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What are Discrete Structures?

The modern solution, ask Google:

Trees, graphs, functions, relations, permutations, cycles,

lists, lattices, posets, automata, finite geometries, finite

groups, . . .

These are structures of various “kind”, “sort”, or (as we

will say) species.
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Epistemological considerations

Following a slow (and forced) evolution in the history of

mathematics, the modern notion of function (due to

Dirichlet, 1837) has been made independent of any actual

description format.

In the same spirit, it is natural to formalize the notion of

“Species of Structures” to make it independent of any

description format. This is why a functorial approach

naturally comes into play. However we also want

formulas.
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Species of Structures

Let B be the category of finite sets with bijections. A

Species (of structures) is simply a functor

F : B −→ B.

For a finite set A, an element s ∈ F [A] is a structures of

species F on A. We also say that s is a F -structure on A.

For a bijection ϕ : A → B, we further say that

F [ϕ] : F [A] −→ F [B]

is the transport of F -structures along ϕ.
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Examples of species

1. P [A]. Structures π ∈ P [A] are partitions of A.

2. Ak. Structures are k-tuples of elements of A.

3. G[A] = ℘[A × A]. Structures are directed graphs with

vertex set A.

4. S[A] = { σ | σ : A
∼

−→ A, bijection }. We sometime

write SA for the corresponding permutation group.

5. End[A] = { f | f : A → A }. These are the

endofunctions on A.
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Transport of structures

along a bijection
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Species

=

Action of permutation groups

SA × F [A] −→ F [A]

Orbits are type of structures. In other words, a type is an

equivalence class (∈ F [A]/∼) for the relation

s∼ t ⇐⇒ F [σ](s) = t for some σ ∈ SA.

We then say that s and t are isomorphic structures.
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Type of structures
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Enumerative combinatorics

“Enumerative combinatorics is concerned with counting

the number of elements of a finite set S.” (R.P. Stanley)

He adds the caveat that elements of S will usually have

some simple combinatorial definition.

In our setup this translates to counting elements of F [A].

Observe that #F [A] = #F [B], whenever A and B have

the same number of elements.
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Generating series

For each species F we associate the (exponential)

generating series

F (x) :=
∑

n≥0

fn

xn

n!
,

where fn is the number of elements of F [A], for any A

with n elements.

Aim: “Find a simple expression (or identity) for F (x).”
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Direct computation of

associated series

1. X the species singletons, whose series is x.

2. E the species set, whose series is exp(x).

3. S the species permutations, whose series is
1

1 − x
.

4. E the species elements, whose series is x exp(x).

5. C the species cyclic permutations, whose series is

C(x) = log
1

1 − x
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The calculus of species

We introduce operations on species: F + G, F · G, F ◦ G,

F ′, . . ., so that

(F + G)(x) = F (x) + G(x)

(F · G)(x) = F (x) G(x),

(F ◦ G)(x) = F (G(x)),

F ′(x) =
d

dx
F (x),

...
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Equality of species

We simply write F = G, whenever there exists a

invertible natural transformation from F to G.

In other words, for any A there is a natural bijection

between F -structures on A, and G-structures on A.

Thus we can make sense of identities such as

F · (G + H) = F · G + F · H

or

(F · G)′ = F ′ · G + F · G′

CTCS, August 2004 14



Definition of operations

1. (F + G)[A] := F [A]+G[A], with “+“ (and “Σ”)

denoting disjoint union.

2. (F · G)[A] :=
∑

B+C=A

F [B] × G[C].

3. When G[∅] = ∅, (F (G) same as F ◦ G).

(F ◦ G)[A] :=
∑

π∈P[A]

F [π] ×
∏

B∈π

G[B].

4. F ′[A] := F [A + {∗}].
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Generic structures for operations

2. Product:

F· G G

=

F

3. Substitution:

G= =

F

G

o

G

GF

G

G

F  G
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Using the calculus of species

We translate combinatorial decompositions into algebraic

identities on species. In particular, this allows implicit

definitions.

For example, the equalities

S = E(C), A = X · E(A),

E = 1 + E+, P = E(E+).

are almost self evident if one “reads them out loud” in

the right manner.
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Rooted trees

=

A = X · E(A).

This can be interpreted various ways.
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First variations

It is straightforward to pass to the notion of species in

several sorts

F : B
k −→ B,

even with parameters

F : B
k −→ BR,

where BR is the category of R-weighted finite sets, for R

a ring of formal power series.

Remark. Our criteria for introducing a variation will be

to satisfy a clear combinatorial needs.
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Illustration

The species Sw(X,Y ) = E(q C(X + Y )) of permutations

σ of two sort of elements, weighted by qc(σ) (where c(σ) is

the number of cycles of σ), has generating series

Sw(x, y) =

(

1

1 − (x + y)

)q

q

q

q
q

q

q

q
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Second variation: tensorial species

A tensorial species is a functor

F : B −→ V,

where V is the category of (finite dimensional) vector

spaces over C. This corresponds “essentially” to a family

of linear representations

Sn × F [n] −→ F [n], (n ≥ 0).

For example, we can have

sign[A] := C and sign[σ](z) := (−1)`(σ)z.
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Tensorial operations

1. (F + G)[A] := F [A] ⊕ G[A].

2. (F · G)[A] :=
⊕

B+C=A

F [B] ⊗ G[C].

3. When G[∅] = ∅, (F (G) = F ◦ G).

(F ◦ G)[A] :=
⊕

π∈P[A]

F [π] ⊗
⊗

B∈π

G[B].

4. F ′[A] := F [A + {∗}].
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From species to tensorial species

Denote CA the free vector space generated by a finite set

A. To any species F , we naturally associate a tensorial

species by setting

(CF )[A] := C F [A].

Clearly we get an operation preserving functor C(−),

from the category B
B of species, to the category V

B of

tensorial species. We sometime omit the C to simply

denote F the resulting tensorial species.
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Frobenius transform of the

character of a tensorial species

As usual, the character of F is defined, for σ ∈ Sn, as

χ
F (σ) = Trace F [σ].

Let dk = dk(σ) denote the number of cycles of size k in

the decomposition of σ in disjoint cycles. Then we set

ZF :=
∑

n≥0

1

n!

∑

σ∈Sn

χ
F (σ) pd1

1 pd2

2 pd3

3 · · ·.

One can consider the pk’s to be independent variables.
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Cycle index series

If F is in B
B, then we can make sense of ZF by

considering F as a tensorial species. In this case, for

σ ∈ Sn, we have

χ
F (σ) = #{ s ∈ F [n] | F [σ](s) = s},

and ZF is traditionally called the cycle index series of F .
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Specializations of ZF

There are many interesting specializations of ZF . One

example is

ZF (x, 0, 0, . . .) =
∑

n≥0

dim(F [n])
xn

n!
.

Another, in the case when F is in BB, is

ZF (x, x2, x3, . . .) =
∑

n≥0

#(F [n]/∼) xn.

This is essentially Pólya’s Theory.
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The calculus of ZF

We have

ZF+G = ZF + ZG

ZF ·G = ZF ZG,

ZF◦G = ZF ◦ZG,

ZF ′ =
d

dp1

ZF ,

where

ZF◦ZG:=(ZF |pk←gk
), with gk = (ZG |pj←pkj

)
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Sample of formulas

1. ZE = exp(
∑

k≥1 pk/k).

2. Zsign = exp(
∑

k≥1(−1)k−1pk/k).

3. ZS =
∏

k≥1

1

1 − pk

.

4. ZC =
∑

k≥1

ϕ(k)

k
log

1

1 − pk

.
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Polynomial functors

A functor

P : V −→ V

is said to be polynomial, if

P : Hom(X,Y ) −→ Hom(X,Y ), X, Y ∈ V,

is a polynomial in the following sense. For all fi : X → Y ,

P (λ1 f1 + . . . + λr fr)

is a polynomial function in the λk’s with coefficients in

Hom(P (X), P (Y )) (depending on the fk’s).
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Polynomial functor =

polynomial tensorial species

This means that P : V → V is polynomial if and only if it

can be written as

P (X) =
⊕

n≥0

F [n] ⊗
CSn

X⊗n

for some polynomial (finite support) tensorial species F .

We say that P is homogeneous of degree n if

P (λ1 f1 + . . . + λr fr)

is homogeneous of degree n.
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A glimpse of algebraic

combinatorics

A representation

ρ : GLm −→ GLk

is said to be polynomial if the entries of ρ(M) are

polynomials in the entries of M . They are classified by

polynomial functors. Moreover, “irreducible” polynomial

representations (that are homogeneous of degree n)

correspond to “irreducible” representations of Sn.
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Back to ZF

Let (t) denote the diagonal matrix with entries

t = t1, t2, . . . , tm. For

P (X) =
⊕

n≥0

F [n] ⊗
CSn

X⊗n,

we have

Trace P ((t)) = ZF ,

with pk = tk1 + tk2 + . . . + tkm. The ZF are symmetric

polynomials in the ti’s. Irreducible representations

correspond to Schur polynomials.
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Other variations

Let A be a groupoid with a comonoidal structure on the

corresponding free additive category, with nice features.

In other words, we want to have a “good” notion of

dissection for objects in A.

Let also K be a (semi-)ring (two monoidal structures).

Then consider functors

F : A −→ K,

with operations (at least the sum and product) as before.
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Illustration: graphical species

Let G be the category of graphs on totally ordered finite

sets, with isomorphisms as arrows.

An object A of G: ()
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Dissection of graphs

Let G be the category of graphs on totally ordered finite

sets, with isomorphisms as arrows.

Selecting a subset (and its complement):
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Dissection of graphs

Let G be the category of graphs on totally ordered finite

sets, with isomorphisms as arrows.

The resulting dissection, (B,C): ()

o
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q n

obtained by removing connections between B and C.
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Partitions of graphs

A partition π of a graph: ()
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Partitions of graphs

Minimal elements of each block: ()
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Partitions of graphs

Block graphs B ∈ π: ()
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Partitions of graphs

Quotient graph π : ()
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Partitions of graphs

Quotient graph π : ()
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The vertices are the blocks of the partition.

CTCS, August 2004 41



Graphical generating series

For each graphical species F we associate the (graphical)

generating series

F (x) :=
∑

n≥0

∑

A

fA

xn

2(
n

2)n!
,

where fA is the number of elements of F [A], for graphs A

on the vertex set {1, 2, . . . , n}.

Aim: “Find a simple expression (or identity) for F (x).”
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Definition of operations

1. (F + G)[A] := F [A] + G[A], with “+“ denoting

disjoint union.

2. (F · G)[A] :=
∑

(B,C)

F [B] × G[C].

3. When G[∅] = ∅, (F (G) = F ◦ G).

(F ◦ G)[A] :=
∑

π

F [π] ×
∏

B∈π

G[B].
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A theorem

For graphical species F and G, we have

(F + G)(x) = F (x) + G(x)

(F · G)(x) = F (x) G(x),

(F ◦ G)(x) = F (G(x)).

Corollary. Positive integer graphical generating series

are closed under product and substitution.
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Other variants

1. Linear species.

2. Permutational species.

3. Partitionnal species.

4. Species with values in the category of G-sets.

5. Species with values in the category of varieties over a

finite field.
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