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14.10. Lines of Curvature, Geodesic Torsion,

Asymptotic Lines

Given a surface X, certain curves on the surface play a special
role, for example, the curves corresponding to the directions
in which the curvature is maximum or minimum.

Definition 14.10.1 Given a surface X, a line of curvature is
a curve C: t 7→ X(u(t), v(t)) on X defined on some open inter-
val I, and having the property that for every t ∈ I, the tangent
vector C ′(t) is collinear with one of the principal directions at
X(u(t), v(t)).

Note that we are assuming that no point on a line of curvature
is either a planar point or an umbilical point, since principal
directions are undefined as such points.

The differential equation defining lines of curvature can be
found as follows:
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Remember from lemma 14.8.2 of Section 14.8 that the princi-
pal directions are the eigenvectors of dN(u,v).

Therefore, we can find the differential equation defining the
lines of curvature by eliminating κ from the two equations
from the proof of lemma 14.8.2:

MF − LG

EG− F 2 u′ +
NF −MG

EG− F 2 v′ = −κu′,

LF −ME

EG− F 2 u′ +
MF −NE

EG− F 2 v′ = −κv′.

It is not hard to show that the resulting equation can be writ-
ten as

det

(
(v′)2 −u′v′ (u′)2

E F G
L M N

)
= 0.
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From the above equation, we see that the u-lines and the v-
lines are the lines of curvatures iff F = M = 0.

Generally, this differential equation does not have closed-form
solutions.

There is another notion which is useful in understanding lines
of curvature, the geodesic torsion.

Let C: s 7→ X(u(s), v(s)) be a curve on X assumed to be
parameterized by arc length, and let X(u(0), v(0)) be a point
on the surface X, and assume that this point is neither a
planar point nor an umbilic, so that the principal directions
are defined.
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We can define the orthonormal frame (−→e1 ,−→e2 ,N), known as

the Darboux frame, where −→e1 and −→e2 are unit vectors corre-
sponding to the principal directions, N is the normal to the
surface at X(u(0), v(0)), and N = −→e1 ×−→e2 .

It is interesting to study the quantity
dN(u,v)

ds
(0).

If
−→
t = C ′(0) is the unit tangent vector at X(u(0), v(0)), we

have another orthonormal frame considered in Section 14.4,

namely (
−→
t ,−→ng ,N), where −→ng = N×−→t , and if ϕ is the angle

between −→e1 and
−→
t we have

−→
t = cos ϕ−→e1 + sin ϕ−→e2 ,
−→ng = − sin ϕ−→e1 + cos ϕ−→e2 .
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Lemma 14.10.2 Given a curve C: s 7→ X(u(s), v(s)) param-
eterized by arc length on a surface X, we have

dN(u,v)

ds
(0) = −κN

−→
t + τg

−→ng ,

where κN is the normal curvature, and where the geodesic tor-
sion τg is given by

τg = (κ1 − κ2) sin ϕ cos ϕ.

From the formula

τg = (κ1 − κ2) sin ϕ cos ϕ,

since ϕ is the angle between the tangent vector to the curve C

and a principal direction, it is clear that the lines of curvatures
are characterized by the fact that τg = 0.
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One will also observe that orthogonal curves have opposite
geodesic torsions (same absolute value and opposite signs).

If−→n is the principal normal, τ is the torsion of C at X(u(0), v(0)),

and θ is the angle between N and −→n so that cos θ = N · −→n ,
we claim that

τg = τ −
dθ

ds
,

which is often known as Bonnet’s formula.
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Lemma 14.10.3 Given a curve C: s 7→ X(u(s), v(s)) param-
eterized by arc length on a surface X, the geodesic torsion τg

is given by

τg = τ −
dθ

ds
= (κ1 − κ2) sin ϕ cos ϕ,

where τ is the torsion of C at X(u(0), v(0)), and θ is the angle

between N and the principal normal −→n to C at s = 0.

Note that the geodesic torsion only depends on the tangent of
curves C. Also, for a curve for which θ = 0, we have τg = τ .

Such a curve is also characterized by the fact that the geodesic
curvature κg is null.

As we will see shortly, such curves are called geodesics, which
explains the name geodesic torsion for τg.
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Lemma 14.10.3 can be used to give a quick proof of a beautiful
theorem of Dupin (1813).

Dupin’s theorem has to do with families of surfaces forming a
triply orthogonal system.

Given some open subset U of E3, three families F1,F2,F3 of
surfaces form a triply orthogonal system for U , if for every
point p ∈ U , there is a unique surface from each family Fi

passing through p, where i = 1, 2, 3, and any two of these sur-
faces intersect orthogonally along their curve of intersection.

Theorem 14.10.4 The surfaces of a triply orthogonal system
intersect each other along lines of curvature.
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A nice application of theorem 14.10.4 is that it is possible to
find the lines of curvature on an ellipsoid.

Indeed, a system of confocal quadrics is triply orthogonal!
(see Berger and Gostiaux [?], Chapter 10, Sections 10.2.2.3,
10.4.9.5, and 10.6.8.3, and Hilbert and Cohn-Vossen [?], Chap-
ter 4, Section 28).

We now turn briefly to asymptotic lines. Recall that asymp-
totic directions are only defined at points where K < 0, and
at such points, they correspond to the directions for which the
normal curvature κN is null.
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Definition 14.10.5 Given a surface X, an asymptotic line
is a curve C: t 7→ X(u(t), v(t)) on X defined on some open
interval I where K < 0, and having the property that for
every t ∈ I, the tangent vector C ′(t) is collinear with one of
the asymptotic directions at X(u(t), v(t)).

The differential equation defining asymptotic lines is easily
found since it expresses the fact that the normal curvature is
null:

L(u′)2 + 2M(u′v′) + N(v′)2 = 0.

Such an equation generally does not have closed-form solu-
tions.

Note that the u-lines and the v-lines are asymptotic lines iff
L = N = 0 (and F 6= 0).
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Perseverant readers are welcome to compute E, F, G,
L, M, N for the Enneper surface:

x = u− u3

3
+ uv2

y = v − v3

3
+ u2v

z = u2 − v2.

Then, they will be able to find closed-form solutions for the
lines of curvatures and the asymptotic lines.
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Figure 14.6: the Enneper surface
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Parabolic lines are defined by the equation

LN −M 2 = 0,

where L2 + M 2 + N 2 > 0.

In general, the locus of parabolic points consists of several
curves and points.

For fun, the reader should look at Klein’s experiment as de-
scribed in Hilbert and Cohn-Vossen [?], Chapter IV, Section
29, page 197.

We now turn briefly to geodesics.


	Lines of Curvature, Geodesic Torsion, Asymptotic Lines

