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Abstract. The last two decades of research in Logic Programming,
both at the theoretical and practical levels, have addressed several top-
ics highly relevant for the Semantic Web effort, providing very concrete
answers to some open questions.
This paper describes succinctly the contributions from the Logic Pro-
gramming group of Centro de Inteligência Artificial (CENTRIA) of Uni-
versidade Nova de Lisboa, as a prelude to a description of our recent
efforts to develop integrated standard tools for disseminating this re-
search throughout the interested Web communities. The paper does not
intended to be a survey of logic programming techniques applicable to
the Semantic Web, and so the interested reader should try to obtain the
missing information in the logic programming journals and conferences.

1 Introduction

The eXtensible Markup Language provides a way of organizing data and docu-
ments in a structured and universally accepted format. However, the tags used
have no predefined meaning. The W3C has proposed the Resource Description
Framework (RDF) for exposing the meaning of a document to the Web commu-
nity of people, machines, and intelligent agents [26].

Conveying the content of documents is just a first step for achieving the
full potential of the Semantic Web. Additionally, it is mandatory to be able to
reason with and about information spread across the World Wide Web. The
applications range from electronic commerce applications, data integration and
sharing, information gathering, security access and control, law, diagnosis, B2B,
and of course, to modelling of business rules and processes.

Rules provide the natural and wide-accepted mechanism to perform auto-
mated reasoning, with mature and available theory and technology. This has
been identified as a Design Issue for the Semantic Web, as clearly stated by Tim
Berners-Lee et al in [10]:

“For the semantic web to function, computers must have access to
structured collections of information and sets of inference rules that they
can use to conduct automated reasoning.”

“The challenge of the Semantic Web, therefore, is to provide a lan-
guage that expresses both data and rules for reasoning about the data and



that allows rules from any existing knowledge-representation system to
be exported onto the Web.”

“Adding logic to the Web – the means to use rules to make inferences,
choose courses of action and answer questions – is the task before the
Semantic Web community at the moment.”

Logic Programming is about expressing knowledge in the form of rules and
making inferences with these rules. A major advantage of Logic Programming
is that it provides an operational reading of rules and a declarative reading
with well-understood semantics. In this paper we defend the use of Generalized
Extended Logic Programs [29], i.e. logic programs with both (monotonic) explicit
negation and (non-monotonic) default negation, as an appropriate expressive
formalism for knowledge representation in the Web.

An important feature of Logic Programming is that it is able to deal with
negative knowledge, and to express closed world assumptions. Expressing and
reasoning with negative knowledge is fundamental for advanced applications
but these capabilities are currently lacking in the existing and proposed Web
standards. This is clearly identified as a limitation/feature of RDF, in the latest
W3C Working Draft of RDF Semantics [24]:

“RDF is an assertional logic, in which each triple expresses a sim-
ple proposition. This imposes a fairly strict monotonic discipline on the
language, so that it cannot express closed-world assumptions, local de-
fault preferences, and several other commonly used non-monotonic con-
structs.”

The introduction of (non-monotonic) default negation brought new theoretical
problems to Logic Programming, which were addressed differently by the two
major semantics: Well-founded Semantics [21] (WFS) and Stable Model Seman-
tics [22] (SM).

We start this paper by defending the use of Well-founded based semantics
as an appropriate semantics for Semantic Web rule engines, and by illustrating
its usage. We then proceed, in section 4 to describe our W4 project – Well-
Founded Semantics for the WWW – which aims at developing Standard Prolog
inter-operable tools for supporting distributed, secure, and integrated reason-
ing activities in the Semantic Web, and describe the implementations already
developed within the project.

The Semantic Web is a “living organism”, which combines autonomously
evolving data sources/knowledge repositories. This dynamic character of the
Semantic Web requires (declarative) languages and mechanisms for specifying
its maintenance and evolution. It is our stance that also in this respect Logic
Programming is a good choice as a representational language with attending
inference and maintenance mechanisms and, in section 5, we briefly describe our
recent research efforts for defining and implementing logic programming systems
capable of dealing with updates and knowledge-base evolution.



2 The case for Well-founded based Semantics

As mentioned above, in this paper we propound the use of Generalized Extended
Logic Programs [29] as an appropriate expressive formalism for knowledge rep-
resentation in the Web. A Generalized Extended Logic Program is a set of rules
of the form:

L0 ← L1, . . . , Ln

where literals L0, L1, . . . , Ln are objective literals, say A or ¬A, or default
negated objective literals, say notA or not¬A, with A an atom of a given first-
order language. Without loss of generality, a non-ground rule stands for all its
ground instances. Notice that two forms of negation are available, namely de-
fault (or weak) negation not and explicit (or strong) negation ¬, and can occur
both in the head (L0) and body (L1, . . . , Ln) of the rule.

Default negation is non-monotonic and captures what is believed or assumed
false (closed-world assumption), whilst explicit negation is monotonic and ex-
presses what is known to be false (open-world assumption). The rationale of the
two forms of negation is better grasped with the following example attributed
to McCarthy:

Example 1. Suppose a driver intends to cross a railway and must make a decision
whether he should proceed or stop. The two major possibilities he has to encode
the knowledge in a logic programming language are captured by the rules:

1) cross ← ¬train 2) cross ← not train

Rule 1) represents the usual behaviour of a safe driver by stating that he can cross
the rail tracks only when he has explicit evidence that a train is not approach-
ing. The second rule represents the situation of a careless driver that advances
whenever there is no evidence that a train is approaching (i.e. believes/assumes
the train is not approaching).

The introduction of default negation brought new theoretical problems, which
were addressed differently by the two major semantics for logic programs: Well-
Founded Semantics [21] (WFS) and Stable Model Semantics [22] (SM). We sug-
gest the use of Well-Founded based Semantics as an appropriate semantics for
Semantic Web rule engines, by the following reasons:

– The adopted semantics for definite, acyclic and (locally) stratified logic pro-
grams, coinciding with Stable Model Semantics.

– Defined for every normal logic program, i.e. with default negation in the
bodies, no explicit negation and atomic heads.

– Polynomial data complexity with efficient existing implementations, namely
the SLG-WAM engine implemented in XSB [30].

– Good structural properties.
– It has an undefined truth-value.
– Many extensions exist over WFS, capturing paraconsistent, incomplete, and

uncertain reasoning.



– Permits update semantics via Dynamic Logic Programs and EVOLP.
– It can be readily “combined” with DBMSs, Prolog, and Stable Models en-

gines.

The minimal Herbrand model semantics for definite logic programs [20] (pro-
grams without default and explicit negation) is well-understood and widely ac-
cepted. Both Well-Founded Semantics and Stable Model Semantics coincide with
the minimal Herbrand model semantics for definite logic programs.

A major advantage of WFS is that it is possible to assign a unique model to
every normal logic program, in constrast to SM semantics. The same applies to
the several extensions of WFS treating explicit negation, supporting paraconsis-
tent reasoning forms [16], which we shall discuss in the following section.

The existence of an undefined logical value is fundamental for Semantic Web
aware inference engines. On the one hand, in a distributed Web environment
with communication failures and non-ignorable response times, a “remote” logic
inference can be assumed undefined, while the computation proceeds locally. If
the remote computation terminates and returns an answer, then the undefined
truth-value can be logically updated to true or false. On the other hand, rule
bases in the Web will naturally introduce cycles through default negation. Well-
Founded Semantics deals with these cycles through default negation by assigning
the truth-value undefined to the literals involved. In this particular situation,
Stable Models may not exist or may explode.

The computation of the Well-Founded Model is tractable, contrary to Stable
Models, and efficient implementations exist, notably the XSB Prolog engine [30].
XSB resorts to tabling techniques, ensuring better termination properties and
polynomial data complexity. Tabling is also a good way to address distributed
query evaluation of definite and normal logic programs. The XSB Prolog sup-
ports a full first-order syntax, which is not fully available in the state-of-the art
Stable Model engines [9, 31]. Moreover, the latests XSB Prolog 2.6 distribution
is integrated with the SModels system, and thus applications can better exploit
both Well-Founded and Stable Model semantics.

In summary, Well-Founded Semantics can be seen as the light-inference basic
mechanism for deploying today complex Semantic Web rule-based applications,
and Stable Model Semantics a complementary semantics for addressing other
complex reasoning forms.

3 Knowledge Representation with Explicit Negation

In this section we illustrate the use of explicit and default negation for repre-
senting ontological knowledge, which may be contradictory and/or incomplete.
The ability to deal and pinpoint contradictory information is a desirable fea-
ture of Semantic Web rule system, since it is very natural to obtain conflicting
information from different sources. Classical logic assigns no model to an incon-
sistent theory, and therefore it is not fully appropriate as a general knowledge
representation formalism for the Semantic Web. This limitation is inherited by



the classical logic based formalisms like RDF(S) [26, 24, 12], DAML+OIL [13],
and OWL [17].

An interesting example is the case of taxonomies. The example is a natural
one since our common sense knowledge of the animal world is rather limited,
and new species are discovered frequently. We present some examples showing
the capabilities of our own Generalized Paraconsistent Well-founded Semantics
with Explicit Negation, WFSXP for short. For a full account and all the formal
details, the reader is referred to [3, 14, 16].

Example 2. Consider the following common-sense rules for identifying birds and
mammals:

– Oviparous warm-blooded animals with a bill are birds;
– Hairy warm-blooded animals are mammals;
– Birds are not mammals and vice-versa;
– Birds fly;
– Mammals nurse their offspring.

This chunk of knowledge can be represented by the following extended logic
program rules:

bird(X) ← bill(X), warm blood(X), oviparous(X).
¬bird(X) ← mammal(X).
f lies(X) ← bird(X).

mammal(X) ← hair(X), warm blood(X).
¬mammal(X) ← bird(X).
nurses(X) ← mammal(X).

If the information regarding dogs and ducks is correctly filled in one gets the
expected results. We just add to the program the set of facts:

hair(dog). warm blood(dog). bill(duck). warm blood(duck). oviparous(duck).

The model of the above program under WFSXP entails the following expected
conclusions:





mammal(dog), nurses(dog),¬bird(dog), not bird(dog), not flies(dog),
bird(duck), f lies(duck),¬mammal(duck), notmammal(duck),
not nurses(duck)





Now on a trip to Australia the user discovers there are some creatures named
platypus which lay eggs, have warm blood, sport a bill, and are hairy! A nice
contradiction is obtained from the program containing the facts:

hair(platypus). warm blood(platypus). bill(platypus). oviparous(platypus).



The model entails the following new conclusions:




mammal(platypus),¬mammal(platypus),
notmammal(platypus), not¬mammal(platypus),
nurses(platypus), not nurses(platypus), not¬nurses(platypus),
bird(platypus),¬bird(platypus), not bird(platypus), not¬bird(platypus),
f lies(platypus), not flies(platypus), not¬flies(platypus)





The remarkable points about this example are manifold. First, contradictory
information can coexist with safe one without interfering with each other; in
particular, we must not relinquish the information about dogs and ducks. Sec-
ond, we can detect a contradiction both about the mammal and the bird predi-
cates (both mammal and ¬mammal hold, as well as bird and ¬bird), its conse-
quences are propagated, and we are aware that the knowledge about platypuses
regarding nursing and flying capabilities depends on contradiction. This is recog-
nized by noticing that nurses(platypus) and not nurses(platypus) hold, while
¬nurses(platypus) is absent from the model [15]. Third, the right solution is
covered by the program’s model: platypus are mammals, do not fly, and nurse
their progeny. Finally, it is unsound to have a heuristic rule saying to drop all
objective (or default) knowledge. For platypus we want to retain that they nurse
their descendants but discard the fly(platypus) conclusion.

The rationale of WFSXP is to non-trivially extract the maximum number
of conclusions from contradictory information. This provides the user with the
information necessary to decide what to do, since all possible scenarios are taken
into account. The user is warned about some potential problems, and is up to him
to take the right decision. This is possible due to the adoption of the Coherence
Principle, which relates both forms of negation: “If something is known to be
false then it should be believed false: if ¬A holds then notA should hold; if A
holds then not¬A should hold”.

If A and ¬A hold, then by coherence, one should have not¬A and notA.
This produces a localized explosion of consequences which are propagated by
the semantics only to the dependant literals, and not to the whole model. The
same semantics can be exploited to represent taxonomies with exceptions, ex-
pressing general absolute (i.e. non-defeasible) rules, defeasible rules, exceptions
to defeasible rules and to other exceptions, explicitly making preferences among
defeasible rules. We assume that in the presence of contradictory defeasible rules
we prefer the one with most specific information.

Example 3. Consider the following statements, corresponding to the hierarchy
depicted in Figure 1:

(1) Mammals are animals. (6) Normally animals don’t fly.
(2) Bats are animals. (7) Normally bats fly
(3) Birds are animals. (8) Normally birds fly
(4) Penguins are birds. (9) Normally penguins don’t fly
(5) Dead animals are animals. (10) Normally dead animals don’t fly
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Fig. 1. A non-monotonic hierarchical taxonomy

the following individuals

(11) Pluto is a mammal. (14) Dracula is a bat.
(12) Tweety is a bird. (15) Dracula is a dead animal.
(13) Joe is a penguin.

and the preferences

(16) Dead bats do not fly though bats do.
(17) Dead birds do not fly though birds do.
(18) Dracula is an exception to the above preferences.



The above hierarchy can be represented by the program:

(1) animal(X) ← mammal(X) (4) bird(X) ← penguin(X)
(2) mammal(X) ← bat(X) (5) animal(X) ← dead animal(X)
(3) animal(X) ← bird(X)

(6) ¬flies(X) ← animal(X),¬flying animal(X), not flies(X)
¬flying animal(X) ← not flying animal(X)

(7) flies(X) ← bat(X), f lying bat(X), not¬flies(X)
flying bat(X) ← not¬flying bat(X)

(8) flies(X) ← bird(X), f lying bird(X), not¬flies(X)
flying bird(X) ← not¬flying bird(X)

(9) ¬flies(X) ← penguin(X),¬flying penguin(X), not flies(X)
¬flyingpenguin(X) ← not flying penguin(X)

(10) ¬flies(X) ← dead animal(X),¬flying dead(X), notflies(X)
¬flying dead(X) ← not flying dead(X)

(11) mammal(pluto) ← (14) bat(dracula) ←
(12) bird(tweety) ← (15) dead animal(dracula) ←
(13) penguin(joe)

with the implicit hierarchical preference rules (prefer most specific information):

flying animal(X) ← bat(X), f lying bat(X)
flying animal(X) ← bird(X), f lying bird(X)
¬flying bird(X) ← penguin(X),¬flying penguin(X)
flying dead(X) ← bat(X), f lying dead bat(X).

and the explicit problem statement preferences:

(16) ¬flying bat(X) ← dead animal(X), bat(X),¬flying dead bat(X)
¬flying dead bat(X) ← not flying dead bat(X)

(17) ¬flying bird(X) ← dead animal(X), bird(X),¬flying dead bird(X)
¬flying dead bird(X) ← not flying dead bird(X)

(18) flying dead bat(dracula) ←
The model of this programs is non-contradictory, and we get the expected results,
namely that Pluto and Joe don’t fly, and that Dracula and Tweety do fly.

The above rules can be automatically generated from the description of the
hierarchies, as shown elsewhere [6]. As for WFS, the advantage of WFSXP is
that the computation of the well-founded model is tractable, is defined for every
Generalized Extended Logic Program in particular for contradictory programs.
Furthermore, we are able to detect dependencies on contradiction just by looking
at the model. Generalized Answer Set Semantics based [23, 29] is an extension of
Stable Model Semantics for Generalized Extended Logic Programs, and is very
appropriate for the declarative representation of complex problems, but inherits
the same problems of Stable Model Semantics; moreover it explodes when faced
with contradiction.



4 The W4 project: Well-Founded Semantics for the
WWW

The W4 project aims at developing Standard Prolog inter-operable tools for sup-
porting distributed, secure, and integrated reasoning activities in the Semantic
Web. The results of the W4 project are expected to contribute to the recently ap-
proved REWERSE European Network of Excellence. The long-term objectives
are:

– Development of Prolog technology for XML, RDF, and RuleML.
– Development of a General Semantic framework for RuleML, including default

and explicit negation, supporting uncertain, incomplete, and paraconsistent
reasoning.

– Development of distributed query evaluation procedures for RuleML, based
on tabulation, according to the previous semantics.

– Development of Dynamic Semantics for evolution/update of Rule ML knowl-
edge bases.

– Integration of different semantics in RuleML (namely, Well-Founded Seman-
tics, Answer Sets, Fuzzy Logic Programming, Annotated Logic Program-
ming, and Probabilistic Logic Programming).

We have started the implementation efforts from the previously described
theoretical work and implementations, and the RuleML [25] language proposal.
A full RuleML compiler is already available for an extension of the hornlog
frament of RuleML (see [32]). The W4 RuleML compiler supports default and
explicit negation both in the heads and in the bodies of rules, as well as assert
statements of EVOLP programs (see section 5). The semantics implemented is
Paraconsistent Well-founded Semantics with Explicit Negation. We now shortly
illustrate the use of the W4 RuleML with an example session:

Example 4. Consider the taxonomy of Example 3 encoded in RuleML format.
E.g., one of the rules used for capturing the sentence “Normally, bats fly” is:

flies(X) ← bat(X), f lying bat(X), not¬flies(X).

with the following corresponding RuleML encoding:

<imp>

<_head>

<atom> <_opr><rel>flies</rel></_opr> <var>X</var> </atom>

</_head>

<_body>

<and>

<atom> <_opr><rel>bat</rel></_opr> <var>X</var> </atom>

<atom> <_opr><rel>flying bat</rel></_opr> <var>X</var> </atom>

<not><neg>

<atom> <_opr><rel>flies</rel></_opr> <var>X</var> </atom>

</neg></not>



</and>

</_body>

</imp>

The whole rule base is loaded as follows:

| ?- loadRules( ruleML( ’taxonomy.ruleml’ ) ).

yes

The same predicate is capable of reading ordinary Prolog and NTriple files.
After loading its rule bases, the user can start querying them, a tuple-at-a-
time, with the demo/2 predicate. The first argument is the name of a loaded
rule base and the second the query in the usual Prolog syntax, extended with
the unary operators not and neg for representing default and explicit negation,
respectively:

| ?- demo( animals, flies(X) ).

X = Dracula; X = Tweety;

no

| ?- demo( animals, neg flies(X) ).

X = Joe; X = Pluto;

no

| ?- demo( animals, ( animal(X), not flies(X) ) ).

X = Pluto; X = Joe;

no

The demo/2 predicate invokes a meta-interpreter that implements WFSXP

semantics via a program transformation into normal logic programming un-
der WFS, making use of the tabling primitives of XSB-Prolog. The predicate
queryRules/3 allows the user to collect all the answers to a query in a list, or
write them in XML format to an output stream. The first argument is the rule
based being queried, the second is a list of terms of the form query( Goal,
Label, ListofVars) with the several queries to issue, and finally the last ar-
gument is either a variable or an output stream.

| ?- queryRules(animals, [query( flies(X), q1, [animal=X] )], Ans).

Ans = [[answer(q1,[animal = Dracula]),answer(q1,[animal = Tweety])]]

| ?- queryRules(animals, [query( flies(X), q1, [animal=X] ),

query( neg flies(X), q2, [non=X])], Ans).

Ans = [[answer(q1,[animal = Dracula]),answer(q1,[animal = Tweety])],

[answer(q2,[non = Joe]),answer(q2,[non = Pluto])]]

| ?- queryRules(animals, [query( flies(X), q1, [animal=X] )],userout).

<answers>

<_answer><_rlab><ind>q1</ind></_rlab>

<_subst><var>animal</var><ind>Dracula</ind></_subst>

</_answer>

<_answer><_rlab><ind>q1</ind></_rlab>

<_subst><var>animal</var><ind>Tweety</ind></_subst>

</_answer>

</answers>



| ?- queryRules(animals, [query( flies(X), q1, [animal=X]),

query( neg flies(X) , q2, [non=X])], userout).

<answers>

<_answer><_rlab><ind>q1</ind></_rlab>

<_subst><var>animal</var><ind>Dracula</ind></_subst>

</_answer>

<_answer><_rlab><ind>q1</ind></_rlab>

<_subst><var>animal</var><ind>Tweety</ind></_subst>

</_answer>

<_answer><_rlab><ind>q2</ind></_rlab><_subst>

<var>non</var><ind>Joe</ind></_subst>

</_answer>

<_answer><_rlab><ind>q2</ind></_rlab><_subst>

<var>non</var><ind>Pluto</ind></_subst>

</_answer>

</answers>

Mark that the answer may be labelled with user-provided labels in order to
identify the corresponding query, and variables can be given user-understandable
names. The format of answers is not specified in the RuleML proposal.

The W4 RuleML compiler supports several rulebases, imported from RuleML
files, Prolog files, or NTriples files. A converter from Prolog syntax to RuleML
syntax and from RuleML syntax to Prolog syntax is included. An experimental
RDF(S) engine is also provided, and makes extensive use of the tabling facilities
of the XSB Prolog engine. By exploiting the NMR features of the new XSB Pro-
log 2.6, support will be provided for Stable Models and Answer Set Semantics.
The package was originally developed for XSB Prolog 2.5, but porting to other
Prolog systems is foreseen.

There are some open issues, namely the definition of remote Goal invocation
method via the exchange of SOAP messages, and the selection of distributed
query evaluation algorithms and corresponding protocols. A standard integration
of RuleML with ontologies is still lacking. Further applications, testing, and
evaluation is required for the construction of practical systems.

5 Updates and the Evolution of Rule Bases

One of the features for which we developed research work, and corresponding
implementations is that of updates and evolution of rule-based knowledge bases.
While logic programming can be seen as a good representation language for
static knowledge, as we have just shown, if we are to move to a more open and
dynamic environment typical of, for example, the agency paradigm, we must con-
sider ways and means of representing and integrating knowledge updates from
external sources, but also inner source knowledge updates (or self updates). In
fact, an agent not only comprises knowledge about each state, but also knowl-
edge about the transitions between states. The latter may represent the agent’s



knowledge about the environment’s evolution, coupled to its own behaviour and
evolution rules. Similar arguments apply to the Semantic Web. In it, knowledge
is stored in various autonomous sources or repositories, which evolve with time,
thus exhibiting a dynamic character. Declarative languages and mechanisms for
specifying the Semantic Web’s evolution and maintenance are in order, and we
have recently worked towards this goal.

To address these concerns we first introduced Dynamic Logic Programming
(DLP) [5] ([19] addressed similar concerns). According to DLP, knowledge is
given by a linearly ordered sequence of generalized extended logic programs that
represent distinct and dynamically changing states of the world. Each of the
states may contain mutually contradictory and overlapping information. The
semantics of DLP ensures that all previous rules remain valid (by inertia) so
long as they are not contradicted by newer (prevailing) rules.

We have developed two implementations of DLP1:

– One of them implements exactly the semantics defined in [5] which is a stable
models based semantics. This implementation is provided as a pre-processor
of sequences of generalized programs into programs that run under the DLV
system [9] for computing the stable models.

– The other implementation is based on a generalization of the well-founded
semantics [21] for sequences of programs, which is sound though not complete
with respect to the semantics in [5]. The advantages of using a well-founded
based semantics rather than a stable models based one can be found in
section 2. This implementation consists of a meta-interpreter of sequences
of programs, and runs under XSB-Prolog [30]. With it, one can consult se-
quences of generalized programs, as well as update the running sequence with
with set or another of generalized rules. Queries to literals can be posed to
the current (latest) state, or to any other previous state. It is also possibly
to ask in which of the states some literal holds.

Recently we have integrated a mechanism of preferences [7], which generalizes
the preferences of [11] to sequences of programs. The implementation of updates
with preferences is based on a pre-processor into DLV programs, according to a
transformation defined in [4].

To cope with updates of knowledge coming from various sources, we extended
DLP and developed Multi-dimensional Dynamic Logic Programming - (MDLP)
[28]. DLP allows to encode a single update dimension, where this dimension can
either be time, hierarchy strength of rules, priorities, etc. With MDLP more than
one of these dimensions can be dealt within a single framework (allowing e.g.
to model the evolution over time of hierarchically organized sets of rules). The
MDLP implementation is enacted as a meta-interpreter running under XSB-
Prolog. With it, Directed Acyclic Graphs (DAGs) of programs can be consulted
(with a special syntax for representing the graph), and queries can be put to any
of the programs in the DAG.
1 All implementations mentioned in this section can be found at:
http://centria.di.fct.unl.pt/∼jja/



With these languages and implementations logic programs can describe well
knowledge states and also sequences and DAGs of updating knowledge states.
It’s only fit that logic programs be utilized to describe the transitions between
knowledge states as well. This can be achieved by associating with each state
a set of transition rules to obtain the next state. However, till recently, LP
had sometimes been considered less than adequate for modelling the dynamics
of knowledge change over time, because typical update commands are defined
by it. To overcome this limitation, we have introduced and implemented the
language LUPS [8] (related languages are EPI [18] and KABUL [27]).

LUPS is a logic programming command language for specifying logic pro-
gram updates. It can be viewed as a language that declaratively specifies how
to construct a Dynamic Logic Program by means of successive update com-
mands. A sentence U in LUPS is a set of simultaneous update commands that,
given a pre-existing sequence of logic programs, whose semantics corresponds to
our knowledge at a given state, produces a new DLP with one more program,
corresponding to the knowledge that results from the previous sequence after
performing all the simultaneous update commands. A program in LUPS is a
sequence of such sentences. The most simple LUPS command is assert Rule,
that simply asserts a rule in the next program of the running sequence. Other
more elaborate commands of LUPS take care of retraction of rules, persistent
assertion of rules, cancellation of persistent assertions, event assertion and per-
sistent event assertion. For example, the command for persistent rule assertion
is of the form always Rule when Conds, which from the moment it is given,
till cancelled, whenever Conds are true Rule is asserted. As with DLP, two
implementations have also been developed for LUPS, one stable models based,
running as a pre-processor into DLV programs, and another running as a meta-
interpreter in XSB-Prolog.

More recently, we have worked on a general language, christened EVOLP
(after EVOlving Logic Programs) [1], that integrates in a simple way the concepts
of both DLP and LUPS, through a language much closer to that of traditional
logic programs than the one of LUPS. EVOLP generalizes logic programming
to allow specification of a program’s own evolution as well as evolution due to
external events, in a single unified way, by permitting rules to indicate assertive
conclusions in the form of program rules. EVOLP rules are simply generalized
LP rules plus the special predicate assert/1, which can appear both in heads or
bodies of rules. The argument of assert/1 can be a full-blown EVOLP rule, thus
allowing for the nesting of rule assertions within assertions to make it possible
for rule updates to be themselves updated down the evolution line. The meaning
of a sequence of EVOLP rules is given by sequences of models. Each sequence
determines a possible evolution of the knowledge base. Each model determines
what is true after a number of evolution steps (i.e. a state) in the sequence:
a first model in a sequence is built by “computing” the semantics of the first
EVOLP program, where assert/1 is as any other predicate; if assert(Rule) is
true at some state, then the program must be updated with Rule in the next



state; this updating, and the “computation” of the next model in the sequence,
is performed as in DLP.

The current implementation of EVOLP is a meta-interpreter that runs under
XSB-Prolog. With it, it is possible to consult sequences of sets of EVOLP rules,
as well as update the running sequence with a new set of rules. Queries to literals
can be made in the current (later) state, or in any other previous state or interval
of states. It is also possibly to ask in which of the states is some literal true. We
are now in the process of integrating the EVOLP implementation (which, as
mentioned above, encompasses both the features from DLP and LUPS) into the
W4 RuleML compiler described in section 4, that already supports EVOLP’s
syntax . This work, which we expect to finish soon, will allow the usage of
EVOLP for taking care of the evolution and maintenance of RuleML rule bases
in the Semantics Web.

We have applied these languages, and used the above mentioned implemen-
tations, in various domains, such as: actions, agents’ architecture, specification
of agents’ behaviours, software specification, planning, legal reasoning, and ac-
tive databases. References to this work, as well as the running examples, can be
found in the URL above.

To illustrate the expressiveness of these languages, we briefly illustrate here
how EVOLP can be employed to model an evolving personal assistant agent for
email management able to: Perform basic actions of sending, receiving, delet-
ing messages; Storing and moving messages between folders; Filtering spam
messages; Sending automatic replies and forwarding; Notifying the user of spe-
cial situations. All of this dependent on user specified criteria, and where the
specification may change dynamically. More details on this application can be
found in [2]. In this application messages are stored via the basic predicates
msg(Identifier, From, Subject, Body, T imeStamp) and in(Identifier, Folder)
for specifying in which folder the message is stored. New messages are simply
events of the form newmsg(msg(Identifier, From, Subject, Body). Basic ac-
tions can be easily modelled with EVOLP. For example, for dealing with incom-
ing messages, all we have to specify is that any new message, arriving at time T ,
should be stored in the inbox folder, unless it is marked for deletion. If a message
is marked to be deleted then it should not be stored in any folder. This can be
modelled by the EVOLP rules:

assert(msg(M,F, S,B, T )) ← newmsg(M,F, S, B), time(T ), not delete(M)
assert(in(M, inbox)) ← newmsg(M,F, S, B), not delete(M)

assert(not in(M, inbox)) ← delete(M), in(M, F )

Rules for filtering spam can then be added, as updates to the program, in a
simple way. For example, if one wants to filter, and delete, messages containing
the word “credit” in the subject, we simply have to update our program with:

delete(M) ← newmsg(M,F, S, B), spam(F, S, B)

spam(F, S,B) ← contains(S, credit)



Note that this definition of spam can later be updated, EVOLP ensuring that
conflicts between older and newer rules are automatically resolved. For example,
if later one wants to update the definition of spam, by stating that messages
coming from one’s accountant should not be considered as spam, all one has to
do is to update the program with the rule:

not spam(F, S,B) ← contains(F,my accountant)

With this update, EVOLP ensures that messages from the accountant are not
considered spam, even if they contain the word “credit” in the subject, and the
user doesn’t have to worry about guaranteeing, manually, the consistency of later
rules with previous ones.

As an example of a more complex rule, consider that the user is now or-
ganizing a conference, and assigns papers to referees. Suppose further that he
wants to automatically guarantee that, after receipt of a referee’s acceptance,
any message about an assigned paper is forwarded to the corresponding referee.
In EVOLP terms, this means that if a message is received from the referee ac-
cepting to review a given paper, then a rule should be asserted stating that new
messages about that paper are to be sent to that referee:

assert(send(R, S,B) ← newmsg(M, F, S,B), contains(S, PId),
assign(PId,R) )

← newmsg(M,R, PId, B), contains(B,‘accept’)

For an illustration of more elaborate rules, showing other features of EVOLP,
such as the possibility of dynamically changing the policies of the agent triggered
by internal or external conditions, for commands that span over various states,
etc, the reader is referred to [2].

6 Conclusion

In our opinion, Well-Founded Semantics should be a major player in RuleML,
properly integrated with Stable Models. A full-blown theory is available for im-
portant extensions of standard WFS/SMs, addressing many of the open issues
of the Semantic Web. Most extensions resort to polynomial program transfor-
mations, namely those for evolution and update of knowledge bases. They can
handle uncertainty, incompleteness, and paraconsistency. Efficient implementa-
tion technology exists, and important progress has been made in distributed
query evaluation. An open, fully distributed, architecture is being elaborated
and proposed.
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