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Coarse bifurcation analysis of kinetic Monte Carlo simulations:
A lattice-gas model with lateral interactions
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We present a computer-assisted study of ‘‘coarse’’ stability/bifurcation calculations for kinetic
Monte Carlo simulators using the so-called coarse timestepper approach presented in A. G. Makeev,
D. Maroudas, and I. G. Kevrekidis, J. Chem. Phys.116, 10083~2002!. Our illustrative example is
a model of a heterogeneous catalytic surface reaction with repulsive adsorbate–adsorbate
interactions and fast diffusion. Through numerical continuation and stability analysis, we construct
one- and two-parameter coarse bifurcation diagrams. We also discuss several computational issues
that arise in the process, the most important of which is the ‘‘lifting’’ of coarse, macroscopic initial
conditions~moments of adsorbate distributions! to fine, microscopic initial conditions~distributions
conditioned on these moments!. © 2002 American Institute of Physics.
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I. INTRODUCTION

A persistent feature of complex reaction and transp
systems is the emergence of macroscopic, coherent beh
from the interactions of microscopic agents—molecul
cells, individuals in a population—between themselves a
with their environment. The implication is that macroscop
rules ~description of behavior at a high level! can, in some
cases, be deduced from microscopic ones~description of be-
havior at a much finer level!. For some problems, like New
tonian fluid mechanics, or simple homogeneous chemica
netics, successful macroscopic descriptions~the Navier–
Stokes equations, mass action laws! predated their
microscopic derivation from kinetic theory. In many curre
problems, however, ranging from chemistry to engineeri
and from ecology to materials science, the physics
known at the microscopic/individual level, and the closu
required to translate them to an accurate, high-level, ma
scopic description are simply not explicitly available. Seve
computational limitations arise in trying to directly bridg
the enormous gap between the scale of the available des
tion and the scale at which the questions of interest are a
and the answers are required.

In this paper we study surface reactions for which
available description is at the level of microscopic lattice-g
models with lateral interactions, and the desired informat
encompasses the location, stability, and bifurcation anal
of macroscopic stationary states~expected average cove
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ages, expected stationary reaction rates!. Over the last few
years we have been working towards the development
two-tier computational methodology to address problems
which closed macroscopic equations conceptually existbut
are not explicitly available. The inner component of this
methodology is the best available microscopic simulator
the process: for this paper, a kinetic Monte Carlo~KMC!
lattice-gas simulator. The outer component consists o
combination of~a! system identification and~b! traditional
numerical analysis. Consider the computation, through
Newton–Raphson iteration, of the steady states of the m
roscopic, coarse closed equations for average surface
centrations~coverages!. If these macroscopic equations a
explicitly available, the Newton–Raphson procedure
quires repeated evaluations of the right-hand side and o
Jacobian~the first partial derivatives of the rate expressio
with respect to coverages!. If these equations arenot explic-
itly available, we will show below how to use short bursts
KMC simulation ~appropriately initialized, evolved and av
eraged! to identify exactly these numbers~as opposed to jus
evaluating them through a simple one-line formula!. The sec-
ond component of our computational methodology will
this case be precisely the Newton–Raphson algorithm
we would use if the macroscopic equations had been exp
itly available. The only difference is that the quantities pr
cessed by this algorithm to give us the next steady s
guess will not come from explicit function evaluations, b
from system identification based on short local bursts
KMC simulation data. In effect, we will use the KMC evo
lution code as an experiment, and by perturbing its para
eters and initial conditions we will identify ‘‘on demand
~‘‘just in time’’ is another term used in the literature! the
quantities we need to do macroscopic numerical anal

al

of
9 © 2002 American Institute of Physics
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with. And while Newton–Raphson is the simplest illustrati
example, there exists an immense computational arsen
tools ~numerical bifurcation theory, optimization, contro!
that has been erected by current mathematics to help
information from models easier, faster, better than sim
simulation.1–6 We will return to the implications and possib
impact of such a computational methodology in the Disc
sion ~Secs. V and VI!.

In a previous publication,1 we were able to construc
what we termed ‘‘coarse’’ bifurcation diagrams for the e
pected values of KMC simulations; our particular examp
were simple models of surface reaction problems. The KM
technique used was the so-called ‘‘stochastic simulation
gorithm’’ for well-mixed reaction systems, proposed b
Gillespie,7 which constitutes a coarse graining of the cor
sponding master equation. For this algorithm, exact clo
mesoscopic equations for the expected values of the ad
bate distribution averages exist, and can be used to tes
numerical results. In this paper, we show how the compu
tional methodology can be extended to apply to lattice-KM
models with lateral adsorbate interactions. For these p
lems such exact mesoscopic equations are not availab
closed form, although several levels of approximation~mean
field, quasichemical, etc.! can be derived. We apply ou
coarse-timestepper-based procedure and compute num
bifurcation diagrams, which we compare both to those p
duced through approximate explicit closures, and to typ
long-term KMC simulations.

The paper is organized as follows: In Sec. II we discu
our illustrative example~a simplified model of heteroge
neous catalytic CO oxidation with lateral adsorbate inter
tions! and our KMC simulation protocols. In Sec. III w
outline our procedure along the lines presented in Ref
Numerical bifurcation results are presented in Sec. IV
various parameters, such as the gas phase reactant pres
the adsorbate–adsorbate interaction energies, and the
perature are varied. In Sec. V we discuss various comp
tional issues, including the effect of diffusion on these co
putations. One of the most important issues we discus
this section is the nonunique, ‘‘one-to-many’’ lifting operato
a vital part of the procedure: the construction of~ensembles
of! microscopic initial conditions consistent with~alterna-
tively, distributions conditioned on! given macroscopicini-
tial conditions. Finally, in Sec. VI, we summarize and pr
vide connections with literature using comparable meth
to enable different, non-KMC types of microscopic simu
tors, such as lattice-Boltzmann kinetic-theory inspired on

II. THE ILLUSTRATIVE MODEL: KINETIC MONTE
CARLO SIMULATIONS

We consider a set of the elementary reactions occur
on a perfect lattice withN5N13N2 adsorption sites and
periodic boundary conditions. These reactions may invo
one or two adsorption sites,

Ai→Bi ,

Ai1Bj→Ci1D j .
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Here the indexj runs over all the nearest neighbors of the s
labeled ‘‘i’’ ( i 51, . . . ,N). Each lattice site can be occupie
by an adsorbed particle~say, of typeA! or it can be empty
@A5(* )#. The list of possible kinetic events may include th
elementary events of migration~diffusion!,

Ai1~* ! j→~* ! i1Aj ,

which describe the individual jumps of adsorbed particles
their neighboring vacant sites. A reaction mechanism is gi
by the set of all of its possible elementary reactions. The ti
evolution of the reaction system can be described by
chemical master equation,

dPx~ t !/dt5(
x8

~Wx8→xPx8~ t !2Wx→x8Px~ t !!,

wherePx(t) @Px8(t)# denotes the probability of finding th
system in configurationx @x8# at timet, andWx→x8 are used
to denote transition probabilities per unit time for vario
elementary events such as adsorption, desorption, migra
reaction, etc. We also take into account the lateral inter
tions between the adsorbed particles over an interac
range up to second-nearest-neighbor separations. Due to
eral interactions, the rates of elementary reactions depen
the local environment, and because of these interaction
ordered adsorbed layer~microstructure! may form on the lat-
tice. In general, the master equation cannot be solved
rectly; therefore, one has to either use some uncontro
approximations in order to derive macroscopic evoluti
equations, or to implement KMC simulations which can pr
vide, in principle, the correct solution of the problem.

The basic steps of the KMC algorithm we have imp
mented are as follows:7–10

~1! The timeDt that the system spends in a current config
ration is Dt52 ln(j)/W, where j is a random number
taken from a uniform distribution on~0, 1!; W
5(x8(Wx→x8) is the total transition probability per uni
time. ~In principle, transition probabilities can be com
puted accurately throughab initio calculations of energy
surfaces for both reaction and diffusion events in co
junction with implementation of rate theory.! Accord-
ingly, the time is updated by an incrementDt: t5t
1Dt.

~2! One reaction is selected from the set of all possible
netic events, with a probability proportional to its rat
For this purpose, one more random number uniform
distributed on~0, 1! is generated. The selected kinet
event is performed and the set of all possible react
rates is updated to take the local compositional chan
on a lattice into account.

~3! Repeat the previous steps ift,t.

Initial conditions are given by the lattice configuration
t50. This algorithm can be viewed as a ‘‘timestepper’’ th
operates on the initial species coverage distribution on
lattice ~input! for a given time periodt, and generates the
final distribution~output!. The number of all possible reac
tions on a lattice can be very large. Usually, there is no n
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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8231J. Chem. Phys., Vol. 117, No. 18, 8 November 2002 Coarse bifurcation analysis of kinetic Monte Carlo simulations
to recalculate all rates at each time step because of the
character of microscopic events occurring on a lattice.

Realistic description of diffusion is one of the ma
implementation problems for KMC simulations. In mo
practical cases, adspecies hop rates are many orders of
nitude greater than all other rates. In such a case, the
sorbed layer can be considered to be in a~quasi!equilibrium
state at each time instant. Therefore, to accelerate the c
lations, one can apply an additional procedure to produce
equilibrium distribution~for the current coverages!, and re-
move migration events from the list of possible element
events.11 This separate relaxation procedure, which does
affect the average coverages, is executed after each
step. For this purpose, one can apply the classical Metrop
importance sampling algorithm for simulating species mig
tion in the canonical ensemble: jumps of randomly selec
adsorbed particles into the empty sites occur with a proba
ity equal to 1 if DE<0, otherwise equal to
exp(2DE/RT); DE is the energy difference between the in
tial and final configurations, which is caused by the late
interactions between adsorbed particles. Nearest neig
~NN! jumps or long-range jumps can be considered. O
Monte Carlo step~MCS! in the Metropolis algorithm corre
sponds, on average, to one attempted jump per lattice
The number of these steps,NMCS is a parameter of the algo
rithm. A summary of the various algorithm parameters a
their meaning can be found in Appendix A 1.

In this paper we consider fast diffusion of adsorbat
The computed macroscopic steady-state solutions corres
to infinitely fast adspecies hop rates. In the simulations
used two KMC methods: for the first one the migrati
events are considered explicitly, i.e., the algorithm empl
both diffusional transition probabilities and reaction pro
abilities; for the second one the Metropolis relaxation alg
rithm is used instead, along with reaction probabilities. T
infinite mobility, in particular, allows us to suggest that t
long-term, macroscopic system behavior can be describe
terms of average coverages: higher order correlation fu
tions are quickly slaved to~become functionals of! the cov-
erages, that is, the zeroth moments of the species dist
tions on the lattice.

The lattice gas model: We consider the standard mod
of the A1 1

2B2→AB reaction, which mimics the CO oxida
tion reaction occurring on a square lattice. Our lattice-g
~lattice-KMC! model contains 6 elementary steps involvi
two types of adsorbed species in the reaction mechanism

~1! COgas1~* ! i→COads,i ,

~2! O2,gas1~* ! i1~* ! j→Oads,i1Oads,j ,

~3! COads,i→COgas1~* ! i ,

~4! COads,i1Oads,j→CO2,gas1~* ! i1~* ! j ,

~5! COads,i1~* ! j→~* ! i1COads,j ,

~6! Oads,i1~* ! j→~* ! i1Oads,j .

Here, i and j are NN sites on a square lattice. Steps~5! and
~6! describe the individual jumps of adsorbed particles
neighboring empty sites. In this paper, we consider only
Downloaded 11 Nov 2002 to 128.112.33.67. Redistribution subject to A
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eral interactions between COads species at NN lattice sites
and assume no interactions for the activated complexes.

The standard mean-field~MF! equations for this mode
are

du1 /dt5au02gu1 exp~4u1«/~RT!!

24kru1u2 exp~3u1«/~RT!!, ~1a!

du2 /dt54bu0
224kru1u2 exp~3u1«/~RT!!, ~1b!

where u1[uCO(u2[uO) is the CO ~O! coverage;u051
2u12u2 is the concentration of empty sites;« is the ener-
getic parameter of lateral interactions between NN COadsad-
species~negative for repulsive interactions!; T is the absolute
temperature, andR the ideal gas constant. The dimensionle
constantsa, b, g, and kr are associated with the rates
adsorption of CO, dissociative adsorption of oxygen, deso
tion of CO and the surface reaction, respectively.a and b
can be varied through varying the gas phase pressures o
two gases, whileg andkr may depend on temperature, sin
both CO desorption and surface reaction are activated
cesses. Oxygen desorption is not taken into account, con
tently with experimental observations.

At the next level of modeling, constructing the equatio
of the quasichemical approximation~QCA!, involves intro-
ducing thepair probabilities ~the normalized dimensionles
number of NN~ij ! pairs on a lattice!, gi j . The kinetic~dif-
ferential algebraic! system of equations of the QCA consis
of

du1 /dt5au* 2gu1~S1!424krg12~S1S2!3, ~2a!

du2 /dt54bu
*
2 24krg12~S1S2!3, ~2b!

along with the quasichemical relations expressing lo
equilibrium,12–14

r 11g11g005~g01!
2, ~3a!

r 22g22g005~g02!
2, ~3b!

r 12g12g005~g01g02!, ~3c!

and the symmetry relations,

gi j 5gji ; ~ i , j 50,1,2!,

where

(
j

gi j 5u i ~ i , j 50,1,2!, u0512u12u2 ,

r i j 5r j i 5exp@2« i j /~RT!#,

Si5~gi01r i1gi11r i2gi2!/u i , ~ i , j 51,2!;

and « i j 5« j i are the energetic parameters of lateral inter
tions between NN adsorbed particles (« i j 50 for i , j 50).
Symmetry reduces the 9gi j unknowns to 6, and the conse
vation of total sites to 5. We thus have a set of 5 coup
differential-algebraic equations~DAEs!. Conceptually, for an
index-1 system, we use the three algebraic equations
eliminate three of the five remaininggi j , and end up with a
set of two coupled nonlinear differential equations for tw
independent variables~or for two of their independent com
binations, for example the two coverages!. If limited mobil-
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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8232 J. Chem. Phys., Vol. 117, No. 18, 8 November 2002 Makeev et al.
ity of adsorbates is considered~slow diffusion limit!, the
time evolution of pair probabilities is given by the followin
ODEs:14

dg11/dt52ag1022gr 11g11~S1!326krr 11g12~g11/u1!

3~S1!2~S2!316d1g10@S1g10/u02r 11g11/u1#

3~S1!2, ~4a!

dg12/dt5ag202gr 12g12~S1!313bg10g00/u0

2krg12~S1S2!323krr 12~g12S1S2!2~S2 /u1

2S1 /u2!13d1g10@S1g20/u02r 12g12/u1#

3~S1!213d2g20@S2g10/u02r 12g12/u2#

3~S2!2, ~4b!

dg22/dt5bg0016bg20g00/u026krr 22g12~g22/u2!

3~S1!3~S2!216d2g20@S2g20/u02r 22g22/u2#

3~S2!2, ~4c!

whered1 andd2 are the migration rate constants for CO a
O species, respectively. These three differential equat
@Eqs. ~4!# combined with the two differential equations fo
the coverages@Eqs. ~2!# provide a set of five differentia
equations for five unknowns. Ifd1 , d2→` and all other rate
constants are finite, these three ODEs reduce to the alge
Eqs. ~3!. The relations~3! are, in effect, quasi-steady-sta
approximations that can be obtained in the limit of high m
bility for all adsorbed species. The algebraic nature of E
~3! is, therefore, associated with the fact that pair probab
ties ~higher order moments of the species distribution! have
fast dynamics compared to the lower order moments~cover-
ages! and they get quickly slaved to the coverages. Inde
prescribing the two coverages leads, through the quasich
cal and the symmetry relations, to reconstruction of all 9 p
probabilities.

The equations of the MF approximation@Eqs. ~1!# fol-
low from those of QCA@Eqs.~2!# if one ignores the spatia
correlations, i.e., setgi j 5u iu j , and also, concomitantly, se
Si5exp@2(u1«i11u2«i2)/(RT)#. A summary of the various
model parameters can be found in Appendix A 2.

III. THE COARSE TIMESTEPPER, AND COARSE-KMC
STABILITY ÕBIFURCATION ANALYSIS

Both in the mean field and the quasichemical appro
mation, the dynamics of the average coverages~zeroth mo-
ments of the species lattice distribution! are captured through
macroscopic differential equations that close at the leve
coverages alone. Mean field does not take spatial correlat
into account; QCA goes so far as to take into account p
probabilities, and uses a separation of time scales argum
to close the coverage equations by slaving pair probabili
to coverages. In our work we will assume that the dynam
of the average coverages~in a neighborhood of the macro
scopic steady-state solutions of the lattice-gas model! can
indeed be described by a system of coarse ODEs that clo
terms of the average coverages themselves,
Downloaded 11 Nov 2002 to 128.112.33.67. Redistribution subject to A
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dQ/dt5F~Q;p!, ~5!

whereF exists, but it is unavailable in closed form;p denotes
the dependence of the kinetics on parameters, such as
phase pressures or temperature. The idea is that not only
probabilities, but all higher order correlations get quick
~after short initial transients! slaved to coverages. We do no
however, know how to construct the corresponding set
differential-algebraic equations for the dynamics of the~in
principle infinite! hierarchy of higher moments of the speci
distributions: we do not have an explicit closure of the co
erage equations. Our computational procedure circumv
the derivation of an explicit closure by identifying, throug
direct ‘‘on demand’’ KMC simulation,15 quantities that
would be simply evaluated ifF were explicitly available.
This ‘‘closure on demand’’ nature of our computational pr
cedure will be revisited in the Discussion. Most elements
this coarse-KMC procedure have been introduced in Ref
while we refer the reader to that article, we revisit here,
completeness, some of the salient algorithmic features
the rationale behind them.

Figure 1 shows a schematic of our coarse timestep
computational procedure, which assumes that a dyna
equation describing the evolution of adsorbate coverages
ists and closes at the level of coverages~zeroth moments of
the adlayer particle distributions!. To be more precise, this
equation is what one might call a ‘‘mesoscopic’’ equation f
the expected values of the coverages; ‘‘mesoscopic’’ h
implies that these dynamic equations are valid over a t
scale that is relatively short compared to the time tha
would take for a typical KMC simulation to sample the e
tire probability distribution function~PDF! of the system
~see Ref. 1!. The coarse timestepper consists of the followi
conceptual steps:

~a! We start with an initial condition for the coverages, th
zeroth moments of the adsorbate distribution. Since
have assumed that a deterministic mesoscopic equa
exists and closes at this level, we will refer to the co
erages as the determining moments of the distributi
The illustrative terminology used here is borrowe
from the theory of inertial manifolds for dissipativ
partial differential equations.16 In that problem, very
qualitatively, due to a separation in time scales, fa
higher-order components~modes! of the solution of the
problem become quickly slaved to~become functionals

FIG. 1. Schematic of the coarse-KMC~C-KMC! timestepper. For the given
macroscopic initial conditions this procedure produces coarse final re
via a sequence of microscopic simulations.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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of! a few slower, master modes. By analogy, in o
case higher-order spatial moments of the adsorbate
tribution become quickly slaved to~functionals of! the
master or determining moments: the coverages.
will expand slightly upon this point in the final discus
sion ~Sec. VI!.

~b! Coarse, macroscopic initial conditions~coverages! are
then lifted toconsistentmicroscopic initial conditions,
i.e., lattice configurations with adsorbate distributio
conditioned on these coverages. This lifting operato
not unique—many distributions exist that have th
same zeroth moment. We could loosely characte
some of these distributions as ‘‘mature’’~or ‘‘bred’’ ! in
the sense that for them the higher-order moments
already slaved to the determining ones~coverages!. In
principle, if the assumption that an equation exists a
closes at the coverage level is correct,it should not
matter which of these distributions we choose for o
procedure; furthermore, it should not matter if the in
tial distribution~s! we choose are indeed mature: if the
are not, they will become so very quickly~compared to
the reporting horizon of our timestepper!. An ensemble
of such consistent initial conditions—distributions co
ditioned on their low-order moments—is necessary
cause of variance reduction purposes, as will be furt
discussed below.

~c! Each member of this ensemble is evolved~using the
KMC algorithm! over the timestepper reporting hor
zon, t. As we have discussed in detail in Ref. 1, th
reporting horizon should be long compared to t
‘‘healing’’ or ‘‘slaving’’ time ~the time that it takes for
higher-order moments to get slaved to the govern
ones, namely the time it takes for a fresh initial con
tion to mature, or for the errors we made in lifting
‘‘heal’’ !. In addition,t should be short compared to th
time it takes for the KMC simulations to diffuse ove
the long-term PDF of the problem because of the no
That such a plateau of acceptable timestepper repor
horizons exists is intimately related to the assumpt
that a meaningful mesoscopic equation for expec
coverages exists and closes.

~d! The spatial moments of these final adsorbate distri
tions are then computed. We can think of this as
application of a restriction operator from the micr
scopic ~distribution! phase space to the macroscop
~moments! one. This operatoris one-to-one, and the
restriction ofany lifting of a coverage should be tha
same coverage. We also average over all realization
the timestepper for variance reduction purposes. T
procedure~lifting, evolving microscopically and re-
stricting! combined with ensemble averaging,15 is the
coarse timestepper for coverages.

The pseudocode computational construction of
coarse timestepper is then:

~1! @Given macroscopic initial conditions,Q0] →
~2! @Createconsistentmicroscopic initial conditions~lattice

distributions!# →
Downloaded 11 Nov 2002 to 128.112.33.67. Redistribution subject to A
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~3! @Evolve these in time using the KMC timestepper for t
time interval t; perform Nrun statistically independen
runs# →

~4! @Calculate the averageQ5Qt[Ft(Q0 ;p)].

The lifting operator @step~2!#, which constructs microscopic
initial conditions~initial lattices having equilibrium distribu-
tions of adsorbed species! consistent with a given set of mac
roscopic initial conditions~coverages!, is performed by
means of the Metropolis relaxation procedure.

Clearly, a steady state of Eq.~5! is a fixed point of the
iteration,

Q→Ft~Q!→Ft~Ft~Q!![F2t~Q!

and to find it we formulate the algebraic system,

G~Q;t;p![Q2Ft~Q,p!50, ~6!

which is then solved by means of the Newton–Raphs
~NR! iterative method. Steady states of Eq.~5! in general are
fixed points of Eq.~6! for arbitrary t. @Periodic solutions of
Eq. ~5! are also fixed points of Eq.~6! but only for particular
values oft. We will also see below cases where spurio
apparent fixed points of Eq.~6! arise, again for particular
values oft, that arenot true steady states of Eq.~5!.# In this
way, we can calculate both stable and unstable station
solutions of the unavailable Eq.~5! as fixed points of the
coarse timestepper. To estimate the partial derivatives
quired in the NR iteration, we use numerical differentiati
of the coarse timestepper itself; in this paper, we used c
tered differences in both the coarse variables and the pa
eters. For noisy problems, however, variance reduction
crucial in estimating derivatives. While in this paper varian
reduction was mostly achieved through a large number
samples, filtering and maximum likelihood estimation shou
~and will! be explored as additional paths to precise deri
tive estimation.

In order to compute coarse bifurcation diagrams we
ply pseudo-arclength continuation withp as the bifurcation
parameter. In this case, we also have to estimate the de
tives ]F/]p ~coarse derivatives, derivatives of the coar
timestepper with respect to the bifurcation parameter!. The
eigenvaluesl of the matrix]F(Q,p)/]Q evaluated at these
steady-state solutions~the coarse eigenvalues, the eigenv
ues of the coarse Jacobian! are expressed via the eigenvalu
m of the matrix]F(Q,t,p)/]Q ~the eigenvalues of the lin
earization of the coarse timestepper at its fixed point!. The
matrix ]F(Q,t,p)/]Q is a form of state transition matrix
andm ı5exp(lıt).

It should be emphasized that NR iteration and pseu
arclength continuation allows the calculation of both sta
and unstable steady states. More generally, numerical bi
cation algorithms can be now ‘‘wrapped around’’ the coa
timestepper and allow the direct calculation/continuation
turning points, other co-dimension one, and higher
dimension, bifurcation points, as well as of coarse lim
cycles and their bifurcation points. Of course, the sta
coarse steady states can be calculated as a time average
the stochastic trajectory in phase space by means of
KMC algorithm if the time over which one averages is lon
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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enough. But this computation becomes very time consum
and difficult to interpret close to marginal stability boun
aries in parameter space.

We can think of the coarse timestepper for the covera
as simply the result of numerical integration of an equat
~like the MF or QCA equations! that we do not have in
closed form. The typical way of using an integrator subro
tine computationally is to run for a step, take the result, fe
it back in as an initial condition, and repeat the process. I
also clear, however, and we have discussed this in our
vious work, that we can use the same integrator subrou
not in the usual way~integrate again and again and agai!,
but differently. Indeed, we can call the integrator for near
initial conditions, as well as nearby parameter values, to
timate partial derivatives with respect to both the states
to the parameters, which can then be used to perform c
traction mappings~like the Newton–Raphson method! to
find steady states, or to perform continuation/bifurcat
tasks. There is a sequence of references where such nu
cal enabling technologies for timesteppers are discussed
applied, for both spatially lumped and spatially distribut
processes~i.e., for coarse ODEs and for coarse PDEs!. Let us
also mention that there is an emerging set of techniques~for
which the term ‘‘projective integrators’’ is used! that try to
expand the time horizons over which a microscopic simu
tor can be used to help estimate the evolution of thecoarse
problem. In the case studied in this article the coarse prob
is lumped in space~the coarse equations in question are
dinary differential equations for coverages!. Therefore, we
use numerical derivatives estimated through the coa
timestepper to perform Newton–Raphson contraction m
pings~to find coarse steady states!; to augment the system s
that one can follow steady state branches through arcle
continuation; and to augment the system so that one
converge to co-dimension one bifurcation points~such as, for
our example, turning points!. When the describing macro
scopic equations are partial differential equations~i.e., when
the macroscopic problem is spatially distributed! then the
coarse timestepper must be combined withmatrix free
~matrix-vector product based! iterative techniques~like the
RPM method of Shroff and Keller,17 or Newton–Picard
methods!. Instead of numerically estimating partial deriv
tives, we estimate the action of the coarse Jacobian on
lected vectors, and use that to build contraction mapping
compute coarse steady states.

IV. RESULTS

Figures 2, 3, and 4 show bifurcation diagrams with
spect to the parameterb, whose variation corresponds t
variation of the gas-phase pressure of oxygen. The me
field approximation ~MFA!, quasichemical approximatio
~QCA! as well as the coarse-kinetic Monte Carlo~C-KMC!
bifurcation diagrams are overlayed in the figures, the latte
the form of computed points joined by interpolation curve
The MFA diagram is obtained through Eq.~1!, while the
QCA diagram through the set of Eqs.~2! and ~3!. In each
case~MFA, QCA, and KMC! the stability of the solution
branches is indicated, the leading coarse eigenvalue is
cluded in the inset, and the exchange of stability at turn
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points~coarse eigenvalue crossing zero! can be seen clearly
Realizations of lattice configurations representative of coa
states marked on the diagrams are also included in Fig
these lattice realizations provide a simple qualitative feel
of the corresponding microscopic states.

It is clear that the QCA does a good job in represent
the coarse system dynamics and stability in the case of Fi
and even that of Fig. 3 («521 and21.5 kcal/mol, respec-
tively!, while the MFA is seen to be inadequate already
Fig. 2. What is remarkable, however, is the bifurcation d
gram obtained in Fig. 4 for«522 kcal/mol (2«/RT'2).
A long-range-orderedc(232) phase~corresponding to an
Ising antiferromagnet! is known to form above the critica
value of u«u/RT52 ln(21/211)'1.76, given by the Onsage
exact solution foru150.5. Therefore, it is expected that larg
deviations of the MFA and QCA models from the MC resu
are seen when the lateral interactions between adsorbed

FIG. 2. Bifurcation diagram with respect to the parameterb. Weak interac-
tions: «521 kcal/mol, g50.004,D50, t50.001,NMCS5100, 1003100
lattice, Nrun5105. The inset shows the maximal eigenvalues for QCA a
for C-KMC.

FIG. 3. Intermediate interactions:«521.5 kcal/mol, D50, t50.001,
NMCS5100, 1003100 lattice,Nrun5105. The inset shows the maximal ei
genvalues for QCA and C-KMC.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



n
c
nt

M
-g

oc
u

u

ho
vi

u-
th

f:
s,

A

u-
d

8235J. Chem. Phys., Vol. 117, No. 18, 8 November 2002 Coarse bifurcation analysis of kinetic Monte Carlo simulations
ticles are strong enough and the CO coverage is in the ra
0.35,uCO,0.65. We do not observe any significant effe
on the shape of the steady state branch close to the poi
which one might expect long-rangec(232) order of the
CO–adsorbate layer to appear. This is consistent with K
studies of adsorption isotherms of single species lattice
models with repulsive interactions.18

It appears, however, that the coarse timestepper pr
dure is capable of capturing the true hysteresis region m
better than either the MFA or the QCA~remember that the
coarse NR is capable of converging on both stable and
stable coarse steady states!. A comparison with long-term
traditional KMC runs, indicated by triangles in Fig. 4~a!,
shows that the agreement is almost quantitative. These
sults underscore the potential that timestepper based met
have in capturing dynamic transitions in the coarse beha
of microscopic simulators.

In the case of supercritical interactions («
522 kcal/mol), we performed a large set of C-KMC sim
lations studying the influence of different parameters of

FIG. 4. Strong interactions:«522 kcal/mol, D50, t50.001, NMCS

5100, 1003100 lattice,Nrun5105. The frame~a! shows CO coverage;~b!
O coverage. The inset of frame~b! shows the maximal eigenvalues for QC
and C-KMC. Triangles on the frame~a! give the long time average CO
coverage of the usual KMC algorithm with fast diffusion on a 2003200
lattice.
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algorithm. Essentially the same results~norm differences
within the NR tolerance! were obtained for various values o
time horizon,t, ranging from 0.0002 to 0.01; lattice size
ranging from 40340 to 100031000; migration rate,D,

FIG. 5. Snapshots of the 1003100 lattice representative of stationary sol
tions ~results correspond to Fig. 4!. Adsorbed CO, empty circles; adsorbe
O, filled squares; empty sites, dots. Top frame,b'5.8, uCO'0.563,
uO'0.008, stable steady state; middle frameb'7, uCO'0.5, uO'0.055,
unstable steady state; bottom frame,b'1.87, uCO'0.089,uO'0.7, stable
steady state.
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ranging from 0 to 100;N3Nrun, ranging from 108 to
43109; NMCS, ranging from 30 to 1000.

Of course, the changes ofN andNrun influence the accu-
racy of calculations. Comparing several independent run
the C-KMC algorithm forN3Nrun5109 ~for Figs. 2–4!, we
find that typically it converges with an absolute accuracy
evaluation of steady state coverages equal to'1023. The
accuracy in the computation of the eigenvalues was m
lower ~which is normal, since they are based on numerica
estimated coarse derivatives!. For the results shown in Fig. 4
the time-horizon of the C-KMC procedure was constantt
50.001), the amount of microscopic events during a sin
run of KMC timestepper was about 30 on a 1003100 lattice
~accordingly, 750 on a 5003500 lattice!. Typically, the
Newton–Raphson procedure converges after 3 or less i
tions. However, near the high-uCO saddle-node point the
iterations did not converge so fast. Thus, the step size of
pseudo-arclength continuation was decreased automatic
providing a better initial guess and thus restoring conv
gence. With sufficient variance reduction, as it w
for the data shown in Fig. 4, the continuation algorith
is able to produce the complete one-parameter bifurca
diagram, going around both turning points, during a sin
simulation run.

V. COMPUTATIONAL ISSUES

Having presented what we consider a successful ap
cation of our computer-assisted approach to a nontri
problem, we now proceed to discuss several issues that
in its computational implementation. In particular, we d
cuss those computational issues that we perceive as linke
the physics of the problem and of its microscopic simula

Figure 6 demonstrates why the procedure succeed
locatingunstablesteady states. Indeed, a forward-in-time

FIG. 6. Evolution of the lattice-gas model starting from the unstable ste
state at b52. Shown are the typical single runs of KMC algorith
with infinite migration rate on a 2003200 lattice. Initial conditions:
u1(0)50.448,u2(0)50.077 for solid curves, while for dashed curves th
initial value ofu1(0) was perturbed by6731023 keeping the sameu2(0);
the initial equilibrated distribution was produced by the Metropolis alg
rithm with NMCS5200.
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tegrator, especially a noisy one, will move away from
unstable steady state even if it is initialized close to it. Wh
is shown in Fig. 6, however is that it takes some time for t
deviation to occur; the corresponding run was initializ
very close to the coarse unstable steady state atb52. In-
deed, since at a steady state the rate of change is zero, ch
is very slow close to it. So, even in deviating away from t
unstable steady state, short-time integration can be use
detect that one isclose to a steady state. Starting at near
initial conditions, all of them close to the unstable stea
state, short-term integration also can be used to estimat
linearization, and thus to assist in a Newton–Raphson ba
contraction mapping that will converge to the unstable ste
state. It is also worth observing that, if the coarse init
conditions are very close to the unstable solution, the sys
will sometimes evolve to the stable CO-covered state,
sometimes to stable O-covered state. It takes a signific
perturbation of the coarse unstable steady state for the
tem to almost always evolve to only one of the two coa
stable states.

Next we discuss the further promise of numerical e
abling approaches such as the one we presented. Within
context of numerical bifurcation theory, one can constr
augmented systems whose solutions are precisely bifurca
points, i.e., points of neutral stability for the original sy
tems. This allows one to circumvent the extensive compu
tional effort required to accurately locate bifurcation poin
through integration, or through continuation of steady st
branches. The idea is to focus precisely on what one wan
find ~here a turning point! and write a new, augmented sy
tem to locate it. The new system is constructed by augm
ing the original physical model with conditions that spec
the mathematical properties of the object we want to fi
~here a zero eigenvalue of the vectorfield linearization, or
eigenvalue of the linearization of the timestepper at 1!. This
is the realm of traditional bifurcation theory and its nume
cal implementations; the only additional component is t
the coarse timestepper makes this technology applicabl
cases where the equation describing the problemexists but is
not available in closed form.

Figure 7 shows a two-parameter continuation of the tu
ing points of the bifurcation diagram of Fig. 4. For the
calculations, significant variance reduction is required: he
one needs to evaluate rather precisely the coarse Jaco
matrix, so as to be able to approximate the necessary sec
order coarse derivatives. Such calculations become ra
time-consuming. For the data shown in Fig. 7 we used
5003500 lattice andNrun5104. The lower saddle-node
branch was obtained as a result of an arclength turning p
continuation procedure in the~a, b! parameter plane, while
for the data points on the upper branch we used several fi
values of a. Upon convergence of the Newton–Raphs
method for the augmented system, the estimated abso
value of the original system minimal eigenvalue~which
should be zero at the exact turning point! was,1022.

The results of Fig. 8 are used to simply reinforce t
notion that exactly the same computational superstruc
can be exploited to perform coarse continuation/bifurcat
calculations with respect to many other parameters~not just
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gas phase pressures, but here also temperature!. This brings
up an important point. Microscopic evolution laws have p
rameters that are macroscopic~like the gas phase pressure!
or microscopic~like the form of particle interaction poten
tials!. In macroscopic, empirically closed equations one fin
both clean macroscopic parameters~such as gas-phase pre
sures! as well as more complex apparent macroscopic par
eters that are affected by the microscopic ones~such as ap-
parent activation energies!. Changing the microscopic
parameters will simultaneously affect several of the appa
macroscopic ones in non-obvious ways. In complex mat
als problems, for example, changing one of the macrosc
constitutive law apparent parameters~holding the remaining
ones constant! will not, in general, correspond to continua
tions in any singlemicroscopic parameter and vice vers

FIG. 7. Two-parameter bifurcation diagram. Lines correspond to the Q
symbols to C-KMC withD50, 5003500 lattice,Nrun5104. The value oft
was adapted automatically during the continuation procedure.

FIG. 8. Continuation withT as bifurcation parameter for fixeda51.6,
b54. Parameters of the C-KMC algorithm:D50, t50.001,NMCS5100,
1003100 lattice,Nrun543104. Shown are the CO and O steady state co
erages. There is an additional branch of stable steady states~not shown! for
which the coverages are almost constant (u1(0)'0.04,u2(0)'0.86) in the
temperature range shown here.
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One of the advantages of procedures like the one we
describing is that it allows naturally continuations with r
spect totrue microscopicparameters~such as strengths in
interaction potentials! without having to worry about how
these enter in the various traditional apparent parameter
macroscopic laws~such as the ones appearing in rheolog
transport, materials constitutive relations, etc.!.

Lifting issues: Lifting the coarse initial conditions to
consistent microscopic distributions is one of the most i
portant elements of the computational procedure describe
this article; as we discussed, it is clearly not a one-to-o
mapping. More importantly, the microscopic realizations
distributions conditioned on their lower-order moments m
be ‘‘mature’’ ~i.e., they can have the higher moments alrea
slaved! or ‘‘fresh,’’ in which case simulation is required to
make this slaving take effect. While a strong separation
time scales is an assumption~and, really, a prerequisite! for
the procedure, it would be clearly useful to have consist
initial distributions as mature as possible.

Figure 9 shows the effect, on the computation, of us
mature ~or, as we will refer to them from now on

;

FIG. 9. The average of 400 independent runs of the KMC algorithm o
5003500 lattice (a51.6,b51.5). CO coverage~a! and pair probabilityg11

~b! are shown. The initial macroscopic conditions areu1(0)50.1125,
u2(0)50.6178, and correspond to a stable steady state. The initial mi
scopic conditions: equilibrated adlayer~solid curves!; random distribution
~dotted curves!. Results for various choices ofD are compared.
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equilibrated—with respect to diffusion—! microscopic initial
conditions consistent with given coverages. The solid lin
show the result of simulations for the evolution of one co
erage and one pair probability (u1 and g11) starting with
equilibrated initial conditions, while the broken lines are f
non-equilibrated, random ones. The top panel@Fig. 9~a!#
shows CO coverage, while the bottom panel@Fig. 9~b!#
shows one of the pair probabilities. It is clear by inspect
of Fig. 9~b! that the equilibration time for the pair probabil
ties can be~depending on the diffusion coefficient! quite
long. A practical question then arises: to locate infinite d
fusion coarse steady states, we need simulations with
large diffusion rates; on the other hand, these become
hibitively expensive as the diffusion becomes faster. Fig
9~a! shows a practical solution: if the coarse initial conditi
is equilibrated, then—even with zero diffusion, and certai
for D510 or D5100—the infinite diffusion steady stat
does not change for relatively long simulation perio
~roughly t50.02, a typical reporting horizon for our coars
timestepper!. An idea would then be to select a coarse init
condition, create a random consistent microscopic distri
tion, equilibrate that with respect to diffusion, and only th
turn on the reaction~with a very small, or even zero diffu
sion! to compute the timestepper, and through it, ultimate
the coarse steady state. All approaches have been trie
representative points in our diagram: very fast diffusion w
no pre-equilibration as well as very fast, fast or no diffusi
with pre-equilibration. The results~assuming that one ratio
nally takes care of time-reporting horizons, etc.! have been
comparable.

It is worth noting here a promising research directi
that might provide an alternative to pre-equilibration throu
the Metropolis relaxation algorithm we used here. We star
using this approach in a Brownian dynamics rheologi
problem with some success.19 As we discussed in Ref. 1, i
slaving of some higher moments becomes slow, these
ments may need to be included in the coarse model as i
pendent variables. In such a case, coarse initial condit
should be taken not only in coverages, but also in so
additional moments~e.g., coveragesand pair probabilities!.
These initial conditions should be therefore lifted to distrib
tions conditionednot only on coverages, but also on the ad-
ditional moments,~on coverages and on pair probabilities!.
This is one of the strong points of our procedure: when c
sure at some level fails, and more moments have to be
cluded in a coarse model, the computational procedure d
not have to change. The same exact computational su
structure can be used to analyze the system; the only di
ence is that coarse initial conditions should be taken in m
moments than before~and lifted to consistent microscopi
configurations!. The KMC evolution part~the heart of the
procedure! and the restriction back to governing momen
remains the same. It will therefore become important to c
struct efficient algorithms to initialize distributions cond
tioned on several lower moments.

The last important issue has to do with a ‘‘computation
sanity check,’’ the fixed points we find should not depend
~should be converged with respect to! the time-reporting ho-
rizon of the timestepper. This, however, should be true if
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timestepper reporting horizon islong enoughcompared to
the characteristic healing time—the time that it takes for
rors made during lifting in the higher order moments of t
problem to die, and for the higher order moments to beco
slaved to the governing ones. If this is not true, then erro
ous ~spurious! fixed points will result from the simulation
Figure 10 shows the dependence of the fixed points c
puted through the algorithm on the reporting horizon, on
diffusion rate, and on whether the lifting was to equilibrat
microscopic distributions or not. For fast diffusion, wheth
with or without initial equilibration, one gets the corre
fixed point. However, erroneous apparent fixed points can
computed, such as those shown forD5100, random initial
conditions and short timestepper reporting horizons. Fig
11 explains how this can happen. It is possible that one
find ~after time 0.001 for random initial conditions an
D5100) that the coverage is equal to the initial coverage
within 1027. But the coverage has not remained constant
all this time—it has been changing, and it will continue
change because@see Fig. 11~b!# the pair probabilities have
not yet been slaved to coverages, and they continue
evolve. The reason for the apparent fixed point then, is
cause we only report differences of the governing mome
~the coverages! and because one of our most important a
sumptions~that the reporting horizon is long enough com
pared to the healing time! does not hold. The problem can b
remedied easily through a number of rational checks: that
fixed point does not change witht; that the next-highes
moment~pair probability! does not change witht; that the
diffusion is fast enough for both above tests to be satisfie
the workingt. This example has been included in order
point out that such computational sanity checks, confirm
that simulation parameters do not affect the numerical
sults, should be also implemented around a working al
rithm, and be performed as we march on a solution bra

FIG. 10. Solutions found by Newton–Raphson iteration based on
C-KMC timestepper using 5003500 lattice in dependency upon time hor
zont (a51.6,b51.5,Nrun54000). Initial ‘‘macroscopic’’ conditions for the
first iteration:u1(0)50.05, u2(0)50.75. The initial ‘‘microscopic’’ condi-
tions ~used at each iteration!: ‘‘equilibrated’’ adlayer~open symbols!; ran-
dom distribution~filled symbols!. Results for various choices ofD are com-
pared.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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from time to time in order to ensure the validity of the r
sults.

VI. SUMMARY AND DISCUSSION

We have presented a coarse timestepper based com
tional methodology that enables the continuation, stabi
and bifurcation analysis of equations for the~expected values
of! moments of distributions evolved through microscop
simulators. The advantage of the method lies in that th
equationsneed not be available in closed form. In this paper
the moments in question were surface concentrations~cover-
ages! of adspecies during surface reactions, and the mic
scopic simulator was a kinetic Monte Carlo~KMC! algo-
rithm. Analogous timestepper based methodologies can
used for different types of microscopic simulators, e.g.,
netic theory based lattice Boltzmann simulators,2,3 but also
stochastic differential equations~Brownian dynamics, Ref
19!, molecular dynamics~MD!, agent based models, et
Furthermore, the approach is applicable beyond macrosc
cally ‘‘lumped’’ problems, modeled by coarse ODEs as
this paper, to macroscopically distributed problems, mode
by coarse PDEs.2,3 Timestepper based approaches can t
be used to analyze traveling waves on surfaces at the
called ‘‘hydrodynamic limit’’ ~see, e.g., Ref. 20! without ex-
plicitly deriving such approximate hydrodynamic equation
Tasks beyond coarse bifurcation analysis~coarse integration
coarse control, coarse optimization, see discussion in Re!
also become accessible.

The approach relies on the fact that, when determini
macroscopic equations exist and close at some level,
involving a finite number of moments of an evolving dist
bution, this intrinsically implies that the higher moments
the distribution become quickly slaved to~quickly evolve to

FIG. 11. Spurious apparent steady state solution found through
Newton–Raphson iteration~corresponds to the left filled triangle in Fig. 10!,
t50.001,D5100, random initial distribution on a lattice. Shown are t
average over 4000 runs CO coverage,u1 , and pair probability,g11 , during
the last iteration.
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functionals of! the slow governing moments. If this were n
true, it would not be possible to have deterministic equatio
at this level of closure~with only so few independent vari
ables!. Traditional approaches to the derivation of macr
scopic equations involveclosures; modeling of the effect of
the slaved, high modes, on the slow, governing ones.
approach exploits the implicit separation of time scales, a
uses short bursts of true microscopic simulation to estim
just in time the closure.15 This is not done in the form of a
closed formula; it is rather done in the form of the on d
mand estimation of the coarse timestepper, the result of
tegrating the unavailable equation for an appropriate ti
interval. As we have discussed in a previous paper,1 if, as
microscopic parameters vary, the system stops being ‘‘clo
able’’ at a certain level, the same procedure/computatio
approach, but lifting now withmoremoments as independen
variables, can be used for the coarse study of the prob
Algorithms that will routinely create distributions cond
tioned on several of their moments become, therefore, imp
tant. Variance reduction, and the accurate estimation
coarse derivatives with respect to either variables or par
eters also becomes important in such tasks.

What we have discussed here is acomputational en-
abling technology: a set of subroutines that are wrapp
around the best microscopic timestepper we have avail
for a process. Through the lift-evolve-restrict procedure a
exploiting system identification techniques for noisy sy
tems, these subroutines create a bridge between microsc
simulation and traditional macroscopic numerical analys
By circumventing the derivation of macroscopic clos
equations, this computational methodology~this set of sub-
routines, if you want! has the potential to extract large sca
expected, system level information easier, faster, better t
current direct simulation practice. This is particularly true
regimes where simple simulation is very slow~e.g., when
one tries to locate expected marginal stability conditio
e.g., see Ref. 21, or saddle-type, unstable solutions impo
in the detection of rare events!. Should such work be suc
cessful, the extraction of relevant information from micr
scopic computer models may be accelerated, and our ab
to analyze and even design complex self-organizing syst
through computer modeling may be enhanced.
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APPENDIX: ALGORITHM PARAMETERS AND MODEL
PARAMETERS

1. Parameters of the C-KMC algorithm

N5N13N2 : Number of perfect square lattice sites;N1

and N2 set the cell size in each of the two surface dime
sions.
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Nrun: The number of statistically independent KMC ru
used for averaging. The same number of runs is utilized
calculations ofFt(Q) and the estimation of its derivatives

t : Reporting time horizon of the C-KMC timesteppe
As we have discussed in Ref. 1 and briefly above, this t
should be long enough for lifting errors to ‘‘heal’’~that is, for
higher order correlations to become slaved to coverages!. It
should also, however, be short compared to the time th
takes to sample the entire PDF of the problem; remem
that the nonlinear equations for coverages we are estima
are mesoscopic equations. We will not repeat here the
cussion of the two senses of infinite time~‘‘infinite’’ for these
mesoscopic equations versus infinite for the system P!
that can be found in Ref. 1. The characteristic times of
~macroscopic as well as the microscopic! system can and do
often depend strongly on the bifurcation parameter chan
It may therefore be necessary to changet during the arc-
length continuation. In our implementation,t is controlled
by the amount of microscopic events during a single r
Strictly speaking,t is a simulation parameter, and we pe
odically check that the simulations are converged with
spect to it, that is, that the increase/decrease oft does not
essentially change the results.

f: User-prescribed tolerance for convergence
Newton–Raphson iterations; it is assumed that the itera
scheme has converged and the solution has been fo
when uGi u,f ; i , that is, that the norm of the residual
effectively zero. This parameter generally depends u
N3Nrun andt; typically, f was about 231026.

d : Perturbation, which is used in order to estimate coa
numerical derivatives~with Q i6d as coarse initial condi-
tions!; typically, it was taken equal to 531023 for a 500
3500 lattice, or 231022 for a 1003100 lattice. Once more
variance reduction through maximum likelihood estimat
can and should be combined with finite difference formu
for best derivative estimation.

NMCS: The number of successive jump attempts per
~on average! in the Metropolis relaxation algorithm whic
was used to initialize~equilibrate! the lattice, starting from
the lattice obtained on a previous continuation step, and a
the appropriate number of adsorbed particles is add
subtracted randomly. To initialize the lattice starting from t
random distribution at the beginning of the continuation p
cedure we used 53NMCS jump attempts~we consider jumps
to NN empty sites!. In addition, before each run of KMC
timestepper~in the set ofNrun) the Metropolis algorithm with
one attempt per site~on average! was executed and the initia
lattice was updated each time. The same values ofNMCS

were utilized to prepare the initial lattice for calculations
bothF and its derivatives. Once more,NMCS is a simulation
parameter, and we check that the results are equilibrated
respect to it~to the extent that we can estimate, total int
action energy on the lattice is indeed at a minimum!.

2. Parameters of the model

a, b, g, kr , «, T: The first four parameters are transitio
probabilities per second for corresponding microsco
Downloaded 11 Nov 2002 to 128.112.33.67. Redistribution subject to A
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events. The ‘‘base set’’ of parameters isa51.6 (s21),

g 5 0.001 ( s21 ), kr 5 1 ( s21 ), « 5 22 ( kcal /mol), T
5500 (K). Unless otherwise stated the parameters of
model have these values.

D5DCO5DO: Migration rates at low coverages; no
that at high coverages the rate of CO migration is stron
influenced by the lateral interactions. To simulate the mig
tion of adspecies we adopted the independent saddle p
scheme,22 where the jump probability is determined only b
its local environment in the initial state.~Note that this is not
the case for the Metropolis relaxation algorithm where b
initial and final states determine the jump probability.! The
rates of CO desorption, CO2 production, and CO migration
depend on the local environment: the presence of NN COads

particles increases these rates. All steady-state solutions
sented in this paper correspond to infinite mobility of a
sorbed particles~see discussion in the text for the effect
finite or even zero mobility on the simulations!.
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