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A lattice-gas model with lateral interactions

Alexei G. Makeev®
Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544

Dimitrios Maroudas®
Department of Chemical Engineering, University of California, Santa Barbara,
Santa Barbara, California 93106

Athanassios Z. Panagiotopoulos and loannis G. Kevrekidis®
Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544

(Received 8 July 2002; accepted 14 August 2002

We present a computer-assisted study of “coarse” stability/bifurcation calculations for kinetic
Monte Carlo simulators using the so-called coarse timestepper approach presented in A. G. Makeev,
D. Maroudas, and I. G. Kevrekidis, J. Chem. Phik5, 10083(2002. Our illustrative example is

a model of a heterogeneous catalytic surface reaction with repulsive adsorbate—adsorbate
interactions and fast diffusion. Through numerical continuation and stability analysis, we construct
one- and two-parameter coarse bifurcation diagrams. We also discuss several computational issues
that arise in the process, the most important of which is the “lifting” of coarse, macroscopic initial
conditions(moments of adsorbate distributigris fine, microscopic initial condition&istributions
conditioned on these moments© 2002 American Institute of Physics.
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I. INTRODUCTION ages, expected stationary reaction rat€ver the last few
years we have been working towards the development of a
A persistent feature of complex reaction and transportwo-tier computational methodology to address problems for
systems is the emergence of macroscopic, coherent behavighich closed macroscopic equations conceptually exist
from the interactions of microscopic agents—moleculesgre not explicitly available The inner component of this
cells, individuals in a population—between themselves angnethodology is the best available microscopic simulator of
with their environment. The implication is that macroscopiCthe process: for this paper, a kinetic Monte Caf#iMC)
rules (description of behavior at a high levetan, in some |attice-gas simulator. The outer component consists of a
cases, be deduced from microscopic oftescription of be-  compination of(a) system identification an¢b) traditional
havior at a much finer levelFor some problems, like New- nymerical analysis. Consider the computation, through a
tonian fluid mechanics, or simple homogeneous chemical kiNewton—Raphson iteration, of the steady states of the mac-
netics, successful macroscopic descriptidtfse Navier—  roscopic, coarse closed equations for average surface con-
Stokes equations, mass action lawpredated their centrations(coveragek If these macroscopic equations are
microscopic derivation frqm kinetic theo_ry. In many_curre_nt explicitly available, the Newton—Raphson procedure re-
problems, however, ranging from chemistry to engineeringqires repeated evaluations of the right-hand side and of its
and from ecology to materials science, the physics arg,copianthe first partial derivatives of the rate expressions
knovyn at the microscopic/individual level, apd the closureswith respect to coveragesf these equations aneot explic-
requ[red to tr_ar?slate thgm to an accurqte, h|gh-level, macrqﬂy available, we will show below how to use short bursts of
scopic description are simply not explicitly available. SevereKlvIC simulation (appropriately initialized, evolved and av-

computational limitations arise in trying to directly bridge eraged to identify exactly these numbefas opposed to just
the enormous gap between the scale of the available descrig- aluating them through a simple one-line formuEhe sec-
tion and the scale at which the questions of interest are ask d component of our computational methodology will in

andlthfh_answers are r?qglred.f i ¢ hich th this case be precisely the Newton—Raphson algorithm that
:n IS paper we study surtace reactions for whic Swe would use if the macroscopic equations had been explic-
available description is at the level of microscopic lattice-ga

Stly available. The only difference is that the quantities pro-
models with lateral interactions, and the desired informatio y y q P

. . : . .cessed by this algorithm to give us the next steady state
encompasses the location, stability, and bifurcation analysi

of macroscopic stationary statéexpected average cover auess will not come from explicit function evaluations, but
P! : y P verag Ve from system identification based on short local bursts of

KMC simulation data. In effect, we will use the KMC evo-
dpermanent address: Moscow State University, Faculty of Computationdiytion code as an experiment, and by perturbing its param-

Mathematics and Cyberneti¢€BMK) Moscow, 119899, Russia. e . T P "
Ppresent address: Department of Chemical Engineering, University oFterS and initial conditions we will Idemlfy on demand

Massachusetts, Amherst, MA 01003. (“just in time” is another term used in the literatyr¢he
®Author to whom correspondence should be addressed. quantities we need to do macroscopic numerical analysis
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with. And while Newton—Raphson is the simplest illustrative Here the index runs over all the nearest neighbors of the site
example, there exists an immense computational arsenal tdbeled 1" (i=1, ... N). Each lattice site can be occupied
tools (numerical bifurcation theory, optimization, control by an adsorbed particlesay, of typeA) or it can be empty
that has been erected by current mathematics to help gef=(*)]. The list of possible kinetic events may include the
information from models easier, faster, better than simpleelementary events of migratiduiffusion),

simulation!~®We will return to the implications and possible

impact of such a computational methodology in the Discus- A+ (*);—(*)i+A;,

sion (Secs. V and V.

In a previous publicatioh,we were able to construct Which describe the individual jumps of adsorbed particles to
what we termed “coarse” bifurcation diagrams for the ex- their neighboring vacant sites. A reaction mechanism is given
pected values of KMC simulations; our particular examplesdy the set of all of its possible elementary reactions. The time
were simple models of surface reaction problems. The KMevolution of the reaction system can be described by the
technique used was the so-called “stochastic simulation alchemical master equation,
gorithm” for well-mixed reaction systems, proposed by
Gillespie! which constitutes a coarse graining of the corre-
sponding master equation. For this algorithm, exact closed
mesoscopic equations for the expected values of the adsor-
bate distribution averages exist, and can be used to test thghere P,(t) [P,/ (t)] denotes the probability of finding the
numerical results. In this paper, we show how the computasystem in configuratior [x’] at timet, andW,_, . are used
tional methodology can be extended to apply to lattice-KMCto denote transition probabilities per unit time for various
models with lateral adsorbate interactions. For these prokelementary events such as adsorption, desorption, migration,
lems such exact mesoscopic equations are not available fieaction, etc. We also take into account the lateral interac-
closed form, although several levels of approximafimean tions between the adsorbed particles over an interaction
field, quasichemical, efc.can be derived. We apply our range up to second-nearest-neighbor separations. Due to lat-
coarse-timestepper-based procedure and compute numerieahl interactions, the rates of elementary reactions depend on
bifurcation diagrams, which we compare both to those prothe local environment, and because of these interactions an
duced through approximate explicit closures, and to typicabrdered adsorbed layémicrostructurg may form on the lat-
long-term KMC simulations. tice. In general, the master equation cannot be solved di-

The paper is organized as follows: In Sec. Il we discusgectly; therefore, one has to either use some uncontrolled
our illustrative example(a simplified model of heteroge- approximations in order to derive macroscopic evolution
neous catalytic CO oxidation with lateral adsorbate interacequations, or to implement KMC simulations which can pro-
tions) and our KMC simulation protocols. In Sec. Ill we vide, in principle, the correct solution of the problem.
outline our procedure along the lines presented in Ref. 1.  The basic steps of the KMC algorithm we have imple-
Numerical bifurcation results are presented in Sec. IV asnented are as follows:1°
various parameters, such as the gas phase reactant pressures,
the adsorbate—adsorbate interaction energies, and the tem-
perature are varied. In Sec. V we discuss various computa-
tional issues, including the effect of diffusion on these com-
putations. One of the most important issues we discuss in
this section is the nonunique, “one-to-many” lifting operator,

a vital part of the procedure: the construction(efsembles

of) microscopicinitial conditions consistent witialterna-
tively, distributions conditioned gngiven macroscopicini-

tial conditions. Finally, in Sec. VI, we summarize and pro-
vide connections with literature using comparable method%Z)
to enable different, non-KMC types of microscopic simula-
tors, such as lattice-Boltzmann kinetic-theory inspired ones.

AP, ()/dt= 2 (W, Py (1) = Wiy P (1)),

The timeAt that the system spends in a current configu-
ration is At=—In(&)/W, where ¢ is a random number
taken from a uniform distribution on(0, 1); W

=3 (W,_,,) is the total transition probability per unit
time. (In principle, transition probabilities can be com-
puted accurately througdb initio calculations of energy
surfaces for both reaction and diffusion events in con-
junction with implementation of rate theoyyAccord-
ingly, the time is updated by an increment: t=t
+At.

One reaction is selected from the set of all possible ki-
netic events, with a probability proportional to its rate.
For this purpose, one more random number uniformly
distributed on(0, 1) is generated. The selected kinetic
event is performed and the set of all possible reaction
Il. THE ILLUSTRATIVE MODEL: KINETIC MONTE rates is updated to take the local compositional changes
CARLO SIMULATIONS on a lattice into account.

We consider a set of the elementary reactions occurrinée’) Repeat the previous stepstif: .

on a perfect lattice wittN=N,XN, adsorption sites and Initial conditions are given by the lattice configuration at
periodic boundary conditions. These reactions may involvg _ g This algorithm can be viewed as a “timestepper” that

one or two adsorption sites, operates on the initial species coverage distribution on the

A—B;, lattice (input) for a given time periodr, and generates the
final distribution (outpuy. The number of all possible reac-
Ai+B;—Ci+Dj. tions on a lattice can be very large. Usually, there is no need
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to recalculate all rates at each time step because of the locatal interactions between G species at NN lattice sites,
character of microscopic events occurring on a lattice. and assume no interactions for the activated complexes.
Realistic description of diffusion is one of the main  'ne standard mean-fieldF) equations for this model
implementation problems for KMC simulations. In most &'®
practical cases, adspecies hop rates are many orders of mag- d¢, /dt=a6,— y6, exp(46,e/(RT))
nitude greater than all other rates. In such a case, the ad-
sorbed layer can be considered to be ifyaasjequilibrium — 4k, 610, exp(36:e/(RT)), (1a
state at each time instant. Therefore, to accelerate the calcu- _ 2
lations, one can apply an additional procedure to produce an 40, /dt=4560— 4k 016, exp 36,2/ (RT)), (10
equilibrium distribution(for the current coveraggsand re- where 6,=0co(6,=0o) is the CO (O) coverage;fy=1
move migration events from the list of possible elementary— 6;— 6, is the concentration of empty sites;is the ener-
eventst! This separate relaxation procedure, which does nogetic parameter of lateral interactions between NN,&&d-
affect the average coverages, is executed after each tinspeciegnegative for repulsive interactiond is the absolute
step. For this purpose, one can apply the classical Metropoliemperature, anR the ideal gas constant. The dimensionless
importance sampling algorithm for simulating species migra<constantsa, 3, y, andk, are associated with the rates of
tion in the canonical ensemble: jumps of randomly selecte@dsorption of CO, dissociative adsorption of oxygen, desorp-
adsorbed particles into the empty sites occur with a probabiltion of CO and the surface reaction, respectivelyand 8
ity equal to 1 if AE<O, otherwise equal to can be varied through varying the gas phase pressures of the
exp(—AE/RT); AE is the energy difference between the ini- two gases, whiley andk, may depend on temperature, since
tial and final configurations, which is caused by the lateraboth CO desorption and surface reaction are activated pro-
interactions between adsorbed particles. Nearest neighboesses. Oxygen desorption is not taken into account, consis-
(NN) jumps or long-range jumps can be considered. Ondently with experimental observations.
Monte Carlo stegMCS) in the Metropolis algorithm corre- At the next level of modeling, constructing the equations
sponds, on average, to one attempted jump per lattice sitef the quasichemical approximatid®@CA), involves intro-
The number of these stefs,,cs is a parameter of the algo- ducing thepair probabilities (the normalized dimensionless
rithm. A summary of the various algorithm parameters anchumber of NN(jj) pairs on a lattick g;; . The kinetic(dif-
their meaning can be found in Appendix A 1. ferential algebraicsystem of equations of the QCA consists
In this paper we consider fast diffusion of adsorbatesof
The computed macroscopic steady-state solutions correspond _ 4 3
to infinitely fast adspecies hop rates. In the simulations we d6,/dt=ab, = y62(S)"~ 4k 91 S1S,)%, (23
used two KMC methods: for the first one the migration daz/dt=4ﬂ9§—4krglz(slsz)3, (2b)
events are considered explicitly, i.e., the algorithm employs

both diffusional transition probabilities and reaction prob-2/0"d With the quasichemical relations expressing local

abilities; for the second one the Metropolis relaxation algo-aullibrium;

_ritr_lm is use_d_ ins_tead, glong with reaction probabilities. The  r;,9,,000=(001)?, (3a)
infinite mobility, in particular, allows us to suggest that the 5

long-term, macroscopic system behavior can be described in  '22922800= (902)*; (3b)

terms of average coverages: higher order correlation func- _
. . . r = , 3c
tions are quickly slaved tthecome functionals dfthe cov- 12812000= (Go1002) _ (39
erages, that is, the zeroth moments of the species distrib@nd the symmetry relations,
tions on thg lattice. . 9;=0; (,j=01,2),

The lattice gas modeWe consider the standard model
of the A+ 3B,— AB reaction, which mimics the CO oxida- where
tion reaction occurring on a square lattice. Our lattice-gas
(lattice-KMC) model contains 6 elementary steps involving 2 gj=06; (i,j=0,1,2), 6o=1—0,—0,,
two types of adsorbed species in the reaction mechanism: ]

(1) Cogas+(*)iﬁcoadsiv rij:r“:exq_sij /(RT],
(2)  Opgast (*)i+(*)j—Ouasi + Oags; » S=(QiotrinGiitrizgi2)/6;, (i,j=1,2);
ande;; =¢;; are the energetic parameters of lateral interac-
_ (). : ij =~ &ji i -
(3) COusi—COpast ()i tions between NN adsorbed particles;;&0 for i,j=0).
(4) Coadsi+oadsj4’C02,gas+(*)i+(*)j : Symmetry reduces the @; unknowns to 6, and the conser-
. . vation of total sites to 5. We thus have a set of 5 coupled
(5)  COygsj+(*)j—(*)i+COggs;j s differential-algebraic equatio®AESs). Conceptually, for an

index-1 system, we use the three algebraic equations to
eliminate three of the five remainirgy; , and end up with a
Here,i andj are NN sites on a square lattice. Stépsand  set of two coupled nonlinear differential equations for two
(6) describe the individual jumps of adsorbed particles toindependent variable®r for two of their independent com-
neighboring empty sites. In this paper, we consider only latbinations, for example the two coverages limited mobil-

(6) Oadsi+(*)j_’(*)i+oadsj :
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ity of adsorbates is considergdlow diffusion limit), the

time evolution of pair probabilities is given by the following

ODEs™

dgyi/dt=2ag19~ 291 11911(S1) %~ 6K, T 11912911/ 1)
X(S1)%(S;)+6d:91d S1910/ o~ 11911/ 61]
X($y)?, (43

dga./dt=agao— 1 12012 S1)°+ 3891900/ o
k912 $1,)° — 3K T 14915515,) (S, / 61
—S$;162) +3d191d S1920/ 60— 12012/ 01]
X(S1)%+3d292d S2910/ 00— T 1912/ 0]
X(S)%,

dgz2/dt= Bgoot 68920900/ 60— 6K I 22912( 922/ 62)
X(81)%(S,)?+ 60,95 S:020/ o~ I 22922/ 6>]
X(S,)?, (40)

(4b)

Makeev et al.

coarse iniﬁal1
conditions

{61(0)

6,0)

FIG. 1. Schematic of the coarse-KMC-KMC) timestepper. For the given

macroscopic initial conditions this procedure produces coarse final results
via a sequence of microscopic simulations.

J
o,
0,(v)

d®/dt=F(®;p), 5

whereF exists, but it is unavailable in closed formpenotes

the dependence of the kinetics on parameters, such as gas
phase pressures or temperature. The idea is that not only pair
probabilities, but all higher order correlations get quickly
(after short initial transienjsslaved to coverages. We do not,

whered, andd, are the migration rate constants for CO andhowever, know how to construct the corresponding set of
O species, respectively. These three differential equationgifferential-algebraic equations for the dynamics of tire
[Egs. (4)] combined with the two differential equations for principle infinite hierarchy of higher moments of the species

the coverage$Eqgs. (2)] provide a set of five differential
equations for five unknowns. t;, d,—o and all other rate

distributions: we do not have an explicit closure of the cov-
erage equations. Our computational procedure circumvents

constants are finite, these three ODEs reduce to the algebraite derivation of an explicit closure by identifying, through
Egs. (3). The relations(3) are, in effect, quasi-steady-state direct “on demand” KMC simulatiort? quantities that
approximations that can be obtained in the limit of high mo-would be simply evaluated iF were explicitly available.
bility for all adsorbed species. The algebraic nature of EqsThis “closure on demand” nature of our computational pro-
(3) is, therefore, associated with the fact that pair probabilicedure will be revisited in the Discussion. Most elements of

ties (higher order moments of the species distributibave
fast dynamics compared to the lower order moméntser-

this coarse-KMC procedure have been introduced in Ref. 1;
while we refer the reader to that article, we revisit here, for

ages$ and they get quickly slaved to the coverages. Indeedcompleteness, some of the salient algorithmic features and
prescribing the two coverages leads, through the quasichemie rationale behind them.

cal and the symmetry relations, to reconstruction of all 9 pair

probabilities.

The equations of the MF approximati¢kgs. (1)] fol-
low from those of QCAEgs.(2)] if one ignores the spatial
correlations, i.e., seg;; = 6;6;, and also, concomitantly, set
Si=exd —(biei11 6,¢i2)/(RT)]. A summary of the various
model parameters can be found in Appendix A 2.

Ill. THE COARSE TIMESTEPPER, AND COARSE-KMC
STABILITY/BIFURCATION ANALYSIS

Both in the mean field and the quasichemical approx

mation, the dynamics of the average coverag@esoth mo-
ments of the species lattice distributjare captured through

macroscopic differential equations that close at the level of
coverages alone. Mean field does not take spatial correlations
into account; QCA goes so far as to take into account pair
probabilities, and uses a separation of time scales argument
to close the coverage equations by slaving pair probabilities
to coverages. In our work we will assume that the dynamics

of the average coveragém a neighborhood of the macro-
scopic steady-state solutions of the lattice-gas modah

indeed be described by a system of coarse ODEs that close in

terms of the average coverages themselves,

Figure 1 shows a schematic of our coarse timestepper
computational procedure, which assumes that a dynamic
equation describing the evolution of adsorbate coverages ex-
ists and closes at the level of coveragesroth moments of
the adlayer particle distributionsTo be more precise, this
equation is what one might call a “mesoscopic” equation for
the expected values of the coverages; “mesoscopic” here
implies that these dynamic equations are valid over a time
scale that is relatively short compared to the time that it
would take for a typical KMC simulation to sample the en-
tire probability distribution function(PDF) of the system

i_(see Ref. 1 The coarse timestepper consists of the following

conceptual steps:

(@ We start with an initial condition for the coverages, the
zeroth moments of the adsorbate distribution. Since we
have assumed that a deterministic mesoscopic equation
exists and closes at this level, we will refer to the cov-
erages as the determining moments of the distribution.
The illustrative terminology used here is borrowed
from the theory of inertial manifolds for dissipative
partial differential equation¥ In that problem, very
qualitatively, due to a separation in time scales, fast,
higher-order componentsnodes of the solution of the

problem become quickly slaved (become functionals
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of) a few slower, master modes. By analogy, in our(3) [Evolve these in time using the KMC timestepper for the
case higher-order spatial moments of the adsorbate dis- time interval r; perform N,,, statistically independent
tribution become quickly slaved tdunctionals of the rung —

master or determining moments: the coverages. Wé4) [Calculate the average =0 ,=® (04;p)].

will expand slightly upon this point in the final discus- . ) ] )
sion (Sec. V). Thelifting operator [step(2)], which constructs microscopic

initial conditions(initial lattices having equilibrium distribu-
tions of adsorbed speciesonsistent with a given set of mac-
roscopic initial conditions(coverages is performed by
eans of the Metropolis relaxation procedure.

Clearly, a steady state of E¢p) is a fixed point of the
éteration,

(b) Coarse, macroscopic initial conditioisoveragesare
then lifted toconsistentmicroscopic initial conditions,
i.e., lattice configurations with adsorbate distributions
conditioned on these coverages. This lifting operator ig"
not unique—many distributions exist that have the
same zeroth moment. We could loosely characteriz
some of these distributions as .“maturédr “bred”) in O (0)=P (D (0)=D,(0)
the sense that for them the higher-order moments are
already slaved to the determining orfesverages In and to find it we formulate the algebraic system,
principle, if the assumption tha_t an eqt_Jation exists and G(0;7p)=0—d (0,p)=0, (6)
closes at the coverage level is correittshould not
matter which of these distributions we choose for our which is then solved by means of the Newton—Raphson
procedure; furthermore, it should not matter if the ini- (NR) iterative method. Steady states of E5). in general are
tial distributior(s) we choose are indeed mature: if they fixed points of Eq(6) for arbitrary 7. [Periodic solutions of
are not, they will become so very quicklpompared to  Eq. (5) are also fixed points of E¢6) but only for particular
the reporting horizon of our timesteppeAn ensemble  values ofr. We will also see below cases where spurious
of such consistent initial conditions—distributions con- apparent fixed points of Eq6) arise, again for particular
ditioned on their low-order moments—is necessary bevalues ofr, that arenot true steady states of E(p).] In this
cause of variance reduction purposes, as will be furtheway, we can calculate both stable and unstable stationary
discussed below. solutions of the unavailable E@5) as fixed points of the

(c) Each member of this ensemble is evolvesing the coarse timestepper. To estimate the partial derivatives re-
KMC algorithm) over the timestepper reporting hori- quired in the NR iteration, we use numerical differentiation
zon, 7. As we have discussed in detail in Ref. 1, this Of the coarse timestepper itself; in this paper, we used cen-
reporting horizon should be long compared to thetered differences in both the coarse variables and the param-
“healing” or “slaving” time (the time that it takes for eters. For noisy problems, however, variance reduction is
higher-order moments to get slaved to the goVemingcrucial in estimating derivatives. While in this paper variance
ones, namely the time it takes for a fresh initial condi- reduction was mostly achieved through a large number of
tion to mature, or for the errors we made in lifting to samples, filtering and maximum likelihood estimation should

“heal” ). In addition, should be short compared to the (and will) be explored as additional paths to precise deriva-

time it takes for the KMC simulations to diffuse over tive estimation. _ S
the long-term PDF of the problem because of the noise. In order to compute coarse bifurcation diagrams we ap-

That such a plateau of acceptable timestepper reportinBIy pseudo-arclength continuation withas the bifurcation
horizons exists is intimately related to the assumptio arameter. In this case, we also have to estimate the deriva-

that a meaningful mesoscopic equation for expecte(ﬁives d®/dp (coarse derivatives, derivatives of the coarse
coverages exists and closes timestepper with respect to the bifurcation parameténe

(d) The spatial moments of these final adsorbate distribu_eigenvalue& of the matrixJF~(©,p)/70 evaluated at these

tions are then computed. We can think of this as th esteady-state solutionghe coarse eigenvalues, the eigenval-
application of a restriction operator from the micro- ues of the coarse Jacobjaare expressed via the eigenvalues

scopic (distribution phase space to the macroscopic'“ of the matrixJ®(0,7,p)/90 (the eigenvalues of the lin-
(moment3 one. This operatois one-to-one, and the earization of the coarse timestepper at its fixed poifhe

restriction ofany lifting of a coverage should be that matrix 9O (0, 7,p)/d0 is a form of state transition matrix,

same coverage. We also average over all realizations (%nd,u = XDy 7). . . .
. : . . It should be emphasized that NR iteration and pseudo-
the timestepper for variance reduction purposes. This

procedure(lifting, evolving microscopically and re- arclength continuation allows the calculation of bo_th sta_ble

e 2 . 1 and unstable steady states. More generally, numerical bifur-
strlctlng)_ combined with ensemble averagitiyis the cation algorithms can be now “wrapped around” the coarse
coarse timestepper for coverages timestepper and allow the direct calculation/continuation of
The pseudocode computational construction of thégrning_ point;, othgr co-dimension one, and higher_C(_)-
coarse timestepper is then: dimension, bifurcation points, as well as of coarse limit

cycles and their bifurcation points. Of course, the stable

(1) [Given macroscopic initial condition§),] — coarse steady states can be calculated as a time average along
(2) [Createconsistentmicroscopic initial conditionglattice  the stochastic trajectory in phase space by means of the
distributiong] — KMC algorithm if the time over which one averages is long
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enough. But this computation becomes very time consuming ] . . » L . L - . . |
and difficult to interpret close to marginal stability bound- M & = -1 kealfmol
aries in parameter space. 0.8 ) -

We can think of the coarse timestepper for the coverages
as simply the result of numerical integration of an equation

(like the MF or QCA equationsthat we do not have in 061 i
closed form The typical way of using an integrator subrou-  _
tine computationally is to run for a step, take the result, feed ® 0.4 i

it back in as an initial condition, and repeat the process. It is

also clear, however, and we have discussed this in our pre-

vious work, that we can use the same integrator subroutine g2
not in the usual wayintegrate again and again and again

but differently. Indeed, we can call the integrator for nearby

initial conditions, as well as nearby parameter values, to es- 0.0 . . r ' r
timate partial derivatives with respect to both the states and
to the parameters, which can then be used to perform con-
traction mappings(like the Newton—Raphson methodo FIG. 2. Bifurcation diagram with respect to the paramgieWeak interac-
find steady states, or to perform continuation/bifurcationtions: e =—1kcal/mol, y=0.004,D=0, 7=0.001,Nycs=100, 100< 100
tasks. There is a sequence of references where such nume]fgitryg?kl\'\llig: 10°. The inset shows the maximal eigenvalues for QCA and
cal enabling technologies for timesteppers are discussed and '

applied, for both spatially lumped and spatially distributed
processes.e., for coarse ODEs and for coarse PRE®t us

) i ' : points (coarse eigenvalue crossing zeoan be seen clearly.
also mention th"’f there is an emerging set of technidiezs  Regizations of lattice configurations representative of coarse
which the term “projective integrators” is usgdhat try 10 gates marked on the diagrams are also included in Fig. 5;

expand the time horizons over which a microscopic simulaypege attice realizations provide a simple qualitative feeling
tor can be used to help estimate the evolution ofdbarse ¢ he corresponding microscopic states.

problem. In the case studied in this article the coarse problem |; is clear that the QCA does a good job in representing

is lumped in spacéthe coarse equations in question are or-yq coarse system dynamics and stability in the case of Fig. 2
dinary differential equations for coverage3herefore, we 4,4 even that of Fig. 3s= —1 and—1.5 kcal/mol, respec-

use numerical derivatives estimated through thg Coarsgyely), while the MFA is seen to be inadequate already in
timestepper to perform Newton—Raphson contraction mapgig > what is remarkable, however, is the bifurcation dia-
pings(to find coarse steady stajgto augment the system so .= obtained in Fig. 4 foe=—2 kcal/mol (- e/RT~2).
that one can follow steady state branches through arcleng long-range-ordered(2x 2) phase(corresponding to an
continuation; and to augment the system so that one Cafing antiferromagnétis known to form above the critical
converge to co-dimension one bifurcation poigsch as, for value of|e|/RT=2 In(2Y2+ 1)~1.76, given by the Onsager
our example, tuming pointsWhen the describing macro-  gyact solution for; = 0.5. Therefore, it is expected that large
scopic equations are partial differential equations, when  yeyjiations of the MFA and QCA models from the MC results

the macroscopic problem is spatially distributetien the 56 seen when the lateral interactions between adsorbed par-
coarse timestepper must be combined wittatrix free

(matrix-vector product basgdterative techniqueglike the
RPM method of Shroff and Kelléf, or Newton—Picard e L
method$. Instead of numerically estimating partial deriva- o e = -1.5 kcal/mol
tives, we estimate the action of the coarse Jacobian on se- 081 \

lected vectors, and use that to build contraction mappings to
compute coarse steady states.

0.6 4

IV. RESULTS

Figures 2, 3, and 4 show bifurcation diagrams with re- @ ¢4
spect to the parametgB, whose variation corresponds to
variation of the gas-phase pressure of oxygen. The mean-
field approximation(MFA), quasichemical approximation 0.2
(QCA) as well as the coarse-kinetic Monte Caf®-KMC)
bifurcation diagrams are overlayed in the figures, the latter in
the form of computed points joined by interpolation curves. 0.0 v ; . r v T T v
The MFA diagram is obtained through E@L), while the 0 ! 2 3 4 °
QCA diagram through the set of EqR) and (3). In each p
Case(MFAZ Q_CA’ and KMQ the, stability of Fhe SOIu“On . FIG. 3. Intermediate interactionst=— 1.5 kcal/mol, D=0, 7=0.001,
branches is indicated, the leading coarse eigenvalue is i, —100, 100<100 lattice,N,, = 10°. The inset shows the maximal ei-
cluded in the inset, and the exchange of stability at turningyenvalues for QCA and C-KMC.
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FIG. 4. Strong interactionse= —2 kcal/mol, D=0, 7=0.001, Nycs
=100, 100< 100 lattice,N,,,=10°. The frame(a) shows CO coveragéb)

O coverage. The inset of frantb) shows the maximal eigenvalues for QCA
and C-KMC. Triangles on the fram@) give the long time average CO
coverage of the usual KMC algorithm with fast diffusion on a 2@DO
lattice.

ticles are strong enough and the CO coverage is in the range
0.35< 6-0<0.65. We do not observe any significant effect
on the shape of the steady state branch close to the point at
which one might expect long-rangg{2x2) order of the
CO-adsorbate layer to appear. This is consistent with KMC
studies of adsorption isotherms of single species lattice-gas
models with repulsive interactior&.

It appears, however, that the coarse timestepper proce-
dure is capaple of capturing the true hysteresis region mucPlG. 5. Snapshots of the 180QL00 lattice representative of stationary solu-
better than _elther the MFA or the_ QChemember that the tions (results correspond to Fig).4Adsorbed CO, empty circles; adsorbed
coarse NR is capable of converging on both stable and ury, filed squares; empty sites, dots. Top fram@=5.8, 6.o~0.563,
stable coarse steady stateA comparison with long-term 6,~0.008, stable steady state; middle frafe-7, co~0.5, 65~0.055,
traditional KMC runs, indicated by triangles in Fig(a unstable steady state; bottom fran@es 1.87, 6-o~0.089, 65~0.7, stable
shows that the agreement is almost quantitative. These r&eady state.
sults underscore the potential that timestepper based methods
have in capturing dynamic transitions in the coarse behavior
of microscopic simulators. algorithm. Essentially the same resultsorm differences

In the ~case of supercritical interactions e ( within the NR tolerancewere obtained for various values of:
= —2 kcal/mol), we performed a large set of C-KMC simu- time horizon, 7, ranging from 0.0002 to 0.01; lattice sizes,
lations studying the influence of different parameters of theanging from 440 to 1000< 1000; migration rateD,
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4 . 4 tegrator, especially a noisy one, will move away from an
unstable steady state even if it is initialized close to it. What
is shown in Fig. 6, however is that it takes some time for this
deviation to occur; the corresponding run was initialized
very close to the coarse unstable steady statg=aP. In-
deed, since at a steady state the rate of change is zero, change
is very slow close to it. So, even in deviating away from the
unstable steady state, short-time integration can be used to
detect that one isloseto a steady state. Starting at nearby
initial conditions, all of them close to the unstable steady
state, short-term integration also can be used to estimate its
linearization, and thus to assist in a Newton—Raphson based
contraction mapping that will converge to the unstable steady
0.0 . . v . . state. It is also worth observing that, if the coarse initial
0 ! 2 3 conditions are very close to the unstable solution, the system
t(s] will sometimes evolve to the stable CO-covered state, and
FIG. 6. Evolution of the lattice-gas model starting from the unstable steadysorm:"tlme.S to stable O-covered state. It takes a significant
state at=2. Shown are the typical single runs of KMC algorithm Perturbation of the coarse unstable steady state for the sys-
with infinite migration rate on a 200200 lattice. Initial conditons: tem to almost always evolve to only one of the two coarse
0,(0)=0.448, 6,(0)=0.077 for solid curves, while for dashed curves this stable states.
initial value of 6,(0) was perturbed by-710"* keeping the samé,(0); Next we discuss the further promise of numerical en-
the initial equilibrated distribution was produced by the Metropolis algo- . .
rithm with Newc— 200 abling approaches such as the one we presented. Within the
MCS . . . .
context of numerical bifurcation theory, one can construct
augmented systems whose solutions are precisely bifurcation

ranging from 0 to 100:NXN,,,, ranging from 18 to points, i.e., points of neutral stability for the original sys-
4% 10% Nyes, ranging from 30 to 1000. tems. This allows one to circumvent the extensive computa-

Of course, the changes bfandN,,, influence the accu- tional effort required to accurately locate bifurcation points
racy of calculations. Comparing several independent runs dhrough integration, or through continuation of steady state
the C-KMC algorithm forNx N,,,= 10° (for Figs. 2—4, we branches. The idea is to focus precisely on what one wants to
find that typically it converges with an absolute accuracy infind (here a tuming pointand write a new, augmented sys-
evaluation of steady state coverages equaktt0 3. The temto locate it. The new system is constructed by augment-
accuracy in the computation of the eigenvalues was mucH'g the original physical model with conditions that specify
lower (which is normal, since they are based on numericallythe mathemat!cal properties of the o_bject_ we .Wam to find
estimated coarse derivative§or the results shown in Fig. 4, (here a zero eigenvalue of the vectorfield linearization, or an
the time-horizon of the C-KMC procedure was constant ( €igenvalue of the linearization of the timestepper atThis
=0.001), the amount of microscopic events during a singlds the realm of traditional bifurcation theory and its numeri-
run of KMC timestepper was about 30 on a +0D00 lattice cal implementations; the only additional component is that
(accordingly, 750 on a 500500 latticd. Typically, the the coarse timestepper makes _th.is technology. applicqble in
Newton—Raphson procedure converges after 3 or less iter§ases where the equation describing the protggists but is
tions. However, near the higheo saddle-node point the not available in closed form o
iterations did not converge so fast. Thus, the step size of the Figure 7 shows a two-parameter continuation of the turn-
pseudo-arclength continuation was decreased automaticali?d points of the bifurcation diagram of Fig. 4. For these
providing a better initial guess and thus restoring convercalculations, significant variance reduction is required: here,
gence. With sufficient variance reduction, as it wasone needs to evaluate rather precisely the coarse Jacobian
for the data shown in Fig. 4, the continuation algorithm matrix, so as to be able to approximate the necessary second-
is able to produce the complete one-parameter bifurcatiofrder coarse derivatives. Such calculations become rather

diagram, going around both turning points, during a singleime-consuming. For the data shown in Fig. 7 we used a
simulation run. 500x 500 lattice andN,,,=10*. The lower saddle-node

branch was obtained as a result of an arclength turning point

continuation procedure in thigy, B8) parameter plane, while

for the data points on the upper branch we used several fixed
Having presented what we consider a successful applivalues of @. Upon convergence of the Newton—Raphson

cation of our computer-assisted approach to a nontriviamethod for the augmented system, the estimated absolute

problem, we now proceed to discuss several issues that arisalue of the original system minimal eigenval@ehich

in its computational implementation. In particular, we dis-should be zero at the exact turning pointas <10 2.

cuss those computational issues that we perceive as linked to The results of Fig. 8 are used to simply reinforce the

the physics of the problem and of its microscopic simulatornotion that exactly the same computational superstructure
Figure 6 demonstrates why the procedure succeeds ican be exploited to perform coarse continuation/bifurcation

locatingunstablesteady states. Indeed, a forward-in-time in- calculations with respect to many other parametact just

V. COMPUTATIONAL ISSUES
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FIG. 7. Two-parameter bifurcation diagram. Lines correspond to the QCA;

symbols to C-KMC withD =0, 500x 500 lattice,N,,,= 10*. The value ofr
was adapted automatically during the continuation procedure.

gas phase pressures, but here also tempejaiithes brings

up an important point. Microscopic evolution laws have pa-
rameters that are macroscoyiike the gas phase pressures

or microscopic(like the form of particle interaction poten-

tials). In macroscopic, empirically closed equations one finds
both clean macroscopic parametésach as gas-phase pres-
sures as well as more complex apparent macroscopic param-

eters that are affected by the microscopic of®gh as ap-
parent activation energigs Changing the microscopic

parameters will simultaneously affect several of the apparent

Coarse bifurcation analysis of kinetic Monte Carlo simulations 8237
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macroscopic ones in non-obvious ways. In Comp|ex materiElG. 9. The average of 400 independent runs of the KMC algorithm on a

als problems, for example, changing one of the macroscopi

constitutive law apparent parametéhelding the remaining

00x 500 lattice @¢=1.6,8=1.5). CO coveragéa) and pair probabilityg;,
) are shown. The initial macroscopic conditions afg0)=0.1125,
0,(0)=0.6178, and correspond to a stable steady state. The initial micro-

ones constantwill not, in general, correspond to continua- scopic conditions: equilibrated adlayésolid curvey; random distribution
tions in any singlemicroscopic parameter and vice versa. (dotted curves Results for various choices @f are compared.

QG_/M\‘} —
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FIG. 8. Continuation withT as bifurcation parameter for fixed=1.6,
B=4. Parameters of the C-KMC algorith@=0, 7=0.001, Ny,cs= 100,
100X 100 lattice,N,,,=4x 10*. Shown are the CO and O steady state cov-
erages. There is an additional branch of stable steady staieshown for
which the coverages are almost constai(0)~0.04,(0)~0.86) in the
temperature range shown here.

One of the advantages of procedures like the one we are
describing is that it allows naturally continuations with re-
spect totrue microscopicparametergsuch as strengths in
interaction potentialswithout having to worry about how
these enter in the various traditional apparent parameters of
macroscopic lawgsuch as the ones appearing in rheology,
transport, materials constitutive relations, gtc.

Lifting issues Lifting the coarse initial conditions to
consistent microscopic distributions is one of the most im-
portant elements of the computational procedure described in
this article; as we discussed, it is clearly not a one-to-one
mapping. More importantly, the microscopic realizations of
distributions conditioned on their lower-order moments may
be “mature” (i.e., they can have the higher moments already
slaved or “fresh,” in which case simulation is required to
make this slaving take effect. While a strong separation of
time scales is an assumpti¢and, really, a prerequisitéor
the procedure, it would be clearly useful to have consistent
initial distributions as mature as possible.

Figure 9 shows the effect, on the computation, of using
mature (or, as we will refer to them from now on,
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equilibrated—with respect to diffusion)}-microscopic initial 0.12 4 L 1 . L L
conditions consistent with given coverages. The solid lines L'Dﬂoo, mequilibrated" i.c.

show the result of simulations for the evolution of one cov- IO i el Dy - eyt © 1
erage and one pair probabilityy{ and g;;) starting with ' D=0, "equilibrated ic
equilibrated initial conditions, while the broken lines are for ] o
non-equilibrated, random ones. The top paffély. %Aa)] 0.104
shows CO coverage, while the bottom pafEig. 9b)] .
shows one of the pair probabilities. It is clear by inspection @ ¢.09- _-' -
of Fig. 9(b) that the equilibration time for the pair probabili- a
ties can be(depending on the diffusion coefficigntuite
long. A practical question then arises: to locate infinite dif-
fusion coarse steady states, we need simulations with very .
large diffusion rates; on the other hand, these become pro- 0071 “ a=16; p=15
hibitively expensive as the diffusion becomes faster. Figure - r v T T T
9(a) shows a practical solution: if the coarse initial condition 0.000 0.005 0.010 0.015 0.020
is equilibrated, then—even with zero diffusion, and certainly T

for D=10 or D=100—the '_nf'mte dlfoS|_0n St(_:"ady State kg 10. solutions found by Newton—Raphson iteration based on the
does not change for relatively long simulation periodsc-kmc timestepper using 500500 lattice in dependency upon time hori-
(roughly t=0.02, a typical reporting horizon for our coarse zonr(a=1.6,8=1.5N,;=4000). Initial “macroscopic” conditions for the
timestepper An idea would then be to select a coarse initial first iteration: §,(0)=0.05, 6,(0)=0.75. The initial “microscopic” condi-

.- . . . . .., tions (used at each iteratign“equilibrated” adlayer(open symbolg ran-
condition, create a random consistent microscopic distribus ( on‘eq yer(open symbols

’ v . . . dom distribution(filled symbolg. Results for various choices &f are com-
tion, equilibrate that with respect to diffusion, and only thenpared.
turn on the reactiorfwith a very small, or even zero diffu-

sion) to compute the timestepper, and through it, ultimately,

the coarse steady state. All approaches have been tried fﬂfnestepper reporting horizon isng enoughcompared to
representative points in our diagram: very fast diffusion withthe characteristic healing time—the time that it takes for er-
no pre-equilibration as well as very fast, fast or no diffusionrors made during lifting in the higher order moments of the
with pre-equilibration. The result@ssuming that one ratio- problem to die, and for the higher order moments to become
nally takes care of time-reporting horizons, gtcave been sjaved to the governing ones. If this is not true, then errone-
comparable. ous (spurious fixed points will result from the simulation.

It is worth noting here a promising research directionfigure 10 shows the dependence of the fixed points com-
that might provide an alternative to pre-equilibration throughputed through the algorithm on the reporting horizon, on the
the Metropolis relaxation algorithm we used here. We startediffusion rate, and on whether the lifting was to equilibrated
using this approach in a Brownian dynamics rheologicalmicroscopic distributions or not. For fast diffusion, whether
problem with some succe$$As we discussed in Ref. 1, if with or without initial equilibration, one gets the correct
slaving of some higher moments becomes slow, these mdixed point. However, erroneous apparent fixed points can be
ments may need to be included in the coarse model as indgomputed, such as those shown B¢ 100, random initial
pendent variables. In such a case, coarse initial conditionsonditions and short timestepper reporting horizons. Figure
should be taken not only in coverages, but also in soma1 explains how this can happen. It is possible that one can
additional momentse.g., coverageand pair probabilitie.  find (after time 0.001 for random initial conditions and
These initial conditions should be therefore lifted to distribu-D=100) that the coverage is equal to the initial coverage to
tions conditionechot only on coverage$ut also on the ad- within 10~ 7. But the coverage has not remained constant for
ditional moments{on coverages and on pair probabilities all this time—it has been changing, and it will continue to
This is one of the strong points of our procedure: when clochange becaudesee Fig. 11b)] the pair probabilities have
sure at some level fails, and more moments have to be imot yet been slaved to coverages, and they continue to
cluded in a coarse model, the computational procedure does/olve. The reason for the apparent fixed point then, is be-
not have to change. The same exact computational supetause we only report differences of the governing moments
structure can be used to analyze the system; the only diffefthe coveragesand because one of our most important as-
ence is that coarse initial conditions should be taken in moreumptions(that the reporting horizon is long enough com-
moments than beforéand lifted to consistent microscopic pared to the healing timeloes not hold. The problem can be
configurations The KMC evolution part(the heart of the remedied easily through a number of rational checks: that the
procedurg¢ and the restriction back to governing momentsfixed point does not change withy that the next-highest
remains the same. It will therefore become important to conmoment(pair probability does not change with; that the
struct efficient algorithms to initialize distributions condi- diffusion is fast enough for both above tests to be satisfied at
tioned on several lower moments. the working 7. This example has been included in order to

The last important issue has to do with a “computationalpoint out that such computational sanity checks, confirming
sanity check,” the fixed points we find should not depend ornthat simulation parameters do not affect the numerical re-
(should be converged with respecj the time-reporting ho-  sults, should be also implemented around a working algo-
rizon of the timestepper. This, however, should be true if theithm, and be performed as we march on a solution branch

¢ a
0.08 4 _+* D=100, randomi.c. L
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. . . functionals of the slow governing moments. If this were not
true, it would not be possible to have deterministic equations
at this level of closurdwith only so few independent vari-
ables. Traditional approaches to the derivation of macro-
i scopic equations involvelosures modeling of the effect of
the slaved, high modes, on the slow, governing ones. Our
approach exploits the implicit separation of time scales, and
uses short bursts of true microscopic simulation to estimate
just in time the closuré® This is not done in the form of a
closed formula; it is rather done in the form of the on de-
mand estimation of the coarse timestepper, the result of in-
tegrating the unavailable equation for an appropriate time
interval. As we have discussed in a previous papéras
microscopic parameters vary, the system stops being “close-
able” at a certain level, the same procedure/computational
approach, but lifting now wittmoremoments as independent
variables, can be used for the coarse study of the problem.
Algorithms that will routinely create distributions condi-
tioned on several of their moments become, therefore, impor-
t tant. Variance reduction, and the accurate estimation of
FIG. 11. Spurious apparent steady state solution found through th€0arse derivatives with respect to either variables or param-
Newton—Raphson iteratioizorresponds to the left filled triangle in Fig.)J0  eters also becomes important in such tasks.
7=0.001,D =100, random initial distribution on a Iattic_e_. Shown are the What we have discussed here iscamputational en-
f‘h"::zgfit%‘gi;?_oo runs CO coverage, and pair probabilitygsy, during — 4pyin technology a set of subroutines that are wrapped
around the best microscopic timestepper we have available
for a process. Through the lift-evolve-restrict procedure and
from time to time in order to ensure the validity of the re- exploiting system identification techniques for noisy sys-

0.07101+ 8,(0) - ©,(0.001) =-7.7*10°

0.07100+
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@
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sults. tems, these subroutines create a bridge between microscopic
simulation and traditional macroscopic numerical analysis.
VI. SUMMARY AND DISCUSSION By circumventing the derivation of macroscopic closed

We have presented a coarse timestepper based compuﬁﬂu?ﬁonsf this computational metr_]odolo(glyis set of sub-
tional methodology that enables the continuation, stabilit)/ outines, if you war)thas' the potgntlal to' extract large scale,
and bifurcation analysis of equations for tfexpected values expectedl, systgm Ieyel mform.atlon casief, fa;ter, better than
of) moments of distributions evolved through microscopiccurrent direct S|m_ulat|on _practpe. T.hls Is particularly true in
simulators. The advantage of the method lies in that thesEJ'Mes where simple simulation is very slqe.g., when

equationseed not be available in closed forim this paper one trlethof I(;(iate exgglctetd margw:a:)lstablllltty condltlor:s, t
the moments in question were surface concentratiomger- €.g., see Ret. 21, or saddle-lype, unstablé solutions importan

ages of adspecies during surface reactions, and the micro®' th? ldet:]ectmrt\ oft_rare ?ve?t§h?gl? sucrt1. WO;k be suc-
scopic simulator was a kinetic Monte CarlkMC) algo- cessiul, the extraclion ot relevant information from micro-

rithm. Analogous timestepper based methodologies can b%copic computer models may be accelerated, and our ability

used for different types of microscopic simulators, e.g., ki-1© analyze and even design complex self-organizing systems

netic theory based lattice Boltzmann simulatofgyut also through computer modeling may be enhanced.
stochastic differential equation®rownian dynamics, Ref.
19), molecular dynamic§MD), agent based models, etc. ACKNOWLEDGMENTS
Furthermore, the approach is applicable beyond macroscopi- This work was partially supported through AFOSBy-
cally “lumped” problems, modeled by coarse ODEs as innamics and Contrdl an NSF ITR grant, and a Humboldt
this paper, to macroscopically distributed problems, modelegorschungspreis to 1.G.K. Informative discussions with Pro-
by coarse PDE$? Timestepper based approaches can thusessor J. Evans, Professor J. Li, Professor C. W. Gear, Pro-
be used to analyze traveling waves on surfaces at the s@essor S. Shvartsman, Professor P. G. Kevrekidis, Professor
called “hydrodynamic limit” (see, e.g., Ref. 3Qwithout ex- M. Katsoulakis, and Professor R. Kapral are also acknowl-
plicitly deriving such approximate hydrodynamic equations.edged.
Tasks beyond coarse bifurcation analygisarse integration,
coarse control, coarse optimization, see discussion in Ref. 3\pPENDIX: ALGORITHM PARAMETERS AND MODEL
also become accessible. PARAMETERS

The approach relies on the fact that, when deterministic1
macroscopic equations exist and close at some level, i.e,
involving a finite number of moments of an evolving distri- N=N;XN,: Number of perfect square lattice sitd$;
bution, this intrinsically implies that the higher moments of and N, set the cell size in each of the two surface dimen-
the distribution become quickly slaved tquickly evolve to  sions.

. Parameters of the C-KMC algorithm
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Nun: The number of statistically independent KMC runs events. The “base set” of parameters is=1.6 (S'1),
used for averaging. The same number of runs is utilized for, = 0.001 (s!), k,=1 (s!), e=—2 (kcal/mol), T
calculations of® (©) and the estimation of its derivatives. —500 (K). Unless otherwise stated the parameters of the

7. Reporting time horizon of the C-KMC timestepper. model have these values.

As we have discussed in Ref. 1 and briefly above, this time D=Dco=Do: Migration rates at low coverages; note

Ehohuld bedlong en?utgh fortllftl;ng errorslto Zeta(lthat s, for that at high coverages the rate of CO migration is strongly

Igher order correlations to become slaved 1o cov_eﬂagbs influenced by the lateral interactions. To simulate the migra-

should also, however, be short compared to the time that %t . . .

i ) ion of adspecies we adopted the independent saddle point

takes to sample the entire PDF of the problem; remembesrChemeg2 where the iump probability is determined onlv b

that the nonlinear equations for coverages we are estimating o It b p_ . y a-only by
ts local environment in the initial statéNote that this is not

are mesoscopic equations. We will not repeat here the did ) , )
cussion of the two senses of infinite tirtinfinite” for these the case for the Metropolis relaxation algorithm where both

mesoscopic equations versus infinite for the system)PDANtal and final states determine the jump probabilitjhe
that can be found in Ref. 1. The characteristic times of thd@tes of CO desorption, GCproduction, and CO migration
(macroscopic as well as the microscopsgstem can and do depend on the local environment: the presence of NN/ O
often depend strongly on the bifurcation parameter Changegarticles increases these rates. All steady-state solutions pre-
It may therefore be necessary to changduring the arc- sented in this paper correspond to infinite mobility of ad-
length continuation. In our implementation,is controlled sorbed particle¢see discussion in the text for the effect of
by the amount of microscopic events during a single runfinite or even zero mobility on the simulations
Strictly speaking,r is a simulation parameter, and we peri-
odically check that the simulations are converged with re-
spect to it, that is, that the increase/decrease dbes not
essentially change the results.

¢. User-prescribed tolerance for convergence of'A. G. Makeev, D. Maroudas, and I. G. Kevrekidis, J. Chem. Phgs,
Newton—Raphson iterations; it is assumed that the iterative 10083(2002.
scheme has converged and the solution has been foun%)g- _Tzegd:g’;"’;’é‘;z(;ggd Qian, and I. G. Kevrekidis, Proc. Natl. Acad.

. . . . Cl. U.S5.A.9/, .

When_|Gi|<¢ vi, th_at Is, that the norm of the residual is 3C. W. Gear, |. G. Kevrekidis, and C. Theodoropoulos, Comput. Chem.
effectively zero. This parameter generally depends upon Eng. 26, 941 (2002, see also http://www.neci.nj.nec.com/homepages/

N X N,,, and 7, typically, ¢ was about X 10 6. cwg/UCLA90. pdf
& Perturbation, which is used in order to estimate coarse*H. B. Keller, in Applications of Bifurcation Theoryedited by P. H.
numerical derivativegwith ©®,+ § as coarse initial condi- _Rabinowitz(Academic, New York, 1997 pp. 359-384.

5 . .
: . ; ; —3 E. J. Doedel, H. B. Keller, and J.-P. Kernevez, Int. J. Bifurcation Chaos
tions); typically, it was taken equal to 810 ° for a 500 Appl. Sci. Eng.1, 493 (1991,

X500 lattice, or 2<10 ? for a 100x 100 lattice. Once MOre, 6 s, Tuckerman and D. Barkley, iMA Volumes in Mathematics and its
variance reduction through maximum likelihood estimators applications edited by E. J. Doedel and L. S. Tuckerm@pringer, New
can and should be combined with finite difference formulas York, 1999, pp. 453-466.

for best derivative estimation. D. T. Gillespie, J. Comput. Phy&2, 403(1976; J. Phys. Chen81, 2340

) Lo . (1977; J. Chem. Physl15 1716(2001.
Nwcs: Th.e number of supcesswe j_ump atte_mpts pe.r SltegK. Binder, inMonte Carlo Methods in Statistical PhysjcBopics in Cur-
(on averaggin the Metropolis relaxation algorithm which o ppysicySpringer, Berlin, 1978 Vol. 7.
was used to initializ€equilibrate the lattice, starting from k. A. Fichthorn and W. H. Weinberg, J. Chem. Phgs, 1090(1992.
the lattice obtained on a previous continuation step, and aftéfJ. J. Lukkien, J. P. L. Segers, P. A. J. Hilbers, R. J. Gelten, and A. P. J.
the appropriate number of adsorbed particles is added/Jansen, Phys. Rev. &, 2598(1998.
subtracted randomly. To initialize the lattice starting from the, =+ Mend and W. H. Weinberg, J. Chem. Phg80 5280(1994.
L. . .. . . R. Fowler and E. A. GuggenheinS§tatistical Thermodynamic€Cam-

random distribution at the beginning of the continuation pro- y,qge university Press, Cambridge, 1952
cedure we used 8 Nycs jump attemptgwe consider jumps 3y, p, zhdanov, Surf. Sci102 L35 (1981); 111, L662 (1981); 137, 515
to NN empty sites In addition, before each run of KMC  (1984.
timesteppetin the set oiN,,,) the Metropolis algorithm with S- Sundaresan and K. R. Kaza, Surf. S6i0, 103 (1985. _
one attempt per siton averagewas executed and the initial G. Cybenko, in Identification, Adaptatlon_, Learnln_g: The Science of

. : Learning Models from DataNATO ASI Series HSpringer-Verlag, New
lattice was updated each time. The same value§Ngfs York, 1996, Vol. 153, pp. 423—434.
were utilized to prepare the initial lattice for calculations of 16p. constantin, C. Foias, B. Nicoleanko, and R. Temiategral Manifolds
both® and its derivatives. Once mory,cs is a simulation and Inertial Manifolds for Dissipative Partial Differential Equations
parameter, and we check that the results are equilibrated with(Springer Verlag, New York, 1988

; : : _~'G. M. Shroff and H. B. Keller, SIAM(Soc. Ind. Appl. Math. J. Numer.
respect to it(to the extent that we can estimate, total inter Anal. 30, 1099(1993.

action energy on the lattice is indeed at a minimum 18K Binder and D. P. Landau, Phys. Rev.28, 1941(1980.
19C. Siettos, M. D. Graham, and I. G. Kevrekidisnpublishegl
2. Parameters of the model 203, W. Evans, D.-J. Liu, and M. Tammaro, Chad 131 (2002.

) . 213 Machta, Y. S. Choi, A. Lucke, T. Schweizer, and L. V. Chayes, Phys.
a, B, v, Ky, €, T: The first four parameters are transition Rey. Lett. 75, 2792(1995.

probabilities per second for corresponding microscopic?C. Uebing and R. Gomer, J. Chem. Phgs, 7626 (1997).

Downloaded 11 Nov 2002 to 128.112.33.67. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



