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Abstract
Maximum instantaneous power in VLSI circuits has a great im-
pact on circuit's reliability and the design of power and ground
lines. To synthesize highly reliable systems, accurate estimates of
maximum power must be obtained in various design phases. Un-
fortunately, determining the input patterns to induce the maxi-
mum current (power) is essentially a combinatorial optimization
problem. Even for circuits with small number of primary inputs
(PI's), it is CPU time intensive to conduct exhaustive search in
the input vector space. The only feasible way is to �nd good
upper and lower bounds of the maximum power, and to make
the gap between these two bounds as narrow as possible. In
this paper, we present a continuous optimization approach to
e�ciently generate tight lower bounds of the maximum instan-
taneous power for CMOS circuits. In our approach, each primary
input (PI) of the circuit is allowed to assume any real number
between 0 and 1. Maximum power estimation for CMOS circuits
is then transformed into a continuous optimization problem, in
which a smooth function is maximized over a unit hypercube in
the Euclidean space. The continuous problem can be solved ef-
�ciently to generate good lower bounds of the maximum power.
Our experiments with ISCAS and MCNC benchmark circuits
demonstrate the superiority of this approach. For all the circuits
tested, the mean value of the ratio "CPU time of the continuous
optimization approach divided by CPU time of the simulation-
based technique" is equal to 0:41. For 60% of the circuits tested,
our approach gives a better estimate (1.16 times larger, on an
average) than the simulation-based technique does. Compared
to the ATPG-based technique [3], the continuous optimization
approach generates a tighter lower bound (1.19 times larger, on
an average) of maximum power for 60% of all the circuits tested.

1 Introduction
Maximum power estimation in CMOS circuits is essential to de-
termine the IR drop on supply lines and to optimize the power
and ground routing. The estimation involves searching for two
consecutive binary input vectors, which maximize the switching
activity in the circuits. In the worst case, this problem has com-
plexity exponential to the number of PI's (Primary Inputs) of
the circuit. Hence, for large-scaled circuits, the only feasible ap-
proach is to generate tight upper and lower bounds of the max-
imum instantaneous power within reasonable amount of CPU
time so that the gap between the bounds is as narrow as possi-
ble.

In the past, several approaches have been proposed to cope
with maximum power estimation for CMOS circuits. In [5, 6],
Kriplani et. al. propagated signal uncertainty through circuits
to obtain a loose upper bound of the maximum power. The
bound is then successively made tighter by partially enumerat-
ing the primary inputs (PI's). The progress of improving the
upper bound is expected to be slow when the circuit has a large
number of PI's. Moreover, without a good lower bound, the es-
timate of maximum power cannot be obtained with the upper
bound alone. In [4], Devadas et. al. formulated power con-
sumption of CMOS circuits as a Boolean function in terms of
two consecutive primary input vectors. The function is then ex-
actly maximized by a branch-and-bound technique. The process
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to obtain the expression of the Boolean function and to maxi-
mize it are both CPU time intensive. Hence, the application of
this technique is limited to small circuits. In [3], Wang and Roy
proposed an Automatic Test Pattern Generation (ATPG) based
technique to e�ciently generate good lower bounds of maximum
power for large-scaled circuits. The application of this technique
currently has its limitations. Some characteristics of logic gates
(e.g. inertial delay) cannot be easily captured at the logic level
via this technique.

In this paper, we present an approach which can e�ciently
generate tight lower bounds of maximum power for large-scaled
circuits under arbitrary delay model. Traditional techniques es-
timate the maximumpower of a circuit based on the operation of
binary numbers (0 and 1). In our approach, the output of a logic
gate is allowed to assume any real number between 0 and 1. A
smooth function denoting power can be derived over a unit hy-
percube in the Euclidean space. Maximum power estimation is
then transformed into a continuous optimization problem, which
can be solved e�ciently. Compared to the traditional estimation
techniques based on random simulation, our approach can gen-
erate tighter lower bounds within much shorter CPU time. On
the other hand, compared to the ATPG based technique, this
approach can easily capture more characteristics of logic gates.

The paper is organized as follows. Section 2 describes and for-
mulates the problem of maximum power estimation. Section 3
transforms the problem into a continuous optimization problem.
In Section 4, we discuss some issues in solving the continuous
problem. Experimental results are presented in Section 5. Fi-
nally, the conclusions are given in Section 6.

2 Formulation of the Problem
In this section, we �rst discuss how to calculate the transition
count at the output of logic gates within a clock cycle. Based
on such discussion, we then formulate the problem of maximum
power estimation.

For synchronous circuits, let us assume that the switchings
of PI's are synchronized at the leading edge of each clock cycle.
However, spurious transitions may occur at internal gates due to
di�erent propagation delays through di�erent paths. The out-
put of a gate may have transient pulses (spurious transitions)
before it is �nally stabilized. Such spurious transitions consume
power and hence, such phenomenon should be considered in the
maximum power estimation.

In a CMOS circuit, the total energy dissipated due to
two consecutive input vectors can be described as: E =
1
2
V 2
dd

P
8gate

Cload(g) �T (g), where T (g) denotes the transition

count at the output of gate g during the clock cycle, and Cload(g)
represents the capacitive load of g. Hence, the average value of

the instantaneous power over the clock cycle is: pave=
E
jT j

, where

jT j denotes the length of a clock cycle. Under the assumptions
that (i) instantaneous power is a continuous function of time,
and (ii) jT j is su�ciently small, it is reasonable to view pave as
the instantaneous power during the clock cycle. Cload(�) can
be approximated by the fanout (F (�)) of logic gates. Therefore,
instantaneous power is proportional to:

P (V1; V2) =
X
8gate

F (g) � T (g) (1)

where V1 and V2 denote the two consecutive input binary vectors
applied to the circuit.
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Figure 1: building time-sequences for a circuit

To calculate the transition count (T (�)) of a gate in a clock
cycle, we associate with each gate a certain data structure to
record the gate's output pattern. We call each such structure
a time-sequence (a sequence of time instants at which the gate
might switch). We implement the time-sequence of a gate as a
linked list, in which each node represents a time instant at which
the gate might switch. To avoid confusion, we refer to the nodes
in time-sequences as elements. Each element in a time-sequence
is associated with:
1. A start time, which denotes the corresponding switching

time of the gate.

2. A logic value (0 or 1) which denotes the value at the output
of the gate during a time interval beginning at the starting
time of the element, and ending at the starting time of the
next element.

The use of these structures will be described below.
Based on static timing analysis [10, 9], we have developed a

procedurewith linear complexity (in terms of the number of gates
in the circuit) to create the time-sequences for a given circuit.
By propagating the possible switching events level by level from
PI's to PO's, the procedure can decide all the possible switch-
ing events at each node in the circuit, and equip the node with
appropriate structure of time-sequence. Let us use the circuit in
Figure 1 as an example. In Figure 1, each primary input (a, b, c,

or d) is associated with two elements (with starting time 0� and
0). Since the propagation delay of gate A is assumed to be 2, the
time-sequence of node e is comprised of two elements with start-
ing time 0� and 2. Similarly, the time-sequence of node f can be
built from that of primary input d. Finally, the time-sequence
at the fanout of gate B is built by merging the time-sequences
of node e, c, and f .

Based on the time-sequences, T (g) in Equation 1 can be for-

mulated as: T (g) =
Pn(g)�1

i=1
(fg(i) � fg(i + 1)). Here we use

n(g) to denote the number of elements in the time-sequence of
gate g, and fg(i) to denote the logic value associated with the
ith element of the time-sequence of gate g. Hence, we can de�ne
our problem as follows:

Maximize P (V1; V2) =
P

8gate
F (g) �

Pn(g)�1

i=1
(fg(i)�

fg(i+ 1))

Subject to C � fspatial correlation between logic gatesg

Note that fg(j) (denoting the value of the jth element of gate
g) is decided by the value of the corresponding elements of the
fanins of gate g. If we expand fg(j) from gate g toward pri-
mary inputs gate by gate, fg(j) can be represented as a Boolean
function in terms of the entries of input vectors V1 and V2. C
represents the structure of the logic circuit, and is the constraint
set in this combinatorial optimization problem.

The above model describes the problem of maximum power
estimation in circuits implemented with static CMOS gates. In
the following section, we will discuss how to transform P (V1; V2)
into a function which is de�ned over the Euclidean space.

3 Transformation to Continu-

ous Domain
We describe below a transformation which turns Boolean opera-
tors into arithmetic ones. After such transformation, P (V1; V2)
is well de�ned even if the entries in V1 and V2 are real numbers.

Any Boolean function can be transformed into an arithmetic
function by repeatedly applying the following fundamental rules:

1. a _ b = a+ b� ab

2. a ^ b = a:b (a multiplied by b)

3. � a = 1� a

where _, ^ and � on the left-hand side are Boolean operators,
while "+","-" and "." on the right-hand side are arithmetic op-
erators. Any function transformed from some Boolean function
according to these three rules preserves its original values at all

vertices of [0;1]M , where M is the number of dimensions of the
function.

In the following discussion, we relax the entries in input vec-
tors V1 and V2 from the discrete set f0;1g to a continuous range

[0,1]. To avoid ambiguity, let us use ~P (V1; V2) to denote the func-

tion P (V1; V2) after the relaxation. It can be noted that ~P (�) is

continuous and di�erentiable everywhere in [0;1]2n, where n is
the number of primary inputs of the circuit. Hence, the gradient

of ~P (�) (i.e. r ~P ) is de�ned everywhere in [0;1]2n. This justi�es

our application of continuous optimization technique to ~P (�).

Due to the smoothness and continuity of ~P (�), we reach the
following conclusion:

� Within the hypercube [0;1]2n, if point a is su�ciently close

to point b, the value of ~P (a) and ~P (b) tend to be the same.

In other words, k ~P (a)� ~P (b)k ! 0 if ka� bk ! 0.

Suppose a relative maximum point v of ~P (�) is su�ciently close

to some vertex _v of the hypercube [0;1]2n. The vertex _v tends to
be a good choice to maximize the original combinatorial function

P (�) if v is su�ciently good for maximizing ~P (�). This argument
directly follows the above conclusion. Note that the maximum

value of ~P (�) over [0;1]2n is an upper bound of the maximum

value of P (�) over f0;1g2n.
Since we are only interested in the discrete solutions, it is

desired that the distance between the maxima (of ~P (�)) and ver-
tices of the hypercube is as small as possible. Obviously there

is no guarantee this is always the case. Hence, ~P (�) is modi�ed
to favor this requirement. Some non-biasing term T (�) is sub-

tracted from the function ~P (�) to make themaxima of ~P (�) move

toward the vertices of the hypercube [0;1]2n. We call the term
"non-biasing" because the term should vanish at the vertices.
In all our experiments, we determine the non-biasing term as a

summation of 2n concave functions: T (X) =
P2n

i=1
xi(1 � xi).

Here n is the number of primary inputs and xi is the ith entry
of vector X. It can be noted that T (�) reaches its maximum
value at X = [0:5;0:5;0:5; :::;0:5], and is also symmetric to this

point. The resultant function bP (X) = ~P (X) � wT (X) = ~P (X)

� w
P2n

i=1
xi(1� xi) will be our objective function to be maxi-

mized. Here w is some positive real number used to adjust the

shape of bP (�). For convenience, the notation bP (X) = ~P (X) - wP2n

i=1
xi(1� xi) will be used in the rest of this paper.

Let X denote the concatenation of the two input vectors V1
and V2. From above discussions, the corresponding continuous
problem for maximum power estimation can be de�ned as fol-
lows:

Maximize bP (X) =
P

8gate
F (g)�

Pn(g)�1

i=1
( ~fg(i)+ ~fg(i+1)�

2 ~fg(i) ~fg(i+ 1)) - w
P2n

i=1
xi(1� xi)

Subject to C � fspatial correlation between signalsg

[ fxi 2 [0;1]; i = 1(1)2ng

where n is the number of primary inputs of the circuit. We
solve this constrained optimization problem based on the gradi-
ent method, which will be discussed next.

4 Optimization
We use the steepest descent strategy to �nd the maxima of the
above constrained optimization problem. Starting from the neu-



Table 1: Results of ISCAS and MCNC benchmarks under unit-delay model

Benchmark Number Number of Maximum Power CPU Time (sec)
Circuit of gates of levels COSMOS ATG SIM COSMOS ATG SIM

i1 33 25 99 86 92 1.62 0.12 18.3

i2 36 201 257 280 260 32.5 2.22 62.7
i3 70 132 182 202 274 6.32 0.37 52.7
i4 94 192 352 346 299 21.1 0.54 67.2
i5 199 133 1063 666 723 39.2 1.04 134.5
i6 344 138 1408 1268 1257 56.9 3.06 217.1
i7 406 199 1615 1457 1445 110.6 3.91 248.8

i8 1183 133 5281 5796 5689 372.2 27.0 758.1
i9 353 88 2711 2589 2605 151.3 8.16 361.7
i10 2497 257 12340 11082 10033 2230.5 118.7 2147.9

C432 160 17 717 945 761 38.4 1.34 119.7
C499 202 11 312 674 476 13.3 2.03 81.4
C880 357 24 1706 1403 1027 137.5 5.13 195.2
C1355 514 24 1922 1543 1939 288.2 27.1 322.7

C1908 880 40 4365 3337 4356 459.9 56.4 783.2
C2670 1161 32 5310 4170 4123 423.2 14.7 903.2
C3540 1667 47 7232 5451 6865 1130.8 38.7 1404.6
C5315 2290 49 9685 10736 10160 1317.5 38.6 2488.8
C6288 2416 124 106392 102975 95406 4362.1 178.7 22578.2

C7552 3466 43 15563 14971 14344 1605.2 74.1 4627.4

tral point (i.e. [0.5,0.5,0.5,...,0.5]) of [0;1]2n, the following pro-
cedure will be performed iteratively until one of the stopping
criteria is met:

1. Calculate rbP (gradient of bP (�)) at the point.
2. From the point, move along the direction of rbP as far as

possible until bP (�) starts to decrease. Goto 1.
The above iteration stops under any of the following conditions:

1. The search reaches some relative maximum point at which

rbP ! 0.

2. The search is stuck at some point on the boundary of the

hypercube [0;1]2n, where the gradient of bP (�) is normal to
the boundary.

During the search, the curve gradually moves toward the

boundary of [0;1]2n. We keep on measuring the distance be-

tween the search curve and the vertices of [0;1]2n. The following
expression is used in our experiments to represent the distance:

d(P ) =
P2n

i=1
0:5� k0:5� pik: Here P is a point on the curve,

pi denotes the ith entry of P , and n is the number of primary
inputs. d(P ) ! 0+ denotes that P is su�ciently close to some

vertex of [0;1]2n. Under such a condition, the vertex will be
reported as a satisfactory solution for maximizing the original
combinatorial function P (�) (i.e. the instantaneous power).

At each iteration of the gradient method, the gradient at

a point X is calculated as: rbP (X) = (@bP=@x1, @ bP=@x2,
@ bP=@x3, :::, @ bP=@x2n), where @ bP=@xi = (bP (x1; x2; ::; xi�1; xi+
4x; xi+1; :::; x2n) � bP (x1; x2; ::; xi�1; xi; xi+1; :::; x2n))/ 4x,

4x ! 0+. Determining the exact expression for bP (�) (in terms
of primary inputs) is CPU time intensive especially for large-
scaled circuits. However, it is not necessary to obtain the ex-

pression for bP (�) to calculate the gradient. Instead, the value

of bP (X) at a point X is obtained by simulating the circuit
with the input vector V1 = (x1; x2; :::; xn) followed by V2 =
(xn+1; xn+2 ; :::; x2n). Here xi is the ith entry of X, and is a
real number between 0 and 1.

During the steepest descent process, it is possible that the
search is stuck at some local maximum which is far away from

the vertices of [0;1]2n. In this case, no conclusion can be drawn

about which vertex is most likely to maximize the instantaneous
power. Two approaches can be used to cope with this situation:

� Choose a di�erent starting point (instead of using the neu-
tral point) to start the steepest descent process. A di�erent
starting point may result in a local maximumwhich is close

to some vertex of [0;1]2n.

� Increase w (weight of the non-biasing term) to adjust the
shape of the objective function. Using a largerw will reduce

the distance between the local maxima of bP (�) and the

vertices of [0;1]2n.

The second approach is adopted in our experiments. In the
40 circuits tested, we need to use a di�erent setting (larger) of w
for 2 circuits to make the search converge. In the future work,
we will investigate the possibility of making w adaptive to the
structure of the circuit, as well as the delay model.

5 Experimental Results
The proposed continuous optimization approach (COSMOS),
together with the ATPG-based estimation (ATG) [3] and the
random simulation approach (SIM), has been implemented in
C under the Berkeley SIS environment.

We assume all the benchmark circuits are implemented with
static logic gates. In SIM , PI's (primary inputs) to a circuit
are modeled as stochastic processes each associated with a sig-
nal probability (the probability of taking the logic value of ONE)
and activity (average number of transitions per unit time). To
stress the circuits, PI's are speci�ed to have signal probability
and activity of 0.5 and 0.9 respectively, in order to ensure high
switching activity at the inputs. We assume that the high switch-
ing activity at the inputs also produces high switching activity at
the internal nodes of the circuit [1]. Without loss of generality,
unit and fanout delay models are adopted in our experiments. In
the unit delay model, each gate is associated with unit delay. In
the fanout delay model, propagation delay of a gate is assumed
to be the gate's fanout. Delay of a gate is roughly proportional
to the gate's capacitive load, which is in turn proportional to the
fanout of the gate. It should be mentioned that our technique
can handle any delay model.

Table 1 shows the experimental results on ISCAS85 and
MCNC benchmark circuits under the unit delay model. The
results for the same set of benchmark circuits under the fanout
delay model are shown in Table 2. For benchmarkcircuitsC6288



Table 2: Results of ISCAS and MCNC benchmarks under fanout-delay model

Benchmark Number Number of Maximum Power CPU Time (sec)
Circuit of gates of levels COSMOS ATG SIM COSMOS ATG SIM

i1 33 25 101 87 91 1.84 0.14 23.5

i2 36 201 260 270 250 35.5 2.06 78.0
i3 70 132 182 202 170 6.47 0.37 67.69
i4 94 192 352 346 288 12.8 0.56 88.2
i5 199 133 1063 666 642 20.9 1.02 168.6
i6 344 138 1408 1346 1248 25.6 3.34 240.2
i7 406 199 1615 1549 1481 60.0 4.10 284.7

i8 1183 133 7165 7516 6864 315.9 56.1 866.5
i9 353 88 4306 3106 5061 218.5 32.0 451.5
i10 2497 257 8847 15096 14692 5835.2 1616.4 2531.13

C432 160 36 828 944 831 91.6 32.2 140.1
C499 202 41 355 740 511 18.8 3.41 82.5
C880 357 60 1447 1238 1211 252.8 8.67 203.1
C1355 514 41 2424 1404 2251 129.3 47.0 336.7

C1908 880 33 4945 4235 5577 309.8 56.0 1091.5
C2670 1161 233 5129 5382 4768 597.5 34.2 1232.6
C3540 1667 50 7922 9002 10537 662.4 107.83 2102.0
C5315 2290 178 10945 13739 12290 689.7 61.8 3416.7
C6288 2416 32 105172 97023 118555 3658.4 386.7 32859.1

C7552 3466 207 15947 18279 17178 2381.9 191.4 6129.9

and i10 under the fanout delay model, we use a di�erent setting
of w to make the steepest descent process converge. This will
take extra CPU time in the actual estimation process. The CPU
time for these two circuits listed in Table 2 does not include this
extra time.

In Tables 1 and 2, the instantaneous power of a circuit is cal-
culated based on Equation 1: P (V1; V2) =

P
8gate

F (g) � T (g).

Here (V1,V2) is the input vector pair applied to the circuit; F (g)
is the fanout (denoting the capacitive load) of gate g, and T (g)
is the transition count at the output of gate g caused by V1 and
V2. In COSMOS, the optimal choice(s) of (V1, V2) is obtained

by searching the maxima of the function bP (V1; V2) over a unit
hypercube in the Euclidean space. In the ATPG-based estima-
tion, ATG maximizes the instantaneous power in the circuit by
greedily assigning switchings to the outputs of the gates with
large capacitive load. The switchings assigned are then justi�ed
by the ATPG technique [3]. In the estimation technique based on
random simulation, SIM generates the optimal pair of (V1,V2)
for stressing a circuit based on 10;000 input patterns conforming
to the signal probability of 0:5 and activity of 0:9 at PI's [3]. The
CPU time is measured on a Sun Sparc 5 workstation.

From Tables 1 and 2, we can conclude the following signi�-
cances of this continuous optimization approach (COSMOS):

1. Compared to the traditional simulation-based technique
(SIM), this approach is superior in both speed and per-
formance. In 24 out of the 40 circuits tested, this approach
generates a tighter lower bound (1.16 times larger, on an
average). For the 40 circuits, the mean value of the ratio
"CPU time of the continuous optimization approach di-
vided by CPU time of the simulation-based technique" is
equal to 0:41.

2. Although COSMOS converges not as fast as the ATPG-
based technique does, our approach is favored under the
following conditions:

� To estimate the power of a circuit under certain com-
plicated delay model that the ATPG-based technique
cannot be easily applied.

� In 24 out of the 40 circuits tested, this approach
generates a better estimate of maximum power (1.19
times larger, average speaking) than the ATPG-based
technique does. A lower bound of high quality can be
decided by these two approaches together.

6 Conclusions
In this paper, we have developed a continuous optimization ap-
proach for the maximum power estimation of CMOS circuits.
Experimental results show that this approach is superior to the
traditional simulation-based technique in both speed and perfor-
mance. For 24 out of the 40 circuits tested, our approach gives
a better estimate than the simulation-based technique does. For
the 40 circuits, the mean value of the ratio "CPU time of the
continuous optimization approach divided by CPU time of the
simulation-based technique" is equal to 0:41. In maximumpower
estimation, this approach is an alternative to the ATPG-based
technique.
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