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Notation
Rt truncation error
Rxg error in the result, coming from errors in the function values used

< “much smaller than”

12

“approximately equal to”

A

“less than or approximately equal to”
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2. Error Analysis and Computer Arithmetic
Let a denote an exact value, and @ an approximation of a

Absolute error: Aa=a—a .

A
Relative error : 7@ (~ Aa/a if |Ad < a) .

(a#0)

Maximal error bound

Let Af = f(71,T2, ..., Tpn) — f(x1, 22, ..., 2p).

k

AL D5,

k=1

Floating point representation
Normalized floating point number with ¢4+1 digits and base (3 :

Tr = :l:do.dldzd;g ce dt : ﬁe )

1§d0§6_1a
0<d;<fB—1, i=12,....1t,

and e is an integer.

Let x be the representation of the real number X, obtained by rounding. Then

|z — X]|
| X]

< u, Mzéﬂ_t'

i is called the unit roundoff.

Let ® denote any of the arithmetic operators +, —, * and /, and let fl[z ® y] denote
the computed result of x ® y. If z ® y # 0, then

fllzoyl—zoy| _
TOY o

Y

or, equivalently,
fllzoyl=(roy)(1+e),

for some € that satisfies |¢] < p.
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3. Function Evaluation

Remainder Term Estimates

00 N o)
Notation: S:Z@n, SN:Zan, Ry=S5—-Sy= Z Qp .
n=1

n=1 n=N-+1

Alternating series.

|Rn| < laia] -

Estimation by an integral. Assume that a, = f(n) and that f(x) is positive and
monotonically decreasing for x > N. Then

Ry= > fn< [ fade.

n=N+1

Comparison with a known series. Assume that
0<a,<b,, n>N+1,

and that Ty = Z b, is known. Then
n=N-+1

Ry <Ty .
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4. Nonlinear Equations

Iteration methods for the solution of f(z) = 0 with a simple root z*.

Fized point method. Reformulate f(z) =0 to x = p(x) and iterate:
Tha1 = @(Tk) -
Converges if |¢'(z)] < m < 1 for x close to the root z*.

Newton-Raphson’s method.
f(zx)

T T T )

Converges if xg is chosen sufficiently close to z*.

The secant method.

T — Tk—1

flay) = flop—)

Thr1 = T — f(an)

Order of convergence. A convergent sequence xg,Z1,s,... has the order of
convergence p if p > 1 is the largest positive number such that
. ‘l'k+1 - 513'*|

lim

=(C< .
k=00 [Tpyr — x*[P

C is called the asymptotic error constant.

For p=1 and p=2 the convergence is said to be linear and quadratic, respectively.

Method-independent error estimate. Let Z be an approximation to a simple
root z* and f(T) be an approximation to f(z). Then

@[+
_ < W\ 7

where |f(Z) — f(Z)| < § and |f'(x)] > M for all z in a neighbourhood of z* that
includes 7.

Systems of nonlinear equations. Newton-Raphson’s method:

_Ofi

o — b () ), () = o)

J is the so-called Jacobian of f.
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5. Interpolation

Problem: Given function values f; = f(z;) at n+1 distinct points xg, 21, ..., T,.
Seek a polynomial P(x) of degree < n such that P(z;) = f;, i =i=0,1,...,n.

Newton’s interpolation formula
Po(x) = fo + flwe, x1](x — m0) + flao, 71, 22)(x — 30) (2 — 21)
+ o —|—f[$0,.’1}1,...7.1‘71](55—.’170)(55—371)“‘(Jf—l’n,1> )

where f[xg, 21, ...,x;] is the kth divided difference of f with respect to the points
X0, L1, ..., Tk, given by
flai] = flai)

f[i[)l,.ilfg Ce ,ilfk] — f[xo,xl, ce ,[Ek,l]
T — X ’

f[x()axh"'vxk‘] -

Lagrange’s Interpolating Polynomial
P(x) = foLo(x) + fili(x) + -+ + fuln(z) ,

(@ —xo) (@ —mi)(@ —xiy1) -+ (& — @)
(%’ - xo) T (xz - Ii—l)(xi - $¢+1) T (iUz - xn) .

Truncation error

_ [ ()

D (T @) ()

Truncation error with Newton’s interpolation formula,

|Rp| < | first neglected term | .

Linear interpolation

r — X9

P(x) = fo+ (f1 = fo) -

Tr1 — X
If {f,} are given approximations of {f(z;)} and max,—q; |f; — fi| = €, then

|Rxp(z)| = |f(x) — P(x)| <€ for zop <z <.
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Cubic spline interpolation

A cubic spline s with knots xg < 1 < - -+ < x,, satisfies

1. s is a polynomial of degree < 3 in each knot interval [x; 1, z;], i=1,...,n,
2. s, s" and " are continuous in [zg, Z,].

For z; 1 <a < x; we let s(x) = s;(x), expressed by

2 3
si(a;)—az+bz( D )4—01( P )+dl( B ),

where
hz =T — Ti—1
A cubic spline that interpolates (zo, fo), (21, f1),--., (Zn, fn) is determined by
a; = fi—l )
bi = hiS;_l s
i=1,2,...,n,
¢i = 3(fi — fii1) — hi(2si_1 + 57) ,
di = 2(fi-1 — fi) + hi(sizq +57)
where the ¢ satisfy the linear system of equations
hHﬁ;r+mm+mey+m$H=3wﬂﬁrHﬂ1+hﬂ2 fﬁ
% i+1

i=1,2...,n-1,

supplied with two extra conditions. Either

fl_fO /
S

“Natural spline”:  2sy+ s} =3
or

“Correct boundary conditions”: sy = f'(zo) , s, = f'(zn) .
Local truncation error

max |f(z) — si(x)| < g5 Mihi + 1Ejh;

zi—1<z<w;

where
M; = max |fW(z)|, E/ = max |f(z;)—s(z;)| .

zi—1<z<z; Jj=i—-13

Global truncation error. If the spline s satisfies the correct boundary conditions,
then
max |s(x) — f(7)] < 225 h*M, h= maxh M = max M, .

zo<z<wy 384
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6. Differentiation and Richardson Extrapolation

Forward difference approximation of the first derivative:

+h) —
f’(:c):f(x )h f(I)JrRT, Ry = ath + axh® +azh® + -+ - .

If f(:v)_and f(x+h) are approximations to f(r) and f(z+h) with
mac{ [F(z) — f(@)], [F(z+h) — f(-+h)|} < e, then

2¢
|Rxr| < T

Central difference approximation of the first derivative:

f(xth) = f(z=h)
2h

f/(.l’) - + Rr, RT:b1h2+b2h4—|—b3h6+... )

€
|Rxr| < 7

Second derivative:

fla—h) = 2f(z) + f(z+h)

72 + R, Rr=ch®>+coh* +esh® + -+ .

f'(x) =

4e
|Rxr| < 72
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Richardson extrapolation

Assume that
Fi(h) = F(0) + a1h?* 4+ agh?* + - - - |

with known exponents py, p, . . ., but unknown ay, as, . ... We want to compute F'(0).
Further, assume that I} has been computed for arguments . .., ¢*h, ¢*h, gh, h, where
q> 1

The first term in the expansion of the truncation error can be eliminated by putting

Fy(h) = Fi(h) +

g (B() = Fa(an)

Then
Fy(h) = F(0) + agh?® + agh? + - - .
Repeated extrapolation

1
Pr — 1

Fri1(h) = Fi(h) + . (Fu(h) — Fi(qh)) k=1,2,... .

Extrapolation scheme

Fi(q°h)

Fi(¢*h)  Fy(q°h)

Fi(qh) Fy(qh) F3(qh)

Fi(h) Fy(h) F3(h) Fy(h)

If h is sufficiently small, then the difference between two adjacent values in the same
column gives an upper bound for the truncation error.
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7. Integration

Numerical computation of

/abf(x)dx.

b
Equidistant points, z; = a+th, 1=0,1,....,m, h= 270 Let fi= f(x).
m
Trapezoidal rule

Truncation error

b—a

b
Re= [ f@)do—T0) = ~"22 11", a<n<b.

or
Ry = ai1h® + agh* +--- |

If {f;} are approximations to {f;} with max;|f; — fi| < e, then

|RXF| S (b— CL)G .

Simpson’s formula

S = 2 (ot 4+ 2o 4 Afy 4 2+ Afa + )

where m is even. Truncation error

b
RT=/f<x>dx—S(h>: 0 @), a<n<b,

180

or

Ry =bh* +bhS + -+ .

Romberg’s method

Trapezoidal method with repeated Richardson extrapolation, and successive halving
of the step length (¢ = 2). Truncation error is estimated as in the general Richardson
extrapolation.

Effect of erroneous function values: |Rxp| < (b— a)e .
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8. Linear Systems of Equations

The system
a1171 + ajpxe + - -+ a1 Ty, = by,
a21T1 + Q22%o + -+ + QopTy = by,

Ap1T1 + oy + -+ + App®y = by

can be written in matrix notation
Ar =10,
where A is the nxn coefficient matriz and b is the nx1 right hand side vector. We
assume that A is nonsingular.
Triangular systems

U1 L1 + U12T2 + -+ - + UpTyn = C1
U222 + -+ ULy — Co

UnpnTn = Cn
can be solved by back substitution:

Tp = Cn/unn
n

xi:(ci— Zuijxj)/uii, z:n—l,n—2,,1
j=i+1
Gaussian elimination
The system is transformed to upper triangular form
(A]d) = (U]e)

in a series of n—1 steps. In the typical step the current system is

a1 a2 T am | b
22 T A2p, by

Ok Qkk+1  *°  Qkn b

Qi Qik+1 " Qin b;

Qpk Ank+1  *°°  Ann bn

The elements in the kth column below ay, are zeroed by subtracting multiples of
the kth row

Mgk = aik/akk
Qi = Q5 — My Ay, j:k—f—l,,n Z:k+1,,n
bi = by —muby

After n—1 steps A and b have been transformed to U and c, respectively, and x is
computed by back substitution.
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Partial pivoting

In each step determine the row index v such that

layk| = max |a|
k<i<n

If v >k, then rows k and v are interchanged, and the elimination proceeds. With
partial pivoting the multipliers satisfy |m;| < 1.

The purpose of pivoting is to avoid that matrix elements become too large during
the elimination, with associated loss of accuracy. Pivoting is not needed if
a) A is symmetric and positive definite (spd), ie
TAz>0 forala#0,

or

b) A is diagonally dominant, ie

n

jaii| = Z la|, 1=12,....n,
=L

with strict inequality for at least one .

LU Factorization

Gaussian elimination with partial pivoting applied to a nonsingular matrix A is
equivalent to the factorization
PA=LU,

where P is a permutation matrix, L is a unit lower triangular matrix, and U is an
upper triangular matrix. L has diagonal elements equal to one and

(L)ik = M ,
where the m;;, are the multipliers used in the elimination.
If A is spd, then we can use the factorization

A=LDL"

where L is a unit lower triangular matrix and D is a diagonal matrix with positive
diagonal elements. Alternatively, we can use the Cholesky factorization

A=C"C,
where C' is an upper triangular matrix.
Solution of Az =bl¥! k =1,2,..., K when the LU factorization is known:

for k=1,2,..., K do
solve Lylkl = pl¥]
solve Uzt = yl¥
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Operation count

Number of flops
(floating point operations)

Transformation to triangular form 2 3
(computation of the LU factorization) 3
Computation of the LDL or the 1,3
Cholesky factorization of an spd matrix 3
Solution of a triangular system n?
Matrix-vector multiplication o2n?
Computation of A1 on?
Solution of a tridiagonal system 2
(without pivoting)
Vector and Matrix Norms
Vector norms
Euclidean norm : ||z||s = (xf+---+m,2l)1/2 =Vale,
maximum norm :  ||z||s = max |z .

Induced matriz norm

A
4 = sup 1251 a0
az0 ||l lzl=1
where || - || is a vector norm.

the square root of the
largest eigenvalue of AT A)

1/2 (
4l = (s A7)

n
Al = poax { D lal }
j:

From the definition it follows that || Az|| < ||A] - [|z]] .

Sensitivity analysis
Define the condition number of A,
K(A) = [JA[l- A7
and consider
Exact system: Axr =b,
perturbed system: (A+0A) T =b+ b .
10A]
A

[z -zl _ K(4) (Il5b\|+ll5z4|!) .
[l = T=7 ol Al

If 7= | A7 [|6A]| = w(A) < 1, then

11
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Estimate error in “given solution” .

I ~
K(A) T r=b— A7 .
151

r is called the residual.

Rounding Errors in Gaussian Elimination

rule of thumb: If the unit roundoff and the condition number satisfy p ~ 10~¢ and
Koo(A) ~ 109, then a stable version of Gaussian elimination can be expected to
produce a solution Z that has about d—gq correct decimal digits.

Overdetermined Systems

Let A be an mxn with m >n and linearly independent columns. The least squares
problem
min [|Azx — b]|2

has a unique solution, which can be found by solving the normal equations
ATAz = AT .

Alternatively, the least squares solution can be found via orthogonal transformation.
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9. Approximation

Problem. Seek a function f* that has minimum “distance” to either

a given function f on the interval [a, b], (continuous case)
or
a given vector f, = (f(z1), f(z2), ..., f(xm))T. (discrete case)

Use a norm to measure “distance”.

Mazimum norm (also called Chebyshev norm)

max |f(2)] (continuous case) ,

a<z<

1l = max | f(x;)| (discrete case) .
1<i<m

Fuclidean norm

b
(/ w(z) f(x)? dx) 12 (continuous case) ,
Ifll2 = " m
O wif(@)?)

i=1

2 (discrete case) .

w is a so-called weight function, w(x) > 0.

Scalar product

/ w(z) f(x)g(x) dx (continuous case) ,

Z w; f(x;)g(z;) (discrete case) .

In both the continuous and the discrete case

£l = (f, )2
¢ and © are said to be orthogonal if (¢,1)) = 0.
The sequence ¢y, ¢1, ... is called an orthogonal system if (y;,¢;) = 0 for i # j and

(pi, i) # 0 for all . If, in addition, (¢;,¢;) = 1 for all 4, the sequence is called an
orthonormal system.

Least Squares Method

Seek a linear combination of the linearly independent functions ¢, ¢1, ..., ¢n,
[ =cpot i+ +con

such that || f — f*[|2 is minimized. f* is characterized by the normal equations

(ng?SOk)CS + (Sola @k)CT T+t (QOn,QOk)CZ - (f? Spk)v k= 07 17 s

If wo,¢1,...,¢, is an orthogonal system, we get the orthogonal coefficients (also
called Fourier coefficients),

C*ZM k=0,1,....,n.
k (@k,@k)7 ) )
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Orthogonal Polynomials

Given a scalar product and the leading coefficients Ay, Ay, ..., the polynomials
Py.(x) = Apz* + - constructed by the recurrence
Po(f[)) = AO

Pl(.T) = (OZQZE — ﬂo)Pg(ZE)
Peia(z) = (o — Bi) Pre(2) — b (z), k=1,2,...,

where 4
k+1
= k=0,1,2,...
&7 Ak; ) 5 Ly 4y )
ak(ka, Pk)
O = ———— k=0,1,2,...,
: (Pr, Pr)
P, P,
Ve = ak( ik k) ) k:1727"'7
p—1(Pr-1, Pr-1)
form an orthogonal system. In the discrete case, with the grid zq, xs,...,x,,, the

last polynomial in the sequence is P,,_1.
Transformation of variable between a < x < band —1 <t <1,

t_2:z:—(b+a)

— , r=1(b—a)t+3(a+b).

Legendre Polynomials

L 0 for k #n ,
/ Py(z) Py (z) do = 9
-1 fork=n.
2n
1 d"
P — el 2 1)»
n(7) 2n . nl dzn ( )

Recurrence,
Pyx)=1, P(z)=u,

2n+1 n
Po(z) = nt 1 xpn(x)_n—ﬂpn—l(x)ﬂ n=12...

First five Legendre polynomials
1
PO('I):L P1($):I, P2<ZL’>:§(32L’2—1) ’

1 1
Ps(x) = 5(5952 — 3x), Py(x) = §(35x4 —302% +3) .
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Chebyshev Polynomials

0 fork+#n,

1
1
—— T ()T (x)de =4 in fork=n>0,
/_1m k() () 2
m fork=n=0.
T, (x) = cos(narccos x) .

Recurrence,
To(z) =1, Ti(z)==,

=z
Toii(z) =22 T,(x) — Thq(z), n=1,2,....
First five Chebyshev polynomials
To(z) =1, Ty (z) = =, Ty(z) =22* — 1,
Ty(z) = 423 — 3z, Ty(z) = 8z* —8x% + 1.

Zeros of T,, (Chebyshev nodes),

T,, oscillates between +1 in the points

fk:cos(gﬁ), k=0,1,...,n.

Discrete Cosine Transform (DCT)
The functions ¢q, @1, ..., Ym_1, defined by

V1i/m, k=0
Vv2/m, k>0.

form an orthonormal system with respect to the scalar product

() = ag cos kx, o = {

m

20— 1)
(u,v) = ;u(xl) ~u(xy) , T = % :
Given a signal, ie a vector f, € R™. Its DCT is
c=(co,c1,. . Cmo1)t, cj:%TGfG :

Given the DCT ¢, the signal can be found by the inverse discrete cosine transform
(IDCT)

m—1

fc; = ZCjSOjG .

=0
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Minimax (Chebyshev) Approximation
Find the polynomial p* of degree < n such that

E.(f)=f —pPillc <|If —pnlloc for all polynomials p,, of degree <mn .

Alternation property: Assume that f € Cla,b]. p} is the best maximum norm ap-
proximation of f if and only if there are points a < & < & < -++ < &40 < b such
that

|f<§k>_p2(§k‘)| = Hf_p:,HOO? k=1,2,...,n+2
and

f(fk-i-l) - p:‘z(éhk-&-l) = (f(gk’) - p:;(fk)) , k=1,2,...,n+l.
Approximation to p: by Chebyshev interpolation: Transform the range [a,b] to

[—1,1] and use interpolation points

21+1
2(n+1)

a:i:cos( ), 1=0,1,...,n.

Maximum error is at most 5E,(f) if n <100.
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10. Ordinary Differential Equations
Initial Value Problem

vy =flzy), yla)=a.
Seek the solution on the range [a, b]. Introduce a grid with step length h

_b—a

n — h, :0,17...,]\[7 h
x a+n n N

Find approximations ¥, to y(a + nh)

Local truncation error at x,.1 is the difference between the computed value y,, 1
and the value at x,,1 on the solution curve that passes through the point (x,,y,).

Global truncation error at x,.1 is the difference Rt = y(x,11) — Yns1, where y(z) is
the solution of the given initial value problem.

Stability. When the numerical method is applied to the test problem

y=Xy, y0)=1,
with A < 0, the sequence vy, 9o, ... should be decreasing.

Euler’s method
Yo = @,
Ynt1 = Yn + hf(Tn,yn), n=0,1,... ., N—1.
Local truncation error O(h?). Global truncation error |Rt| = O(h).

The method is stable for h < 2/|A|.

Heun’s method

kl - f(xnayn) 5
ky = f(zn + h,yn + hky)

h
Ynt1l = Yn + §(k1 + k2) .

|Rt| = O(h?). The method is stable for h < 2/|\|.

Classical Runge-Kutta method

f(Tn,yn)

f(@n + 5h,yn + $hky)
f(@n + Sh,y, + Shks) |
f(zn + hyyn + hks) ,

Ky
ks
ks
ka

h
Yn+1l = Yn + E(kl + 2k + 2ks + ky) .

|Rt| = O(h*). The method is stable for h < 2.785/||.

Trapezoidal method — (an implicit method

Yn+1 = Yn + %h(f<xm yn) + f($n+17yn+1)) .
|Rt| = O(h?). Stable for all h > 0.



18 10. ORDINARY DIFFERENTIAL EQUATIONS

Boundary Value Problems

y'=(,yy), yla)=a, yb)=0.

A difference method. Introduce a grid x,, = a+nh, n=0,1,..., N;h = ——, and

approximate derivatives by central differences,

) = V) = @) @) e Y@ — Y@

o h ’ " 2h '
Use these in the differential equation for = 1, ..., 2xx_1; replace “~” by “=" and
y(z) by the approximation yy,

Yn—1 = 2Yn + Yn+1 Ynt1 — Yn—1 _
12 —¢<$n7yn7T), n—l,...,N—l,

and supply with the boundary conditions: yo = «, yxy = (. This is a (possibly
nonlinear) system of N—1 equations in the N—1 unknowns 41, ..., yn_1.

Truncation error O(h?).

A finite element method — Galerkin’s method
Ly=—y"+qy=1Ff  yla)=yb)=0.
Let V be a class of test functions, that satisfy the boundary conditions

V = {v | v/ is piecewise continuous and bounded on [a, b],
and v(a) =v(b) =0 } .

Weak formulation of the boundary value problem,

(v, Ly) = (V') + q(v,y) = (v, f) forallveV.

N-1
Choose V = span{yp; jV: Jandy = Z c;p; - The coefficients satisfy a linear system
j=1

(Ko + Ki)e = F, where

The shooting method

Let g(v) denote the value at x = b obtained by numerical solution of the initial
value problem
y'=y@yy),  yla)=a, yla)=7.

Solve the equation (eg by means of the secant method)

g(v)—p=0.



