$$
\begin{aligned}
& \int f(x) d x^{M} \\
& A(x+\delta x)=b+\delta b \\
& ||\delta b||_{\infty} \leq \mu
\end{aligned}
$$

Formulas from

Lars Eldén, Linde Wittmeyer-Koch, Hans Bruun Nielsen
Introduction to
Numerical Computation

- analysis and MatlaB ${ }^{\circledR}$ illustrations

Contents

2. Error Analysis and Computer Arithmetic 1
3. Function Evaluation 2
4. Nonlinear Equations 3
5. Interpolation 4
6. Differentiation and Richardson Extrapolation 6
7. Integration 8
8. Linear Systems of Equations 9
9. Approximation 13
10. Ordinary Differential Equations 17

Notation

$R_{\mathrm{T}} \quad$ truncation error
R_{XF} error in the result, coming from errors in the function values used
\ll "much smaller than"
\simeq "approximately equal to"
$\lesssim \quad$ "less than or approximately equal to"

2. Error Analysis and Computer Arithmetic

Let a denote an exact value, and \bar{a} an approximation of a

$$
\text { Absolute error: } \quad \Delta a=\bar{a}-a
$$

$$
\begin{aligned}
& \text { Relative error : } \frac{\Delta a}{a} \quad(\simeq \Delta a / \bar{a} \text { if }|\Delta a| \ll \bar{a}) . \\
& \quad(a \neq 0)
\end{aligned}
$$

Maximal error bound

Let $\Delta f=f\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right)-f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

$$
|\Delta f| \lesssim \sum_{k=1}^{n}\left|\frac{\partial f}{\partial x_{k}}(\bar{x}) \Delta x_{k}\right|
$$

Floating point representation

Normalized floating point number with $t+1$ digits and base β :

$$
\begin{aligned}
& x= \pm d_{0} \cdot d_{1} d_{2} d_{3} \ldots d_{t} \cdot \beta^{e} \\
& 1 \leq d_{0} \leq \beta-1, \\
& 0 \leq d_{i} \leq \beta-1, \quad i=1,2, \ldots, t
\end{aligned}
$$

and e is an integer.
Let x be the representation of the real number X, obtained by rounding. Then

$$
\frac{|x-X|}{|X|} \leq \mu, \quad \mu=\frac{1}{2} \beta^{-t}
$$

μ is called the unit roundoff.
Let \odot denote any of the arithmetic operators,,$+- *$ and $/$, and let $f l[x \odot y]$ denote the computed result of $x \odot y$. If $x \odot y \neq 0$, then

$$
\left|\frac{f l[x \odot y]-x \odot y}{x \odot y}\right| \leq \mu
$$

or, equivalently,

$$
f l[x \odot y]=(x \odot y)(1+\epsilon),
$$

for some ϵ that satisfies $|\epsilon| \leq \mu$.

3. Function Evaluation

Remainder Term Estimates

Notation: $\quad S=\sum_{n=1}^{\infty} a_{n}, \quad S_{N}=\sum_{n=1}^{N} a_{n}, \quad R_{N}=S-S_{N}=\sum_{n=N+1}^{\infty} a_{n}$.
Alternating series.

$$
\left|R_{N}\right| \leq\left|a_{N+1}\right|
$$

Estimation by an integral. Assume that $a_{n}=f(n)$ and that $f(x)$ is positive and monotonically decreasing for $x>N$. Then

$$
R_{N}=\sum_{n=N+1}^{\infty} f(n) \leq \int_{N}^{\infty} f(x) d x
$$

Comparison with a known series. Assume that

$$
0 \leq a_{n} \leq b_{n}, \quad n \geq N+1
$$

and that $T_{N}=\sum_{n=N+1}^{\infty} b_{n}$ is known. Then

$$
R_{N} \leq T_{N}
$$

4. Nonlinear Equations

Iteration methods for the solution of $f(x)=0$ with a simple root x^{*}.
Fixed point method. Reformulate $f(x)=0$ to $x=\varphi(x)$ and iterate:

$$
x_{k+1}=\varphi\left(x_{k}\right) .
$$

Converges if $\left|\varphi^{\prime}(x)\right| \leq m<1$ for x close to the root x^{*}.
Newton-Raphson's method.

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)} .
$$

Converges if x_{0} is chosen sufficiently close to x^{*}.
The secant method.

$$
x_{k+1}=x_{k}-f\left(x_{k}\right) \frac{x_{k}-x_{k-1}}{f\left(x_{k}\right)-f\left(x_{k-1}\right)} .
$$

Order of convergence. A convergent sequence $x_{0}, x_{1}, x_{2}, \ldots$ has the order of convergence p if $p \geq 1$ is the largest positive number such that

$$
\lim _{k \rightarrow \infty} \frac{\left|x_{k+1}-x^{*}\right|}{\left|x_{k+1}-x^{*}\right|^{p}}=C<\infty
$$

C is called the asymptotic error constant.
For $p=1$ and $p=2$ the convergence is said to be linear and quadratic, respectively.
Method-independent error estimate. Let \bar{x} be an approximation to a simple root x^{*} and $\widetilde{f}(\bar{x})$ be an approximation to $f(\bar{x})$. Then

$$
\left|\bar{x}-x^{*}\right| \leq \frac{|\widetilde{f}(\bar{x})|+\delta}{M},
$$

where $|\widetilde{f}(\bar{x})-f(\bar{x})| \leq \delta$ and $\left|f^{\prime}(x)\right| \geq M$ for all x in a neighbourhood of x^{*} that includes \bar{x}.

Systems of nonlinear equations. Newton-Raphson's method:

$$
x^{[k+1]}=x^{[k]}-\left(J\left(x^{[k]}\right)^{-1} f\left(x^{[k]}\right), \quad(J(x))_{i j}=\frac{\partial f_{i}}{\partial x_{j}}(x) .\right.
$$

J is the so-called Jacobian of f.

5. Interpolation

Problem: Given function values $f_{i}=f\left(x_{i}\right)$ at $n+1$ distinct points $x_{0}, x_{1}, \ldots, x_{n}$. Seek a polynomial $P(x)$ of degree $\leq n$ such that $P\left(x_{i}\right)=f_{i}, i=i=0,1, \ldots, n$.

Newton's interpolation formula

$$
\begin{aligned}
P_{n}(x)=f_{0} & +f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)+f\left[x_{0}, x_{1}, x_{2}\right]\left(x-x_{0}\right)\left(x-x_{1}\right) \\
& +\cdots+f\left[x_{0}, x_{1}, \ldots, x_{n}\right]\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)
\end{aligned}
$$

where $f\left[x_{0}, x_{1}, \ldots, x_{k}\right]$ is the k th divided difference of f with respect to the points $x_{0}, x_{1}, \ldots, x_{k}$, given by

$$
\begin{aligned}
f\left[x_{i}\right] & =f\left(x_{i}\right), \\
f\left[x_{0}, x_{1}, \ldots, x_{k}\right] & =\frac{f\left[x_{1}, x_{2} \ldots, x_{k}\right]-f\left[x_{0}, x_{1}, \ldots, x_{k-1}\right]}{x_{k}-x_{0}} .
\end{aligned}
$$

Lagrange's Interpolating Polynomial

$$
\begin{gathered}
P(x)=f_{0} L_{0}(x)+f_{1} L_{1}(x)+\cdots+f_{n} L_{n}(x), \\
L_{i}(x)=\frac{\left(x-x_{0}\right) \cdots\left(x-x_{i-1}\right)\left(x-x_{i+1}\right) \cdots\left(x-x_{n}\right)}{\left(x_{i}-x_{0}\right) \cdots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \cdots\left(x_{i}-x_{n}\right)} .
\end{gathered}
$$

Truncation error

$$
R_{\mathrm{T}}(x)=f(x)-P(x)=\frac{f^{(n+1)}(\xi(x))}{(n+1)!}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right) .
$$

Truncation error with Newton's interpolation formula,

$$
\left|R_{\mathrm{T}}\right| \lesssim \mid \text { first neglected term } \mid .
$$

Linear interpolation

$$
P(x)=f_{0}+\frac{x-x_{0}}{x_{1}-x_{0}}\left(f_{1}-f_{0}\right) .
$$

If $\left\{\bar{f}_{i}\right\}$ are given approximations of $\left\{f\left(x_{i}\right)\right\}$ and $\max _{i=0,1}\left|\bar{f}_{i}-f_{i}\right|=\epsilon$, then

$$
\left|R_{\mathrm{XF}}(x)\right|=|f(x)-P(x)| \leq \epsilon \text { for } x_{0} \leq x \leq x_{1}
$$

5. Interpolation

Cubic spline interpolation

A cubic spline s with knots $x_{0}<x_{1}<\cdots<x_{n}$ satisfies

1. s is a polynomial of degree ≤ 3 in each knot interval $\left[x_{i-1}, x_{i}\right], i=1, \ldots, n$,
2. s, s^{\prime} and $s^{\prime \prime}$ are continuous in $\left[x_{0}, x_{n}\right]$.

For $x_{i-1} \leq x \leq x_{i}$ we let $s(x)=s_{i}(x)$, expressed by

$$
s_{i}(x)=a_{i}+b_{i}\left(\frac{x-x_{i-1}}{h_{i}}\right)+c_{i}\left(\frac{x-x_{i-1}}{h_{i}}\right)^{2}+d_{i}\left(\frac{x-x_{i-1}}{h_{i}}\right)^{3}
$$

where

$$
h_{i}=x_{i}-x_{i-1} .
$$

A cubic spline that interpolates $\left(x_{0}, f_{0}\right),\left(x_{1}, f_{1}\right), \ldots,\left(x_{n}, f_{n}\right)$ is determined by

$$
\left.\begin{array}{rl}
a_{i} & =f_{i-1} \\
b_{i} & =h_{i} s_{i-1}^{\prime} \\
c_{i} & =3\left(f_{i}-f_{i-1}\right)-h_{i}\left(2 s_{i-1}^{\prime}+s_{i}^{\prime}\right), \\
d_{i} & =2\left(f_{i-1}-f_{i}\right)+h_{i}\left(s_{i-1}^{\prime}+s_{i}^{\prime}\right),
\end{array}\right\} \quad i=1,2, \ldots, n,
$$

where the s_{i}^{\prime} satisfy the linear system of equations

$$
\begin{aligned}
& h_{i+1} s_{i-1}^{\prime}+2\left(h_{i}+h_{i+1}\right) s_{i}^{\prime}+h_{i} s_{i+1}^{\prime}=3\left(h_{i+1} \frac{f_{i}-f_{i-1}}{h_{i}}+h_{i} \frac{f_{i+1}-f_{i}}{h_{i+1}}\right) \\
& \\
& i=1,2, \ldots, n-1,
\end{aligned}
$$

supplied with two extra conditions. Either

$$
\text { "Natural spline": } \quad 2 s_{0}^{\prime}+s_{1}^{\prime}=3 \frac{f_{1}-f_{0}}{h_{1}}, \quad s_{n-1}^{\prime}+2 s_{n}^{\prime}=3 \frac{f_{n}-f_{n-1}}{h_{n}},
$$

or

$$
\text { "Correct boundary conditions": } \quad s_{0}^{\prime}=f^{\prime}\left(x_{0}\right), \quad s_{n}^{\prime}=f^{\prime}\left(x_{n}\right) .
$$

Local truncation error

$$
\max _{x_{i}-1 \leq x \leq x_{i}}\left|f(x)-s_{i}(x)\right| \leq \frac{1}{384} M_{i} h_{i}^{4}+\frac{1}{4} E_{i}^{\prime} h_{i},
$$

where

$$
M_{i}=\max _{x_{i-1} \leq x \leq x_{i}}\left|f^{(4)}(x)\right|, \quad E_{i}^{\prime}=\max _{j=i-1, i}\left|f^{\prime}\left(x_{j}\right)-s^{\prime}\left(x_{j}\right)\right| .
$$

Global truncation error. If the spline s satisfies the correct boundary conditions, then

$$
\max _{x_{0} \leq x \leq x_{n}}|s(x)-f(x)|<\frac{5}{384} h^{4} M, \quad h=\max _{i} h_{i}, \quad M=\max _{i} M_{i} .
$$

6. Differentiation and Richardson Extrapolation

Forward difference approximation of the first derivative:

$$
f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}+R_{\mathrm{T}}, \quad R_{\mathrm{T}}=a_{1} h+a_{2} h^{2}+a_{3} h^{3}+\cdots
$$

If $\bar{f}(x)$ and $\bar{f}(x+h)$ are approximations to $f(x)$ and $f(x+h)$ with $\max \{|\bar{f}(x)-f(x)|,|\bar{f}(x+h)-f(x+h)|\} \leq \epsilon$, then

$$
\left|R_{\mathrm{XF}}\right| \leq \frac{2 \epsilon}{h}
$$

Central difference approximation of the first derivative:

$$
\begin{gathered}
f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}+R_{\mathrm{T}}, \quad R_{\mathrm{T}}=b_{1} h^{2}+b_{2} h^{4}+b_{3} h^{6}+\cdots . \\
\left|R_{\mathrm{XF}}\right| \leq \frac{\epsilon}{h}
\end{gathered}
$$

Second derivative:

$$
\begin{gathered}
f^{\prime \prime}(x)=\frac{f(x-h)-2 f(x)+f(x+h)}{h^{2}}+R_{\mathrm{T}}, \quad R_{\mathrm{T}}=c_{1} h^{2}+c_{2} h^{4}+c_{3} h^{6}+\cdots . \\
\left|R_{\mathrm{XF}}\right| \leq \frac{4 \epsilon}{h^{2}}
\end{gathered}
$$

Richardson extrapolation

Assume that

$$
F_{1}(h)=F(0)+a_{1} h^{p_{1}}+a_{2} h^{p_{2}}+\cdots,
$$

with known exponents p_{1}, p_{2}, \ldots, but unknown a_{1}, a_{2}, \ldots. We want to compute $F(0)$. Further, assume that F_{1} has been computed for arguments $\ldots, q^{3} h, q^{2} h, q h, h$, where $q>1$.

The first term in the expansion of the truncation error can be eliminated by putting

$$
F_{2}(h)=F_{1}(h)+\frac{1}{q^{p_{1}}-1}\left(F_{1}(h)-F_{1}(q h)\right) .
$$

Then

$$
F_{2}(h)=F(0)+\widetilde{a}_{2} h^{p_{2}}+\widetilde{a}_{3} h^{p_{3}}+\cdots .
$$

Repeated extrapolation

$$
F_{k+1}(h)=F_{k}(h)+\frac{1}{q^{p_{k}}-1}\left(F_{k}(h)-F_{k}(q h)\right) \quad k=1,2, \ldots
$$

Extrapolation scheme

$$
\begin{array}{ccccc}
F_{1}\left(q^{3} h\right) & & & & \\
F_{1}\left(q^{2} h\right) & F_{2}\left(q^{2} h\right) & & & \\
F_{1}(q h) & F_{2}(q h) & F_{3}(q h) & & \\
F_{1}(h) & F_{2}(h) & F_{3}(h) & F_{4}(h) & \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}
$$

If h is sufficiently small, then the difference between two adjacent values in the same column gives an upper bound for the truncation error.

7. Integration

Numerical computation of

$$
\int_{a}^{b} f(x) d x
$$

Equidistant points, $x_{i}=a+i h, \quad i=0,1, \ldots, m, \quad h=\frac{b-a}{m}$. Let $f_{i}=f\left(x_{i}\right)$.

Trapezoidal rule

$$
T(h)=h\left(\frac{1}{2} f_{0}+f_{1}+\cdots+f_{m-1}+\frac{1}{2} f_{m}\right) .
$$

Truncation error

$$
R_{\mathrm{T}}=\int_{a}^{b} f(x) d x-T(h)=-\frac{b-a}{12} h^{2} f^{\prime \prime}(\eta), \quad a<\eta<b,
$$

or

$$
R_{\mathrm{T}}=a_{1} h^{2}+a_{2} h^{4}+\cdots
$$

If $\left\{\bar{f}_{i}\right\}$ are approximations to $\left\{f_{i}\right\}$ with $\max _{i}\left|\bar{f}_{i}-f_{i}\right| \leq \epsilon$, then

$$
\left|R_{\mathrm{XF}}\right| \leq(b-a) \epsilon
$$

Simpson's formula

$$
S(h)=\frac{h}{3}\left(f_{0}+4 f_{1}+2 f_{2}+4 f_{3}+\cdots+2 f_{m-2}+4 f_{m-1}+f_{m}\right)
$$

where m is even. Truncation error

$$
R_{\mathrm{T}}=\int_{a}^{b} f(x) d x-S(h)=-\frac{b-a}{180} h^{4} f^{(4)}(\eta), \quad a<\eta<b,
$$

or

$$
R_{\mathrm{T}}=b_{1} h^{4}+b_{2} h^{6}+\cdots .
$$

Romberg's method

Trapezoidal method with repeated Richardson extrapolation, and successive halving of the step length $(q=2)$. Truncation error is estimated as in the general Richardson extrapolation.

Effect of erroneous function values: $\left|R_{\mathrm{XF}}\right| \leq(b-a) \epsilon$.

8. Linear Systems of Equations

The system

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1}, \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2}, \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n},
\end{gathered}
$$

can be written in matrix notation

$$
A x=b
$$

where A is the $n \times n$ coefficient matrix and b is the $n \times 1$ right hand side vector. We assume that A is nonsingular.

Triangular systems

$$
\begin{aligned}
& u_{11} x_{1}+u_{12} x_{2}+\cdots+u_{1 n} x_{n}=c_{1} \\
& u_{22} x_{2}+\cdots+u_{2 n} x_{n}=c_{2} \\
& \vdots \\
& u_{n n} x_{n}=c_{n}
\end{aligned}
$$

can be solved by back substitution:

$$
\begin{aligned}
x_{n} & =c_{n} / u_{n n} \\
x_{i} & =\left(c_{i}-\sum_{j=i+1}^{n} u_{i j} x_{j}\right) / u_{i i}, \quad i=n-1, n-2, \ldots, 1 .
\end{aligned}
$$

Gaussian elimination

The system is transformed to upper triangular form

$$
(A \mid b) \rightarrow(U \mid c)
$$

in a series of $n-1$ steps. In the typical step the current system is

$$
\left(\begin{array}{ccccccc|c}
a_{11} & a_{12} & & & \cdots & & a_{1 n} & b_{1} \\
& a_{22} & & & \cdots & & a_{2 n} & b_{2} \\
& & \ddots & & & & \vdots & \vdots \\
& & & a_{k k} & a_{k, k+1} & \cdots & a_{k n} & b_{k} \\
& & & \vdots & \vdots & & \vdots & \vdots \\
& & & a_{i k} & a_{i, k+1} & \cdots & a_{i n} & b_{i} \\
& & & \vdots & \vdots & & \vdots & \vdots \\
& & & a_{n k} & a_{n, k+1} & \cdots & a_{n n} & b_{n}
\end{array}\right) .
$$

The elements in the k th column below $a_{k k}$ are zeroed by subtracting multiples of the k th row

$$
\left.\begin{array}{rl}
m_{i k} & :=a_{i k} / a_{k k} \\
a_{i j} & :=a_{i j}-m_{i k} a_{k j}, \quad j=k+1, \ldots, n \\
b_{i} & :=b_{i}-m_{i k} b_{k}
\end{array}\right\} \quad i=k+1, \ldots, n .
$$

After $n-1$ steps A and b have been transformed to U and c, respectively, and x is computed by back substitution.

Partial pivoting

In each step determine the row index ν such that

$$
\left|a_{\nu k}\right|=\max _{k \leq i \leq n}\left|a_{i k}\right|
$$

If $\nu>k$, then rows k and ν are interchanged, and the elimination proceeds. With partial pivoting the multipliers satisfy $\left|m_{i k}\right| \leq 1$.

The purpose of pivoting is to avoid that matrix elements become too large during the elimination, with associated loss of accuracy. Pivoting is not needed if
a) A is symmetric and positive definite ($s p d$), ie

$$
x^{T} A x>0 \quad \text { for all } x \neq 0
$$

or
b) A is diagonally dominant, ie

$$
\left|a_{i i}\right| \geq \sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|, \quad i=1,2, \ldots, n
$$

with strict inequality for at least one i.

LU Factorization

Gaussian elimination with partial pivoting applied to a nonsingular matrix A is equivalent to the factorization

$$
P A=L U
$$

where P is a permutation matrix, L is a unit lower triangular matrix, and U is an upper triangular matrix. L has diagonal elements equal to one and

$$
(L)_{i k}=m_{i k}
$$

where the $m_{i k}$ are the multipliers used in the elimination.
If A is $s p d$, then we can use the factorization

$$
A=L D L^{T}
$$

where L is a unit lower triangular matrix and D is a diagonal matrix with positive diagonal elements. Alternatively, we can use the Cholesky factorization

$$
A=C^{T} C
$$

where C is an upper triangular matrix.
Solution of $A x^{[k]}=b^{[k]}, k=1,2, \ldots, K$ when the LU factorization is known:

$$
\begin{aligned}
& \text { for } k=1,2, \ldots, K \text { do } \\
& \text { solve } \quad L y^{[k]}=b^{[k]} \\
& \text { solve } \quad U x^{[k]}=y^{[k]}
\end{aligned}
$$

Operation count

	Number of flops (floating point operations)
Transformation to triangular form (computation of the LU factorization) Computation of the LDL or the	$\frac{2}{3} n^{3}$
Cholesky factorization of an $s p d$ matrix Solution of a triangular system	$\frac{1}{3} n^{3}$
Matrix-vector multiplication	n^{2}
Computation of A^{-1}	$2 n^{2}$
Solution of a tridiagonal system (without pivoting)	$2 n^{3}$

Vector and Matrix Norms

Vector norms

$$
\begin{aligned}
& \text { Euclidean norm : }\|x\|_{2}=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}=\sqrt{x^{T} x} \\
& \text { maximum norm : }\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|
\end{aligned}
$$

Induced matrix norm

$$
\|A\|=\sup _{x \neq 0} \frac{\|A x\|}{\|x\|}=\max _{\|x\|=1}\|A x\|
$$

where $\|\cdot\|$ is a vector norm.

$$
\begin{aligned}
& \|A\|_{2}=\left(\max _{1 \leq j \leq n} \lambda_{j}\left(A^{T} A\right)\right)^{1 / 2}, \quad \begin{array}{l}
\text { (the square root of the } \\
\text { largest eigenvalue of } \left.A^{T} A\right) \\
\|A\|_{\infty}
\end{array}=\max _{1 \leq i \leq n}\left\{\sum_{j=1}^{n}\left|a_{i j}\right|\right\} .
\end{aligned}
$$

From the definition it follows that $\quad\|A x\| \leq\|A\| \cdot\|x\|$.

Sensitivity analysis

Define the condition number of A,

$$
\kappa(A)=\|A\| \cdot\left\|A^{-1}\right\|
$$

and consider

$$
\text { Exact system: } \quad A x=b
$$

$$
\text { perturbed system: } \quad(A+\delta A) \bar{x}=b+\delta b
$$

If $\tau=\left\|A^{-1}\right\| \cdot\|\delta A\|=\kappa(A) \frac{\|\delta A\|}{\|A\|}<1$, then

$$
\frac{\|\bar{x}-x\|}{\|x\|} \leq \frac{\kappa(A)}{1-\tau}\left(\frac{\|\delta b\|}{\|b\|}+\frac{\|\delta A\|}{\|A\|}\right)
$$

Estimate error in "given solution" \widetilde{x}.

$$
\frac{\|\widetilde{x}-x\|}{\|x\|} \leq \kappa(A) \frac{\|r\|}{\|b\|}, \quad r=b-A \widetilde{x} .
$$

r is called the residual.

Rounding Errors in Gaussian Elimination

rule of thumb: If the unit roundoff and the condition number satisfy $\mu \simeq 10^{-d}$ and $\kappa_{\infty}(A) \simeq 10^{q}$, then a stable version of Gaussian elimination can be expected to produce a solution \hat{x} that has about $d-q$ correct decimal digits.

Overdetermined Systems

Let A be an $m \times n$ with $m>n$ and linearly independent columns. The least squares problem

$$
\min \|A x-b\|_{2}
$$

has a unique solution, which can be found by solving the normal equations

$$
A^{T} A x=A^{T} b .
$$

Alternatively, the least squares solution can be found via orthogonal transformation.

9. Approximation

Problem. Seek a function f^{*} that has minimum "distance" to either
a given function f on the interval $[a, b]$,
(continuous case)
or

$$
\text { a given vector } f_{\mathrm{G}}=\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{m}\right)\right)^{T} \quad \quad \text { (discrete case) }
$$

Use a norm to measure "distance".
Maximum norm (also called Chebyshev norm)

$$
\|f\|_{\infty}=\left\{\begin{array}{lr}
\max _{a \leq x \leq b}|f(x)| & \text { (continuous case) } \\
\max _{1 \leq i \leq m}\left|f\left(x_{i}\right)\right| & \text { (discrete case) }
\end{array}\right.
$$

Euclidean norm

$$
\|f\|_{2}=\left\{\begin{array}{cc}
\left(\int_{a}^{b} w(x) f(x)^{2} d x\right)^{1 / 2} & \text { (continuous case) } \\
\left(\sum_{i=1}^{m} w_{i} f\left(x_{i}\right)^{2}\right)^{1 / 2} & \text { (discrete case) }
\end{array}\right.
$$

w is a so-called weight function, $w(x)>0$.
Scalar product

$$
(f, g)=(g, f)=\left\{\begin{array}{cc}
\int_{a}^{b} w(x) f(x) g(x) d x & \text { (continuous case) } \\
\sum_{i=1}^{m} w_{i} f\left(x_{i}\right) g\left(x_{i}\right) & \text { (discrete case) }
\end{array}\right.
$$

In both the continuous and the discrete case

$$
\|f\|_{2}=(f, f)^{1 / 2}
$$

φ and ψ are said to be orthogonal if $(\varphi, \psi)=0$.
The sequence $\varphi_{0}, \varphi_{1}, \ldots$ is called an orthogonal system if $\left(\varphi_{i}, \varphi_{j}\right)=0$ for $i \neq j$ and $\left(\varphi_{i}, \varphi_{i}\right) \neq 0$ for all i. If, in addition, $\left(\varphi_{i}, \varphi_{i}\right)=1$ for all i, the sequence is called an orthonormal system.

Least Squares Method

Seek a linear combination of the linearly independent functions $\varphi_{0}, \varphi_{1}, \ldots, \varphi_{n}$,

$$
f^{*}=c_{0}^{*} \varphi_{0}+c_{1}^{*} \varphi_{1}+\cdots+c_{n}^{*} \varphi_{n}
$$

such that $\left\|f-f^{*}\right\|_{2}$ is minimized. f^{*} is characterized by the normal equations

$$
\left(\varphi_{0}, \varphi_{k}\right) c_{0}^{*}+\left(\varphi_{1}, \varphi_{k}\right) c_{1}^{*}+\cdots+\left(\varphi_{n}, \varphi_{k}\right) c_{n}^{*}=\left(f, \varphi_{k}\right), \quad k=0,1, \ldots, n
$$

If $\varphi_{0}, \varphi_{1}, \ldots, \varphi_{n}$ is an orthogonal system, we get the orthogonal coefficients (also called Fourier coefficients),

$$
c_{k}^{*}=\frac{\left(f, \varphi_{k}\right)}{\left(\varphi_{k}, \varphi_{k}\right)}, \quad k=0,1, \ldots, n
$$

Orthogonal Polynomials

Given a scalar product and the leading coefficients A_{0}, A_{1}, \ldots, the polynomials $P_{k}(x)=A_{k} x^{k}+\cdots$ constructed by the recurrence

$$
\begin{aligned}
P_{0}(x) & =A_{0} \\
P_{1}(x) & =\left(\alpha_{0} x-\beta_{0}\right) P_{0}(x) \\
P_{k+1}(x) & =\left(\alpha_{k} x-\beta_{k}\right) P_{k}(x)-\gamma_{k} P_{k-1}(x), \quad k=1,2, \ldots,
\end{aligned}
$$

where

$$
\begin{aligned}
\alpha_{k}=\frac{A_{k+1}}{A_{k}}, & k=0,1,2, \ldots \\
\beta_{k} & =\frac{\alpha_{k}\left(x P_{k}, P_{k}\right)}{\left(P_{k}, P_{k}\right)}, \\
\gamma_{k} & =\frac{\alpha_{k}\left(P_{k}, P_{k}\right)}{\alpha_{k-1}\left(P_{k-1}, P_{k-1}\right)},
\end{aligned} \quad k=0,1,2, \ldots,
$$

form an orthogonal system. In the discrete case, with the grid $x_{1}, x_{2}, \ldots, x_{m}$, the last polynomial in the sequence is P_{m-1}.

Transformation of variable between $a \leq x \leq b$ and $-1 \leq t \leq 1$,

$$
t=\frac{2 x-(b+a)}{b-a}, \quad x=\frac{1}{2}(b-a) t+\frac{1}{2}(a+b) .
$$

Legendre Polynomials

$$
\begin{gathered}
\int_{-1}^{1} P_{k}(x) P_{n}(x) d x=\left\{\begin{array}{cc}
0 & \text { for } k \neq n \\
\frac{2}{2 n+1} & \text { for } k=n
\end{array}\right. \\
P_{n}(x)=\frac{1}{2^{n} \cdot n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}
\end{gathered}
$$

Recurrence,

$$
\begin{aligned}
& P_{0}(x)=1, \quad P_{1}(x)=x \\
& P_{n+1}(x)=\frac{2 n+1}{n+1} x P_{n}(x)-\frac{n}{n+1} P_{n-1}(x), \quad n=1,2, \ldots
\end{aligned}
$$

First five Legendre polynomials

$$
\begin{aligned}
& P_{0}(x)=1, \quad P_{1}(x)=x, \quad P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right), \\
& P_{3}(x)=\frac{1}{2}\left(5 x^{2}-3 x\right), \quad P_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right) .
\end{aligned}
$$

Chebyshev Polynomials

$$
\begin{gathered}
\int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} T_{k}(x) T_{n}(x) d x=\left\{\begin{array}{cl}
0 & \text { for } k \neq n \\
\frac{1}{2} \pi & \text { for } k=n>0 \\
\pi & \text { for } k=n=0
\end{array}\right. \\
T_{n}(x)=\cos (n \arccos x)
\end{gathered}
$$

Recurrence,

$$
\begin{aligned}
& T_{0}(x)=1, \quad T_{1}(x)=x \\
& T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x), \quad n=1,2, \ldots
\end{aligned}
$$

First five Chebyshev polynomials

$$
\begin{aligned}
& T_{0}(x)=1, \quad T_{1}(x)=x, \quad T_{2}(x)=2 x^{2}-1 \\
& T_{3}(x)=4 x^{3}-3 x, \quad T_{4}(x)=8 x^{4}-8 x^{2}+1
\end{aligned}
$$

Zeros of T_{n} (Chebyshev nodes),

$$
x_{i}=\cos \left(\frac{2 i-1}{2 n} \pi\right), \quad i=1,2, \ldots, n
$$

T_{n} oscillates between ± 1 in the points

$$
\widetilde{x}_{k}=\cos \left(\frac{k}{n} \pi\right), \quad k=0,1, \ldots, n
$$

Discrete Cosine Transform (DCT)

The functions $\varphi_{0}, \varphi_{1}, \ldots, \varphi_{m-1}$, defined by

$$
\varphi_{k}(x)=\alpha_{k} \cos k x, \quad \alpha_{k}= \begin{cases}\sqrt{1 / m}, & k=0 \\ \sqrt{2 / m}, & k>0\end{cases}
$$

form an orthonormal system with respect to the scalar product

$$
(u, v)=\sum_{l=1}^{m} u\left(x_{l}\right) \cdot v\left(x_{l}\right), \quad x_{l}=\frac{(2 l-1) \pi}{2 m}
$$

Given a signal, ie a vector $f_{\mathrm{G}} \in \mathbb{R}^{m}$. Its DCT is

$$
c=\left(c_{0}, c_{1}, \ldots, c_{m-1}\right)^{T}, \quad c_{j}=\varphi_{j \mathrm{G}}^{T} f_{\mathrm{G}} .
$$

Given the DCT c, the signal can be found by the inverse discrete cosine transform (IDCT)

$$
f_{\mathrm{G}}=\sum_{j=0}^{m-1} c_{j} \varphi_{j \mathrm{G}}
$$

Minimax (Chebyshev) Approximation

Find the polynomial p^{*} of degree $\leq n$ such that

$$
E_{n}(f)=\left\|f-p_{n}^{*}\right\|_{\infty} \leq\left\|f-p_{n}\right\|_{\infty} \quad \text { for all polynomials } p_{n} \text { of degree } \leq n
$$

Alternation property: Assume that $f \in C[a, b] . p_{n}^{*}$ is the best maximum norm approximation of f if and only if there are points $a \leq \xi_{1}<\xi_{2}<\cdots<\xi_{n+2} \leq b$ such that

$$
\left|f\left(\xi_{k}\right)-p_{n}^{*}\left(\xi_{k}\right)\right|=\left\|f-p_{n}^{*}\right\|_{\infty}, \quad k=1,2, \ldots, n+2
$$

and

$$
f\left(\xi_{k+1}\right)-p_{n}^{*}\left(\xi_{k+1}\right)=-\left(f\left(\xi_{k}\right)-p_{n}^{*}\left(\xi_{k}\right)\right), \quad k=1,2, \ldots, n+1
$$

Approximation to p_{n}^{*} by Chebyshev interpolation: Transform the range $[a, b]$ to $[-1,1]$ and use interpolation points

$$
x_{i}=\cos \left(\frac{2 i+1}{2(n+1)} \pi\right), \quad i=0,1, \ldots, n
$$

Maximum error is at most $5 E_{n}(f)$ if $n \leq 100$.

10. Ordinary Differential Equations

Initial Value Problem

$$
y^{\prime}=f(x, y), \quad y(a)=\alpha
$$

Seek the solution on the range $[a, b]$. Introduce a grid with step length h

$$
x_{n}=a+n h, \quad n=0,1, \ldots, N, \quad h=\frac{b-a}{N} .
$$

Find approximations y_{n} to $y(a+n h)$
Local truncation error at x_{n+1} is the difference between the computed value y_{n+1} and the value at x_{n+1} on the solution curve that passes through the point $\left(x_{n}, y_{n}\right)$.

Global truncation error at x_{n+1} is the difference $R_{\mathrm{T}}=y\left(x_{n+1}\right)-y_{n+1}$, where $y(x)$ is the solution of the given initial value problem.

Stability. When the numerical method is applied to the test problem

$$
y^{\prime}=\lambda y, \quad y(0)=1
$$

with $\lambda<0$, the sequence y_{1}, y_{2}, \ldots should be decreasing.
Euler's method

$$
\begin{aligned}
y_{0} & =\alpha \\
y_{n+1} & =y_{n}+h f\left(x_{n}, y_{n}\right), \quad n=0,1, \ldots, N-1 .
\end{aligned}
$$

Local truncation error $O\left(h^{2}\right)$. Global truncation error $\left|R_{\mathrm{T}}\right|=O(h)$.
The method is stable for $h<2 /|\lambda|$.
Heun's method

$$
\begin{aligned}
k_{1} & =f\left(x_{n}, y_{n}\right), \\
k_{2} & =f\left(x_{n}+h, y_{n}+h k_{1}\right), \\
y_{n+1} & =y_{n}+\frac{h}{2}\left(k_{1}+k_{2}\right) .
\end{aligned}
$$

$\left|R_{\mathrm{T}}\right|=O\left(h^{2}\right)$. The method is stable for $h<2 /|\lambda|$.
Classical Runge-Kutta method

$$
\begin{aligned}
k_{1} & =f\left(x_{n}, y_{n}\right) \\
k_{2} & =f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} h k_{1}\right) \\
k_{3} & =f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} h k_{2}\right) \\
k_{4} & =f\left(x_{n}+h, y_{n}+h k_{3}\right) \\
y_{n+1} & =y_{n}+\frac{h}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) .
\end{aligned}
$$

$\left|R_{\mathrm{T}}\right|=O\left(h^{4}\right)$. The method is stable for $h<2.785 /|\lambda|$.
Trapezoidal method (an implicit method

$$
y_{n+1}=y_{n}+\frac{1}{2} h\left(f\left(x_{n}, y_{n}\right)+f\left(x_{n+1}, y_{n+1}\right)\right)
$$

$\left|R_{\mathrm{T}}\right|=O\left(h^{2}\right)$. Stable for all $h>0$.

Boundary Value Problems

$$
y^{\prime \prime}=\psi\left(x, y, y^{\prime}\right), \quad y(a)=\alpha, \quad y(b)=\beta
$$

A difference method. Introduce a grid $x_{n}=a+n h, \quad n=0,1, \ldots, N ; h=\frac{b-a}{N}$, and approximate derivatives by central differences,

$$
y^{\prime \prime}\left(x_{n}\right) \simeq \frac{y\left(x_{n-1}\right)-2 y\left(x_{n}\right)+y\left(x_{n+1}\right)}{h^{2}}, \quad y^{\prime}\left(x_{n}\right) \simeq \frac{y\left(x_{n+1}\right)-y\left(x_{n-1}\right)}{2 h}
$$

Use these in the differential equation for $x=x_{1}, \ldots, x_{N-1}$; replace " \simeq " by " $=$ " and $y\left(x_{k}\right)$ by the approximation y_{k},

$$
\frac{y_{n-1}-2 y_{n}+y_{n+1}}{h^{2}}=\psi\left(x_{n}, y_{n}, \frac{y_{n+1}-y_{n-1}}{2 h}\right), \quad n=1, \ldots, N-1
$$

and supply with the boundary conditions: $y_{0}=\alpha, y_{N}=\beta$. This is a (possibly nonlinear) system of $N-1$ equations in the $N-1$ unknowns y_{1}, \ldots, y_{N-1}.

Truncation error $O\left(h^{2}\right)$.

A finite element method - Galerkin's method

$$
L y=-y^{\prime \prime}+q y=f, \quad y(a)=y(b)=0
$$

Let \mathbb{V} be a class of test functions, that satisfy the boundary conditions

$$
\begin{gathered}
\mathbb{V}=\left\{v \mid v^{\prime} \text { is piecewise continuous and bounded on }[a, b],\right. \\
\quad \text { and } v(a)=v(b)=0\} .
\end{gathered}
$$

Weak formulation of the boundary value problem,

$$
(v, L y)=\left(v^{\prime}, y^{\prime}\right)+q(v, y)=(v, f) \quad \text { for all } v \in \mathbb{V}
$$

Choose $\mathbb{V}=\operatorname{span}\left\{\varphi_{j}\right\}_{j=1}^{N-1}$ and $y^{h}=\sum_{j=1}^{N-1} c_{j} \varphi_{j}$. The coefficients satisfy a linear system $\left(K_{0}+K_{1}\right) c=F$, where

$$
\left(K_{1}\right)_{i j}=\left(\varphi_{i}^{\prime}, \varphi_{j}^{\prime}\right), \quad\left(K_{0}\right)_{i j}=q(\varphi i, \varphi j), \quad F_{i}=\left(\varphi_{i}, f\right)
$$

The shooting method
Let $g(\gamma)$ denote the value at $x=b$ obtained by numerical solution of the initial value problem

$$
y^{\prime \prime}=\psi\left(x, y, y^{\prime}\right), \quad y(a)=\alpha, \quad y^{\prime}(a)=\gamma .
$$

Solve the equation (eg by means of the secant method)

$$
g(\gamma)-\beta=0
$$

