
Ontology-based Resource Matching in the Grid —
The Grid meets the Semantic Web

�

Hongsuda Tangmunarunkit, Stefan Decker, Carl Kesselman

Information Sciences Institute
University of Southern California�

Hongsuda, Stefan, Carl � @isi.edu

Abstract. The Grid is an emerging technology for enabling resource sharing and
coordinated problem solving in dynamic multi-institutional virtual organizations.
In the Grid environment, shared resources and users typically span different orga-
nizations. The resource matching problem in the Grid involves assigning resources
to tasks in order to satisfy task requirements and resource policies. These require-
ments and policies are often expressed in disjoint application and resource models,
forcing a resource selector to perform semantic matching between the two. In this
paper, we propose a flexible and extensible approach for solving resource matching
in the Grid using semantic web technologies. We have designed and prototyped an
ontology-based resource selector that exploits ontologies, background knowledge,
and rules for solving resource matching in the Grid.

1 Introduction

The Grid is an emerging technology for enabling resource sharing and coordinated prob-
lem solving in dynamic multi-institutional virtual organizations [12, 11]. Grids are used
to join various geographically distributed computational and data resources, and deliver
these resources to heterogeneous user communities [30, 9, 13]. These resources may be-
long to different institutions, have different usage policies and pose different require-
ments on acceptable requests. Grid applications, at the same time, may have different
constraints that can only be satisfied by certain types of resources with specific capa-
bilities. Before a resource (or a set of resources) can be allocated to run an application,
the user or an agent must select resources appropriate to the requirements of the appli-
cation [7]. We call this process of selecting resources based on application requirements
resource matching. In a Grid environment, where resources may come and go, it is de-
sirable and sometimes necessary to automate the resource matching to robustly meet
specific application requirements.

Existing resource description and resource selection in the Grid is highly constrained.
Traditional resource matching, as exemplified by the Condor Matchmaker [26] or Portable
Batch System [23], is done based on symmetric, attribute-based matching. In these sys-
tems, the values of attributes advertised by resources are compared with those required by
�

This work was supported by National Science Foundation under grant EAR-0122464. Any opin-
ions, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science Foundation.

2

Fig. 1. Resource Matching: the matcher gathers resource information from resource providers.
When a requestor submits a request to the matcher for a resource match, the matcher searches
for the appropriate resource and returns the best result to the requestor. The requestor can then
request the resource for its services or execution.

jobs. For the comparison to be meaningful and effective, the resource providers and con-
sumers have to agree upon attribute names and values. The exact matching and coordina-
tion between providers and consumers make such systems inflexible and difficult to ex-
tend to new characteristics or concepts. Moreover, in a heterogeneous multi-institutional
environment such as the Grid, it is difficult to enforce the syntax and semantics of re-
source descriptions.

To illustrate, consider if a machine’s operating system is described as “SunOS” or
“Linux.” To query for a machine that is “Unix” compatible, a user either has to:

1. explicitly incorporate the Unix compatibility concept into the request requirements
by requesting a disjunction of all Unix-variant operating systems, e.g., (OpSys=“SunOS”���

OpSys=“Linux”), or
2. wait for all interesting resources to advertise their operating system as Unix as well

as either Linux or SunOS, e.g., (OpSys= � “SunOS,” “Unix” �), and then express a
match as set-membership of the desired Unix value in the OpSys value set, e.g.,
hasMember(OpSys, “Unix”).

In the former case, the disjunctive requirements become unwieldy as more abstract con-
cepts are developed. In the latter, the advertisements become more complex and all re-
sources must be updated before a match can occur.

In this paper, we propose a flexible and extensible approach for performing Grid
resource selection using an ontology-based matchmaker. Unlike the traditional Grid re-
source selectors that describe resource/request properties based on symmetric flat at-
tributes (which might become unmanageable as the number of attributes grows), sepa-
rate ontologies (i.e., semantic descriptions of domain models) are created to declaratively
describe resources and job requests using an expressive ontology language. Instead of
exact syntax matching, our ontology-based matchmaker performs semantic matching us-
ing terms defined in those ontologies. The loose coupling between resource and request

3

descriptions remove the tight coordination requirement between resource providers and
consumers. In addition, our matchmaker can be easily extended, by adding vocabularies
and inference rules, to include new concepts (e.g., Unix compatibility) about resources
and applications and adapted the resource selection to changing policies. These ontolo-
gies can also be distributed and shared with other tools and applications.

We have designed and prototyped our matchmaker using existing semantic web tech-
nologies to exploit ontologies and rules (based on Horn logic and F-Logic) for resource
matching. In our approach, resource and request descriptions are asymmetric. Resource
descriptions, request descriptions, and usage policies are all independently modeled and
syntactically and semantically described using a semantic markup language; RDF schema.
Domain background knowledge (e.g., “SunOS and Linux are types of Unix operating
system”) captured in terms of rules are added for conducting further deduction (e.g., a
machine with “Linux” operating system is a candidate for a request of a “Unix” ma-
chine). Finally, matchmaking procedures written in terms of inference rules are used
to reason about the characteristics of a request, available resources and usage policies
to appropriately find a resource that satisfies the request requirements. Additional rules
can also be added to automatically infer resource requirements from the characteristics
of domain-specific applications (e.g., 3D finite difference wave propagation simulation)
without explicit statements from the user.

The rest of the paper is organized as follows. In Section 2, we summarize the semantic
web technologies that we use in our work. Section 3 reviews related work to the resource
selection problem. Section 4 describes the features and architecture of our ontology-
based matchmaker and provides a matching example. Finally, we conclude our paper in
Section 5.

2 Semantic Web Technologies

The Semantic Web [2] is the next generation of the web which evolves toward seman-
tic knowledge representations and intelligent services (e.g., information brokers, search
agents) where information can be processed by machines. To fully realize this goal, stan-
dards for exchanging machine-understandable information have to be established. These
standards define not only the syntactic representation of information, but also their se-
mantic content. A technology stack, suggested by the W3C, that we use in our work
consists of Resource Description Framework (RDF), which provides data model speci-
fication and an XML-based serialization syntax; ontologies, which enable the definition
and sharing of domain vocabularies; and rules, which allow declarative processing of
data.

2.1 The Resource Description Framework

At present, services on the Web are single islands. Common data models and data ex-
change standards are required in order to enable the fast integration of different data-
sources and to bridge semantic differences. The Web community has proposed the Re-
source Description Framework (RDF) [17] as a data model suitable for information inte-
gration tasks. The data model serves as a foundation for ontology languages.

4

2.2 Ontologies

An ontology is a specification of a conceptualization [14]. In this context, specification
refers to an explicit representation by some syntactic means. In contrast to schema lan-
guages (like XML Schema or DTDs) ontologies try to capture the semantics of a domain
by deploying knowledge representation primitives, enabling a machine to (partially) un-
derstand the relationships between concepts in a domain. Additional knowledge can be
captured by axioms or rules. In the Web context, RDF-Schema [3] and OWL1 are recom-
mendations from the W3C for ontology modeling languages.

2.3 Rules

Rules, in combination with RDF and ontologies, are an active field of research. Rules can
be used to capture domain knowledge. We have chosen TRIPLE [28] as the rule language
for our approach. TRIPLE is based on Horn logic [21] and borrows many basic features
from F-Logic [16]. It is especially designed for querying, transforming, and reasoning
with RDF data. TRIPLE has no built-in support for knowledge representation languages,
but can be configured by axioms to support arbitrary modeling languages (i.e., RDF-
Schema).

3 Related Work

3.1 Information Systems

Related to the resource selection problem are information systems for discovering, aggre-
gating, publishing and querying against information about resources and services. Globus
MDS [6] and UDDI [31] are two such examples; MDS has been widely used in the Grid
community for resource discovery while UDDI has been used in the web community for
business service discovery.

Both MDS and UDDI support simple query languages. However, they do not offer
expressive description facilities, nor provide sophisticated matchmaking capabilities. In
this environment, the usage scenario involves resource providers publishing descriptions
of their properties to an information service/registry. A resource consumer then queries
the registry to identify candidate resources prior to generating actual requests. Based
on the returned queries, resource selection can be done either by a user or procedural
algorithm. In this scenario, policy enforcement happens when a request is submitted to
the resource/service providers. It is possible that a user request will fail, and hence prior
resource selection effort is wasted.

3.2 Resource Matching in the Grid

We do not know of existing applications of ontological reasoning to matchmaking in
the Grid. In the following, we review several variations on symmetric, attribute-based
matchmaking technologies. These variations provide increasing levels of expressiveness
but still require symmetric attribute models in their descriptive and constraint languages.

1 See http://www.w3.org/2001/sw/WebOnt/ for more information.

5

Symmetric attribute-based matching. As part of Condor [5], Rajesh Raman et. al de-
veloped the classified advertisement (ClassAd) matchmaking framework for solving re-
source allocation problem in a distributed environment with decentralized ownership of
resources [26]. This framework provides a bi-lateral match, allowing both resource con-
sumers and providers to specify their matching constraints, e.g., requirements and policy.

In this framework, properties of requests and resources are characterized in a form
of arbitrary but common syntax (e.g., attribute-value pairs) capable of representing both
characteristics and policies (as shown in Figure 2). A symmetric requirement (expressed
as a constraint statement) is then evaluated to determine, for each request-resource pair,
whether there is a match. For the matching to work, it is crucial that both requests and
resources use the same attribute names and agree upon attribute values. When multiple
resources match a job requirement, a function (expressed by a Rank expression) can be
used to assign an order to resources and the highest ranked resource is returned as a
match.

Request ClassAd:
[Type = “Job”; Owner = “user1”;

Constraint = other.Type == “Machine” && Arch == “INTEL”
&& OpSys == “SOLARIS251” && Disk � = 10000;

Rank = other.Memory;]

Resource ClassAd:
[Type = ”Machine”; Name = “m1”; Disk = 30000; Arch = “INTEL”;

OpSys = “SOLARIS251”; ResearchGrp = “user1”, “user2”;
Constraint = member(other.Owner,ResearchGrp) && DayTime � 18*60*60;
Rank = member(other.Owner,ResearchGrp)]

Fig. 2. Two examples of Condor ClassAds. For each resource-request pair, constraint clauses are
checked for compatibility against the other’s properties. Rank is used to select among multiple
matches.

Gang-Matching. To overcome the binary matching limitation of Condor Matchmaker,
Raman et. al later proposed the gang-matching extension [24, 25], allowing a request
ClassAd to specify a list of required bilateral matches. For example, a request may require
one or more resources each of which must satisfy its described requirements, as well
as, the inter-resource constraints. However, this extension does not support set-matching
where resources are defined by their aggregate characteristics, e.g., a set of computers
with aggregate memory greater than 10 GB. Chuang Liu et. al proposed the set-extended
ClassAd language and a technique for specifying and solving set-matching problem [20].
Although their set-matching system can be extended to solve the gang-matching problem,
their system does not currently support this capability.

Constraint-satisfaction-based matching. Chuang Liu et. al recently proposed the Red-
line matching system: an alternative approach for doing resource selection in the Grid [19].
In this framework, the matching problem is first transformed into a constraint satisfaction
problem 2 , the set of constraints are then checked to make sure that no conflicts occur,

2 A constraint satisfaction problem (CSP) consists of a constraint C over variables 	�
���������	��
and a domain � that maps each variable 	�� to a finite set of values, ����	���� , that it is al-

6

and finally existing constraint solving technologies [22] (such as integer programming)
are used to solve the transformed problem. Similar to Condor matchmaker, the Redline
matching system is based on symmetric description of resource and request (i.e., the same
description syntax is used to describe both resources and requests). However, comparing
to ClassAd, the Redline language is more expressive. It supports both gang-matching and
set-matching capabilities.

A common requirement among these systems is the symmetric syntactic description
of resources and requests properties. As illustrated in the previous example in Section 1,
it is difficult to introduce new concepts or characteristics into the system. Moreover, in
the Grid environment, where resources and users span multiple organizations, it may be
difficult to guarantee that resources and requests will use the same attribute names, and
that the semantics of the same attributes are interpreted the same way by both resource
providers and consumers.

Our ontology-based matchmaker, on the other hand, is based on an asymmetric de-
scription. The system uses ontologies to semantically describe requests and resources.
Matching between request specification to resource capabilities is done in terms of rules.
Different request description models, along with the mapping rules, can be easily added
to our matchmaker. Similar to these matching systems, our matchmaker provides the
ability to describe properties and matching preference. Our matchmaker also supports a
binary matching and gang-matching. We plan to support set-matching in the future.

3.3 Matchmaking in Other Domains

We summarize existing work in other domains that, similar to our work, have developed
matchmakers based on ontologies.

DAML+OIL based Matchmaking. DAML+OIL based Matchmaking [18] describes a
matchmaking system based on Semantic Web Technology, using a Description Logic
reasoner to compare ontology-based service descriptions. Service advertisements are ex-
pressed as class expressions. The elements of the class expressions are taken from a
domain ontology and a specific service ontology. During the matchmaking process the
advertisements are classified into a hierarchy. The next step is to classify the request’s
service profile and the complement of the service profiles. Classifying the service profile
and its complement allows the matchmaker to determine which service advertisements
are compatible with the requests service profile. Our approach is different from their
approach in that instead of using classification, we write rules to both capture back-
ground knowledge and explicitly determine when a request (i.e., advertisement) matches
resources (i.e., services).

InfoSleuth. InfoSleuth [1] is an agent-based information discovery and retrieval system.
The system adopts broker agents for syntactic and semantic matchmaking. The broker
matches agents that require services with other agents that can provide those services.
Agent capabilities and services are described using a common shared ontology of at-
tributes and constraints which all agents can use to specify advertisements and requests

lowed to take. The CSP represents the constraint ��� 	�
�����	�
 � ���!����� 	��"����	#
 � . For example �%$	
'&)(��	
�* 	�+�,.-/������	
 �0$21 (� 34��5768�9����	�+:�0$21 (� 3;��576 .

7

to the broker. The matchmaking is then performed by a deductive database system, allow-
ing rules to evaluate whether an expression of requirements matches a set of advertised
capabilities. This approach is similar to ours. We extend the InfoSleuth approach in sev-
eral directions: first we use RDF based Semantic Web technology, and second we provide
more detail for how ontology-based reasoning interacts with the matchmaking rules. Fur-
thermore we introduce background knowledge to the matchmaking process, allowing for
a more flexible matchmaking procedure.

LARKS/RETSINA. LARKS/RETSINA [29] is a multiagent infrastructure. LARKS is an
Agent Capability Description Language (ACDL). LARKS offers the possibility to use
domain knowledge by using an ontology written in the concept language ITL. Unlike
our approach, LARKS does not use a declarative rules for matchmaking.

4 Ontology-based Resource Matching

Our ontology-based matchmaker is developed based on semantic web technologies (de-
scribed in section 2). In this section, we first summarize the desired features of our match-
maker, describe its architecture and finally the methodology.

Desired features of the ontology-based matchmaker are:

– Asymmetric description of resource and request. In our framework, the description of
resources and requests are modeled and described separately. A semantic match be-
tween the two models will be provided. Due to the asymmetric description, no coor-
dination between resource providers and consumers is required before new descrip-
tion vocabulary is added. This is not true for the symmetric attribute-based matching
described in Section 3.

– Sharing and Maintainability. The ontologies are sharable and easier to maintain and
to understand than flat attribute lists.

– Bilateral Constraints. A request description allows the request to specify its resource
constraints in terms of requirements. At the same time, each resource can also inde-
pendently express its usage policies (e.g., identifying who is allowed the access)
restricting matches to applications/requests. The matchmaker takes the policies of
each resource and request constraints into accounts when searching for a match.

– Ability to describe matching preference. Both request and resource can specify its
preference when multiple matches are found.

– Multi-lateral matching. A user can submit a request that requires multiple simulta-
neous resources, each matching its requirement clause. Set-matching [20] capability
will also be added in the future.

– Integrity Checking. The matchmaker can use the domain knowledge to help identify
inconsistencies in the resource descriptions before accepting it as an available re-
source. The integrity check can also be done for the request to make sure that there
are no conflicts in the resource requirements. For example, a resource or request ad-
vertisement with OperatingSystem=”Windows2000” and CPUFamily=”Sparc”
should be rejected.

– Expressiveness. Due to the asymmetric description, the request can be modeled specif-
ically for domain specific applications. The high-level application characteristics can

8

be provided by the user. Furthermore, high-level characteristics can be automatically
mapped to specific resource requirement configurations by the matchmaker.

– Flexibility and Extensibility. New concepts can be easily added into the ontology,
e.g., tightly-coupled machines or an MPI application. In addition, new constraints,
e.g., an MPI application requires tightly coupled machines, can be easily added in
terms of rules.

4.1 Matchmaker Architecture

Fig. 3. Ontology-based Matchmaker

The ontology-based matchmaker consists of three components:

1. the ontologies, capturing the domain model and vocabulary for expressing resource
advertisements and job requests,

2. domain background knowledge, capturing additional knowledge about the domain,
and

3. matchmaking rules, defining when a resource matches a job description.

Figure 3 shows the relationship between these components. An arrow indicates the de-
pendency between different components. For example, the background knowledge uses
the vocabulary from the ontologies to capture background information. Matchmaking
rules use both ontologies and background knowledge to match a request to resources.
Our ontology-based matchmaker is built on top of TRIPLE/XSB deductive database sys-
tem.

The matchmaking problem can be formally defined as follows. Let < be the set of all
resource advertisements in a repository; = be a domain ontology; > be a set of domain
background knowledge; ? be a set of matchmaking rules defining a binary predicate@BA"C�D7E ; and

� FHGJIK�L�M
be a consequence operator (such as the usual consequence operator

from classical logic). Then for a given query or advertisement N , matchmaking is com-
puting the set �O< � =QPB>RPS? � F GTI:K�L�M @UA"C�D7EWV <YXZN;[� . In the following we describe the
components in more details.

9

Ontologies We developed three initial ontologies. Using RDF-Schema, each ontology
defines objects, properties of objects, and relationships among objects. These three on-
tologies are:

– Resource ontology. The resource ontology provides an abstract model for describing
resources (e.g., ComputerSystem, OperatingSystem), their capabilities (e.g.,
OperatingSystem.TotalPhysicalMemory=5000MB) and their relationships (e.g.,
RunningOS(ComputerSystem \ ,OperatingSystem])). Our initial model fo-
cuses on describing the capabilities of computational resources. The majority of our
resource vocabularies are taken from the Common Information Model (CIM)—a
conceptual information model for describing resource management that is neutral
to vendors and implementation [4]. However, CIM focuses more on describing the
physical elements of a system, not on abstract capability description. We started our
resource model with a subset of CIM schema, modified and extended it to fit our
requirements.

– Resource Request ontology. This ontology captures a request, properties of the re-
quest (e.g., Request.Owner), characteristics of the request (e.g., JobType=“MPI”)
and the resource requirements (e.g., MinPhysicalMemory=1G, NumberOfCPUs=16).
The ontology supports a request of multiple independent resources.

– Policy ontology. A model that capture the resource authorization and usage policies.
For example, AuthorizedAccounts=(ComputerSystem \ ,

�
user1,user2 �)

indicates a set of accounts that are authorized to access ComputerSystem ^ . Our
model currently supports a simple authorization policy. We will expand the model to
include usage policies in the future.

Ontology Creation. We use Protégé, an ontology editor which supports the RDF Schema,
to develop our ontologies. Protégé [8] provides an integrated environment for editing
ontology and instances. It hides the ontology language from the ontology developers
allowing developers to work with high level concepts which as a result leads to rapid
ontology development.

The Grid resources and users normally span across different organizations. The abil-
ity to share and exchange resource information is necessary for the creation of resource
advertisements and job requests. Since our ontologies are represented by a semantic web
standard, they can be easily exchanged and shared by other tools such as other rule-based
engines or knowledge-based systems.

Domain Background Knowledge The background knowledge captures additional knowl-
edge about the domain (usually at the instance level) which is not captured by the ontol-
ogy. This knowledge is used during the matchmaking process. We use TRIPLE, a rule
system based on deductive database techniques, as an effective and expressive repre-
sentation mechanism for implementing the background knowledge. The knowledge is
captured in terms of rules. These rules use the vocabulary defined by the ontology to
add additional axioms which cannot be expressed by the Ontology language and which
typically influence the reasoning with instances. Figure 4 shows an example of typical
background rules. These rules define which operating systems are compatible with each
other and define compatible as transitive, reflexive, and symmetric. They also define

10

@gridBackground { // specifies grid background knowledge
Linux[rdfs:subClassOf->GR:OperatingSystem].
Unix[rdfs:subClassOf->GR:OperatingSystem].
Debian[rdf:type->Linux]. Redhat[rdf:type->Linux].
SunOS[rdf:type->Unix]. Linux[rdf:type->Unix].

// transitivity axiom
FORALL X,Y,Z X[compatibleWith->Z]<- X[compatibleWith->Y] AND Y[compatibleWith->Z].

// identity axiom
FORALL X X[compatibleWith->X].

//symmetry axiom
FORALL X,Y X[compatibleWith->Y]<- Y[compatibleWith->X].

FORALL X,Y,Z X[substitutes->Z] <- (Y[rdf:type->Z] and
X[substitutes->Y]) or X[compatibleWith->Z].

}

Fig. 4. Part of Grid Background Knowledge

substitutes in terms of compatible, to determine which operating systems can be
substituted by each other.

Matchmaking Rules The matchmaking rules define the matching constraints between
requests and resources. These rules are implemented using TRIPLE rule language (Sec-
tion 2.3). In additon to syntactic string/numeric equality and group membership rules
which are primitive constraint expressions in existing attributed-based matchmakers,
TRIPLE can reason about constraints in terms of object properties and their relation-
ships specified in RDF data and background knowledge.

Figure 5 depicts part of the matchmaking effort. The rules require inputs—the set of
advertisements Data, background knowledge Background, and domain ontology On-

tology. The first rule defines the match property, which states when a JobRequest

matches an advertisement of a ComputerSystem. This rule is defined in terms of other
rules, e.g., matchesOS (match OperatingSystem) and matchesFS (match FileSystem).
The rule defining matchOS uses the Grid background knowledge by asking if the oper-
ating systems requested by the job can be substituted by the operating system provided
by the ComputerSystem resource. The matchesFS rule checks whether the filesys-
tem associated with the resource can satisfy the requested filesystem requirement. In the
resource ontology, there are two classes of file systems (i.e., LocalFileSystem and Net-
workFileSystem) which are subclasses of the class FileSystem. The matchesFS rule
invokes the reasoning with the ontology to check if its argument Y (associated with the
resource) is an instance of the class FileSystem, and then performs simple arithmetic
comparison to ensure that there is enough diskspace available for the request.

4.2 Deductive Database Engine for Ontology-based Matchmaker

We use TRIPLE/XSB as a deductive database system [27]. TRIPLE/XSB supports RDF-
Schema and TRIPLE rule language. It is implemented on top of the XSB deductive
database system [32]. TRIPLE rules are first compiled into XSB rules, which are then
further compiled into instructions for the XSB virtual machine. TRIPLE/XSB evaluates

11

FORALL Data, Background @match(Data,Background,Ontology){
FORALL X,Y X[matches->Y] <-

X[rdf:type->GR:JobRequest]@Data
and Y[rdf:type->GR:ComputerSystem]@rdfschema(Data,Ontology)
and ((X.GR:RequestResource.GR:RequiredMemory)@Data)[matchesMEM->(Y.GR:RunningOS)@Data]
and ((X.GR:RequestResource.GR:RequiredOS)@Data)[matchesOS->(Y.GR:RunningOS)@Data]
and ((X.GR:RequestResource.GR:RequiredFS)@Data)[matchesFS->(Y.GR:HostedFileSystem)@Data]
and ((X.GR:RequestResource.GR:RequiredCPU)@Data)[matchesCPU->Y].

// checking OperatingSystem requirement
FORALL X,Y X[matchesOS->Y] <-

X[rdf:type->GR:OSRequirement]@Data
and Y[rdf:type->GR:OperatingSystem]@Data
and ((X.GR:OSType)@Data)[substitutes->(Y.GR:OSType)@Data]@Background.

// checking FileSystem Requirement
FORALL X,Y X[matchesFS->Y] <-

X[rdf:type->GR:FSRequirement]@Data
and Y[rdf:type->GR:FileSystem]@rdfschema(Data,Ontology)
and (X.GR:MinDiskSpace)@Data =< (Y.GR:AvailableSpace)@Data.

}

Fig. 5. Part of Matchmaking Rules

matchmaking rules, in combination with background knowledge and ontologies, to find
the best match for the request.

Performance. The number and complexity of the rules determine the performance
of the matchmaker. In the case of non-recursive rules, the matchmaking process is equiv-
alent to computing database queries and views, which is known to be efficient using
conventional indexing and join techniques. In the case of recursive rules (as shown in our
example), the evaluation may be time consuming. However, there are evaluation tech-
niques developed for deductive databases (which are deployed by XSB) that can be used
to avoid unnecessary rule evaluations. In addition, careful rule development can further
optimize the system performance.

4.3 Methodology

The first step in developing an ontology-based matchmaker is to create domain ontolo-
gies. We have modeled and prototyped three ontologies mentioned in Section 4.1. Once
the ontologies are defined, the vocabularies can then be used to generate background
knowledge and matching rules. Ontology modeling is an iterative process. When new
types of resources become available or when existing resources offer new capabilities,
the resource ontology has to be updated to reflect the new status. Similarly, when the
vocabularies change, the background knowledge and rules have to be adjusted accord-
ingly. The ontologies, background knowledge and matching rules can be incrementally
extended and maintained as the Grid evolves.

4.4 Matchmaking Framework

Resource Discovery. The matchmaking framework consists of ontology-based match-
makers, resource providers and resource consumers or requesters. Resource providers pe-
riodically advertise their resources and capabilities to one or more matchmakers (Step 1
in Figure 6). The advertisement is generated either due to system configuration, or in

12

response to a query from the matchmaker. It is possible that resource providers may ex-
press their capabilities using a schema that is different from our ontology. In this case, we
simply assume that a mapper between this schema to our ontology can be implemented.
Upon receiving an advertisement, the matchmaker applies the appropriate mapper and
then updates its list of available resources.

Each matchmaker maintains an aggregated list of available resources from the re-
ceived advertisements. The list is based on soft-state updates from the providers. Each
item on the list has an effective period associated with it. Whenever an advertisement is
received, the effective period is appropriately set. When the effective period expires, the
item is removed from the list. In the recently proposed Open Grid Services Architecture
(OGSA) [10], the matchmaker could directly subscribe to service providers to get peri-
odic XML-based status updates. The descriptive terms for services in that environment
are extensible; this scenario is the central motivation for using extensible ontologies to
map between evolving service descriptions and request models.

1. Advertisement

2. Query Request

4a. Reply

Matchmaker
3. Matching Algorithm

Requester

Resource
Provider

(a) Matchmaking Service

2. Query Request
Matchmaker

3. Matching Algorithm
Requester

Resource
Provider

1. Advertisement 4b. Negotiation

5b. Reply

6b. Claiming

(b) Brokering Service

Fig. 6. Actions involved in the two services provided by the matchmaker

Matchmaker Services. There are two services provided by the matchmaker; the
matchmaking and brokering services. The brokering service is built on top of the match-
making service. One of the two services is invoked when a requester submits a job request
to the matchmaker (Step 2). A request is composed using vocabulary in the request on-
tology. Upon receiving a request, the matchmaker activates the matching rules to find a
list of potential matches sorted according to the requester’s preference criteria (Step 3).
If the request is for a matchmaking service, the matchmaker simply returns the matched
list (or NoMatchFound) to the requester (Step 4a).

In the case that the request is for a brokering service, there are two steps involved—
negotiating and claiming. The matchmaker sends negotiation messages using the nego-
tiation protocol to the highest-rank item in the list informing resources about a potential
job request (Step 4b). A resource provider can accept or deny the request. If it accepts
the request, appropriate resources will be allocated for the future job. If the request is
denied, the matchmaker then attempts to negotiate with the next highest-ranked item in
the list until the matched list is exhausted. If no match is found, the matchmaker returns
to the requester a NoMatchFound message, else it returns a list of matched resources
and associated handles, and appropriately updates its list of available resources and their

13

status (Step 5b). The requester can then contact the resource providers directly for their
services using the claiming protocol (Step 6b).

4.5 Prototype Implementation

We have prototyped three initial ontologies (mentioned in Section 4.1) and an ontology-
based matchmaker. Currently, the matchmaker reads instances of requests, available re-
sources and authorization policies (described by vocabularies in the request, resource
and policy ontologies, respectively) from an RDF file. Ontology instances are manually
created using Protégé (which saves instances in the RDF format).

Our matchmaker currently offers only the matchmaking service. We plan to include
the brokering service in the future. The user can activate the matchmaking service by
submitting an instance file (in RDF) and a query asking for resources that satisfy the re-
quest specification. The query is then processed by the TRIPLE/XSB deductive database
system using matchmaking rules, in combination with background knowledge and on-
tologies, to find the best match for the request.

Ongoing and future work is to implement the matchmaker as a Grid service. Once
completed, a user will be able to submit a request specification (using our request on-
tology) from any client machine through a web service mechanism. The matchmaker
service will notify the results to the user through similar mechanism.

4.6 Matching Example

We show a matching example by our matchmaker is this section. This matching example
cannot be done easily by syntax-based matchmakers. Figure 7 shows examples of two in-
stances of resources: a 64-CPU SunOS shared memory machine and a Linux cluster with
640 CPUs available. Due to space limitation, we are only showing a subset of resource
properties that are relevant to the example. In this example, both resources belong to USC
and only allow users who belong to “rcf@usc.edu” group to access the resources.

Figure 8 shows an example of a job request. The job request specifies that it wants
one ComputerSystem resource for an MPI application. The resource requirements are
specified with the prefix JobRequest.RequestResource. Since our background knowledge
indicates that an MPI application can run on a tightly-coupled machine and both Linux
cluster and shared memory are considered tightly-coupled machines, they both are can-
didate resources for an MPI application. Assuming that User1 has an account that belong
to the “rcf@usc.edu” group, User1 is authorized to access both machines. The match-
maker then checks the capabilities of both resources against the resource requirements.
Again, since our background knowledge specifies that both “Linux” and “SunOS” are
types of “Unix”, both resources pass the OSType requirement criteria. Because both re-
sources are compatible with the resource requirements, the “RankBy” is used to select
the best match. Finally, since the MinClockSpeed of “Almaak.usc.edu” is higher than
that of “Hpc.usc.edu”, the matchmaker returns “Almaak.usc.edu” as a match.

RequestResource is a relationship between JobRequest and ResourceDescrip-
tion classes. We use this relationship to describe as many ResourceDescription in-
stances as we want. For example, using the above request example, we can extend the
above JobRequest to accommodate two resources by updating NumberOfResources

to 2 and specifying another set of JobRequest.RequestResource.*.

14

Property Names Property Values
UnitaryComputer.Name “Almaak.usc.edu”
UnitaryComputer.AuthorizedGroup “rcf@usc.edu”
UnitaryComputer.NumberOfAvailableCPUs 64
UnitaryComputer.ComputerSystemProcessor.MinClockSpeed 900
UnitaryComputer.HostedFileSystem.AvailableSpace 500
UnitaryComputer.RunningOS.OSType “SunOS”
UnitaryComputer.RunningOS.Version “5.8”
UnitaryComputer.RunningOS.FreeVirtualMemory 4000
UnitaryComputer.RunningOS.FreePhysicalMemory 4000
UnitaryComputer.RunningOS.MaxProcessCPUs 64
UnitaryComputer.RunningOS.MaxProcessMemorySize 2000

(a) A SunOS shared memory machine with 64 CPUs

Property Names Property Values
LinuxCluster.Name “Hpc.usc.edu”
LinuxCluster.AuthorizedGroup “rcf@usc.edu”
LinuxCluster.NumberOfAvailableCPUs 640
LinuxCluster.MinClockSpeed 733
LinuxCluster.HostedFileSystem.AvailableSpace 5000
LinuxCluster.RunningOS.OSType “Linux”
LinuxCluster.RunningOS.Version “7.2”
LinuxCluster.RunningOS.FreeVirtualMemory 2000
LinuxCluster.RunningOS.FreePhysicalMemory 1000
LinuxCluster.RunningOS.MaxProcessCPUs 320
LinuxCluster.RunningOS.MaxProcessMemorySize 1500

(b) A linux cluster with 640 CPUs

Fig. 7. Available Resources

Property Names Property Values
JobRequest.Name “Request1”
JobRequest.Owner “User1”
JobRequest.JobType “MPI”
JobRequest.NumberOfResources 1
JobRequest.RequestResource.ResourceType “ComputerSystem”
JobRequest.RequestResource.RankBy “CPUClockSpeed”
JobRequest.RequestResource.RequiredOS.OSType “Unix”
JobRequest.RequestResource.RequiredCPU.MinNumberCPUs 32
JobRequest.RequestResource.RequiredMemory.MinPhysicalMemory 1000
JobRequest.RequestResource.RequiredMemory.MinVirtualMemory 1000
JobRequest.RequestResource.RequiredFS.MinDiskSpace 200

Fig. 8. Job Request

5 Conclusion and Future Work

We have presented a prototype of an ontology-based resource matchmaker that exploits
existing semantic web technologies. We have shown that Semantic Web technologies
like RDF and RDF Schema can be used to build such a rule-based matchmaker. Since
our matchmaker is built based on existing components, the effort to create and main-
tain the matchmaker is drastically reduced. So far, our experience with the ontology-

15

based matchmaker is promising. We plan to expand the three ontologies and enhance the
matchmaking capability.

For example, the resource model will be extended to cover other kinds of physical
resources (e.g., database and storage systems, network connections) and abstract services
(e.g., a specialized finite difference solver). We envision a consensus process possibly
organized as a GGF working group which standardizes the vocabulary for expressing
resource description in the Grid. We also plan to extend the resource request model and
our matchmaker capability to support set-matching.

As mentioned in Section 4, one of the desired features of the matchmaker is to allow
users to submit a request in terms of high-level application characteristics, which will
in turn be mapped to specific resource requirement configurations by the matchmaker.
We will start our investigation with earthquake applications (e.g., finite different inelastic
wave propagation simulations) in the SCEC/ITR project [15].

To show that our resource matchmaker can be efficiently used in the Grid environ-
ment, a practical performance evaluation of our matchmaker needs to be conducted. We
plan to investigate the scalability and performance of our ontology matchmaker in terms
of number of rules and number of resources in the ontologies. An evaluation comparison
with the existing resource matchmaker in the Grid such as Condor will also be included.

References

1. R. J. Bayardo, Jr., W. Bohrer, R. Brice, A. Cichocki, J. Fowler, A. Helal, V. Kashyap,
T. Ksiezyk, G. Martin, M. Nodine, M. Rashid, M. Rusinkiewicz, R. Shea, C. Unnikrishnan,
A. Unruh, and D. Woelk. InfoSleuth: Agent-based semantic integration of information in open
and dynamic environments. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, volume 26,2, pages 195–206, New York, 13–15 1997. ACM Press.

2. Tim Berners-Lee. Weaving the Web. Texere Publishing, NA, 2000.
3. Dan Brickley and R. V. Guha. Resource description framework (rdf) schema specification 1.0.
4. Common information model (cim) standards. http://www.dmtf.org/standards/standard cim.php.
5. The condor project. http://www.cs.wisc.edu/condor.
6. K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid information services for

distributed resource sharing. In Proceedings of the Tenth IEEE International Symposium on
High-Performance Distributed Computing (HPDC-10). IEEE Press, August 2001.

7. K. Czajkowski, I. Foster, C. Kesselman, V. Sander, and S. Tuecke. Snap: A protocol for
negotiating service level agreements and coordinating resource management in distributed
systems. In Proceedings of 8th Workshop on Job Scheduling Strategies for Parallel Processing,
Edinburgh, Scotland, July 2002. Lecture Notes in Computer Science, 2537:153-183, 2002.

8. H. Eriksson, R. W. Fergerson, Y. Shahar, and M. A. Musen. Automatic generation of ontology
editors. In Twelfth Banff Knowledge Acquisition for Knowledge-based systems Workshop,
Banff, Alberta, Canada, 1999.

9. Eurogrid: Application testbed for european grid computing. http://www.eurogrid.org.
10. I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of the grid: An open grid

services architecture for distributed systems integration. In Open Grid Service Infrastructure
WG, Global Grid Forum, June 2002. Extended version of Grid Services for Distributed System
Integration.

11. I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling sdalable virtual
organizations. International J. Supercomputer Applications, 15(3), 2001.

16

12. Ian Foster and Carl Kesselman, editors. The Grid: Blueprint for A New Computing Infrastruc-
ture. Morgan Kaufmann Publishers, San Francisco, 1999.

13. Griphyn—grid physics network. http://www.griphyn.org/index.php.
14. T. R. Gruber. A translation approach to portable ontology specifications. Knowledge Acquisi-

tion, 5(2):199–220, 1993.
15. T. H. Jordan and C. Kesselman et al. The scec community modeling environment—an infor-

mation infrastructure for system-level earthquake research. http://www.scec.org/cme.
16. Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object-oriented and

frame-based languages. Journal of the ACM, 42(4):741–843, July 1995.
17. O. Lassila and R. R. Swick. Resource description framework (rdf) model and syntax

specification. In W3C Recommendation, World Wide Web Consortium. February 1999.
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222.

18. Lei Li and Ian Horrocks. A software framework for matchmaking based on semantic web
technology. In Proceedings of the Twelfth International World Wide Web Conference (WWW
2003), 2003.

19. C. Liu and I. Foster. A constraint language approach to grid resource selection. Unpublished
menuscripts.

20. C. Liu, L. Yang, I Foster, and D. Angulo. Design and evaluation of a resource selection frame-
work. In Proceedings of the Eleventh IEEE International Symposium on High-Performance
Distributed Computing (HPDC-11), Edinburgh, Scottland, 2002.

21. J. W. Lloyd. Foundations of Logic Programming. Springer, Berlin, 2 edition, 1987.
22. Kim Marriott and J. S. Peter. Programming with Constraints: An Introduction. The MIT Press,

Cambridge, Massachusetts, 1998.
23. The portable batch system. http://pbs.mrj.com.
24. R. Raman, M. Linvy, and M. solomon. Resource management through multilateral match-

making. In Proceedings of the Ninth IEEE Symposium on High Performance Distributed
Computing (HPDC9), pages 290–291, Pittsburgh, Pennsylvania, August 2000.

25. R. Raman, M. Linvy, and M. solomon. Policy driven heterogeneous resource co-allocation
with gangmatching. In Proceedings of the twelfth IEEE Symposium on High Performance
Distributed Computing (HPDC12), pages 80–89, Seattle, Washington, June 2003.

26. R. Raman, M. Livny, and M. Solomon. Matchmaking distributed resource management for
high throughput computing. In Proceedings of the Seventh IEEE International Symposium on
High Performance Distributed Computing, Chicago, IL, July 1998.

27. Michael Sintek and Stefan Decker. Triple - a query, inference, and transformation language for
the semantic web. In Ian Horrocks and James Hendler, editors, Proc. of the 13th Int. Semantic
Web Conf. (ISWC 2002), number 2342 in Lecture Notes in Computer Science, pages 364–378.
Springer-Verlag, 2002.

28. Michael Sintek and Stefan Decker. Triple - an rdf query, inference, and transformation lan-
guage. In Ian Horrocks and James Hendler, editors, Proc. of the 2002 International Semantic
Web Conference (ISWC 2002), number 2342 in Lecture Notes in Computer Science. Springer-
Verlag, 2002.

29. K. Sycara, S. Wido, M. Klusch, and J. Lu. Larks: Dynamic matchmaking among heteroge-
neous software agents in cyberspace, 2002.

30. The teragrid project. http://www.teragrid.org.
31. Universal description, discovery and integration of web services. http://www.uddi.org.
32. The xsb research group. http://xsb.sourceforge.net/.

