
O
(h

p )

∫ f(x)dx

A(x+ δx) = b+ δb
|| δb||

∞ ≤ µ

Σ
 c

j ψ
j (x)

Formulas from

Lars Eldén, Linde Wittmeyer-Koch, Hans Bruun Nielsen

Introduction to

Numerical Computation

– analysis and Matlab
r illustrations

January 9, 2004



ii Contents. Notation

Contents

2. Error Analysis and Computer Arithmetic . . . . . . . . . . . . . 1
3. Function Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
4. Nonlinear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
5. Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
6. Differentiation and Richardson Extrapolation . . . . . . . . . 6
7. Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
8. Linear Systems of Equations . . . . . . . . . . . . . . . . . . . . . . . . . 9
9. Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

10. Ordinary Differential Equations . . . . . . . . . . . . . . . . . . . . . . 17

Notation
RT truncation error
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2. Error Analysis and Computer Arithmetic

Let a denote an exact value, and a an approximation of a

Absolute error : ∆a = a− a .

Relative error

(a 6= 0)

:
∆a

a
(' ∆a/a if |∆a| ¿ a) .

Maximal error bound

Let ∆f = f(x1, x2, . . . , xn)− f(x1, x2, . . . , xn).

|∆f | <∼
n∑
k=1

∣∣∣∣ ∂f

∂xk
(x) ∆xk

∣∣∣∣ .

Floating point representation

Normalized floating point number with t+1 digits and base β :

x = ±d0.d1d2d3 . . . dt · βe ,

1 ≤ d0 ≤ β− 1 ,
0 ≤ di ≤ β− 1, i = 1, 2, . . . , t ,

and e is an integer.

Let x be the representation of the real number X, obtained by rounding. Then

|x−X|
|X| ≤ µ, µ = 1

2
β−t .

µ is called the unit roundoff.

Let ¯ denote any of the arithmetic operators +,−, ∗ and /, and let fl[x¯ y] denote
the computed result of x¯ y. If x¯ y 6= 0, then∣∣∣∣fl[x¯ y]− x¯ y

x¯ y

∣∣∣∣ ≤ µ ,

or, equivalently,
fl[x¯ y] = (x¯ y)(1 + ε) ,

for some ε that satisfies |ε| ≤ µ.
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3. Function Evaluation

Remainder Term Estimates

Notation: S =
∞∑
n=1

an, SN =
N∑
n=1

an, RN = S − SN =
∞∑

n=N+1

an .

Alternating series.

|RN | ≤ |aN+1| .

Estimation by an integral. Assume that an = f(n) and that f(x) is positive and
monotonically decreasing for x > N . Then

RN =
∞∑

n=N+1

f(n) ≤
∫ ∞
N

f(x) dx .

Comparison with a known series. Assume that

0 ≤ an ≤ bn , n ≥ N+1 ,

and that TN =
∞∑

n=N+1

bn is known. Then

RN ≤ TN .
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4. Nonlinear Equations

Iteration methods for the solution of f(x) = 0 with a simple root x∗.

Fixed point method. Reformulate f(x) = 0 to x = ϕ(x) and iterate:

xk+1 = ϕ(xk) .

Converges if |ϕ′(x)| ≤ m < 1 for x close to the root x∗.

Newton-Raphson’s method.

xk+1 = xk −
f(xk)

f ′(xk)
.

Converges if x0 is chosen sufficiently close to x∗.

The secant method.

xk+1 = xk − f(xk)
xk − xk−1

f(xk)− f(xk−1)
.

Order of convergence. A convergent sequence x0, x1, x2, . . . has the order of
convergence p if p ≥ 1 is the largest positive number such that

lim
k→∞

|xk+1 − x∗|
|xk+1 − x∗|p = C <∞ .

C is called the asymptotic error constant.

For p = 1 and p = 2 the convergence is said to be linear and quadratic, respectively.

Method-independent error estimate. Let x be an approximation to a simple
root x∗ and f̃(x) be an approximation to f(x). Then

|x− x∗| ≤ |f̃(x)|+ δ

M
,

where |f̃(x) − f(x)| ≤ δ and |f ′(x)| ≥ M for all x in a neighbourhood of x∗ that
includes x.

Systems of nonlinear equations. Newton-Raphson’s method:

x[k+1] = x[k] −
(
J(x[k]

)−1
f(x[k]), (J(x))ij =

∂fi
∂xj

(x) .

J is the so-called Jacobian of f .
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5. Interpolation

Problem: Given function values fi = f(xi) at n+1 distinct points x0, x1, . . . , xn.
Seek a polynomial P (x) of degree ≤ n such that P (xi) = fi, i = i = 0, 1, . . . , n.

Newton’s interpolation formula

Pn(x) = f0 + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1)

+ · · ·+ f [x0, x1, . . . , xn](x− x0)(x− x1) · · · (x− xn−1) ,

where f [x0, x1, . . . , xk] is the kth divided difference of f with respect to the points
x0, x1, . . . , xk, given by

f [xi] = f(xi) ,

f [x0, x1, . . . , xk] =
f [x1, x2 . . . , xk]− f [x0, x1, . . . , xk−1]

xk − x0

.

Lagrange’s Interpolating Polynomial

P (x) = f0L0(x) + f1L1(x) + · · ·+ fnLn(x) ,

Li(x) =
(x− x0) · · · (x− xi−1)(x− xi+1) · · · (x− xn)

(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)
.

Truncation error

RT(x) = f(x)− P (x) =
f (n+1)(ξ(x))

(n + 1)!
(x− x0)(x− x1) · · · (x− xn) .

Truncation error with Newton’s interpolation formula,

|RT|<∼ | first neglected term | .

Linear interpolation

P (x) = f0 +
x− x0

x1 − x0

(f1 − f0) .

If {f i} are given approximations of {f(xi)} and maxi=0,1 |f i − fi| = ε, then

|RXF(x)| = |f(x)− P (x)| ≤ ε for x0 ≤ x ≤ x1 .
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Cubic spline interpolation

A cubic spline s with knots x0 < x1 < · · · < xn satisfies

1. s is a polynomial of degree ≤ 3 in each knot interval [xi−1, xi], i = 1, . . . , n,

2. s, s′ and s′′ are continuous in [x0, xn].

For xi−1 ≤ x ≤ xi we let s(x) = si(x), expressed by

si(x) = ai + bi

(
x− xi−1

hi

)
+ ci

(
x− xi−1

hi

)2

+ di

(
x− xi−1

hi

)3

,

where

hi = xi − xi−1 .

A cubic spline that interpolates (x0, f0), (x1, f1), . . . , (xn, fn) is determined by

ai = fi−1 ,

bi = his
′
i−1 ,

ci = 3(fi − fi−1)− hi(2s
′
i−1 + s′i) ,

di = 2(fi−1 − fi) + hi(s
′
i−1 + s′i) ,

 i = 1, 2, . . . , n ,

where the s′i satisfy the linear system of equations

hi+1s
′
i−1 + 2(hi+hi+1)s

′
i + his

′
i+1 = 3

(
hi+1

fi − fi−1

hi
+ hi

fi+1 − fi
hi+1

)
,

i = 1, 2, . . . , n−1 ,

supplied with two extra conditions. Either

“Natural spline”: 2s′0 + s′1 = 3
f1 − f0

h1

, s′n−1 + 2s′n = 3
fn − fn−1

hn
,

or

“Correct boundary conditions”: s′0 = f ′(x0) , s′n = f ′(xn) .

Local truncation error

max
xi−1≤x≤xi

|f(x)− si(x)| ≤ 1
384

Mih
4
i + 1

4
E ′ihi ,

where
Mi = max

xi−1≤x≤xi
|f (4)(x)| , E ′i = max

j=i−1,i
|f ′(xj)− s′(xj)| .

Global truncation error. If the spline s satisfies the correct boundary conditions,
then

max
x0≤x≤xn

|s(x)− f(x)| < 5
384

h4M, h = max
i

hi, M = max
i

Mi .
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6. Differentiation and Richardson Extrapolation

Forward difference approximation of the first derivative:

f ′(x) =
f(x+h)− f(x)

h
+ RT, RT = a1h + a2h

2 + a3h
3 + · · · .

If f(x) and f(x+h) are approximations to f(x) and f(x+h) with
max{|f(x)− f(x)|, |f(x+h)− f(x+h)|} ≤ ε, then

|RXF| ≤
2ε

h
.

Central difference approximation of the first derivative:

f ′(x) =
f(x+h)− f(x−h)

2h
+ RT, RT = b1h

2 + b2h
4 + b3h

6 + · · · .

|RXF| ≤
ε

h
.

Second derivative:

f ′′(x) =
f(x−h)− 2f(x) + f(x+h)

h2
+ RT, RT = c1h

2 + c2h
4 + c3h

6 + · · · .

|RXF| ≤
4ε

h2
.
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Richardson extrapolation

Assume that
F1(h) = F (0) + a1h

p1 + a2h
p2 + · · · ,

with known exponents p1, p2, . . ., but unknown a1, a2, . . .. We want to compute F (0).
Further, assume that F1 has been computed for arguments . . . , q3h, q2h, qh, h, where
q > 1.

The first term in the expansion of the truncation error can be eliminated by putting

F2(h) = F1(h) +
1

qp1 − 1
(F1(h)− F1(qh)) .

Then
F2(h) = F (0) + ã2h

p2 + ã3h
p3 + · · · .

Repeated extrapolation

Fk+1(h) = Fk(h) +
1

qpk − 1

(
Fk(h)− Fk(qh)

)
k = 1, 2, . . . .

Extrapolation scheme

F1(q
3h)

F1(q
2h) F2(q

2h)

F1(qh) F2(qh) F3(qh)

F1(h) F2(h) F3(h) F4(h)
...

...
...

...
. . .

If h is sufficiently small, then the difference between two adjacent values in the same
column gives an upper bound for the truncation error.
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7. Integration

Numerical computation of ∫ b

a

f(x) dx .

Equidistant points, xi = a + ih, i = 0, 1, . . . ,m, h =
b− a

m
. Let fi = f(xi).

Trapezoidal rule

T (h) = h
(

1
2
f0 + f1 + · · ·+ fm−1 + 1

2
fm
)

.

Truncation error

RT =

∫ b

a

f(x) dx− T (h) = −b− a

12
h2f ′′(η), a < η < b ,

or
RT = a1h

2 + a2h
4 + · · · .

If {f i} are approximations to {fi} with maxi |f i − fi| ≤ ε, then

|RXF| ≤ (b− a)ε .

Simpson’s formula

S(h) =
h

3
(f0 + 4f1 + 2f2 + 4f3 + · · ·+ 2fm−2 + 4fm−1 + fm) ,

where m is even. Truncation error

RT =

∫ b

a

f(x) dx− S(h) = −b− a

180
h4f (4)(η), a < η < b ,

or
RT = b1h

4 + b2h
6 + · · · .

Romberg’s method

Trapezoidal method with repeated Richardson extrapolation, and successive halving
of the step length (q = 2). Truncation error is estimated as in the general Richardson
extrapolation.

Effect of erroneous function values: |RXF| ≤ (b− a)ε .



8. Linear Systems of Equations 9

8. Linear Systems of Equations

The system
a11x1 + a12x2 + · · ·+ a1nxn = b1 ,
a21x1 + a22x2 + · · ·+ a2nxn = b2 ,

...
an1x1 + an2x2 + · · ·+ annxn = bn ,

can be written in matrix notation

Ax = b ,

where A is the n×n coefficient matrix and b is the n×1 right hand side vector. We
assume that A is nonsingular.

Triangular systems

u11x1 + u12x2 + · · ·+ u1nxn = c1

u22x2 + · · ·+ u2nxn = c2
...

unnxn = cn

can be solved by back substitution:

xn = cn/unn

xi =
(
ci −

n∑
j=i+1

uijxj
)
/uii , i = n−1, n−2, . . . , 1 .

Gaussian elimination

The system is transformed to upper triangular form(
A b

)
→

(
U c

)
in a series of n−1 steps. In the typical step the current system is

a11 a12 · · · a1n b1

a22 · · · a2n b2

. . .
...

...
akk ak,k+1 · · · akn bk
...

...
...

...
aik ai,k+1 · · · ain bi
...

...
...

...
ank an,k+1 · · · ann bn


.

The elements in the kth column below akk are zeroed by subtracting multiples of
the kth row

mik := aik/akk

aij := aij −mikakj, j = k+1, . . . , n

bi := bi −mikbk

 i = k+1, . . . , n .

After n−1 steps A and b have been transformed to U and c, respectively, and x is
computed by back substitution.
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Partial pivoting

In each step determine the row index ν such that

|aνk| = max
k≤i≤n

|aik| .

If ν > k, then rows k and ν are interchanged, and the elimination proceeds. With
partial pivoting the multipliers satisfy |mik| ≤ 1.

The purpose of pivoting is to avoid that matrix elements become too large during
the elimination, with associated loss of accuracy. Pivoting is not needed if

a) A is symmetric and positive definite (spd), ie

xTA x > 0 for all x 6= 0 ,
or

b) A is diagonally dominant, ie

|aii| ≥
n∑

j=1,j 6=i
|aij| , i = 1, 2, . . . , n ,

with strict inequality for at least one i.

LU Factorization

Gaussian elimination with partial pivoting applied to a nonsingular matrix A is
equivalent to the factorization

P A = LU ,

where P is a permutation matrix, L is a unit lower triangular matrix, and U is an
upper triangular matrix. L has diagonal elements equal to one and

(L)ik = mik ,

where the mik are the multipliers used in the elimination.

If A is spd, then we can use the factorization

A = LDLT ,

where L is a unit lower triangular matrix and D is a diagonal matrix with positive
diagonal elements. Alternatively, we can use the Cholesky factorization

A = CTC ,

where C is an upper triangular matrix.

Solution of Ax[k] = b[k], k = 1, 2, . . . , K when the LU factorization is known:

for k = 1, 2, . . . , K do
solve Ly[k] = b[k]

solve Ux[k] = y[k]
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Operation count

Number of flops
(floating point operations)

Transformation to triangular form
(computation of the LU factorization)

2
3
n3

Computation of the LDLTor the
Cholesky factorization of an spd matrix

1
3
n3

Solution of a triangular system n2

Matrix-vector multiplication 2n2

Computation of A−1 2n3

Solution of a tridiagonal system
(without pivoting)

8n

Vector and Matrix Norms

Vector norms

Euclidean norm : ‖x‖2 =
(

x2
1 + · · ·+ x2

n

)1/2
=
√

xTx ,

maximum norm : ‖x‖∞ = max
1≤i≤n

|xi| .

Induced matrix norm

‖A‖ = sup
x 6=0

‖Ax‖
‖x‖ = max

‖x‖=1
‖Ax‖ ,

where ‖ · ‖ is a vector norm.

‖A‖2 =

(
max
1≤j≤n

λj(A
TA)

)1/2

,
(the square root of the
largest eigenvalue of ATA)

‖A‖∞ = max
1≤i≤n

{ n∑
j=1

|aij|
}

.

From the definition it follows that ‖Ax‖ ≤ ‖A‖ · ‖x‖ .

Sensitivity analysis

Define the condition number of A,

κ(A) = ‖A‖ · ‖A−1‖ ,

and consider
Exact system: Ax = b ,

perturbed system: (A + δA)x = b + δb .

If τ = ‖A−1‖ · ‖δA‖ = κ(A)
‖δA‖
‖A‖ < 1 , then

‖x− x‖
‖x‖ ≤ κ(A)

1− τ

(
‖δb‖
‖b‖ +

‖δA‖
‖A‖

)
.
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Estimate error in “given solution” x̃.

‖x̃− x‖
‖x‖ ≤ κ(A)

‖r‖
‖b‖ , r = b− Ax̃ .

r is called the residual.

Rounding Errors in Gaussian Elimination

rule of thumb: If the unit roundoff and the condition number satisfy µ ' 10−d and
κ∞(A) ' 10q, then a stable version of Gaussian elimination can be expected to
produce a solution x̂ that has about d−q correct decimal digits.

Overdetermined Systems

Let A be an m×n with m > n and linearly independent columns. The least squares
problem

min ‖Ax− b‖2

has a unique solution, which can be found by solving the normal equations

ATAx = AT b .

Alternatively, the least squares solution can be found via orthogonal transformation.
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9. Approximation

Problem. Seek a function f ∗ that has minimum “distance” to either

a given function f on the interval [a, b], (continuous case)
or

a given vector f
G

=
(
f(x1), f(x2), . . . , f(xm)

)T
. (discrete case)

Use a norm to measure “distance”.

Maximum norm (also called Chebyshev norm)

‖f‖∞ =


max
a≤x≤b

|f(x)| (continuous case) ,

max
1≤i≤m

|f(xi)| (discrete case) .

Euclidean norm

‖f‖2 =


(∫ b

a

w(x)f(x)2 dx
)1/2

(continuous case) ,

( m∑
i=1

wif(xi)
2
)1/2

(discrete case) .

w is a so-called weight function, w(x) > 0.

Scalar product

(f, g) = (g, f) =


∫ b

a

w(x)f(x)g(x) dx (continuous case) ,

m∑
i=1

wif(xi)g(xi) (discrete case) .

In both the continuous and the discrete case

‖f‖2 = (f, f)1/2 .

ϕ and ψ are said to be orthogonal if (ϕ, ψ) = 0.

The sequence ϕ0, ϕ1, . . . is called an orthogonal system if (ϕi, ϕj) = 0 for i 6= j and
(ϕi, ϕi) 6= 0 for all i. If, in addition, (ϕi, ϕi) = 1 for all i, the sequence is called an
orthonormal system.

Least Squares Method

Seek a linear combination of the linearly independent functions ϕ0, ϕ1, . . . , ϕn,

f ∗ = c∗0ϕ0 + c∗1ϕ1 + · · ·+ c∗nϕn ,

such that ‖f − f∗‖2 is minimized. f ∗ is characterized by the normal equations

(ϕ0, ϕk)c
∗
0 + (ϕ1, ϕk)c

∗
1 + · · ·+ (ϕn, ϕk)c

∗
n = (f, ϕk), k = 0, 1, . . . , n .

If ϕ0, ϕ1, . . . , ϕn is an orthogonal system, we get the orthogonal coefficients (also
called Fourier coefficients),

c∗k =
(f, ϕk)

(ϕk, ϕk)
, k = 0, 1, . . . , n .
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Orthogonal Polynomials

Given a scalar product and the leading coefficients A0, A1, . . ., the polynomials
Pk(x) = Akx

k + · · · constructed by the recurrence

P0(x) = A0

P1(x) = (α0x− β0)P0(x)

Pk+1(x) = (αkx− βk)Pk(x)− γkPk−1(x), k = 1, 2, . . . ,

where

αk =
Ak+1

Ak

, k = 0, 1, 2, . . . ,

βk =
αk(xPk, Pk)

(Pk, Pk)
, k = 0, 1, 2, . . . ,

γk =
αk(Pk, Pk)

αk−1(Pk−1, Pk−1)
, k = 1, 2, . . . ,

form an orthogonal system. In the discrete case, with the grid x1, x2, . . . , xm, the
last polynomial in the sequence is Pm−1.

Transformation of variable between a ≤ x ≤ b and −1 ≤ t ≤ 1,

t =
2x− (b + a)

b− a
, x = 1

2
(b− a)t + 1

2
(a + b) .

Legendre Polynomials

∫ 1

−1

Pk(x)Pn(x) dx =


0 for k 6= n ,

2

2n + 1
for k = n .

Pn(x) =
1

2n · n!

dn

dxn
(x2 − 1)n .

Recurrence,

P0(x) = 1 , P1(x) = x ,

Pn+1(x) =
2n + 1

n + 1
xPn(x)− n

n + 1
Pn−1(x), n = 1, 2, . . . .

First five Legendre polynomials

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1) ,

P3(x) =
1

2
(5x2 − 3x), P4(x) =

1

8
(35x4 − 30x2 + 3) .
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Chebyshev Polynomials

∫ 1

−1

1√
1− x2

Tk(x)Tn(x) dx =


0 for k 6= n ,

1
2
π for k = n > 0 ,

π for k = n = 0 .

Tn(x) = cos(n arccos x) .

Recurrence,
T0(x) = 1 , T1(x) = x ,

Tn+1(x) = 2x Tn(x)− Tn−1(x), n = 1, 2, . . . .

First five Chebyshev polynomials

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1 ,

T3(x) = 4x3 − 3x, T4(x) = 8x4 − 8x2 + 1 .

Zeros of Tn (Chebyshev nodes),

xi = cos
(2i− 1

2n
π
)
, i = 1, 2, . . . , n .

Tn oscillates between ±1 in the points

x̃k = cos
(k
n

π
)
, k = 0, 1, . . . , n .

Discrete Cosine Transform (DCT)

The functions ϕ0, ϕ1, . . . , ϕm−1, defined by

ϕk(x) = αk cos kx, αk =

{√
1/m , k = 0√
2/m , k > 0 .

form an orthonormal system with respect to the scalar product

(u, v) =
m∑
l=1

u(xl) · v(xl) , xl =
(2l − 1)π

2m
.

Given a signal, ie a vector f
G
∈Rm. Its DCT is

c = (c0, c1, . . . , cm−1)
T , cj = ϕTjGf

G
.

Given the DCT c, the signal can be found by the inverse discrete cosine transform
(IDCT)

f
G

=
m−1∑
j=0

cjϕjG .
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Minimax (Chebyshev) Approximation

Find the polynomial p∗ of degree ≤ n such that

En(f) = ‖f − p∗n‖∞ ≤ ‖f − pn‖∞ for all polynomials pn of degree ≤ n .

Alternation property : Assume that f ∈C[a, b]. p∗n is the best maximum norm ap-
proximation of f if and only if there are points a ≤ ξ1 < ξ2 < · · · < ξn+2 ≤ b such
that

|f(ξk)− p∗n(ξk)| = ‖f − p∗n‖∞, k = 1, 2, . . . , n+2

and
f(ξk+1)− p∗n(ξk+1) = − (f(ξk)− p∗n(ξk)) , k = 1, 2, . . . , n+1 .

Approximation to p∗n by Chebyshev interpolation: Transform the range [a, b] to
[−1, 1] and use interpolation points

xi = cos
( 2i + 1

2(n+1)
π), i = 0, 1, . . . , n .

Maximum error is at most 5En(f) if n≤ 100.
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10. Ordinary Differential Equations

Initial Value Problem

y′ = f(x, y), y(a) = α .

Seek the solution on the range [a, b]. Introduce a grid with step length h

xn = a + nh, n = 0, 1, . . . , N, h =
b− a

N
.

Find approximations yn to y(a + nh)

Local truncation error at xn+1 is the difference between the computed value yn+1

and the value at xn+1 on the solution curve that passes through the point (xn, yn).

Global truncation error at xn+1 is the difference RT = y(xn+1)− yn+1, where y(x) is
the solution of the given initial value problem.

Stability. When the numerical method is applied to the test problem

y′ = λy, y(0) = 1 ,

with λ < 0, the sequence y1, y2, . . . should be decreasing.

Euler’s method

y0 = α ,

yn+1 = yn + hf(xn, yn), n = 0, 1, . . . , N−1 .

Local truncation error O(h2). Global truncation error |RT| = O(h).
The method is stable for h < 2/|λ|.

Heun’s method
k1 = f(xn, yn) ,

k2 = f(xn + h, yn + hk1) ,

yn+1 = yn +
h

2
(k1 + k2) .

|RT| = O(h2). The method is stable for h < 2/|λ|.

Classical Runge-Kutta method

k1 = f(xn, yn) ,

k2 = f(xn + 1
2
h, yn + 1

2
hk1) ,

k3 = f(xn + 1
2
h, yn + 1

2
hk2) ,

k4 = f(xn + h, yn + hk3) ,

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4) .

|RT| = O(h4). The method is stable for h < 2.785/|λ|.

Trapezoidal method (an implicit method

yn+1 = yn + 1
2
h
(
f(xn, yn) + f(xn+1, yn+1)

)
.

|RT| = O(h2). Stable for all h > 0.
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Boundary Value Problems

y′′ = ψ(x, y, y′), y(a) = α, y(b) = β .

A difference method. Introduce a grid xn = a + nh, n = 0, 1, . . . , N ; h =
b− a

N
, and

approximate derivatives by central differences,

y′′(xn) '
y(xn−1)− 2y(xn) + y(xn+1)

h2
, y′(xn) '

y(xn+1)− y(xn−1)

2h
.

Use these in the differential equation for x = x1, . . . , xN−1; replace “'” by “=” and
y(xk) by the approximation yk,

yn−1 − 2yn + yn+1

h2
= ψ

(
xn, yn,

yn+1 − yn−1

2h

)
, n = 1, . . . , N−1 ,

and supply with the boundary conditions: y0 = α, yN = β. This is a (possibly
nonlinear) system of N−1 equations in the N−1 unknowns y1, . . . , yN−1.

Truncation error O(h2).

A finite element method – Galerkin’s method

Ly = −y′′ + qy = f, y(a) = y(b) = 0 .

Let V be a class of test functions, that satisfy the boundary conditions

V =
{
v | v′ is piecewise continuous and bounded on [a, b],

and v(a) = v(b) = 0
}

.

Weak formulation of the boundary value problem,

(v, Ly) = (v′, y′) + q(v, y) = (v, f) for all v ∈ V .

Choose V = span{ϕj}N−1
j=1 and yh =

N−1∑
j=1

cjϕj . The coefficients satisfy a linear system

(K0 + K1)c = F , where(
K1

)
ij

= (ϕ′i, ϕ
′
j),

(
K0

)
ij

= q(ϕi, ϕj), Fi = (ϕi, f) .

The shooting method

Let g(γ) denote the value at x = b obtained by numerical solution of the initial
value problem

y′′ = ψ(x, y, y′), y(a) = α, y′(a) = γ .

Solve the equation (eg by means of the secant method)

g(γ)− β = 0 .


