14.10. Lines of Curvature, Geodesic Torsion, Asymptotic Lines

Given a surface X, certain curves on the surface play a special role, for example, the curves corresponding to the directions in which the curvature is maximum or minimum.

Definition 14.10.1 Given a surface X, a line of curvature is a curve $C: t \mapsto X(u(t), v(t))$ on X defined on some open interval I, and having the property that for every $t \in I$, the tangent vector $C^{\prime}(t)$ is collinear with one of the principal directions at $X(u(t), v(t))$.

Note that we are assuming that no point on a line of curvature is either a planar point or an umbilical point, since principal directions are undefined as such points.

The differential equation defining lines of curvature can be found as follows:

Remember from lemma 14.8.2 of Section 14.8 that the principal directions are the eigenvectors of $d \mathbf{N}_{(u, v)}$.

Therefore, we can find the differential equation defining the lines of curvature by eliminating κ from the two equations from the proof of lemma 14.8.2:

$$
\begin{aligned}
& \frac{M F-L G}{E G-F^{2}} u^{\prime}+\frac{N F-M G}{E G-F^{2}} v^{\prime}=-\kappa u^{\prime} \\
& \frac{L F-M E}{E G-F^{2}} u^{\prime}+\frac{M F-N E}{E G-F^{2}} v^{\prime}=-\kappa v^{\prime}
\end{aligned}
$$

It is not hard to show that the resulting equation can be written as

$$
\operatorname{det}\left(\begin{array}{ccc}
\left(v^{\prime}\right)^{2} & -u^{\prime} v^{\prime} & \left(u^{\prime}\right)^{2} \\
E & F & G \\
L & M & N
\end{array}\right)=0
$$

From the above equation, we see that the u-lines and the v lines are the lines of curvatures iff $F=M=0$.

Generally, this differential equation does not have closed-form solutions.

There is another notion which is useful in understanding lines
Home Page

Title Page

Let $C: s \mapsto X(u(s), v(s))$ be a curve on X assumed to be parameterized by arc length, and let $X(u(0), v(0))$ be a point on the surface X, and assume that this point is neither a planar point nor an umbilic, so that the principal directions are defined.

We can define the orthonormal frame $\left(\overrightarrow{e_{1}}, \overrightarrow{e_{2}}, \mathbf{N}\right)$, known as the Darboux frame, where $\overrightarrow{e_{1}}$ and $\overrightarrow{e_{2}}$ are unit vectors corresponding to the principal directions, \mathbf{N} is the normal to the surface at $X(u(0), v(0))$, and $\mathbf{N}=\overrightarrow{e_{1}} \times \overrightarrow{e_{2}}$.

It is interesting to study the quantity $\frac{d \mathbf{N}_{(u, v)}}{d s}(0)$.

If $\vec{t}=C^{\prime}(0)$ is the unit tangent vector at $X(u(0), v(0))$, we have another orthonormal frame considered in Section 14.4, namely $\left(\vec{t}, \overrightarrow{n_{g}}, \mathbf{N}\right)$, where $\overrightarrow{n_{g}}=\mathbf{N} \times \vec{t}$, and if φ is the angle between $\overrightarrow{e_{1}}$ and \vec{t} we have

$$
\begin{aligned}
\vec{t} & =\cos \varphi \overrightarrow{e_{1}}+\sin \varphi \overrightarrow{e_{2}} \\
\overrightarrow{n_{g}} & =-\sin \varphi \overrightarrow{e_{1}}+\cos \varphi \overrightarrow{e_{2}}
\end{aligned}
$$

Lemma 14.10.2 Given a curve $C: s \mapsto X(u(s), v(s))$ parameterized by arc length on a surface X, we have

$$
\frac{d \mathbf{N}_{(u, v)}}{d s}(0)=-\kappa_{N} \vec{t}+\tau_{g} \overrightarrow{n_{g}}
$$

where κ_{N} is the normal curvature, and where the geodesic torsion τ_{g} is given by

$$
\tau_{g}=\left(\kappa_{1}-\kappa_{2}\right) \sin \varphi \cos \varphi
$$

From the formula

$$
\tau_{g}=\left(\kappa_{1}-\kappa_{2}\right) \sin \varphi \cos \varphi,
$$

since φ is the angle between the tangent vector to the curve C and a principal direction, it is clear that the lines of curvatures are characterized by the fact that $\tau_{g}=0$.

One will also observe that orthogonal curves have opposite geodesic torsions (same absolute value and opposite signs).

If \vec{n} is the principal normal, τ is the torsion of C at $X(u(0), v(0))$, and θ is the angle between \mathbf{N} and \vec{n} so that $\cos \theta=\mathbf{N} \cdot \vec{n}$, we claim that

$$
\tau_{g}=\tau-\frac{d \theta}{d s}
$$

which is often known as Bonnet's formula.

Lemma 14.10.3 Given a curve $C: s \mapsto X(u(s), v(s))$ parameterized by arc length on a surface X, the geodesic torsion τ_{g} is given by

$$
\tau_{g}=\tau-\frac{d \theta}{d s}=\left(\kappa_{1}-\kappa_{2}\right) \sin \varphi \cos \varphi
$$

where τ is the torsion of C at $X(u(0), v(0))$, and θ is the angle between \mathbf{N} and the principal normal \vec{n} to C at $s=0$.

Note that the geodesic torsion only depends on the tangent of curves C. Also, for a curve for which $\theta=0$, we have $\tau_{g}=\tau$.

Such a curve is also characterized by the fact that the geodesic curvature κ_{g} is null.

As we will see shortly, such curves are called geodesics, which explains the name geodesic torsion for τ_{g}.

Lemma 14.10.3 can be used to give a quick proof of a beautiful theorem of Dupin (1813).

Dupin's theorem has to do with families of surfaces forming a triply orthogonal system.

Given some open subset U of \mathbb{E}^{3}, three families $\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}$ of
Home Page

Title Page point $p \in U$, there is a unique surface from each family \mathcal{F}_{i} passing through p, where $i=1,2,3$, and any two of these surfaces intersect orthogonally along their curve of intersection.

Theorem 14.10.4 The surfaces of a triply orthogonal system intersect each other along lines of curvature.

A nice application of theorem 14.10.4 is that it is possible to find the lines of curvature on an ellipsoid.

Indeed, a system of confocal quadrics is triply orthogonal! (see Berger and Gostiaux [?], Chapter 10, Sections 10.2.2.3, 10.4.9.5, and 10.6.8.3, and Hilbert and Cohn-Vossen [?], Chap-
ter 4, Section 28).

We now turn briefly to asymptotic lines. Recall that asymptotic directions are only defined at points where $K<0$, and at such points, they correspond to the directions for which the normal curvature κ_{N} is null.

Home Page

Title Page

Definition 14.10.5 Given a surface X, an asymptotic line is a curve C : $t \mapsto X(u(t), v(t))$ on X defined on some open interval I where $K<0$, and having the property that for every $t \in I$, the tangent vector $C^{\prime}(t)$ is collinear with one of the asymptotic directions at $X(u(t), v(t))$.

The differential equation defining asymptotic lines is easily found since it expresses the fact that the normal curvature is null:

$$
L\left(u^{\prime}\right)^{2}+2 M\left(u^{\prime} v^{\prime}\right)+N\left(v^{\prime}\right)^{2}=0
$$

Such an equation generally does not have closed-form solutions.

Note that the u-lines and the v-lines are asymptotic lines iff

Perseverant readers are welcome to compute E, F, G, L, M, N for the Enneper surface:

$$
\begin{aligned}
& x=u-\frac{u^{3}}{3}+u v^{2} \\
& y=v-\frac{v^{3}}{3}+u^{2} v \\
& z=u^{2}-v^{2}
\end{aligned}
$$

Home Page

Title Page
4

4

Page 777 of 780

Go Back

Page 778 of 780
Go Back

Full Screen

Figure 14.6: the Enneper surface

Parabolic lines are defined by the equation

$$
L N-M^{2}=0
$$

where $L^{2}+M^{2}+N^{2}>0$.

In general, the locus of parabolic points consists of several
curves and points.

Home Page

Title Page
For fun, the reader should look at Klein's experiment as described in Hilbert and Cohn-Vossen [?], Chapter IV, Section 29, page 197.

We now turn briefly to geodesics.

