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An Application of Abstract Nonsense to Surface Area

Harriet Lord Mathematics

In this paper we present a brief history of attempts to calculate surface area
for those surfaces whose area cannot be calculated using standard techniques
of integral calculus, and we show the role played by abstract category theory,
affectionately known as “abstract nonsense”,  in this very concrete subject. We
then show that the technique used to find the length of a curve, or  “arc length”
does not work when generalized to find surface area, give a valid technique that
is based on a “parametrizaion” of the surface, and investigate the problem of
whether different parametrizaions result in different values for the surface area.
It is in this that “abstract nonsense” plays an important role.

Historical Background

Archimedes and π

The fact that the ratio of the circumference of a circle to its diameter is constant was known
well before the time of Archimedes. He was able to show that 223/71 < π < 22/7 by calculating
the perimeters of an inscribed regular polygon of 96 sides and a circumscribed regular polygon
of 96 sides. The proof is based on previous results which show that the perimeter of the
inscribed polygon is less than the circumference of the circle, which is less than the perimeter
of the circumscribed polygon. The techniques used by Archimedes were that of geometric
construction using straight edge and compass,  and ratios of lengths. In the beginning of the
proof he constructs an angle that is one third of a right angle, i.e., 30° and uses the fact that
the ratio we call the cotangent of 30° is           .  He makes use of this with the following inequalities
involving ratios.

   1351:780 >       : 1 and        : 1  > 265:153.

He then shows that the ratio of the diameter of the circle to the perimeter of the inscribed
96-gon is less than 22/7 =  31

7  while the ratio of the diameter of the circle to the perimeter of
the circumscribed 96-gon is greater than 223/71 =  310

71 . It is precisely his use of inscribed and
circumscribed polygons that was to play an important role in the study of arc length.

Arc Length and Surface Area

With the advent of the Calculus Archimedes’ method was adapted to find arc length. The
term arc length  is used for the length of a curve that has finite length. The primary difference
between the method used by Archimedes and the practitioners of calculus is that Archimedes’
calculation showed that the value of the circumference was greater than the perimeter of an
inscribed regular polygon and less than the perimeter of a circumscribed one.  By using
polygons with a larger number of sides Archimedes and his followers were able to obtain better
and better estimates. The technique used in the Calculus is to find the limit of the lengths of
the perimeters. That the circumference of the circle is equal to this limit means that we can
have the value of the perimeter of an n-gon as close as we wish to that of the circumference
if we choose the value of n to be sufficiently large.

Various formulas for calculating arc length can be found in any standard calculus text
book. These formulas are only valid for those curves with finite length that have the additional
property that to each point on the curve there is a tangent line that varies continuously.
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Formulas in calculus textbooks for the calculation of surface area have a similar restriction.
Consequently there was a need for other methods for the calculation of arc length and surface
area. The search for a method to find arc length was successful, and is illustrated in the next
section for the curve that is the graph of  y = x 2 for  0 ≤  x ≤  1.  This method uses the limit of
the length of inscribed polygonal lines.

It was J. A. Serret who in 1868 stated the “obvious” generalization of this method to the
problem of calculating surface area.

Given a portion of a curved surface bounded by a curve C, we call the area
of this surface the limit S towards which the area of an inscribed polyhedral
surface tends, where the inscribed polyhedral surface is formed by triangular
faces and is bounded by the polygonal curve G, whose limit is the curve C.

Serret continued:

One must show that the limit S exists and that it is independent of the way
in which the faces of the inscribed surface decrease.

That Serret’s method does not work is illustrated by the counterexample in the section
entitled  “Surface Area”.

The surface used for this example is the lateral surface of a circular cylinder. It is
interesting to note that the value for the actual area was first found by Archimedes. (See
Proposition 13 in Book 1 of On the Sphere and Cylinder  in Heath (c. 1950). )

The problem with Serret’s method was first discovered by H. A. Schwarz, who wrote to
Gennochi,  mathematics professor in Turin, about this in December of 1880. In the spring of
1882 Peano, a student of Gennochi, made the same discovery and announced it in a course
at the University in Turin that semester. In the spring of 1882 Schwarz wrote to Hermite,
mathematics professor in Paris, about his example. The published course notes of Hermite
contain Schwarz’s letter. Since Peano’s course notes were published before those of Hermite,
Peano claimed that he was the first one with the now famous counterexample.

Abstract Nonsense

The term “abstract nonsense” was coined by the mathematician Norman Steenrod. It was
used to point out the role of morphisms , which in our example are simply functions, in the new
field of mathematics called Category Theory. According to Colin McLarty (McLarty 1998),

Norman Steenrod first hung this tag on category theory. He had spent years
trying to axiomatize homology, encouraged by Solomon Lefschetz. Lefschetz
had also backed the young topologist Sammy Eilenberg, and encouraged
Eilenberg’s collaboration with the algebraist Mac Lane explicating certain
calculations in homology. When Eilenberg and Mac Lane created category
theory, Steenrod saw he could use their way of emphasizing morphisms at least
as much as objects. He happily said this “abstract nonsense” was the key to
solving his problem.
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Arc Length

We begin with a brief example of arc length.

Consider the graph of the parabola whose equation is            where     0 ≤ x ≤ 1 .

Before looking at the length of this curve (also called the arc length) we need to look at
what is called a parametrization  of this curve. By this we mean that we will write the x and y
coordinates of each point on the curve as functions of a third variable t, which is called a
parameter. This will be vital to our study of surface area.  The simplest parametrization for this
curve is the following:

  x = t
            where 0 ≤ t ≤1.

  y = t2

This can also be written as f:[0,1] → C, where [0,1] consists of all t  such that 0 ≤ t ≤ 1 and
C is the circle.

Another example of a parametrization of a curve is the following parametrization of a
circle. The circle below is the graph of the equation x2+y2 = 1.

x

y

 y = x2,
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The most common parametrization is

               , where 0 ≤ t ≤ 2π.  (We recall from trigonometry that sin2(t )+ cos2(t )= 1.) If we

think of a point on the circle as the position of a particle at time t, then at time t = 0 the particle
is at the point (1,0); it then travels around the circle exactly once in a counter-clockwise
direction.

We begin our estimate of the length of the parabolic arc by dividing [0,1], the interval of
values for t, into two subintervals of equal length, and thus obtain the subintervals [0,0.5] and
[0.5,1]. We then find the points on the curve that correspond to the endpoints of these two
subintervals and use these points to form an inscribed polygonal line.

Note that if n is the number of subintervals of the interval [0,1] then in this case n = 2.

For n =4 we have

   x = cos t

  y = sin t
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What are the lengths of these inscribed polygonal lines?

For n =2 the length is   5
16

+ 13
16

= 1.4604 ... .

For n =4 the length is   17
256 + 25

256 + 41
256 + 65

256 = 1.4743... .

The actual length of a curve is                                               is a sequence of inscribed poly-

gonal lines that converge to the curve and l{Pn} is the length of the polygonal line.

The actual length of our parabola is    1
4
(2 5 + In (2 5)) = 1.4789... .

It is not difficult to show that if f:[a,b] → C  and g: [c,d] → C  are two different continuous
parametrizations of the same curve C  then if there exists a “well behaved function” (called a
homeomorphism) h:[a,b] → [c,d]  such that if g(h(t)) = f(t)  for all f  in the interval [a,b], then the
value obtained for the arc length using f  is identical to that obtained using g.

Surface Area

The Counterexample

The following counterexample is that of Schwarz and Peano mentioned in the Historical
Background section.

Consider a right circular cylinder of height h =1 and radius r =1 parametrized by

         where        O ≤ u ≤ 2π
O ≤ v ≤ 1

In the u-v plane, the set of points (u,v) that satisfy both the above inequalities forms a
rectangle. Suppose we divide the interval [0,2π] into m subintervals and the interval [0,1] into
n subintervals. This induces a division of the rectangle into mn subrectangles. If we then draw
the two diagonals in each of these subrectangles we will have 4mn triangles. We will use the
vertices of these triangles to construct the inscribed polyhedral surface.

We illustrate the method with m = 4  and n = 3.

u

v

2π

1

n → ∞

   x = cos u
y = sin u
z = v

 lim I Pn , where Pn
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   2 sin π
m

The triangle in the lower left corner outlined with heavy dark sides has vertices  (0,0),
(    
π
2
,0 ), and (    π

4
,1
6 ). These three points in the uv plane correspond to the following three points

on the surface of the cylinder: (1,0,0), (0,1,0), and (  2
2

, 2
2

,1
6

). We form one face of the
polyhedral surface by joining each pair of these points with a straight line segment in 3-
dimensional space. (Note that these line segments do NOT lie on the surface of the cylinder.)

If we do the same construction for each of the four triangles in the lower left rectangle we
obtain four faces of the inscribed polyhedral surface.

If we continue in this manner for each of the 48 triangles we will obtain the inscribed
polyhedral surface that corresponds to the case m = 4, n = 3.

In the general case we let P  be the inscribed polyhedral surface of 4mn faces T  (m  ≥
4, n ≥ 1) with vertices (x,y,z) images of the points:

(    2µπ
m ,υn ), where µ = 0, 1, ..., m -1, υ = 0, 1, ..., n   or

(     (2µ+1)π
m ,

(2υ +1)
n ) where µ = 0, 1, ..., m -1, υ = 0, 1, ..., n - 1.

Each of the resulting faces is an isosceles triangle and, in addition, these triangles are
congruent to one another.

Each inscribed triangle has base                and height
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   m, n → ∞

   m,n → ∞

   (1 – cos ( π
m))2 + ( 1

2n
)2 .

The area of P, denoted a(P), is

   4mn sin ( π
m) (1 – cos ( π

m))2 + ( 1
2n

)2 .

   If m → ∞, n → ∞, and n
m = α then

   lim a(P) = 2π

which is the value of the surface area of the cylinder.

If    m → ∞, n → ∞, and    n
m2 = α then

   lim a(P) = 2π απ4. + 1.

For any  α > 0  this value is larger than the surface area of the cylinder.

Both limits can be calculated by use of L'Hôpital's Rule. This result remains valid if we

replace the condition                     In this case, if n = m we have that

     Consequently   α=0  and                               which is the correct

answer.

Lebesgue Area

The correct method for calculating surface area was discovered by Henri Lebesgue in
1902 (Lebesgue 1902). Suppose that the function f:A → S is a parametrization of the surface
S. (In the case where S  is the circular cylinder of radius 1 and height 1 we saw that  f (u, v )
= (cos u , sin v )). Lebesgue defined the surface to be L(f ), where

L (ƒ ) = inf limn        α (Pn)

Each   {Pn} is a sequence of polyhedral surfaces with the property that Pn  → S, and  a(Pn)
denotes the area of the polyhedral surface Pn. The polyhedral surfaces in the sequence {Pn}
are those that can  parametrized by quasi linear functions fn :An  → Pn, where {An}  is a sequence
of polygonal regions interior to A  that conververges to A.

Since the value of L(f ) seems to depend on the parametrization used it is natural to ask
if two different parametrizations of the same surface can give us two different values for the
surface area. It is this question that will be (partially) answered in the next section.

   m,n → ∞   
lim a(P) = 2π

   m,n → ∞   n
m2 = α lim n

m2 = α.

  n → ∞   m,n → ∞  lim n
m2 = lim n

n2 = 0.

 → ∞
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Monotone-Light Factorizations

Suppose f:A → S is a function from a "nice" region in the plane onto a surface S. We called
such a function a parametrizaion of the surface S. For example, if A is the rectangle in the uv-
plane with    0 ≤ u ≤ 2π, 0 ≤ v ≤ 1, and f(u,v) = (cos u, sin u,v)  then S is the circular cylinder
of radius 1 and height 1.

For any other parametrization    g:B → S of the same surface we will give a condition that

f and g must satisfy in order to guarantee that L(f) = L(g).

A fibre  of f  is a set of the form f -1(S) for some  point s  on the surface of the cylinder.

In order to define the concepts of monotone  and  light  we must first define the concept
of a connected subset of the plane.

Two subsets of the plane are called separated  if they both contain their boundaries and
they are disjoint. A subset A of the plane is called connected  if it is not the union of two disjoint
separated sets.

For example if A is the set of points in the xy-plane that satisfy the inequality   x2 + y2 < 1

then A consists of the points inside or interior to a circle of radius 1. The boundary of A is the
circumference of the circle. Since the points on the circumference are not points in the set A
we can say that A does not contain its boundary. That two sets are disjoint means that they
have no points in common.

A component of the set A is a maximal connected subset; i.e., a connected subset of A
that is not a subset of any other connected subset of A.

f is called monotone if its fibres are connected.

f is called light if the components of its fibres are sets containing exactly one element.

f = l o m is called a monotone-light factorization of f if m is monotone and l is light. If
                                    then f = l o m  can be illustrated by the following diagram which is

called a commutative triangle.

A S

T

lm

f

 →   f:A → S, m:A → T, I:T S,
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If    g:B → S  is another parametrization of the surface S, then g and f are said to be

Keréjártó, or K-equivalent if the monotone-light factorization of g is

This means the f and g are K-equivalent if both functions have the same light  factor in
their monotone-light factorization.

 If A, B, and T are sufficiently “nice” (for example, they are all 2 cells) then the
value obtained for the surface area of S using the parametrization f  is equal to
the value obtained using the parametrization g.

Rectangles, circles, and triangles are examples of 2-cells.

B S

T

g

ln
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