Introduction to Stateless Linux

Proposal for the Fedora Project

Last revised September 13, 2004

Introduction

Red Hat has been prototyping an OS-wide collection of changes we
call “stateless Linux.” Some of these changes have started to appear in
Fedora Core. Based on our experience so far, this is an exciting direction
to take the operating system and we want to propose it to the wider
Fedora community. Please send us your feedback.

This proposal describes:
+ The “stateless Linux” initiative goals and philosophy
+ How the project affects Fedora policies and development
+ Our initial implementation

+ Future plans and possibilities

Stateless Linux

Some ideal properties of an operating system:

1. If you throw a computer out the window, you should be able to
recreate its software, configuration, and user data bit-for-bit identically
on a new piece of hardware.

2. In any managed deployment from school workstation lab to enterprise
server room, single computers should never be modified. Instead, all
computers that need the modification should be modified in a single
step.

Many people have configured Linux to work without a local hard drive.
Imagine that the root filesystem is mounted read-only over NFS, and
shared among multiple computers. Imagine that the user home
directories for this system are also NFS-mounted.

This diskless deployment is the simplest example of a stateless Linux
configuration. No state exists on single computers; all state is centralized.

The LTSP thin client project combines this diskless model with a
terminal server, running applications remotely and displaying them on
clients.

A traditional Windows-style fat client is at the opposite extreme. Each
system can be modified locally. This means that each system must be
individually backed up, and can have individual headaches such as
updates that fail to apply, a corrupt registry, or whatever. Even enterprise
Windows deployments often allow users to install software, mix user data
with system components, and so forth.



Over the years, thin clients have gone in and out of fashion. We
believe this is because thin clients force a tradeoff; they have important
advantages due to their stateless nature, but also important
disadvantages.

One goal of the stateless Linux project is to move toward a “best of
both worlds” hybrid between thin and fat client. Its properties include:

+ Applications run on local systems

> avoids the need for huge terminal servers with complex load
balancing

> works for laptops
+ Software and data are cached on the local disk
> reduces bandwidth and increases speed

> the cache can be read-only and thus per-computer state is
impossible

> works for laptops

As part of the stateless Linux project, we are attempting to create this
“cached client” technology. However, the stateless Linux plan spans all
of thin, fat, and “cached” client: it is first and foremost an architecture and
a philosophy for how to design the operating system. The exact
deployment details are tunable for the needs of each environment.

We are starting the stateless Linux work in a desktop context, but its
advantages are equally applicable to the server. An especially interesting
application in the server world is to manage a collection of virtual server
instances running on one physical machine. In this case, you would
expect the virtual machines to share the same root filesystem.

What about...

Before anyone panics: stateless Linux is an addition to the existing
ways to deploy Linux, not a replacement. We do think it will be useful in a
wide range of cases, but if it doesn't work for a particular case, the usual
Linux deployment styles will still get the job done.

Instantiation

All exciting new software projects have to introduce some new
terminology, and stateless Linux is no exception.

We are using the word updates in the traditional sense of delivering
new RPM packages and installing them to a root filesystem.

We are using the word instantiation to refer to getting a root filesystem
from a central server to the individual system that will boot the root
filesystem. Instantiation is done on a file basis, rather than by installing
packages.

The generic term “instantiation” is needed because there are at least
two ways to replicate a root filesystem:

+ Diskless via NFS, AFS, GFS, or other network filesystems



+ Cached using either a userspace solution or a network filesystem that
supports local cache

One goal of the stateless Linux initiative is to treat these two cases in
the same framework. So for example a single root filesystem could be
mounted diskless by some computers, and cached by others.

Stateless Linux doesn't always involve instantiation; many of the
stateless principles and goals apply equally to systems updated directly
with RPM packages. Such systems can also be managed with a one-to-
many, “no local changes” methodology, given the right software.

Implications for Fedora Project Developers

Stateless Linux has a number of implications for how specific
packages in the operating system should work, and what capabilities the
operating system should have.

Read-only root filesystem

The read-only root enforces statelessness, which tends to break a lot
of packages. To address this, we've developed a toolkit of solutions;
ways to avoid per-computer state, or store it elsewhere. The right solution
varies depending on the situation.

Put the state in memory

Some files are not really meant to be persistent; for example,
everything that gets written to /tmp. These files can safely vanish anytime
the system reboots. The simplest solution is to keep /tmp in RAM.

The same solution works for dynamically-generated files. For example,
when /etc/resolv.conf is written out from DHCP data, it can safely be kept
in RAM. Kudzu's /etc/sysconfig/hwconf is a similar case.

Determine the state dynamically

DHCP and hardware probing are two cases where rather than
configuring something in advance, it can be recomputed each time.

System administrators can also use this technique to work around
issues unique to their deployment. For example, a custom initscript could
dynamically determine how to set up a particular machine — but the script
is identical on all machines, and the script's results only reside in RAM.

One way to dynamically configure a machine is to query a central
server...
Store the state on a central server
Some examples:
» LDAP or NIS for user accounts, rather than /etc/passwd
+ Locate printers using LDAP or DNS-SD (ZeroConf)
+ Place the state on a file share

+ Have syslog send data over the network



In combination with scripts that key off the machine's MAC address,
network location, hardware, and other features the possibilities are
endless.

Some local state doesn't matter

The only example of this so far is a random seed, which is useful to
persist across reboots — but nobody is going to cry if it gets lost.

Store the state locally, but back it up automatically

For laptops, the user's home directory has to be local. However, we
can keep it reliably backed up:

+ Each time we detect a network link to the corporate network, copy the
latest changes to a file server

+ Do this automatically and unobtrusively (perhaps with some
“notification area” indicator)

Ability to update a file tree

With many stateless Linux setups, a file server exports a root
filesystem for instantiation. This means that software installation and
update tools, such as yum and up2date, have to operate on the file tree
that will be exported, rather than to “/” on the currently running system.

Anaconda also needs the ability to install to a file tree, in addition to a
physical system.

Dynamic hardware handling

As with a live CD distribution, manual hardware configuration can't be
written to disk. At least for systems with modern, reasonable hardware,
dynamic detection and setup of the available devices should be possible.
Automatic hardware setup happens to be the Right Thing from a user
interface point of view, as well.

For deployments with problematic hardware, admins using stateless
Linux will have to write scripts to look at the system and set up the right
configuration according to system type, information in the directory, or
any other available means.

Users should not need root

One of our user interface goals is that desktop productivity users
should never need the root password. This coincides nicely with the
stateless Linux model, where even root can only write to /tmp and the
home directory, so giving users root doesn't add many new capabilities.

Hardware setup was the largest category of “reasons end users need
root today.” The Red Hat desktop team has been working hard to
eliminate hardware setup, for example:

+ Shared printers are automatically detected without configuration

+ Local printers are automatically configured when plugged in



+ Network interfaces are automatically brought up when a link is present

+ Users can choose wireless essid and enter an encryption key from the
GUI, without root privileges

« Storage devices and input devices are automatically set up when
plugged in

One tricky issue is the date and time; on laptops at least, system-
config-date probably should not require a password. It makes people
nervous to eliminate the password requirement by default, so it will
probably be an additional burden on local sites to set it up for their users.

Generally speaking, we feel that any end user (non-admin) task that
requires the root password should be considered a bug.

Initial Implementation Progress

We've been prototyping some aspects of the stateless Linux initiative
in Rawhide, leading up to Fedora Core 3. It's by no means fully-baked,
but we do have some good progress and perhaps a better understanding
of the problem space.

Hardware just works

A major focus has been removing the need to be root to use your
hardware, and ensuring that we autodetect and set up hardware on
system boot.

As mentioned earlier in this paper, our efforts have covered printing
(local and shared), networking (wired and wireless), USB devices such
as pen drives, input devices, and more. Red Hat developers are leading
the work on HAL, D-BUS, and other components that enable this to
happen.

No question that work remains. However, a categorical policy going
forward is that we expect an office productivity worker to be able to use
all their hardware without the root password, and without touching the
command line. We will consider it a bug if desktop-class hardware
requires either root or opening a terminal.

Read-only root filesystem support

The package “readonly-root,” if installed, modifies the boot process to
mount the root filesystem read-only, and mount certain files and
directories read-write in RAM.

Basic tools for managing an OS install tree

We have some basic tools to install an OS to a directory, and take
“snapshots” of it. A snapshot freezes the OS install in time so it can be
instantiated without changing as it is being copied.



mkinitrd support for diskless clients

The “readonly-root” package also contains a diskless-mkinitrd script
which supports creating an initrd to be used in conjunction with pxelinux
for network booting. The initrd is created as part of the snapshot process
and differs from the non-diskless case in that the network interface is
brought up and a root filesystem is mounted over NFS. The diskless-
mkinitrd script is intended to be merged into mainline mkinitrd over time.

Rsync-based cached instantiation prototype

To experiment with the “cached client,” we've implemented a simple
setup using rsync to copy the OS install to individual clients. This
implementation uses two disk partitions, each with a copy of the OS.
Updates are performed on the copy that is not in use, for a “double
buffered” effect.

There are a number of limitations to this approach, some of them
fixable by tweaking the implementation, and some requiring a different
approach entirely. However, we wanted to get the overall architecture
roughly working before trying to engineer all the details.

That caveat in mind, here are some more details on the current
prototype. There are five partitions on a cached client system:

« active root

active /boot

reserve root
+ reserve /boot
+ swap

The “stateless-client” RPM contains a cron job that runs every hour.
The hourly cron job asks an LDAP server which OS install the client
should be running. It compares this with what's currently cached; if the
client is running the wrong OS, it looks up an rsync server in LDAP, and
rsyncs the OS to the reserve root partition. When the root patrtition is fully
updated, it updates the reserve /boot partition, and modifies grub to swap
the reserve and active partitions.

One possible improvement to the rsync approach is to cache the delta
to be synced in some way, rather than rescanning the whole file tree on
both client and server in order to sync the cache.

Mobility support

The idea of the “cached client” is that laptops are treated much like a
connected system, and fit into the same framework. This extends beyond
the OS install. For example, laptops should participate in LDAP and
Kerberos infrastructure just as connected workstations do.

To this end, we have to extend all parts of the operating system to
support disconnected operation. Some work we've been doing along
these lines includes:



+ Allowing login to a Kerberos-configured laptop, even when the
network is disconnected

» Caching GECOS fields (from NIS or LDAP), so they can be accessed
when disconnected

« Support for tracking a connected/disconnected state, using D-BUS
notifications, so applications such as the web browser and mail client
can automatically enter and leave “offline mode”

Live CD instantiation

With support for a read-only root filesystem and dynamic hardware
detection, booting the OS from a CD does not require extensive hacks or
modifications to the OS itself.

Given an OS install available for diskless or cached instantiation, we
have preliminary support for “write this install to a CD.” This builds an
ISO image, mounts it, modifies the image slightly as required, then burns
the image to CD.

Future Directions

There are countless ways we can improve the operating system,
building around the stateless Linux theme. Here are some examples.

Use a filesystem for cached instantiation

Our first prototype of cached instantiation uses two partitions to
support a double-buffered rsync; we rsync the partition that's not in use.
This was simple to implement and gets the job done.

A network filesystem that supported cached instantiation would do a
better job. It could cache each file “on demand” when the file is used.
While connected to the network, the system would never use an outdated
file; it could be notified immediately whenever the cache should be
expired.

However, to enable disconnection, the entire root filesystem has to be
cached in advance. It would not work to have only the OpenOffice.org
components you had happened to use prior to disconnection; all files in
the OpenOffice.org package that you might use while traveling should be
cached on the laptop.

Thus, a filesystem tuned for cached instantiation would have hooks to
allow userspace to control its behavior (e.g. a “cache everything”
command) and hooks to display feedback such as progress bars and
connection errors.

User data storage

In an ideal stateless deployment, it's trivial to replace a crashed
computer. Imagine this user experience:

+ User plugs the replacement computer into the network; it network
boots and asks the user to authenticate



+ The user is then presented with a list of their computers, e.g. “Joe's
Thinkpad,” “Joe's Workstation” and has the option to make the new
computer a replacement for one of those or identically configured to
one of those; also available might be some stock “templates” such as
“standard laptop”

+ On choosing “Joe's Workstation” the replacement workstation would
instantiate the same OS install as the original workstation, and have
the same data in the user's home directory as the original workstation

It would be almost as good even if only the sysadmin can do all this,
rather than the user setting up their own new machine.

To get this working, we might imagine implementing:
+ Track all the computers belonging to a particular user

+ Each computer has some sort of identifiable name, such as “Joe's
Workstation”

+ Each user can have multiple home directories, if the home directories
are local (e.qg. for laptops)

» However, it's critical to back up the home directory often — perhaps
whenever the laptop connects to the intranet

« These home directory backups have to be associated with a particular
computer

Of course in the connected case, this is much simpler and works
today: put a single home directory on a network file system and share it
between all the user's computers.

Conclusion

Many aspects of the stateless Linux project aren't new. MIT's Athena,
live CD projects such as Knoppix, LTSP, InterMezzo, Coda, and several
Red Hat customer deployments demonstrate similar ideas.

However, stateless deployment models have always been an exercise
in custom development, often requiring difficult-to-maintain package forks
from the standard version of the operating system, or complex add-on
features.

Some of our goals:

+ To support a stateless model “out of the box,” designing the operating
system and applications to work with it from both a technical and a
user interface standpoint

+ To build a uniform architecture where functionally equivalent elements
can be mixed-and-matched; for example, diskless, cached, and live
CD instantiation

+ To extend the architecture to be general-purpose; for example
ensuring that laptops fit in

+ To work with all the important elements of a production deployment;
for example authentication and directory services



Some of the cases we hope to enable:

Live CDs

Diskless thin clients

Virtual servers sharing the same root filesystem
Diskless blade servers

“Cached client” laptops

Feedback and contributions are very welcome; please come join us
on fedora-devel-list.



