
2 JOURNAL OF EMBEDDED COMPUTING, NO. 3, JUNE 2004

Multi-version Scheduling in Rechargeable
Energy-aware Real-time Systems

Cosmin Rusu, Rami Melhem, Fellow, IEEE, Daniel Mossé, Member, IEEE

Abstract— In the context of battery-powered real-time systems,
three constraints need to be addressed: energy, deadlines and
task rewards. Many future real-time systems will count on
different software versions, each with different rewards, time
and energy requirements, to achieve a variety of QoS-aware
tradeoffs. We first propose a solution that allows the device to run
the most valuable task versions while still meeting all deadlines
and without depleting a given energy budget. Assuming that the
energy budget can be replenished by using a rechargeable battery,
we also propose (i) a static solution that maximizes the system
value assuming a worst-case scenario (i.e., worst-case battery
recharging/discharging conditions, as well as worst-case task
execution times); and (ii) a dynamic scheme that takes advantage
of the extra energy in the system when worst-case scenarios do
not happen. Three dynamic policies are shown to make better
use of the recharging energy while improving the system value.

Index Terms— power-aware, real-time, scheduling, energy,
rechargeable, multi-version

I. INTRODUCTION

POWER management is a critical design factor for em-
bedded systems that rely on their own power source

(battery). It would appear as though the lifetime of the device
is ultimately dependent on battery storage capacity, but devices
may scavenge the existing energy in the environment. An
example of such a device is the NASA/JPL Mars rover,
which relies on both a non-rechargeable battery source and
a solar panel [2]. In our work, we assume that the battery
is rechargeable. During rechargeable periods (e.g., daytime
for devices with solar panels) real-time tasks are executed
at the same time the battery is recharging, while when the
system cannot recharge, it relies entirely on the battery energy
acquired during the recharging period.

The periods in which recharging is possible may be limited
and must be used efficiently. The technique we use in this
paper for reducing the energy consumption is voltage and
frequency scaling, through which we can achieve cubic savings
in power at the expense of linear performance loss. Clearly,
this technique is not applicable to all kinds of systems. The
performance loss from scaling down the voltage and frequency
(leading to more time to compute results) can increase the en-
ergy consumption in other components of the system, resulting
in an overall increase in the energy consumption. Our proposed
schemes are most beneficial for systems where the processing
unit is an important energy consumer.

On the other hand, the schemes we propose are not limited
to voltage scaling: our goal is not to minimize energy but to

This work has been supported by the Defense Advanced Research Projects
Agency through the PARTS (Power-Aware Real-Time Systems) project under
Contract F33615-00-C-1736.

A preliminary version was presented at ECRTS’03 [1]

run the most important/valued applications given the timing
and energy constraints. If voltage scaling does not save energy,
then our solution would still correctly select the most impor-
tant tasks (although they would run at their highest frequency).
Moreover, using our scheme we can determine the lifetime of
the system (assuming worst-case conditions) and whether the
system is stable (i.e., at all times there is energy left in the
battery).

A large number of energy-constrained embedded real-time
systems operate in a cyclic basis, with a set of applications that
must execute within a frame whose execution is to be repeated.
Examples of such applications are real-time communication
and imaging in satellites. An extension of the frame-based
task model is a periodic task model with individual deadlines
for each task. Our solution is intended for both models. In
addition, each task is assumed to have multiple versions, each
with different time and energy requirements. Each version
has a value or reward associated with it, a measure of task’s
importance. We assume that versions that require more energy
and execution time return more accurate results. An example
of versions of applications is when the satellite images being
transmitted can be of different sizes or resolution, yielding
different rewards but requiring different amounts of energy
and time for transmission.

The rest of the paper is organized as follows: We first
present related work, followed by a brief background on
rechargeability. Task and recharging models are explained
in Section II. We present an algorithm for energy/aware
task selection in Section III. Based on this algorithm, the
solution is completed in Section IV with a static analysis and
three dynamic policies, followed by experimental results. We
conclude the paper in Section V.

A. Related Work
The variable voltage scheduling (VVS) framework has

recently become a major research area. In the context of
real-time systems, VVS schemes target minimizing the en-
ergy consumption while still meeting the deadlines. Yao et
al. [3] provided a static off-line scheduling algorithm assum-
ing aperiodic tasks and worst-case execution times (WCET).
Periodic tasks with identical periods and upper bounds on the
voltage change rate are investigated in [4]. Systems with two
(discrete) voltage levels and periodic hard real-time tasks are
analyzed in [5]. An optimal static solution for periodic task
sets with different power characteristics is given in [6]. Slack
management techniques are explored in [7–10]. In this work
we analyze the case of discrete voltage/frequency levels.

Reward-based scheduling was explored in the context of IC
(Imprecise Computation) and IRIS (Increased Reward with

C. RUSU et al.: MULTI-VERSION SCHEDULING IN RECHARGEABLE ENERGY-AWARE REAL-TIME SYSTEMS 3

Increased Service) models. In the IC model [11], real-time
tasks consist of mandatory and optional parts and a reward
function is associated with the length of the optional part. The
IRIS model [12], [13] makes no separation between mandatory
and optional parts. Typical reward functions are assumed to
be linear or concave in the number of cycles allotted to
the tasks, targeting applications such as image and speech
processing or multimedia. An optimal algorithm for concave
reward functions and periodic tasks was presented in [14]. The
case for discrete reward functions (or step reward functions)
with no reward for partial execution was shown to be NP-
hard [11]. In the QRAM model (QoS-based resource allocation
model) [15], [16] reward functions are in terms of utilization of
resources. A solution was proposed for one resource with mul-
tiple QoS dimensions [15] and a particular audio-conferencing
application with two resources and one QoS dimension was
analyzed in [16]. One work recently published combined the
three constraints [17], but voltage/frequency scaling was not
considered.

Multi-version programming has been extensively explored
in the context of fault tolerance. In this work, multiple versions
allow quality of service tradeoffs. An example of version pro-
gramming comes from satellite-based signal processing [18].
Four different algorithms with running times ranging from
microseconds to milliseconds and energy consumptions from
microJoules to Joules provide different levels of accuracy.
Another example is Automated Target Recognition (ATR),
where task values, running times and energy requirements are
roughly proportional with the number of targets detected [19].
Task versions can result from different algorithms, as well
as from the same application with different input arguments,
such as encoding/decoding at different rates, low/high quality
compression schemes, low/high resolution image processing,
etc. For real-time tasks, QoS tradeoffs can also be achieved
through modifying the invocation frequency (period) of appli-
cations, as suggested in [17], [20]. This effectively results in
task versions where the reward of a task is a function of its
invocation frequency.

Rechargeable systems remain generally unexplored. A so-
lution for the Mars Pathfinder rover that makes best use
of the available recharging energy is presented in [2]. For
frame-based systems with a rechargeable battery, a solution is
presented in [21] that schedules tasks in such a way that the
wasted recharging energy is minimized and the battery level
is at all times within some acceptable limits (no task rewards
were considered).

B. Rechargeability background

This section presents a short introduction to rechargeable
energy harvesting and storage (illustrated by a solar panel and
respectively a rechargeable battery).

A solar cell (also known as PV cell) converts light into
electricity through the photo-voltaic effect [22]. The current-
voltage characteristics of a typical solar cell is shown in
Figure 1. At short circuit the current is maximum (

�����
) but

the power generated (the voltage multiplied with the current)
is zero. Similarly, at open circuit the voltage is maximized

VOC

SCI

voltage

current
characteristic

Ideal

power
Max

Fig. 1. Current-voltage characteristic of a solar cell
battery charge

(voltage)

I/4
I/2

I

charge time(a)
battery charge

(voltage)

I/4I

I/2

(energy)

maxE

capacity

(b)

Fig. 2. (a) Charge characteristic (b) Discharge characteristic, as a function
of charge/discharge current

(��� �) but the current (and thus power) is zero. The optimal
operating point (i.e., maximum power) is shown on the curve
as �
	���
 . Note that a solar cell cannot store energy by itself.
The device attached to the cell will draw as much power as it
needs; the remaining power (up to ��	���
) is simply wasted if
not used.

A solar panel is obtained by connecting cells in series or
parallel into PV arrays to obtain any desired voltage/current
characteristic. Connecting two cells in series doubles the
resulting � � � ; parallel connection doubles the resulting

�����
.

For each cell
�����

depends on the intensity of light, while � � �
depends on other parameters (such as temperature).

A rechargeable battery has a nominal capacity (expressed in
Amps-hour) corresponding to a maximum energy (expressed
in Joules or Watts-hour). The charging characteristic for a typ-
ical lithium-ion rechargeable battery is shown in Figure 2(a).
The charging time depends on the charge current (or power),

4 JOURNAL OF EMBEDDED COMPUTING, NO. 3, JUNE 2004

but also on other parameters (like temperature). Not all the
power used to recharge the battery can be stored (for example,
1 W of charge for 1 hour results in less than 1 Watt-hour stored
energy).

The discharging characteristic is shown in Figure 2(b). The
nominal capacity is computed for a given constant discharging
current and temperature. A variable discharging current results
in a reduced effective capacity.

II. TASK/PROCESSOR/ENERGY MODELS AND PROBLEM
DEFINITION

The frame-based and periodic task models with their char-
acteristics and scheduling constraints are described first. We
continue with a description of the recharging model. Finally,
we define the problem and state our goals.

A. Multiple-version Task Model

Frame-based In this model all task periods are identical
and all task deadlines are equal to their period. The common
deadline/period (also known as frame length) is denoted by�

. There are � available periodic tasks in the system, all
ready at time zero. Tasks have multiple versions with different
characteristics that will be described shortly. Exactly one
version of each task is to be scheduled during a frame. Frames
are issued periodically every

�
time units.

Periodic tasks There are � periodic tasks in the system,
all ready at time zero. The deadline of the ����� task is denoted
by

���
and the least common multiple of all task deadlines

(also called hyperperiod) is denoted by ������ . As in the
frame-based model, tasks have multiple versions with different
characteristics. Exactly one version of each task is to be
executed at every instance.

The remainder of this section applies to both task models,
unless distinctively specified.
Variable voltage/frequency processor The tasks are to be
executed on a variable voltage processor with the ability to
dynamically adjust its frequency and voltage on application
requests (we refer to a frequency/voltage change as a speed
change). There are ! available frequencies (clock rates or
CPU speeds), "$#&%�'�#�($'*)�)*)+',# .- . Each task can run at any of
the available speeds and we say that a task runs at speed level/

if the speed of the task is set to #�0 . Since power functions
are proportional with the frequency and with the square of the
voltage [3], [4], and since energy is the product of power and
time, the benefit of running at small frequencies is a reduced
energy consumption for the processing unit, at the expense of
increased execution time.
Speed change overhead We assume that the time and
energy overhead of speed changes is negligible1 compared
to the deadline

�
, or that it was already subtracted from�

. In the frame based model the number of speed changes
that can occur during a frame is minimized by placing tasks
that run at the same frequency next to each other. Thus, the
maximum number of speed changes that can occur during a
frame is 12��3�4�!5'+�76 . In the periodic tasks model, the order

1We have measured 8:9&; speed changes in Crusoe chips.

time

Td

recE

rT

power

(a)

time

Td

recE

Tr

power

(b)

Fig. 3. (a) Constant power (b) Variable power

of execution is determined by the scheduling algorithm (such
as EDF or RMS). We assume the worst-case number of speed
changes (two for each instance in the case of EDF or RMS)
has a negligible total time and energy requirement, or that it
was already subtracted from the time/energy budget.
Task versions, rewards, time and energy Task versions
are characterized by three parameters: time and energy require-
ments (different for each speed), and a version value (or reward
- a measure of the importance/accuracy of each task version).
The version

/
of task � at speed level < is denoted by � 0�>= .

We assume that task worst-case execution times and energy
requirements are known for all task versions and all speed
levels. The worst-case execution time and energy requirement
of version

/
of task � running at speed level < are denoted

by ? 0�A@ = and B 0�A@ = respectively. Associated with version
/

of
task � there is a version value or reward, C 0� . We assume
that C 0�ED C 0�F %� , ? 0�>=.D ? 0$F %� = and B 0�>=GD B 0$F %� = , that is, lower
versions execute faster, require less energy, and produce less
accurate/complete/valuable results. For simplicity, we assume
the same number of versions � and speeds ! for each task,
although the algorithm proposed can handle different number
of versions and speeds for each task.

B. Recharging model

The system we target consists of three components: a
processing unit, an energy harvester (such as a solar panel)
and a rechargeable battery. The processing unit includes all
the components needed for processing real-time tasks, such
as a DVS processor, memory and network, and we assume
that the task energy values B 0�>= refer to the consumption in the
entire system comprised by the processing unit. The harvested
power can be either used by the processing unit or stored for
future use by the third component (rechargeable battery).

The shape of the solar power that can be generated on a
satellite orbiting the Earth is shown in Figure 3(a). The power
is either constant (about 1350W/m () or zero if sunlight is

C. RUSU et al.: MULTI-VERSION SCHEDULING IN RECHARGEABLE ENERGY-AWARE REAL-TIME SYSTEMS 5

obstructed [22]. We will refer to the time when there is solar
power as �IH (recharging time). �KJ (discharging time) denotes
the time when the system has to rely entirely on the battery
(i.e., no solar power). The amount of energy generated during� H (the area below the power curve) is denoted by L H+M � . Note
that L H+M � is only a fraction of the solar power, as the efficiency
of a solar cell is typically 10% to 20%. The solar power on
Earth’s surface varies with time due to atmosphere and clouds,
as shown in Figure 3(b). For this scenario, L HNM � will denote
the worst-case amount of energy that can be generated during� H .

We denote the maximum energy that can be stored in the
rechargeable battery by L 	O�+
 . As described in Section I-B,
there is a loss of energy when recharging and discharging
the battery. We’ll use a parameter, PRQTS>UV'�W+X , to denote the
worst-case recharging loss. For example, for PZY[UV)]\ andLO	O�+
^Y_\V`^a , W*UV`^a may be needed to fully charge the
battery. A second parameter, bcQZS>UV'�W+X denotes the worst-
case discharging loss. Thus, if bGYdUe)]\ and Lf	���
gYhW*UV`^a ,
the actual energy is just \e`^a under a worst-case discharging
scenario.

Our goal is to have a stable system in which the battery
energy is at all times above a specified limit Lf	 �ji . LO	 �ji can
be higher than zero if it would be considered safe to have at
all times some energy stored in the battery. For such a stable
system we also determine how to most efficiently distribute
the energy so as to maximize the reward (or value) acquired
by the system. That is, we determine how much of the solar
power should the processing unit draw, and how much should
be stored for the discharging period � J , so as to maximize the
system reward.

C. Problem Definition
Our goal is to determine for each frame how much energy to

allocate so that the system is stable (i.e., the battery energy can
never be less than Lk	 �ji), provided that L H+M � , P and b , as well
as task worst-case execution times and energy requirements
are not underestimated. For a stable system we also determine
what task versions l � to select and at what speed levels m �
to run them so as to maximize the system value (the sum of
values for all versions selected for execution in all discharging
and recharging frames).

We first present the problem definition for maximizing the
total value (reward) of a single frame for multiple-version task
sets with a given fixed energy budget and then present the case
of periodic tasks. The total value of a frame is defined as the
sum of rewards for all task versions selected for execution. In
this problem we assume that an energy budget L is associated
with the frame and the goal is to maximize the total value
without exceeding the available energy L .
Frame-based Formally, the problem is to determine for each
task � its version l � and speed level m � , so as to:

maximize

no �qp % C�r�s� (1)

subject to

no �qp % ? r s�A@ � s
t � (2)

no �Ap % B r�s�A@ � s�t L (3)

l � Q."&Wu'�ve'*)�)*)�'�� - (4)m � Q7"VW�',vV'�)*)�)w',! - (5)

Inequality (2) guarantees that the timing constraint is sat-
isfied, and inequality (3) guarantees that the energy budget is
not exceeded.
Periodic tasks For periodic tasks the problem is similar:

maximize

no �Ap % C r s� �����K � � (6)

subject to

no �Ap %
?wr�s�A@ � s�x� t W (7)no �Ap % B*r�s�A@ � s �����K � � t L (8)

l � Q."&Wu'�ve'*)�)�)�'*� - (9)m � Q."&W�',vV'�)�)*)y'�! - (10)

The total reward of the hyperperiod is the sum of rewards
for all task instances (6). Similarly, the energy consumption of
all instances is accounted for in (8). The timing constraint in
(7) assumes EDF scheduling. A different utilization formula
can be used with different schedulers, such as RMS. Observe
that problems (1)-(5) and (6)-(10) are equivalent (assuming
EDF scheduling). The periodic task set is corresponding to a
frame of length � �I�� in which the time, energy and value of
each task � � are multiplied with z&{�|V}~ s .

Note that the problem formulation (6)-(10) assumes that
the energy budget L is associated with � ���K . If the energy
budget is given for a time ?��Y5� �I�� , then � �~ sw� must be used
as the number of task invocations in Equation (6) and � �~ sN�must be used in Equations (7) and (8).

A solution for the problem defined by Equations (1)-(5)
or (6)-(10) is reviewed in the next section. In the context
of rechargeable systems, we will show how to determine the
energy budget L for each frame / hyperperiod in Section IV.
The problem was shown in [23] to be NP-hard even for
single-version task sets in frame-based systems. Therefore, we
relax the maximization objective and look for solutions that
approximate the optimal solution.

III. ENERGY/VALUE-AWARE TASK SELECTION

The algorithm MV-Pack that we propose to solve the
problems described by Equations (1)-(5) and (6)-(10) is an
extension of the REW-Pack algorithm proposed in [23] for the
case of single version frame-based task sets. The MV-Pack
algorithm, first presented in [1], is reviewed next.

Throughout the rest of the paper we will only be referring
to frames and the problem described by Equations (1)-(5).
As mentioned before, the two formulations (frame-based and
periodic task sets) are equivalent.

The flowchart of the algorithm is presented in Figure 4. The
three major components (add task, increase speed and increase
version) are described next. We denote by ?N��1�B and B�3IB$C:���

6 JOURNAL OF EMBEDDED COMPUTING, NO. 3, JUNE 2004

Yes
speed of some task?

can increase the
increase speed

solution or failure
return current

No

deadline exceeded?

Yes
added?

all tasks

save solution

can increase the
version of some task?increase version return solution

Yes No

No
No

Yes

initialize

can add a task?
Yes

No
return failure

add task

Fig. 4. Flowchart of MV-Pack

the total execution time and energy requirements of the current
schedule.
Add a task When it is possible to add a new task, it is
added always at the first (smallest) speed level and version
(we assume that task versions are sorted by their reward – the
first version has the smallest reward). The task to be added
satisfies all of the following criteria:� It was not considered before.� The current schedule is feasible (?N��1�B t �).� By adding the task to the current schedule at the minimum

speed the energy budget is not exceeded (B$3IB�C:�e�I��B %�A@ % tL).� Among all the tasks that satisfy the above criteria, select
the one that has the largest ratio

H,�s� �s]� � M �s]� � .
The task added must have a good (large) reward, a rea-

sonable (small) running time and a reasonable (small) energy
consumption. Hence the metric used to decide which task
is best to add is proportional to the reward and inversely
proportional to the time and the energy required by the task.
The task with the highest metric is considered the best.
Observe that for each task, the smaller the speed, the larger the
value of the metric, since energy increases more than linearly
with the speed while time decreases approximately linearly
and the task value remains the same regardless of the running
speed. Thus, it is reasonable to start with the smallest speed
(level 1) and later increase the task’s speed, if possible. We
experimented with different heuristics, such as adding tasks
at the smallest speed that does not exceed the deadline, and
they consistently return smaller system values than the present
heuristic.
Increase the speed of a task If the deadline is exceeded, the
algorithm packs tasks to make room for other not yet selected
tasks, where packing means to increase the speed of one of the
selected tasks, to the next higher speed level. The task chosen
for a speed increase must satisfy the following:� It must be selected in the current schedule.� It is not running at the maximum speed (m � �Y�!).� By increasing its speed to the next higher speed level the

energy budget is still not exceeded (B�3IB$C:���x��B r s�q@ � s F %��B r s�A@ � s t L).� Among all selected tasks it has the highest ratio � ��
� ,
where ��?�YE? r s�q@ � s � ? r s�A@ � s F % and ��L�Y�B r s�A@ � s F % � B r s�A@ � s .Packing reduces the total execution time and increases

the energy consumption. The best candidates are considered
the tasks that create a lot of room (time or slack) for the
remaining tasks while not significantly increasing the energy
consumption. Task values do not play any role here as the total
reward is not changed by the packing operation, since the task
version remains the same during packing.
Increase version of a task When all the tasks are selected
in the schedule, a minimum reward solution is found, other-
wise failure is returned. The third component of the algorithm
(increase version) selects the task to move to its next higher
version. The old version is removed from the schedule, while
the new version is added at the minimum speed. The task � that
is selected to move to the next higher reward version satisfies:� It is not running at the highest version (l � D �).� By replacing the current version with the next higher

version at the first speed level, the energy budget is not
exceeded (B�3IB$C:���k��B�r�s F %�A@ % � B*r�s�A@ � s t L).� Among all the tasks that are not running at their highest
version, the next version at minimum speed has the
largest reward per unit time and energy. That is, we select

task � that maximizes
H,� s�� �s� � s]� �s�� � M�� s�� �s]� � .

Note that by changing the version of a task, the deadline
may be violated. If necessary, tasks are packed until either a
feasible schedule with the new version is found or the energy
is exceeded; in this latter case, the algorithm stops and the
current solution (with lower version) is returned.
Complexity The complexity of MV-Pack can be analyzed
as follows. Each task is added at most once and its version can
be increased at most � � W times. For each task we can increase
its speed at most 4�! � W�6+� times. With appropriate data
structures (priority queues for example), determining which
task to choose takes �j����� time for all functions (add task,
increase speed and increase version). Thus, the complexity of
the algorithm is ��4�!R�����j�����76 .
Optional tasks Observe that in the problem definition
(Equations(1)-(5)) all tasks are mandatory (i.e., must be in-
cluded in the final schedule). However, the MV-Pack algorithm
can also handle a combination of mandatory and optional
tasks, in which some (or all) tasks are not required to be
present in the solution. In this case, the original task set is
modified in the following way: for each optional task we
artificially add a new version with zero reward and zero energy
and time requirements. We call this added version the zero
version. A task selected in the final schedule at its zero version
is equivalent to a task not selected for execution.
Experimental Results The MV-Pack algorithm was evalu-
ated in [1]. Task sets with up to � YdW�U�U tasks were simulated,
with �^Y5¡ versions for each task and using the Intel XScale
architecture [24] as the power model. The algorithm was
shown to be within 3% of the optimal where the comparison
was possible. The running times of the algorithm were less
than a millisecond even for 100 tasks. The reader is referred

C. RUSU et al.: MULTI-VERSION SCHEDULING IN RECHARGEABLE ENERGY-AWARE REAL-TIME SYSTEMS 7

to [1] for further evaluation details.

IV. RECHARGEABLE RT SYSTEMS

The algorithm presented in the previous section determines
which versions to select and at what speeds to run them so as
to maximize the total value of a frame / hyperperiod given an
energy budget. It was shown that the problem formulations for
frame-based and periodic tasks are equivalent. We complete
the solution in this section by showing how to distribute the
available energy among frames. The same results apply to
hyperperiods as well.

In Section IV-A we present a static analysis assuming a
worst-case scenario, namely worst case execution times and
energy requirements for task versions, minimum generated
power L H+M � , combined with worst-case battery recharging (P)
and discharging (b) characteristics. The analysis is necessary,
as the system has to be provably stable (i.e., the battery energy
is at all times higher than L 	 �ji) in all possible scenarios. If
the system is determined to be stable, the static component is
also responsible for distributing the available energy among
frames, as well as scheduling inside each frame based on the
MV-Pack algorithm.

In Section IV-B we present the dynamic component dealing
with cases where extra energy appears in the system, since
worst-case scenario assumptions rarely happen in practice. We
propose three dynamic energy reclaiming schemes that are
shown to improve the energy usage and the overall system
value. Both static and dynamic components are based on the
MV-Pack algorithm. A quantitative evaluation of the proposed
solutions is presented in Section IV-C.

A. Static Analysis

We present necessary and sufficient conditions for the
stability of the system. Based on these conditions we show
how to distribute the available energy among frames, assuming
a worst-case scenario.

The static analysis starts by running the MV-Pack algo-
rithm, assuming infinite available energy. After each successful
version increase (i.e., reward/value increase), the intermediate
solution is saved (i.e., the speed and version for each task, as
well as the total energy consumption and reward are stored).
There can be at most �G� successful version increases, thus
the space and time complexity become ��4¢� (�£6 . In practice,
running times are still under a millisecond even for 100 tasks
(total running time in a Unix system with a 850MHz Pentium
III CPU and 256MB of RAM).

The �¢��� intermediate solution schedule, energy and reward
are denoted by ¤ � ¥ , ¤ �� and ¤ �¦ respectively. If a solution has a
smaller reward and a higher energy than some other solution,
it is eliminated from the saved solutions. This case can
happen for artificial scenarios, although we did not encounter
it during simulations. Notice that saved intermediate solutions
are ordered by their rewards/energy in increasing order. Also,
note that even with infinite energy it may be not possible
to run all the task at their highest version due to real-time
constraints. If the frame deadline is

�
, the number of frames

to be executed during the recharging period ��H is �xH§Y z�¨~ .

Similarly, ��J denotes the number of frames to be executed
during the discharging period, ��J�Y z&©~ .

Task rewards are expected to be proportional to their ex-
ecution times. Energy increases more than linearly with the
speed, while time decreases approximately linearly. Thus, it
is to be expected that the frame reward increases less than
linearly with the frame available energy. In other words, having
a fixed amount of energy to be distributed among several
frames, an equal energy partition is expected to maximize
the total reward of the frames. Thus, we choose to distribute
the energy equally among frames (recharging frame alloca-
tion may be different from discharging frame allocation due
to recharging/discharging characteristics and battery capacity
limitation). While artificial cases can be constructed where an
equal energy partition is not optimal from a reward view point,
a complete analysis is NP-hard.

The following theorem gives necessary and sufficient con-
ditions for a system to be stable (i.e., the battery energy is at
all times above Lk	 �ji).

Theorem 1: A system is stable if and only if:
(i) LªHNM �O« �xH*¤ %� � n ©,¬ �­®°¯
(ii) LO	O�+
 � LO	 �ji2« n © ¬ �­¯ .

Proof: The generated energy during the recharging period�IH must be enough to run all the frames with their minimum
energy requirement ¤ %� . During recharging, the processing unit
will use at least ��H�¤ %� energy. Due to the discharging loss b ,
at least

n ©+¬ �­¯ has to be stored for use during the discharging
period � J . Considering also the recharging loss P , the first
condition becomes: L HNM � « � H ¤ %� � n © ¬ �­®°¯ . This condition is
necessary but not sufficient, as it could be the case that not all
of the recharging energy L HNM � can be used (for example, due
to battery capacity limitation).

The second condition enforces that a fully charged battery
holds enough energy to execute all discharging frames at their
minimum energy consumption, even in worst case discharging
conditions b . Thus, the second condition is: L�	���
 � Lª	 �ji±«n © ¬ �­¯ .

For a stable system, the actual schedules for the recharging
and discharging frames are obtained as follows. We assume
the system starts with a discharged battery (L 	 ��i) and the
first recharging frame. The schedules for the recharging and
discharging frames are the solutions ¤ � ¥ and respectively ¤ = ¥
that satisfy:

maximize ��H$¤ �¦ �²��J*¤ = ¦ (11)

subject to L 	���
 � L 	 �ji « � J ¤ = �b (12)

L HNM � « � H ¤ �� � � J ¤ = �P�b (13)

Determining the optimal values for � and < has complexity��4¢�G��6 , as there are at most �G� stored solutions. A solution
always exists for a stable system.

During discharging, the feasibility conditions (12) and (13)
give the guarantee that the battery energy will never be less

8 JOURNAL OF EMBEDDED COMPUTING, NO. 3, JUNE 2004

than L 	 �ji . During recharging, we assume the processing unit
relies directly on the solar power, while the unused power is
stored in the battery with a worst-case loss P . For the pattern
in Figure 3(a), the assumption is natural. For the pattern in
Figure 3(b), the assumption will restrict the recharging period� H to start and end at a non-zero power level. This power
level will also be an upper bound on the power the processing
unit is allowed to draw during recharging. For future work we
plan to consider the case when the processing unit power may
exceed the generated power.

B. Dynamic Energy Reclaiming

The static component is too conservative, as the system
has to be stable even in worst-case conditions. The dynamic
component handles cases when extra energy appears in the
system. There are many ways to improve the system re-
ward when worst-case scenarios do not happen. For example,
whenever a task requires less energy than its worst-case,
the remaining tasks inside its frame can benefit from the
extra energy to improve their reward. However, this approach
implies a considerable overhead as a new schedule needs to
be constructed potentially every task completion. In terms of
system reward the approach may also be inefficient, as it could
be better to distribute the energy among frames.

Three dynamic policies are presented next. We assume
that the battery charge can be examined with reasonable
accuracy. By inspecting the battery charge at regular intervals,
dynamic schemes will observe the deviation from the worst
case scenario and redistribute the available energy among
frames so as to maximize the system value. Frame boundaries
provide such regular intervals for checking the battery level.
Thus, the extra energy is not used in the current frame and
the rescheduling overhead occurs only at frame boundaries.

The first two schemes (Proportional and Speculative) redis-
tribute the energy among all remaining frames until the first
recharging frame (at which moment, because this is a stable
system, the battery level is known to be at least Lf	 ��i). Also,
the system reward can benefit most from this approach since
reward increases less than linearly with the energy. A third
dynamic policy (Greedy) uses the static schedule for frames,
but gives all the extra energy to the next frame. Rescheduling
decisions are still made only at frame boundaries.

a) Proportional: In this scheme, upon the completion of
each frame, the available energy is redistributed equally among
all recharging frames and equally among all discharging
frames. A worst case scenario is assumed for the remaining
frames and thus the system is guaranteed to be stable. How-
ever, the extra energy can now be used to improve the system
reward while still guaranteeing its stability. When recharging
frame

/
completes, aware of the current battery energy and

the worst case remaining recharging energy, a new schedule¤ � ¥ is selected for the remaining � H � / recharging frames
and a new schedule ¤ = ¥ is selected for the �gJ discharging
frames so as to maximize 4A� H � / 6w¤ �¦ ��� J ¤ = ¦ , while ensuring
that the worst-case battery charge when the first discharging
frame starts is enough to run all the discharging frames (i.e.,
is at least Lª	 �ji � n © ¬�³ ­¯). Similarly, when discharging frame

TABLE I
INTEL XSCALE SPEED SETTINGS AND VOLTAGES

Speed (MHz) 150 400 600 800 1000
Voltage (V) 0.75 1.0 1.3 1.6 1.8

/
completes, the available battery energy is equally distributed

among the remaining ��J � / frames so that the battery energy
is at least L 	 �ji at the completion of the last discharging frame.

b) Speculative: The proportional scheme is too conser-
vative as the worst-case scenario is assumed for all remaining
frames. As has been shown in previous works [9], a better
approach is to speculate about future energy consumption and
schedule tasks accordingly, while ensuring that the system is
stable even in worst-case conditions for all remaining frames.
During discharging, the battery energy constantly decreases.
At frame boundaries, the actual decrease in battery energy
can be compared to the known worst-case. The ratio of
actual consumption to worst-case consumption can be used to
estimate consumption for future discharging frames. The ratio
will be always less than 1, as the actual discharge loss is less
than b and task energy consumptions will be less than their
worst-case. The ratio for the next frame is then predicted as
the average of such ratios for all frames in a history window.

During recharging, a similar ratio is computed at frame
boundaries for estimating the energy accumulating in the
battery.

c) Greedy: This scheme assigns all the available extra
energy to the next frame with the constraint that enough
energy is left to run the remaining frames according to
the static schedule. Thus, the extra energy in the system is
immediately used, unlike in the previous schemes.

The overhead of all dynamic schemes is ��4¢�G��6 at each
frame completion. Simulation results presented in the next
section quantitatively evaluate both the static and the dynamic
components.

C. Experimental Results

Task sets with up to �ZY´W*U°U tasks and �^Yµ¡ versions for
each task were generated as described next. For each task, the
execution time of the first version at minimum speed ? %�A@ % was
randomly generated in the range SjW*Ue'$W�U�U�X . For the remaining
versions, the running time at the first speed level was generated
by the formula ? 0�A@ % Yµ? 0�¶ %�A@ % ��� 0� , where � 0� Q²S>Ue)·v�¸+? %�q@ % '$Wu)·v�¸? %�A@ % X was randomly generated for each task version. Next, ? 0�A@ =
was computed for all versions and all speed levels, inversely
proportional with the speed (? 0�A@ = YE? 0�A@ %�¹ �¹ ³).We simulated the Intel XScale architecture, with 5 speed
levels. The running speeds and their corresponding voltages
(from [24]) are shown in Table I. For the power consumption
of a task version � 0� at speed level < , we use the formula� 0�A@ = Y_º � �k»�¼j?wº°�VB&4q<u6 (¹ ³¹ } . Thus, the power is proportional
with the normalized speed and the square of the voltage. º �
is an activity factor different for each task and identical for
all versions of the same task, proportional with the dynamic
switching caused by the task and randomly generated in the

C. RUSU et al.: MULTI-VERSION SCHEDULING IN RECHARGEABLE ENERGY-AWARE REAL-TIME SYSTEMS 9

range S>UV)]½V'�W�)]v�X . The energy requirement B 0�A@ = is then computed
as B 0�A@ = Y�� 0�q@ = ? 0�A@ = , that is the power multiplied with the time.

Task values of the first versions C %� were generated randomly
in the range S�W�UV'�W*U°U�X . For the higher versions, task rewards
were generated according to the formula C 0� Y¾C 0°¶ %� ��¿ 0� ,
where ¿ 0� QGS Ue)]v�¸wC %� '�W�)]v�¸wC %� X was randomly generated for each
task version. Thus, observe that each version requires more
time and more energy than the previous versions, but gives a
higher reward; also, there is no assumption on the shape of
the reward function (i.e., it is not necessarily convex, linear
or concave). Experiments with different ranges for ¿ 0� and � 0�
(such as SjW*UV'�W*U°U�X), also with narrower or broader ranges for
the activity factors º � (such as S>UV)]vV'�W�)]v$X) produced very similar
results.

The frame deadline
�

and maximum energy L were gen-
erated so that there is not enough time and energy to run all
highest versions at the highest frequency. The static analysis
was then performed by running the MV-Pack algorithm to
generate the intermediate solutions ¤ � ¥ .

The values for L 	 �ji , L 	���
 and LªHNM � were then generated
as described next. Lk	 �ji is 5% of the battery capacity Lk	���
 ,
which was generated so that the available energy during
discharging (i.e., L 	O�+
 � L 	 ��i) is at least

n ©:¬ �­¯ and less

than
n ©,¬°À­¯ , where m is the highest reward/energy intermediate

solution (m is not always �G� as deadlines can be missed).
Thus, Equation (12) can be satisfied and not enough energy
can be stored in the battery to run all tasks in all discharging
frames at their highest version.

Similarly, LªH+M � was generated to be at least 4 n ©®°¯ �Á�xH$6y¤ %�
and less than 4 n ©®°¯ �E� H 6w¤ �� . Equation (13) can be satisfied,
while the recharging energy cannot support all tasks at their
highest version. We thus ensure that there is a solution, but not
enough energy to run all the most valued task versions. We
also ensured that the processing unit power during recharging
periods is less than the worst-case solar power � ¨�Â�Ãz�¨ . Note
that when the system has a large amount of energy (e.g. large� H or large Lª	O�+
 and L HNM �), the problem is unrealistic and
uninteresting. The solution is also trivial, namely runs all tasks
at the highest energy/reward solution m .

The static schedule was created as the solution to (11)-
(13). The system was then simulated, starting with the first
recharging frame and a discharged (Lf	 �ji) battery. The dy-
namic behavior is simulated as follows: with a probability of
50% tasks required their worst-case time and energy and with
50% probability their actual running time (and thus energy
requirement) was between 50% to 100% of the worst-case.
Thus, on average frames require 87.5% of their worst-case
time and energy. We considered a worst-case P and b ofUV)]\ . The actual P and b values were generated for each
recharging/discharging frame in the range S>UV)]\e'$W�X .

Note that the worst-case generated energy is � ¨�Â�Ãn ¨ for each
recharging frame, corresponding to the pattern in Figure 3(a).
To simulate a deviation from the worst-case, we added an
extra energy of up to 20% for each recharging frame (i.e., the
generated energy was in the range S � ¨�Â�Ãn ¨ '�W�)]v � ¨�Â�Ãn ¨ X for each
recharging frame). To simulate the pattern in Figure 3(b), we
simulated the deviation from the worst-case as a sinusoidal

function with a maximum of 20% in the middle of the
recharging period.

A comparison between the static and dynamic schemes
for the recharging pattern in Figure 3(a) is presented in
Figures 5(a) and 5(b), showing the frame reward and battery
energy at the completion of each frame, respectively. Each
point in the graph is the average of 1000 experiments (�ZY�Ä�U
tasks, ��HkY^Ä°U , �§JkYRW*U°U). The overhead of redistributing the
energy was typically in the range of microseconds to dozens
of microseconds for each frame.

As seen in Figure 5(b), the static scheme does not react
to changes in the available energy and part of the recharging
energy is wasted: the battery becomes fully charged before the
recharging period ends (e.g., around frame 330). The dynamic
schemes generally take advantage of all the recharging energy.
In terms of frame rewards, all dynamic schemes outperform
the static. Among the dynamic schemes the worst performance
is that of the proportional, which is too conservative in
assuming a worst-case scenario for the remaining frames. As a
consequence, the available energy is too slowly redistributed,
resulting in the pattern shown in Figure 5(a), with frame
rewards slowly increasing and extra energy accumulating
towards the end of recharging and discharging periods.

The speculative scheme returned higher total rewards than
the greedy in 82% of the experiments. The greedy scheme
ensures each frame has a reward higher than or equal to the
static schedule reward. The speculative scheme only ensures
that the remaining frames are feasible (i.e., minimum reward)
and also speculates that tasks will not take their worst-case
time and energy. For this reason it can be more aggressive
and, on average, allocates more energy than the greedy policy
to the discharging frames, and less energy to the recharging
frames. Reducing the energy gap between the discharging and
the recharging frames generally results in an improved total
system value.

Figures 6(a) and 6(b) show simulation results for the pattern
in Figure 3(b). The greedy scheme uses the extra energy
immediately, with frame rewards following (on average) the
sinusoidal shape of the extra energy during the recharging
period. The speculative scheme choses instead to reserve some
of the extra energy for the discharging period, resulting in a
higher system value in 83% of the experiments.

V. CONCLUSIONS

We presented an algorithm for the problem of maximizing
the total value of a system executing periodic or frame-based
real-time tasks with an allotted fixed energy budget. Tasks are
assumed to have multiple versions, each with known rewards
and worst-case requirements. The algorithm selects the most
important versions and determines their execution speeds given
the constraints. For a system with a rechargeable battery and a
rechargeable energy source (such as a solar panel) we proposed
a static solution that determines how to best distribute the
energy so as to maximize the total value of the system.

The static analysis is necessary, as the system has to be
stable (i.e., the battery is never exhausted) in all scenarios.
However, the static solution by itself is too conservative, as

10 JOURNAL OF EMBEDDED COMPUTING, NO. 3, JUNE 2004

4500

5000

5500

6000

6500

7000

7500

8000

8500

0 100 200 300 400 500 600

Fr
am

e
re

w
ar

d

Frame number

speculative
proportional
greedy
static

(a)

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

B
at

te
ry

 e
ne

rg
y

Frame number

speculative
proportional
greedy
static

(b)

Fig. 5. Average of 1000 simulations: (a) Frame rewards (b) Battery energy (for the pattern in Figure 3(a))

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 0 100 200 300 400 500 600

Fr
am

e
re

w
ar

d

Frame number

speculative
proportional
greedy
static

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

B
at

te
ry

 e
ne

rg
y

Frame number

speculative
proportional
greedy
static

(b)

Fig. 6. Average of 1000 simulations: (a) Frame rewards (b) Battery energy (for the pattern in Figure 3(b))

it assumes a worst-case scenario for task execution times and
battery recharging/discharging. Three dynamic policies take
advantage of the extra energy in the system (for example due
to task actual execution times being less than their worst-
case, or energy loss due to battery recharging/discharging
characteristics being less than the worst-case loss). At the
completion of each frame, the dynamic policies observe the
actual battery charge and redistribute the available energy
among the remaining frames. All dynamic solutions were
shown to make better use of the available energy, resulting
in a higher total system value.

Future work will address the case of slack reclamation
inside a frame, speed change overheads, and will incorporate
recharging patterns into the proposed policies.

REFERENCES

[1] C. Rusu, R. Melhem, and D. Mossé, “Multi-version scheduling in
rechargeable energy-aware real-time systems,” in Proceedings of the
15 ÅjÆ Euromicro Conference on Real-Time Systems (ECRTS’03), Porto,
July 2003.

[2] J. Liu, P. Chou, N. Bagherzadeh, and F. Kurdahi, “Power-aware schedul-
ing under timing constraints for mission-critical embedded systems,” in
Proceedings of the 38 ÅjÆ Design Automation Conference (DAC’01), Las
Vegas, NV, June 2001.

[3] F. Yao, A. Demers, and S. Shankar, “A scheduling model for reduced cpu
energy,” IEEE Annual Foundations of Computer Science, pp. 374–382,
1995.

[4] I. Hong, G. Qu, M. Potkonjak, and M. Srivastava, “Synthesis techniques
for low-power hard real-time systems on variable voltage processors,” in
Proceedings of the 19 Å�Æ IEEE Real-Time Systems Symposium (RTSS’98),
Madrid, Dec. 1998.

[5] C. M. Krishna and Y. H. Lee, “Voltage clock scaling adaptive scheduling
techniques for low power in hard real-time systems,” in Proceedings
of the 6 ÅjÆ IEEE Real-Time Technology and Applications Symposium
(RTAS’00), Washington D. C., May 2000.

C. RUSU et al.: MULTI-VERSION SCHEDULING IN RECHARGEABLE ENERGY-AWARE REAL-TIME SYSTEMS 11

[6] H. Aydin, R. Melhem, D. Mossé, and P. M. Alvarez, “Determining
optimal processor speeds for periodic real-time tasks with different
power characteristics,” in Proceedings of the 13 ÅjÆ Euromicro Conference
on Real-Time Systems (ECRTS’01), Delft, Netherlands, June 2001.

[7] ——, “Dynamic and aggressive scheduling techniques for power-aware
real-time systems,” in Proceedings of the 22 Ç*È IEEE Real-Time Systems
Symposium (RTSS’01), 2001.

[8] F. Gruian, “Hard real-time scheduling using stochastic data and dvs
processors,” in Proceedings of International Symposium on Low Power
Electronics and Design, 2001, pp. 46–51.

[9] D. Mossé, H. Aydin, B. Childers, and R. Melhem, “Compiler-assisted
dynamic power-aware scheduling for real-time applications,” in Work-
shop on Compilers and Operating Systems for Low Power (COLP’00),
Philadelphia, PA, Oct. 2000.

[10] D. Shin, J. Kim, and S. Lee, “Intra-task voltage scheduling for low-
energy hard real-time applications,” IEEE Design and Test of Computers,
vol. 18, pp. 20–30, Mar. 2001.

[11] J. W.-S. Liu, K.-J. Lin, W.-K. Shih, A. C.-S. Yu, C. Chung, J. Yao, and
W. Zhao, “Algorithms for scheduling imprecise computations,” IEEE
Computer, vol. 24, pp. 58–68, May 1991.

[12] J. K. Dey, J. Kurose, and D. Towsley, “On-line scheduling policies for a
class of iris (increasing reward with increasing service) real-time tasks,”
IEEE Transactions on Computers, vol. 45, pp. 802–813, July 1996.

[13] C. M. Krishna and K. G. Shin, Real-time Systems. New York: Mc
Graw-Hill, 1997.

[14] H. Aydin, R. Melhem, D. Mossé, and P. M. Alvarez, “Optimal reward-
based scheduling for periodic real-time tasks,” in Proceedings of the
20 Å�Æ IEEE Real-Time Systems Symposium (RTSS’99), Phoenix, Dec.
1999.

[15] R. Rajkumar, C. Lee, J. P. Lehoczky, and D. P. Siewiorek, “A resource
allocation model for qos management,” in Proceedings of 18 ÅjÆ IEEE
Real-Time Systems Symposium (RTSS’97), Dec. 1997.

[16] ——, “Practical solutions for qos-based resource allocation problems,”
in Proceedings of 19 Å�Æ IEEE Real-Time Systems Symposium (RTSS’98),
Dec. 1998.

[17] D. Kang, S. P. Crago, and J. Suh, “A fast resource synthesis technique
for energy-efficient real-time systems,” in Proceedings of the 23 É È IEEE
Real-Time Systems Symposium (RTSS’02), Austin, Dec. 2002.

[18] P. M. Shriver, M. B. Gokhale, S. D. Briles, D. Kang, M. Cai, K. McCabe,
S. P. Krago, and J. Suh, “A power-aware, satellite-based parallel signal
processing scheme,” in Power Aware Computing. New York: Kluwer
Academic Press, 2002.

[19] B. D. Guenther, “Aided and automatic target recognition based upon
sensory inputs from image forming systems,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 19, pp. 1004–1019, Sept.
1997.

[20] G. C. Buttazzo, G. Lipari, and L. Abeni, “Elastic task model for adaptive
rate control,” in Proceedings of the 19 Å�Æ IEEE Real-Time Systems
Symposium (RTSS’98), Madrid, Dec. 1998.

[21] A. Allavena and D. Mossé, “Scheduling of frame-based embedded sys-
tems with rechargeable batteries,” in Workshop on Power Management
for Real-Time and Embedded Systems (in conjunction with RTAS’01),
2001.

[22] J. L. Stone. Photovoltaics: Unlimited electrical energy from the sun.
[Online]. Available: http://www.nrel.gov/research/pv/docs/pvpaper.html

[23] C. Rusu, R. Melhem, and D. Mossé, “Maximizing the system value
while satisfying time and energy constraints,” in Proceedings of the 23 É È
IEEE Real-Time Systems Symposium (RTSS’02), Austin, Dec. 2002.

[24] [Online]. Available: http://developer.intel.com/design/intelxscale/
benchmarks.htm

