 Time Results 
 

 RETE RETE* RETE*(0) 
Manners16 0.4072 0.1008 0.1028 
Manners32 7.1504 1.7148 1.6808 
Manners64 480.38 68.77 65.03 
SimMatches16 0.0776 0.07 0.2556 
SimMatches32 4.7084 3.058 10.5228 
DCGS 0.1049 0.0699 0.1202 

 
Table 5. Time results in seconds averaged over 25 runs 

 
The ‘Manners’  rule program is a standard benchmark program that 
plans acceptable seating arrangements at a dinner party. This is a 
combinatorial problem: the more guests the more expensive the 
computation. RETE* is fastest on Manners16 (average 0.1008 
seconds), followed closely by RETE*(0) (average 0.1028 seconds). 
RETE is much slower (average 0.4072 seconds). For Manners32 
and Manners64, however, RETE*(0) is slightly faster than RETE*. 
‘Manners’  contains 8 rules with a high proportion of RHS deletion 
commands. Therefore, RETE* with asymmetric deletion performs 

considerably better than standard RETE (on average about 4 times 
faster). In addition, RETE*(0) performs slightly better than RETE*, 
suggesting that ‘Manners’  is best suited to TREAT-style execution. 
 
The ‘SimulateMatches’  rule program simulates soccer teams 
playing against each other in competitive leagues. Again, this is a 
combinatorial problem: the more teams in a league, the more 
matches to play. RETE* is fastest on SimulateMatches32 (average 
3.058 seconds), followed by RETE (average 4.7084 seconds). 
RETE*(0) is the slowest at 10.5228 seconds (about 3.5 times 
slower than RETE*). Similar results hold for SimulateMatches16. 
‘SimulateMatches’  contains a number of ‘setup’  rules that create 
records to store the results of games, and then ‘processing’  rules 
that perform the actual match result simulation. RETE* and RETE 
benefit from the priming of beta-memories with partial joins. 
RETE*(0) must recompute such partial joins, which explains the 
poor performance. The different results for ‘Manners’  and 
‘SimulateMatches’  highlight the problem-dependent performance 
of rule-based execution kernels. 
 
The DCGS program (Directed Cyclic Graph Search) consists of 
three rules that perform a depth-first search of a directed cyclic 
graph in order to find a route from a start location to a goal 
location. Again, RETE* is the fastest execution method (average 
0.0699 seconds), followed by RETE (average 0.1049 seconds). 
RETE*(0) is again slowest at 0.1202 seconds (1.72 times slower 
than RETE*). The presence of RETE* and RETE beta-memories 
outweighs the associated deletion costs for the DCGS program. The 
results are summarised in table 6. 
 

 Manners 
(16,32,64) 

SimMatches 
(16,32) 

DCGS 

RETE 4.03 to 7.38 
times slower 

1.11 to 1.54 times 
slower 

1.50 times 
slower 

RETE* 0.98 to 1.05 
times slower 

Fastest Fastest 

RETE*(0) Fastest 3.44 to 3.65 times 
slower 

1.72 times 
slower 

 
Table 6: Summary of time results 

 
The empirical results suggest that RETE* is generally faster than 
standard RETE and RETE*(0). The empirical results demonstrate 
speed-ups of approximately 9.8% (SimMatches16), 35.0% 
(SimMatches32), and 33.4% (DCGS), values within the range of 
theoretical prediction. However, RETE* is between 75.2% and 
76.0% faster than RETE on ‘Manners‘, a significant performance 
improvement not explicable in terms of asymmetric deletion alone. 
In this case, the presence of RETE* dual tokens speed up the 
processing of positive tokens that invalidate instantiations, which 
explains the large performance improvement over RETE 
processing. However, RETE*(0) is the faster execution method on 
‘Manners‘, confirming that TREAT style processing can be faster 
than RETE on certain rule programs. However, RETE* remains 
competitive with RETE*(0) on ‘Manners’  due to the presence of 
dual tokens. RETE* is the faster execution method overall, 
particularly when it is considered that it may be instantiated as 



 
 

 
 

RETE*(0) when required.  
 
5.2 Space Results 
 

 RETE RETE* RETE*(0) 

Manners16 114 227 122 
Manners32 334 671 254 
Manners64 1443 3041 1051 
SimMatches16 63 92 55 
SimMatches32 133 212 175 
DCGS 64 84 51 

 
Table 7: Maximum memory consumption in kilobytes 

 
The space results of running RETE, RETE* and RETE*(0) on the 
test programs are presented in table 7. The maximum allocated 
memory space during the run is measured, including temporary 
‘scratch pad’  memory allocated during a RETE*(0) recalculation 
process. As expected, on ‘Manners’  RETE*(0) generally has the 
lower memory costs, whereas RETE* has significantly worse 
memory costs compared to RETE and RETE*(0). This is due to the 
extra storage required for dual tokens (which also accounts for the 
good time performance of RETE*, compared to RETE, on  
‘Manners‘). RETE*(0) is much the better method for ‘Manners‘, as 
it is the fastest, and also has the lowest memory costs. If unbounded 
RETE* is too memory expensive for a particular application it is 
possible to try RETE*(n) or RETE*(0) by simply altering the value 
of the memory bound parameter. 
 
On DCGS RETE* again has the worse space characteristics 
compared to RETE. RETE*(0) has the lowest memory costs. The 
pattern is repeated for ‘SimulateMatches‘, except in one case 
RETE*(0) has worse memory costs than RETE. How can this be? 
The reason is that during program execution tokens entered the 
RHS of the last join node before a TERM node (rule is satisfied) 
resulting in the full recomputation of all prior missing beta-
memories. The implementation of dynamic beta-cut only 
deallocates beta-memory after the final join is calculated. Hence, 
for a time, all beta-memories are resident in memory (including 
dual tokens). Obviously this is a major drawback to the current 
implementation and needs to be altered. A better implementation of 
dynamic beta-cut would deallocate during the recalculation process 
such that the maximum memory cost would equal to the largest 
beta-memory in the recalculation chain, rather than the size of the 
all the recalculated beta-memories. In addition, dual tokens would 
not be generated for RETE*(0), as they play no useful role in this 
extreme case. An improved implementation of RETE*(0) would 
substantially change the memory costs of RETE*(0) on all test 
programs, resulting in RETE*(0) having the lower memory costs 
overall. 
 
5.3 Summary of Results 
 
Experimental results have confirmed theoretical expectations: 
TREAT style processing is sometimes superior to RETE style 
processing and vice versa. RETE* is always faster than RETE. As 
RETE* can be instantiated as RETE*(0), the RETE* algorithm is a 
better and more flexible method than either RETE or TREAT 
alone. Dual tokens have associated memory costs but appear to 

significantly speedup processing in certain cases. Asymmetric 
deletion results in about a quarter speedup over standard RETE. 
The current implementation of beta-cut is limited because 
deallocation of temporary beta-memories does not occur during a 
recalculation chain. For rule programs that favour TREAT style 
processing it is possible to use RETE*(0) in order to gain better 
time and space characteristics.  
 
6 UTILITY-BASED DYNAMIC BETA CUT 
 
Nayak et. al. (1988) discuss the desirability of a RETE/TREAT 
hybrid that decides whether to use RETE or TREAT style 
processing according to the nature of the rule program. Fabret at. 
al. (1993) present an algorithm that decides what beta-memory 
state is profitable to maintain in a RETE network based on a static, 
compile-time analysis of the rule program. The Gator 
discrimination network (Hanson, 93; Hanson et al., 95; Hanson et 
al., 97) is a generalised network that includes RETE and TREAT-
style processing as a special case. A Gator network contains only 
those beta-memories that contribute to a reduction in processing 
time. The decision to maintain a beta-memory is based on compile-
time, heuristic cost predictions parameterised by statistics collected 
from run-time database queries. Hanson et al. (1995) report 
significant speedups over RETE and TREAT with this method, 
although inaccuracies in cost formulae can result in Gator networks 
that perform worse than TREAT. Hybrid approaches are the way 
forward for improving the performance of rule-based languages, 
but compile-time prediction of run-time beta-memory utility is 
necessarily approximate and limited because the same rule program 
can exhibit very different run-time behaviour depending upon the 
contents of working memory. There simply isn’ t sufficient 
information at compile-time to fully determine the best 
discrimination network.  
 
An alternative is to perform beta-memory maintenance at run-time. 
The RETE* dynamic cut mechanism can be extended to implement 
a RETE/TREAT hybrid by ordering beta-memories according to a 
utility measure that represents their contribution to reducing 
computation costs. This would allow the RETE/TREAT crossover 
point to be exploited dynamically at run-time. This more 
sophisticated RETE* cut mechanism is not required for our current 
applications but it would be of interest to pursue such an 
implementation; therefore a possible sketch mechanism is 
presented. 
 
An individual beta-memory is subject to three events: (i) a positive 
ctoken is added, (ii) a negative ctoken is added, resulting in a 
search of the memory to delete matching dtokens, and (iii) the 
memory is searched to compute a join. The time cost of event (i) is 
negligible, whereas events (ii) and (iii) cost search time. However, 
if the beta-memory is absent, the time cost of event (ii) is negligible 
(there is no state to be removed from the beta-memory), but event 
(iii) will cost more due to the need to recalculate the state that 
would have been stored. There are both advantages and 
disadvantages to storing state in a beta-memory, as the preceding 
analysis has shown. The utility of retaining a beta-memory depends 
on the distribution and frequency of these events during the 
program run. A utility measure dynamically computed based on 
past events can be heuristically used as a predictor of future utility. 
The RETE* beta cut mechanism can be modified to cut based not 
only memory requirements but also on a watershed utility value: 
beta-memories with sufficient utility are maintained, others are 



 
 

 
 

deleted. Utility can be measured by approximating true costs via a 
model of beta-memory computation time, or measuring 
computation time directly by counting clock cycles expended 
during the different beta-memory events. RETE* with utility-based 
beta cut would automatically approximate the optimal balance 
between RETE and TREAT style processing by deleting and 
undeleting beta-memories during the program run. However, this 
has yet to be tested and verified. It may be the case that 
implementation details offset any speedup. In addition, any 
heuristic predicting future utility on past utility will be incomplete; 
hence, some rule programs will represent pathological cases that 
will defeat the speedup mechanism. 
 
The RETE* dynamic beta-cut provides a mechanism for a new 
exploration of hybrid approaches, in particular flushing and 
maintaining beta-memories at run-time based on the dynamic 
properties of the rule program, a process analogous to page caching 
in virtual memory systems. However, the memory allocation 
schemes used in RETE* need further refinement before such an 
investigation can proceed. 
 
7 GENERAL-PURPOSE RULE-BASED 
LANGUAGES INSUFFICIENT FOR GAME 
AI 
 
High-level pattern matching helps the AI programmer by removing 
the need to write code to execute rules. Instead, the programmer 
only specifies the rules, allowing full concentration on the AI 
problem. However, the cost of this level of abstraction is that all 
rule programs are executed by the same kernel, which is general-
purpose. Hence, the ability to exploit unique properties of an AI 
problem for efficiency gains is lost, which is a significant drawback 
for applications such as real-time computer games that need to 
maintain frame rates. Further, the semantics of general-purpose 
pattern-matching easily leads to combinatorial explosions of time 
and space requirements, even with the use of complex RETE-style 
speedup algorithms such as RETE*. In essence, rule-based 
languages give a little with one hand -- the increased level of 
abstraction -- but take a lot with the other -- the increased 
computational cost. The trade-off is further biased against rule-
based languages because current requirements for game agents 
usually translate into relatively stateless, reactive programs. In 
these cases, simpler, dedicated approaches will result in faster code. 
In the short to medium-term the power of general-purpose pattern-
matching is not required and cannot be afforded. If console 
processing power increases and there is greater need for more 
sophisticated AI characters then general-purpose rule-based 
languages may become a more attractive proposition for studio 
level production. 
 
A further difficulty, however, which is more fundamental, is that of 
rule construction: the rule-based kernels discussed here enforce an 
explicit, ‘symbolic’  representation of knowledge. This is 
appropriate when the AI programmer has a good understanding of 
the problem domain and is able to explicate the relationship 
between sensory input and action output. Then the rules will flow. 
But the rule-based programming approach is of no help when the 
major difficulty is discovering the very rules themselves. The major 
problem facing the game AI programmer is not the programming 
language employed, but the task of constructing control programs 
that behave appropriately in virtual worlds. Rule-based languages 

allow models of behaviour to be conveniently expressed as rules, 
but the problem of rule construction remains. From this 
perspective, general-purpose rule-based languages are of uncertain 
help to a minor problem.  
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