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Abstract. Competitive auctions encourage consumers to bid their util-
ity values while achieving revenue close to that of fixed pricing with per-
fect market analysis. These auctions were introduced in [6] in the context
of selling an unlimited number of copies of a single item (e.g., rights to
watch a movie broadcast). In this paper we study the case of multiple
items (e.g., concurrent broadcast of several movies). We show auctions
that are competitive for this case. The underlying auction mechanisms
are more sophisticated than in the single item case, and require solving
an interesting optimization problem. Our results are based on a sampling
problem that may have other applications.

1 Introduction

Consider an airplane flight where passengers have individual movie screens and
can choose to view one out of a dozen movies that are broadcast simultaneously.
The flight is only long enough for one movie to be seen. The airline wants to price
movies to maximize its revenue. Currently, airlines charge a flat fee for movies.
Even if the fee is based on a careful marketing study, passenger demographics
may vary from one flight to another, and individual utilities can vary with flight
route, time of the year, etc. Therefore a non-adaptive pricing is unlikely to be
optimal for the seller. We investigate adaptive pricing via auctions.

We consider the problem of selling several items, with each item available
in unlimited supply. By unlimited supply we mean that either the seller has at
least as many items as there are consumers, or that the seller can reproduce
items on demand at negligible marginal cost. Of particular interest are digital
and broadcast items. With unlimited supply, consumer utilities, the maximum
price a consumer is willing to pay for an item, are the sole factor determining sale
prices and number of items sold. We assume that each consumer has potentially
different utilities for different items, and needs one item only. The seller’s goal
is to set prices to maximize total revenue.

In the scarce supply case, multiple item auctions have been studied by Shap-
ley and Shubik [15]. (See [13] for a survey of the area.) Results for the scarce
case, however, do not directly apply to the unlimited supply case. Consider the
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case where each item for sale is unique – for example the real estate market
considered in [15]. In this case consumers will bid heavily for highly desirable
items, which will sell for a high price. In contrast, in the unlimited supply case
the seller can in principle give every consumer a copy of the item the consumer
desires most. However, in such an auction, the consumer has no incentive to bid
high. Thus a good auction mechanism must in some cases limit the number of
copies of each item.

A consumer’s utility value for an item is the most they are willing to pay for
that item. We would like to develop auctions in which rational consumers bid
their utilities. In game theory, such auctions are called truthful and are special
cases of strategyproof mechanisms, which have been studied for a long time. For
example, the Vickrey–Clarke–Groves mechanism [3,8,17] maximizes the general
welfare of a system. The Shapley Value [14] mechanism shares costs among the
participants. Recent work in the Computer Science community combines eco-
nomic or game-theoretic questions with computational questions or techniques;
see e.g., [5,10,9,12].

Our previous work [6,7], addressed a special case of the unlimited supply
auction problem for a single item. In particular, we introduced competitive auc-
tions which are truthful and at the same time attain revenues close to that of
fixed pricing with perfect market analysis. As the term suggests, competitive
analysis of auctions is similar in spirit to the analysis of on-line algorithms; see,
e.g., [1,16]. We introduced several randomized auctions which are competitive
under certain assumptions and showed some impossibility results, including the
nonexistence of deterministic competitive auctions.

In this paper we extend some of these results to multiple item auctions. In
particular, we develop competitive auctions based on random sampling. These
auction mechanisms are intuitive but more sophisticated than in the single item
case. We introduce a multiple item variant of the random sampling auction and
of the dual price auction and show that these auctions are competitive under
certain assumptions. We also discuss a deterministic auction. Although this auc-
tion is not competitive in the worst-case, its single item variant worked well in
most cases in the experimental study [6,7]) and show that these auctions are
competitive under certain assumptions. We also discuss a deterministic auction.
Although this auction is not competitive in the worst-case, its single item variant
worked well in most cases in the experimental study [6,7].

Our work uses the relationship between multiple item auctions and math-
ematical programming pointed out by Shapley and Shubik. For our random
sampling auction we need to solve the following subproblem, which is interest-
ing on its own: given the consumer’s utilities, find item prices that maximize
seller’s revenue. We state this problem as a nonlinear mathematical program.

One of our main results is on a sampling problem that may be of indepen-
dent interest. A variant of the sampling problem is as follows. Suppose we have
n applicants and m tests. Each applicant takes each test and gets a real-valued
score. We have to select k applicants based on the results of these scores. Fur-
thermore suppose that we choose a random subset of the applicants, call the
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applicants in the subset red, and call the remaining applicants blue. After the
results of the tests are known and the subset is selected, an adversary selects
the k winning applicants while obeying the following restriction: If an applicant
x is accepted and for every test, applicant y get a score that is at least as good
as the score of x, then y must be accepted as well. Adversary’s goal is to bias
the admission in favor of red applicants. Although we study a slightly different
problem, our techniques can be used to show that if k = o(m2 log n), then with
high probability the ratio of the number of red applicants to the number of blue
applicants is bounded by a constant.

This problem seems natural.One can view candidates as points in m-
dimensional space, and view the adversary as selecting a shift of the positive
quadrant so that the shifted quadrant contains k points total and as many red
points as possible.

In on-line markets, with rapid changes and the availability of computer trad-
ing tools and agents, pricing using auctions is sometimes attractive. Competitive
auctions for multiple unlimited supply items may be useful in some of these sce-
narios.

2 Background

The input to an auction is a number of bidders, n, a number of items, m and a
set of bids {aij}. We assume that all bids are nonnegative and that there is no
collusion among the bidders. We study the case when each bidder wants only a
single item.

Given a set of bids, the outcome of an auction is an assignment of a subset
of (winning) bidders to items. Each bidder i in the subset is assigned a single
item j and a sales price of at most aij . An item can be assigned to any number
of bidders. A deterministic auction mechanism maps auction inputs to auction
outcomes. A randomized auction mechanism maps inputs to probability distri-
butions on auction outcomes. We use R to denote the auction revenue for a
particular auction mechanism and set of bids. R is the sum of all sale prices.
For randomized auctions, R is a random variable. We will assume that the m-th
item is a dummy item of no value and that all bidders have utility of zero for this
item (aim = 0 for all i). Losing is then equivalent to being assigned the dummy
item at cost zero.

We say that an auction is single-price if the sale prices for copies of the same
item are the same, and multiple-price otherwise.

Next we define truthful auctions, first introduced by Vickrey [17]. Let uij be
bidder i’s utility value for item j. Define a bidder’s profit to be the difference
between the bidder’s utility value for the item won and the price the bidder pays
if they win the auction, or zero if they lose. An auction is truthful if bidding uij is
a dominant strategy for bidder i. In other words, the bidder’s profit (or expected
profit, for randomized auctions), as a function of the bidder’s bids (ai1, . . . , aim),
is maximized at the bidder’s utility values (ui1, . . . , uim), for any fixed values of
the other bidders’ bids. Truthfulness is a strong condition for auctions: bidding
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utility maximizes the profit of the bidder no matter what the other bidders’
strategies are. When considering truthful auctions, we assume that aij = uij ,
unless mentioned otherwise.

To enable analysis of auction revenue we define several parameters of an
input set of bids. The revenue for optimal fixed pricing is F . Note that F can
also be interpreted as the revenue due to the optimal nontruthful single-price
auction. Other parameters that we use in analysis are `, the lowest bid value,
and h, the highest bid value. Because bids can be arbitrarily scaled, we assume,
without loss of generality, that ` = 1, in which case h is really the ratio of the
highest bid to the lowest bid.

Analogous to on-line algorithm theory, we express auction performance rel-
ative to that for the optimal nontruthful auction, as ratios R/F . However, we
solve a maximization problem, while on-line algorithms solve minimization prob-
lems. Thus, positive results, which are lower bounds on R/F , are expressed using
“Ω”.

Note that h and F are used only for analysis. Our auctions work without
knowing their values in advance.

As shown in [6], if we do not impose any restrictions on h, we get the upper
bound of R/F = O(1/h). To prevent this upper bound on auction revenue we
can make the assumption that the optimal revenue F is significantly larger than
h, the highest bid. With this assumption, optimal fixed pricing sells many items.

We say that an auction is competitive under certain assumptions if when the
assumptions hold, the revenue is Ω(F).

For convenience, we assume that the input bids are non-degenerate, i.e., all
input bids values aij are distinct or zero. This assumption can be made without
loss of generality because we can always apply a random perturbation or use
lexicographic tie-breaking to achieve it.

As shown for the single-commodity case [6], no deterministic auction is com-
petitive in the worst case. Our competitive auctions are randomized. We use the
following lemma, which is a variation of the Chernoff bound (see e.g. [2,11]), as
the main tool in our analysis.
Lemma 1. Consider a set A and its subset B ⊂ A. Suppose we pick an integer
k such that 0 < k < |A| and a random subset (sample) S ⊂ A of size k. Then
for 0 < δ ≤ 1 we have

Pr[|S ∩ B| < (1 − δ)|B| · k/|A|] < exp(−|B| · kδ2/(2|A|)).
Proof. We refer to elements of A as points. Note that |S ∩ B| is the number
of sample points in B, and its expected value is |B| · k/|A|. Let p = k/|A|. If
instead of selecting a sample of size exactly k we choose each point to be in the
sample independently with probability p then the Chernoff bound would yield
the lemma.

Let A = {a1, . . . , an} and without loss of generality assume that B =
{a1, . . . , ak}. We can view the process of selecting S as follows. Consider the
elements of A in the order induced by the indices. For each element ai consid-
ered, select the element with probability pi, where pi depends on the selections
made up to this point.
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At the point when ai+1 is considered, let t be the number currently selected
points. Then i − t is the number of points considered but not selected. Suppose
that t/i < p. Then pi+1 > p.

We conclude that when we select the sample as a random subset of size k,
the probability that the number of sample points in B is less than the expected
value is smaller than in the case we select each point to be in the sample with
probability p.

3 Fixed Price Auction and Optimal Prices

Consider the following fixed price auction. The bidders supply the bids and the
seller supplies the sale prices, rj , 1 ≤ j ≤ m. Define cij = aij − rj . The auction
assigns each bidder i to the item j with the maximum cij , if the maximum is
nonnegative, and to no item otherwise. In case of a tie, we chose the item with
the maximum j. If a bidder i is assigned item j, the corresponding sale price is
rj .

Lemma 2. Suppose the sale prices are set independently of the input bids. Then
the fixed price auction is truthful.

Proof. If bidder i gets object j, the bidder’s price is at least rj and the bidder’s
profit is at most aij − rj . The best possible profit for i is maxj(uij − rj). If the
bidder bids aij = uij , this is exactly the profit of the bidder.

Remark Although we assume that the bidders do not see sale prices before
making their bids, the lemma holds even if the bidders do see the prices.

Now consider the following optimal pricing problem: Given a set of bids, find
the set of prices such that the fixed price auction brings the highest revenue.
Suppose an auction solves this problem and uses the resulting prices. We call this
auction the optimal nontruthful single-price auction and denote its revenue by F .
We can interpret F as the revenue of fixed pricing using perfect market analysis
or as the revenue of the optimal nontruthful single-price auction. The prices
depend on the input bids, and one can easily show this auction is nontruthful.

We use F to measure performance of our truthful auctions. Although one
might think that being a single-price auction is a serious restriction, in the
single-item auction case this is not so. In this case, the revenue of the optimal
single-price auction is at least as big as the expected revenue of any reasonable1

(possible multiple-price) truthful auction; see [6].
Next we state the optimal pricing problem as a mathematical programming

problem. We start by stating the problem of finding a bidder-optimal object
assignment given the bids and the sale prices as an integer programming problem.
This problem is a special case of the b-matching problem [4] (bipartite, weighted,
and capacitated, with unit node capacities on one side and infinite capacities on
1 See [6] for the precise definition of reasonable. The intuition is that we preclude

auctions that are taylored to specific inputs. Such an auction would perform well
these specific inputs, but poorly on all others.
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the other). For the limited supply case, when only one copy of an item is available,
the classical paper [15] takes a similar approach. For our case, this problem is
easy to solve by taking the maximum as in the previous section. However, we then
treat sale prices as variables to get a mathematical programming formulation of
the optimal pricing problem.

One can show that the optimal price problem is equivalent to the following
mathematical programming problem; we omit details.

max
∑

j

∑
i xijrj subject to (1)

rm = 0
∑

j xij ≤ 1 1 ≤ i ≤ n

xij ≥ 0 1 ≤ i ≤ n, m ≤ j ≤ m

pi + rj ≥ aij 1 ≤ i ≤ n, m ≤ j ≤ m
∑

i pi =
∑

j

∑
i xij · (aij − rj)

This problem has quadratic objective function; some constraints are linear while
other constraints are quadratic. Here xij is one exactly when bidder i gets item
j and pi’s are profits of the corresponding bidders.

Since
∑

j

∑
i xijrj =

∑
j

∑
i xijaij − ∑

i pi ≤ ∑
j

∑
i aij , the objective func-

tion is bounded. Since the feasibility region is closed, it follows that (1) always
has an optimal solution.

We omit proofs of the next two results.

Lemma 3. For any solution of (1) with fractional xij’s there is a solution with
xij ∈ {0, 1} and an objective function value that is at least as good.

Theorem 1. Consider sale prices defined by an optimal solution of (1). The
revenue of the fixed price auction that uses these prices and has bids aij in the
input is equal to the objective function value of the optimal solution.

Recall that we use the problem (1) to find a set of prices that maximizes
the fixed price auction revenue. In the rest of the paper we assume that we can
compute such prices and leave open the question of how to do this efficiently.
Note that we could also use an approximate solution.

4 The Random Sampling Auction

We use random sampling to make the optimal single-price auction truthful.
The random sampling auction works as follows.

1. Pick a random sample S of the set of bidders. Let N be the set of bidders
not in the sample.

2. Compute the optimal sale prices for S as outlined in the previous section.
3. The result of the random sampling auction is then just the result of running

the fixed-price auction on N using the sale prices computed in the previous
step. All bidders in S lose the auction.
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The sample size is a tradeoff between how well the sample represents the input
and how much potential revenue is wasted because all bidders in the sample lose.
Unless mentioned otherwise, we assume that the sample size is n/2 or, if n is
odd, the floor or the ceiling of n/2 with probability 1/2.

The facts that the bidders who determine the prices lose the auction and
that the fixed price auction is truthful imply the following result.
Lemma 4. The random sampling auction is truthful.

Remark Another natural way of sampling is to sample bids instead of bid-
ders. However, this does not seem to lead to a truthful auction, because bidder’s
bids selected in the sample may influence the price used to satisfy the bidder’s
remaining bids.

Next we show that, under certain assumptions, the auction’s revenue R is
within a constant factor of F . Without loss of generality, for every 1 ≤ i ≤
n, 1 ≤ j ≤ m, if aij is undefined (not in the input) we define aij to be zero. For
every bidder i, we view (ai1, . . . , aim) as a point in the m-dimensional space and
denote this point by vi. Thus vi is in the quadrant Q of the m-dimensional space
where all coordinates are nonnegative. We denote the set of all input points by
B.

For a fixed m and a set of sale prices r1, . . . , rm, let Rj be a region in the
m-dimensional space such that if vi ∈ Rj , then i prefers j to any other item,
i.e., for any 1 ≤ k ≤ m, cij ≥ cik (recall that cij = aij − rj). We would like
{Rj : 1 ≤ j ≤ m} to be a partitioning of Q. We achieve this by assigning
every boundary point to the highest-index region containing the point. (This is
consistent with our tie-breaking rule for the fixed price auction.) Rj is a convex
(and therefore connected) region in Q. In fact, the region Rj is as follows:

Rj = {x : xj ≥ rj & xj − rj ≥ xk − rk ∀k 6= j}. (2)

Figure 1 shows a two item auction with prices r1 and r2 for items 1 and 2
respectively. These prices induce the regions R1 = R′

1 ∪ R′′
1 and R2 = R′

2 ∪ R′′
2 .

Arrows point to selling prices for the bidders in each region.
Thus sampling and computing rj ’s partitions Q into the regions, and each

bidder i in N gets the item corresponding to the region that i is in. Intuitively, our
analysis says that if a region has many sample points, it must have a comparable
number of nonsample points – even though the regions are defined based on the
sample. The latter fact makes the analysis difficult by introducing conditioning.
Intuitively, we deal with the conditioning by considering regions defined by the
input independently of the sample.

For a given input, let q1, . . . , qm be a set of optimal prices for the input bids
that yield revenue F . These prices induce the regions discussed above. Bidders
in region Rj pay qj for the item j. If we sample half of the points, the expected
number of sample points in a region Rj is half of the total number of points
in the region, and for the prices q1, . . . , qm, the expected revenue is F/2. The
optimal fixed pricing on the sample does at least as well. Thus the expected
revenue of optimal fixed pricing of the sample, E[Fs], is at least F/2. However,
we need a high-probability result. Our goal is to show that with high probability



Competitive Auctions for Multiple Digital Goods 423

Fig. 1. Two item auction with regions R1 and R2

E[Fs] is close to F/2 and that E[R] is close to E[Fs], where R is the revenue of
the random sampling auction.

We say that a set A ⊆ B is t-feasible if A is nonempty and for some set of sale
prices, A is exactly the set of points in Rt. For each feasible set A, we define its
signature SA = (s1, . . . , sm) such that si’s are (not necessarily distinct) elements
of A and, for a fixed t, different t-feasible sets have different signatures. In the
following discussion, sij denotes the j-th coordinate of si.

We construct signatures as follows. Let Rt be a region defining A. Rt is
determined by a set of prices (r1, . . . , rm). We first increase all rj ’s by the same
amount (moving Rt diagonally) until some point in A is on the boundary of Rt.
Note that since we change all prices by the same amount, the limiting constraint
from (2) is xt ≥ rt. Thus the stopping is defined by xt = rt, and the point on
the boundary has the smallest t-th coordinate among the points in A. We set st

to this point.
Then for j 6= t, we move the the region starting at its current position

down the j-th coordinate direction by reducing rj until the first point hits the
boundary. The boundary we hit is defined by xt − rt = xj − rj , and the point
that hits it first has the minimum xj − xt + stt among the points in A. Observe
that the point st remains on the boundary xt = rt, and therefore we stop before
rj becomes negative. When we stop, we take a point that hits the boundary and
assign sj to it.

Consider the set of points in the signature, SA = {s1, . . . , sm}. Define R to
be the region we got at the end of the procedure that computed SA. R is defined
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by
R = {x : xt ≥ stt & xt − stt ≥ xj − sjj ∀j 6= t}.

It follows that R can be constructed directly from SA.
Figure 2 shows the signatures we get from the prices r1 and r2. The points

on the boundary of the shaded region are the signature of that region. Note,
for example, that there are no points in R1 that are not inside the boundary
induced by the signature for R1.

Fig. 2. Signatures in a two item auction

Suppose two feasible sets have the same signature S and let R be the region
defined by the signature. Then the two sets are exactly the set of points in R,
and are thus identical.

The next two lemmas are simple, so we omit the proofs.
Lemma 5. For each t, 1 ≤ t ≤ m, there are at most nm t-feasible sets.

Lemma 6. For every t-feasible subset C of the sample S there is a t-feasible
subset A of the input such that C = A ∩ S.

For k ≥ 1 and 0 < δ < 1, we say that a sample S is (k, δ)-balanced if for every
1 ≤ t ≤ m and for every t-feasible subset of the input, A, such that |A| ≥ k, we
have

(1 − δ) ≤ (|A ∩ S|)/(|A ∩ N |) ≤ 1/(1 − δ).

Lemma 7. The probability that a sample containing half of the input points is
(k, δ)-balanced is at least 1 − 2mnm exp(−kδ2/8).
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Proof. Lemma 1 implies that the probability that for a set A with |A| ≥ k,

Pr[|A ∩ S| < (1 − δ)|A ∩ N |] < exp(−kδ2/8)

and
Pr[|A ∩ N | < (1 − δ)|A ∩ S|] < exp(−kδ2/8).

Note that the fact that the number of sample points in one subset is close
to its expectation makes it no less likely that the number of sample points in
another subset is close to expectation. Thus the conditioning we get is favorable.
By Lemma 6, there are at most nm t-feasible subsets for every t, so the total
number of feasible subsets is mnm. These observations imply the lemma.

Theorem 2. Assume αhm2 lnn ≤ F and m ≥ 2. Then R ≥ F/24 with proba-
bility of at least 1 − exp(−α/1728) (for some constant α > 1).

Proof. Consider Lemma 7 with δ = 1/2 and k = αm log n/12. The probability
that the sample is (k, δ)-balanced is

1 − 2mnm exp(−kδ2/8) = 1 − 2mnm exp(−αm log n/864) ≥ 1 − exp(−α/1728)

for m ≥ 2. For the rest of the proof we assume that the sample is (k, δ)-balanced;
we call this the balanced sample assumption.

Next we show that the revenue of the auction on the sample, Fs, satisfies
Fs ≥ F/6. Let Qi be the set of bidders who get item i when computing F on
the entire bid set. Consider sets Qi containing less than (αm log n)/2 bidders.
The total contribution of such sets to F is less then F/2. This is because there
are at most m such sets and each bid is at most h giving a maximum possible
revenue of αhm2 log n/2 = F/2. Thus the contribution of the sets with at least
(αm log n)/2 bidders is more than F/2, and we restrict our attention to such
sets. By the balanced sample assumption, each such set contains at least 1/3
sample points, and thus Fs ≥ (1/3)F/2 = F/6.

Finally we show that R ≥ F/24 using a similar argument. Let Ri be the re-
gions defined by the prices computed by the auction on the sample. Consider the
regions containing less than (αm log n)/12 sample points. The total contribution
of such sets to the revenue is less then F/12. The remaining regions contribute at
least F/12 (out of F/6). Each remaining region contains at least (αm log n)/12
sample points. By the balanced sample assumption, each such region contains
at least one nonsample point for every two sample point, and thus R ≥ F/24.

Lemma 4 and Theorem 2 imply that if the assumptions of the theorem hold,
the random sampling auction is competitive.

4.1 The Dual Price Auction

The random sampling auction is wasteful in the sense that all bidders in the
sample lose the auction. The dual price auction eliminates the waste by treating
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S and N symmetrically: S is used to compute sale prices for N and vice versa.
Note that for each item, the two sale prices used are, in general, different; this
motivates the name of the auction.

By symmetry, the expected revenue of the dual price auction is twice the
expected revenue of the single price auction with n/2 sample size. Thus, under
conditions of Theorem 2 the dual price auction is competitive.

5 A Deterministic Auction

The following auction is a generalization of the deterministic optimal threshold
auction introduced in [6] to the multi-item case. Although not competitive in
general, the single-item variant of this auction works well when the input is
non-pathological, e.g., when bidder utilities are selected independently from the
same distribution.

The deterministic auction determines what item, if any, the bidder i gets
as follows. It deletes i from B, computes optimal prices for the remaining bid-
ders, and then chooses the most profitable item for i under these prices. This
is done independently for each bidder. This auction is truthful but, as we have
mentioned, not competitive in some cases.

6 Concluding Remarks

Our analysis of the random sampling auction is somewhat brute-force, and a
more careful analysis may lead to better results, both in terms of constants
and in terms of asymptotic bounds. In particular, the assumption αhm2 lnn ≤
F in Theorem 2 may be stronger than necessary. One can prove that Fs =
Ω(F) assuming αhm ≤ F . We wonder if the theorem holds under this weaker
assumption.

Although our theoretical bounds require m to be small compared to n and the
optimal fixed price solution to contain a large number of items, it is likely that
in practice our auctions will work well for moderately large m and moderately
small optimal fixed price solutions. This is because our analysis is for the worst-
case. In many real-life applications, bidder utilities for the same item are closely
correlated and our auctions perform better.

The optimal fixed pricing problem has a very special form that may allow
one to solve this problem efficiently. Note that if one uses an approximation
algorithm to solve the problem (say within 2% of the optimal) and our auctions
remain truthful. (This is in contrast to combinatorial auctions [9].) It is possible
that in practice this problem can be solved approximately, in reasonable time,
using general nonlinear optimization techniques. We leave an existence of such
an algorithm as an open problem.

Another open problem is a generalization of our results. One possible general-
ization is to the case when some items are in fixed supply. Another generalization
is to the case when consumer i wants up to ki items.
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