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Abstract. In the classical consensus problem, each of n processors receives a private input value
and produces a decision value which is one of the original input values, with the requirement that
all processors decide the same value. A central result in distributed computing is that, in several
standard models including the asynchronous shared-memory model, this problem has no determinis-
tic solution. The k-set agreement problem is a generalization of the classical consensus proposed by
Chaudhuri [Inform. and Comput., 105 (1993), pp. 132–158], where the agreement condition is weak-
ened so that the decision values produced may be different, as long as the number of distinct values is
at most k. For n > k ≥ 2 it was not known whether this problem is solvable deterministically in the
asynchronous shared memory model. In this paper, we resolve this question by showing that for any
k < n, there is no deterministic wait-free protocol for n processors that solves the k-set agreement
problem. The proof technique is new: it is based on the development of a topological structure
on the set of possible processor schedules of a protocol. This topological structure has a natural
interpretation in terms of the knowledge of the processors of the state of the system. This structure
reveals a close analogy between the impossibility of wait-free k-set agreement and the Brouwer fixed
point theorem for the k-dimensional ball.
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1. Introduction.

1.1. Wait-free algorithms and the k-set agreement problem. In totally
asynchronous multiprocessor systems without global clocks, the execution speed of
each processor may fluctuate widely. A highly desirable property for protocols in such
a system is that no processor ever wait indefinitely for an action by another processor,
that is, unless a processor fails (stops running) it is guaranteed to complete its task
regardless of the relative speeds of the other processors, even if other processors stop
participating. Protocols with this property are said to be wait-free.

We are interested in the standard model of shared-memory distributed systems
with atomic registers [20]; an essentially equivalent model has been studied as asyn-
chronous parallel random access machines (PRAMs) (e.g., [12, 22]). We restrict con-
sideration to the case where each processor is deterministic. Informally such a system
consists of a set of processors each with its own local memory accessible only to itself,
and a set of shared registers. Each shared register supports atomic read and write
operations, which means that (1) if two processors access a register simultaneously,
the register automatically serializes the accesses, so there are no collisions, and (2)
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a processor cannot simultaneously both read and write to a register. A protocol is
defined by a set of programs, one for each processor, where each program involves
“private computations,” together with reads and writes to the shared memory. The
system is completely asynchronous and the protocol makes no reference to a clock.

In executing a particular protocol the system may exhibit a wide range of behav-
ior, depending on the relative speeds of the processors. The execution thus depends
on the schedule of the processors, i.e., the way in which the program steps of the indi-
vidual processors are interleaved. For a protocol to be correct, it should be correct for
all schedules. A useful way to think about this requirement is to view the schedule as
being chosen by an adversary who seeks to force the protocol to behave incorrectly.

Effective computation in such systems requires some coordination among the pro-
cessors. The consensus problem was introduced as an abstraction of one coordination
problem. In this problem, each processor p receives a private input xp and must
produce as output a decision value dp, subject to the following requirements:

Validity. Each decision value is the input value of some processor.
Consistency. All processors that decide must decide the same value.
A fundamental result for the deterministic shared memory model outlined above

is that there is no wait-free protocol that solves the consensus problem. This result
was proven for this model by Herlihy [16] and independently by Loui and Abu-Amara
[21] by adapting the proof of the seminal impossibility result for consensus in message
passing systems with one failing processor proved by Fischer, Lynch, and Paterson
[15].

This impossibility result spawned considerable activity along several fronts. One
direction is to strengthen the model (i.e., introduce randomization, strengthen the
shared memory primitives) so as to make consensus achievable. A second direction,
pioneered by Herlihy, is the classification of data objects according to the number of
processors that can achieve consensus using this data object [16]. A third direction
has been to understand fully what can and can’t be done in the deterministic atomic
register shared-memory model.

As a step toward this third goal, it is natural to consider a weaker version of the
consensus problem called the k-set agreement problem. This problem is identical to
the consensus problem except that the consistency condition is replaced by a weaker
condition:

k-Consistency. The set of decision values produced by the processors has cardi-
nality at most k.
This problem was proposed and studied by Chaudhuri [10], who considered it in

the message passing model and obtained some results relating the difficulty of this
problem to various other related problems. In the shared atomic register model the
main question is, For which values of n and k is there a wait-free algorithm for n
processors to achieve k-set agreement in the shared-memory model? Trivially such
an algorithm is possible for n ≤ k and (by the result for consensus) is impossible for
k = 1 and n > 1. Chaudhuri conjectured that k-set agreement is impossible for any
n > k. To appreciate the deceptive difficulty of the problem, the reader may consider
the first previously unsolved case k = 2 and n = 3. This seemingly elementary brain
teaser is already quite challenging.

1.2. Main results. In this paper we prove the following theorem.
Theorem 1.1. For k < n, there is no deterministic wait-free protocol in the

shared atomic registers model which solves the k-set agreement problem in a system
of n processors.
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The first step in the proof is the formulation of a new formal model for shared-
memory atomic register systems, called the weakly synchronous model. For our pur-
poses, this model is at least as powerful as the standard ones (so impossibility proofs
for this model apply to those) but it has the advantage of a particularly simple com-
binatorial structure. This allows us to reformulate the given problem in purely com-
binatorial terms.

We then develop a new approach for reasoning about computability issues in dis-
tributed systems. The basis of this approach is to shift focus from the structure of
protocols for a distributed system to the structure of the set of possible schedules of a
distributed system. To accomplish this shift for a given protocol, we fix (“hardwire”)
a particular set of input values to the processors and observe that having done this,
the processor schedule now completely determines the output values of the processors
and thus can be viewed as the “input” to the system. We introduce two key notions:
(i) two schedules are “indistinguishable” if for any protocol they exhibit the same
output behavior, (ii) a set S of schedules is “knowable” if there is a protocol which
“recognizes” it, in the sense that for some specified output symbol, the protocol pro-
duces that symbol during an execution if and only if the execution proceeds according
to some schedule from S.

These two concepts lead naturally to the definition of a topology on the set of
schedules, and Theorem 1.1 is proved by analyzing this topology. Our approach reveals
and exploits a close analogy between the impossibility of wait-free k-set agreement
and a lemma of Knaster, Kuratowski, and Mazurkiewicz (KKM lemma) [1], which is
equivalent to the fixed point theorem for the closed unit ball Bm in m-dimensional
Euclidean space: if f is a continuous map from Bm to itself, then there exists a point
x ∈ Bm such that f(x) = x. Very roughly, f corresponds to a distributed protocol Π,
and the fixed point x corresponds to the schedule for which Π fails to solve the k-set
agreement. The increase in difficulty of the k-set agreement proof in going from the
case k = 1 to the case k > 1 corresponds to the increase in difficulty in going from
the fixed point theorem for the interval [−1, 1], which is very simple, to the theorem
for balls in higher dimension, which, while elementary, is considerably harder. An
additional obstacle in our work is that, while the topological structure of Bm is well
understood, we must develop the topological structure for the set of schedules from
scratch.

While the explicit use of topology can be avoided, we have retained the topological
structure of the proof, because this is what drove the proof and it provides important
insight into what is going on. Our topological structure has an intuitive interpretation
in terms of the information about an execution which is “public knowledge.” We
believe that it will be worthwhile to explore the connection with the formal theory of
distributed knowledge [14].

The inspiration for the topological approach came from Chaudhuri’s work [10], in
which the combinatorial properties of triangulations inRk were used to obtain certain
reductions among various decision problems. There is a considerable literature con-
cerning topologies underlying computation in general [27] and distributed computing
in particular [26]. The main body of this work seems to center on the use of topology
as a tool for describing various semantic constructs in distributing computing, rather
than as a tool for proving impossibility results.

Two other research teams—Borowsky and Gafni [7] and Herlihy and Shavit [17]—
independently discovered the topological approach to proving impossibility theorems
and proved Theorem 1.1. Borowsky and Gafni [7] considered a class of protocols that
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is similar to our weakly synchronous model, and Herlihy and Shavit [17] considered full
information protocols that bear similarities to both. The proof of Borowsky and Gafni
[7] is similar to ours but does not make the explicit connection to topology. By an
additional computational reduction they extend the result to prove the impossibility of
k-set agreement for n processors in the presence of k faults. Herlihy and Shavit [17]
developed a more general technique for proving impossibility results in this model
based on simplicial homology theory. Subsequent developments along these lines
include the papers [8, 11, 18].

This paper is organized as follows. In section 2, we formalize the model, the
problem, and the above-mentioned notions of indistinguishable schedules and know-
able sets. We also present a proof of the impossibility of (1-set) consensus using the
new terminology. In section 3, we use this notation to reformulate Theorem 1.1, and
we observe a close analogy between this reformulation and the aforementioned KKM
lemma. In section 4, we provide an explicit bijection between the set of 2-processor
schedules and the points of the closed unit interval that provides an alternative, al-
beit more complicated, proof of the impossibility of 2-processor consensus, and we
sketch an (unproved) correspondence between n-processor schedules and the n-vertex
simplex. This informal sketch motivates the combinatorial constructions discussed
later. Section 5 contains an outline of the steps that we will follow to emulate the
proof of the KKM lemma. Section 6 contains the proof of the main theorem. Some
additional facts about the underlying topological structure in our proof are given in
an appendix.

2. Definitions and preliminary results.

2.1. Input-output problems and k-set agreement. We fix, once and for all,
the set P = {1, 2, . . . , n} of processors. The k-set agreement problem for P is a special
case of a larger class of input-output problems [23, 6, 5]. In an input-output problem,
each processor receives an input value from some set I and must produce an output
value from some set D, where the output values must satisfy certain restrictions
depending on the input. Formally, such a problem is specified by the input set I,
output set D, and a relation R ⊂ In ×Dn.

For the k-set agreement problem, we take I = D = N, the set of natural numbers,
and the relation consists of pairs (�x, �d) satisfying the following: The set of values

appearing in �d has size at most k and is a subset of the set of values appearing in �x.

2.2. Informal description of the model. The results in this work will be
proved for a specific formalization of the general model of asynchronous distributed
computing described in the introduction. For reasons that will be apparent, we call
this model the weakly synchronous model. This formalization was chosen because it
is technically simple and is well suited to formal impossibility proofs. Informally the
features of the model are as follows.
WS.1 Each register is a single-writer–multiple-reader register. The unique processor

who may write to a register is referred to as the owner of the register.
WS.2 We assume that each process can simultaneously write to all of the registers

it owns in a single atomic step. We model this by having each processor own
only one register, whose set of allowed values is an arbitrary infinite set. Thus
an arbitrary amount of information can be encoded in a single write.

WS.3 Each register holds an ordered list of values. When a value v is written to the
register it is appended to the list rather than overwriting the existing values.
Thus the register contains a record of all the writes ever done to it. At all
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times, the length of this list is equal to the total number of write operations
that have been performed by the owner.

WS.4 When a processor performs a read operation, it reads the entire shared mem-
ory in one atomic step.

WS.5 Each processor’s program consists of an infinite loop. Each iteration of the
loop consists of a write to its shared register, followed by a read of the entire
shared memory, followed by some arbitrary private computation.

WS.6 In solving a decision problem each processor p starts with a private initial
input xp from some input domain I. Each processor must write its decision
value in the shared register that it owns. If D is the set of possible deci-
sion values, then the first element of D (if any) that the processor writes is
considered to be its decision.

WS.7 The system satisfies a weak synchronicity condition. The processors execute
their programs in a sequence of synchronous rounds. For each round the
scheduling adversary chooses an arbitrary nonempty subset of processors to
be active and each active processor executes one iteration of its loop. Since
the round is synchronous all active processor writes are completed before any
read begins.

We make the informal claim that our model is at least as powerful as other shared-
memory models (e.g., [20, 16, 5]). It has been shown in [25] and [19, 13] that restricting
to single-writer registers does not reduce the power of the model. Intuitively features
2, 3, and 4 provide more power than the standard models. Features 5 and 6 provide
a “normal form” for protocols that solve input-output problems; a program in some
other model can easily be converted to one of this form. Feature 7 restricts the power
of the adversary by limiting the possible behaviors of the system. Note that this makes
it easier for a protocol to be correct and thus harder for there to be an impossibility
proof. We will not present a formal justification of these claims; the interested reader
can do this for a favorite model.

2.3. Formal description of the model. A protocol Π for a processor set P =
{1, . . . , n} and an input domain I is referred to as a (P, I)-protocol and it is specified
by a tuple (S, V, e, w, u), where

(1) S is an arbitrary set. S corresponds to the set of possible states for each
processor.

(2) V is an arbitrary set. V corresponds to the set of possible values that a
processor can write in a register. Thus by WS.2 each register holds an element
of V ∗, which is the set of finite lists of elements of V .

(3) e is a map from I × P to S. It determines the initial state of each processor
from the processor’s input value and the processor’s ID.

(4) w is a map from S to V . It determines the value a processor will write in its
register on the next step.

(5) u is a map from S × (V ∗)n to S. It determines the next state of a processor
after executing a read operation. The evaluation of u corresponds to an
arbitrary private computation by a processor.

A system configuration is a pair (�s;�l), where �s = (s1, . . . , sn) ∈ Sn is called the

state configuration and �l = (l1, . . . , ln) ∈ (V ∗)n is called the memory configuration.
Here si is the state of the ith processor and li = v1; . . . ; vk ∈ V ∗ is the list stored in
the ith register.

A block J is a nonempty subset of P . The configuration update operator ✁ = ✁Π

takes as operands a system configuration and a block J ⊂ P and produces a system
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configuration as follows:

(�t, �m) = (�s,�l)✁ J,

where

mi = li if i �∈ J,
mi = li, w(si) if i ∈ J,
ti = si if i �∈ J,
ti = u(si, �m) if i ∈ J.

The operator corresponds to the modification of the system configuration which
occurs after the synchronous execution of a program loop by the set J of processors.
This corresponds to condition WS.7 in the informal description.

A schedule is an infinite sequence of blocks σ = σ1σ2σ3 . . . . For a nonempty
J ⊆ P, Σ(J) = {σ = σ1σ2 . . . |σi ⊆ J, σi �= ∅ } denotes the set of all schedules whose
blocks are subsets of J . If p ∈ σi we say that processor p takes a step at time i. If
p ∈ P and σ is a schedule, then stepsp(σ) is equal to the (possibly infinite) number
of steps that p takes in σ. We say that p is

• active in σ if stepsp(σ) ≥ 1, i.e., p appears in at least one block. Active(σ) is
the set of active processors.

• inactive in σ if stepsp(σ) = 0, i.e., p appears in no block. Inactive(σ) is the
set of inactive processors.

• nonfaulty in σ if stepsp(σ) is infinite. Nonfaulty(σ) is the set of nonfaulty
processors.

• faulty in σ if stepsp(σ) is finite. Faulty(σ) is the set of faulty processors.
Observe that Σ(J) consists of those schedules whose set of active processors is a

subset of J .
A schedule is always an infinite sequence of blocks. A finite sequence of blocks is

called a fragment. Φ(J) denotes the set of fragments whose blocks are subsets of J .
The above definitions of stepsp(σ), active, and inactive can be extended to fragments,
but faulty and nonfaulty make sense only for schedules. If τ is a fragment and φ is
a schedule or fragment, then τφ represents their concatenation and is a schedule or
fragment. If σ = τφ we say that τ is a prefix of σ or that σ is an extension of τ .

If J is a subset of P, we denote by [J ] the schedule whose blocks are all equal to
J . If J is equal to the singleton set {p}, we typically write [p] for [{p}].

A run (resp., partial run) is a triple (Π, �x, σ), where Π is a (P, I) protocol, �x ∈ In
is the input, and σ is a schedule (resp., a fragment). The execution (resp., partial
execution) E = E(Π, �x, σ) associated to a run (resp., partial run) is defined as the
infinite (resp., finite) sequence of configurations C0C1C2 . . . , where C0 = C0(Π, �x) =

(�s 0,�l 0) is the initial configuration defined by �s 0 = (e(i1, 1), . . . , e(in, n)) and �l
0 =

(⊥, . . . ,⊥), where ⊥ denotes the empty list, and Ci+1 = Ci ✁ σi+1. The public record
of the run or partial run (Π, �x, σ) is a vector

Pub(Π, �x, σ) = (Pub1(Π, �x, σ), . . . , Pubn(Π, �x, σ)),

where Pubp(Π, �x, σ) is the (possibly infinite) list of all writes performed by p in the
execution. Note that Pubp(Π, �x, σ) is infinite if and only if σ is a schedule and p is
nonfaulty in σ. If Pubp(Π, �x, σ) is finite, then its length is the number of steps that
p takes in σ.

Next, we define what it means for a protocol to compute a relation R ⊆ In ×Dn

for some arbitrary set D. The D-decision value of p on the run (Π, �x, σ), denoted
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dDp (Π, �x, σ), is the first element d ∈ D that appears on its list, or Λ(null) if none
exists. If the element d ∈ D first appears in the sth item of its list we say that p
D-decides at step s. The vector of the D-decision values is the D-decision vector
�dD(Π, �x, σ).

A vector �b ∈ Dn is compatible with �d if it can be obtained from �d by replacing
each Λ by some element of D. An input �x is R-permissible if there is at least one
vector �d ∈ Dn such that (�x, �d) ∈ R. Protocol Π computes the relation R on schedule
σ if for all R-permissible inputs �x

(1) the D-decision value of every nonfaulty processor is not null,

(2) there is a vector �b ∈ Dn with (�x,�b) ∈ R which is compatible with the decision

vector �dD(Π, �x, σ).
A protocol Π is an f-fault tolerant protocol for R if it computes R on σ for all

σ such that |Faulty(σ)| ≤ f . A protocol that is (n − 1)-fault tolerant, i.e., one that
computes R on every schedule σ, is said to be wait-free. A protocol Π is a bounded
wait-free protocol for R if there is a B such that for every run, each processor that
takes at least B steps D-decides. It is easy to see (and is well known) that a wait-
free protocol is bounded wait-free. It is also known (see [9] and the remark following
Lemma 6.1 below) that for k-set consensus the existence of a wait-free protocol implies
the existence of a bounded wait-free protocol.

Finally, a (P, I) protocol Π is input-free if the initial state of each processor
depends on the processor ID only, that is, e is a map from P to S instead of from
I × P to S. For an input-free protocol Π we write (Π, σ) for the run or partial run,
E(Π, σ) for the execution or partial execution, and Pub(Π, σ) for the public record.
Intuitively, input-free protocols are obtained from arbitrary ones by “hardwiring” a
specific set of inputs to the individual processors.

Proposition 2.1. Let Π be a (P, I) protocol and let �x ∈ In be some fixed input
vector. Then there exists an input-free protocol Π′ such that for all σ ∈ Σ(P )∪Φ(P ),

E(Π, �x, σ) = E(Π′, σ)

2.4. Impossibility of consensus. For illustration purposes we show how to
adapt the proof of the consensus impossibility result [15, 16, 21] to prove that wait-
free consensus is impossible in the weakly synchronous model. The previous proofs in
the literature give a stronger result: there is no consensus protocol that is even 1-fault
tolerant. It is possible to strengthen the following proof to give this result, but we
do not do this here. This section is not needed for the development of the rest of the
paper.

Theorem 2.2. In the weakly synchronous model, for n > 1 there is no determin-
istic wait-free protocol for n-processor consensus.

Proof. Assume the set of possible inputs is I = {a, b}. Suppose, for contradiction,
that Π is a protocol that solves consensus for all �x ∈ In and all schedules σ. Each
run (Π, �x, σ) may be classified uniquely as a-deciding or b-deciding depending on the
decision value.

Proposition 2.3. There is an input vector �y and two schedules σ and φ such
that (Π, �y, σ) is a-deciding and (Π, �y, φ) is b-deciding.

Proof. Let �y ∈ In be an input vector with the minimum number of a’s such that
there exists a schedule σ such that (Π, �y, σ) is a a-deciding; �y has at least one a in it,
say, in coordinate p. Define φ to be the schedule with repeated blocks P − {p}. We
claim that (Π, �y, φ) is b-deciding. Let �w be the vector obtained from �y by changing
the entry in coordinate p to b. Both of the runs (Π, �y, φ) and (Π, �w, φ) have the same
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public record. Furthermore the latter is b-deciding since �w has fewer a’s from �y which
was selected to have the minimum possible such number. Therefore (Π, �y, φ) is also
b-deciding.

We restrict our attention to runs with input �y given by Proposition 2.3. We
say that a fragment τ is a-valent (resp., b-valent) if for every schedule ρ, (Π, �y, τρ)
is a-deciding (resp., b-deciding). It is bivalent if it is neither a-valent nor b-valent,
i.e., if there are schedules ρ and µ such that (Π, �y, τρ) is an a-deciding and (Π, �y, τµ)
is a b-deciding. Clearly, no processor reaches a decision on the partial execution
corresponding to a bivalent fragment. By choice of �y, the empty fragment is bivalent.

Lemma 2.4. For any bivalent fragment τ there exists a block J such that the
fragment τJ is bivalent.

Proof. Let τ be a bivalent fragment. Assume for contradiction that τJ is not
bivalent for any block J . Thus for each J, τJ is either a- or b-valent. Without loss
of generality suppose that τP (where P is the set of all processors) is a-valent. We
will show that τJ is a-valent for every J in P which would imply τ is a-valent, a
contradiction. Let J be arbitrary and J̄ = P − J . It is easy to see that the state
of the shared memory and the internal states of processors in J̄ are identical for the
partial executions PE(Π, �y, τP ) and PE(Π, �y, τJJ̄). (Note, however, that the internal
states of processors in J may differ between the two partial executions.) Recall that
[J̄ ] denotes the schedule consisting of repeated J̄ blocks. Then schedules τJJ̄ [J̄ ] and
τP [J̄ ] have identical public records. Since by our assumption τJ is not bivalent it
must be a-valent, giving the desired contradiction.

By using the above lemma, one can construct an (infinite) schedule such that
any prefix is bivalent, which contradicts that Π is a wait-free algorithm for
consensus.

2.5. Tallies and the counting protocol. We now introduce a specific protocol,
called the counting protocol, which will play a special role in our analysis. This is an
input-free protocol which we denote by Γ.

To describe this protocol, we need to introduce the notion of a tally vector, which
is a vector indexed by P whose entries are nonnegative integers. For a tally vec-
tor v, and p ∈ P, we write v[p] for the [p] entry of v. We define the partial order
on tally vectors with v ≤ w if v[p] ≤ w[p] for all p ∈ P . Two tally vectors that
are comparable under this ordering are said to be noncrossing and they are cross-
ing otherwise. If τ is a fragment, the tally of τ, denoted t(τ), is the tally vector
such that t(τ)[q] is equal to the number of steps q takes in τ . If σ = σ1, σ2, . . .
is a schedule or fragment, the tally sequence associated with σ, denoted T(σ), is
the sequence T0, T1, T2, . . . of tally vectors, where Ti is the tally of the fragment
σ1σ2 . . . σi. For example, the fragment {1, 2}{3}{1, 3}{1, 2, 3}{1}{2} has tally se-
quence (0, 0, 0), (1, 1, 0), (1, 1, 1), (2, 1, 2), (3, 2, 3), (4, 2, 3), (4, 3, 3). Observe that the
tally vectors in the tally sequence of σ are noncrossing and that σ is trivially deter-
mined by T(σ).

We can now define the counting protocol Γ. As stated before, it takes no input.
The state of each processor p is a tally vector tallyp. Initially all entries of tallyp are
0. Each time p executes a step, p writes (appends) tallyp to its public register. It then
reads all of the shared registers and sets tallyp so that tallyp[q] is equal to the number
of steps that have been taken by processor q (which is equal to the length of the list in
processor q’s public register). We define Count(σ) to be the public record, Pub(Γ, σ),
of the counting protocol on schedule or fragment σ and call this the public tally of
σ. Thus for each p ∈ P, Countp(σ) is a (possibly infinite) list of length stepsp(σ),
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where each element of the list is itself a vector indexed by P . For i ≤ stepsp(σ), we
denote by Countp,i(σ) the vector corresponding to the ith write by p, and for q ∈ P,
Countp,i(σ)[q] is the value of this vector in position q. For example, on the fragment
{1, 2}{3}{1, 3}{1, 2, 3}{1}{2}, we have

Count1(σ) = (0, 0, 0); (1, 1, 0); (2, 1, 2); (3, 2, 3),

Count2(σ) = (0, 0, 0); (1, 1, 0); (3, 2, 3),

Count3(σ) = (0, 0, 0); (1, 1, 1); (2, 1, 2).

Note that the ith write by processor p is t(τ), where τ is the prefix up to the
(i−1)st step of p. Note also that the final values of the internal states of the processors,
tally1, tally2, and tally3, are, respectively, (4, 2, 3), (4, 3, 3), and (3, 2, 3), which do not
appear in the public record.

By definition, each tally that appears in the public tally of σ also appears in its
tally sequence T(σ). In particular, the set of all tally vectors that appear in the public
tally is noncrossing. We will need the following lemma.

Lemma 2.5. Let σ and φ be two schedules such that Count(σ) �= Count(φ). Then
at least one of the following holds:

(1) There exists a processor p and an integer i such that p takes at least i steps
in both σ and φ and the tally vectors Countp,i(σ) and Cp,i(φ) are different.

(2) There exists a pair of crossing tally vectors v and w so that v appears in
Count(σ) and w appears in Count(φ).

Proof. First consider the case that each processor takes exactly the same number
of steps in σ as in φ. Then since Count(σ) �= Count(φ), the first conclusion must
hold.

Next, suppose that some processor p takes a total of i steps in σ and takes at
least i+ 1 steps in φ. Let r be a processor that takes infinitely many steps in φ and
let w be a tally vector written by r on schedule φ such that w(p) ≥ i + 1. Such a w
must exist since p takes at least i+1 steps and r takes infinitely many steps. Let q be
a processor that takes infinitely many steps in σ and let v be the tally vector written
by q on schedule σ at its w(q) + 2 step. Then v(q) = w(q) + 1 and v(p) ≤ i < w(p),
and so v and w are crossing tally vectors.

2.6. Indistinguishable schedules. Two schedules or fragments σ and τ are
publicly indistinguishable if for any protocol Π and input vector �x, the public records
Pub(Π, �x, σ) and Pub(Π, �x, τ) are the same. Intuitively, this says that there is no
protocol Π and input �x that will enable an “outside observer” looking at the “final”
lists in the registers to distinguish between the schedules σ and τ . This is clearly
an equivalence relation on the set all schedules and fragments. The structure of this
equivalence relation is fundamental to the proofs of our results.

If σ and τ are publicly indistinguishable, then they must have the same public
tallies, i.e., Count(σ) = Count(τ). As we will see in Theorem 2.12, this condition is
also sufficient for public indistinguishability. This theorem will also provide another
combinatorial characterization based on a notion called compression. To introduce
this notion we will need some additional definitions.

If τ is a fragment, its length |τ | is the number of blocks in it, and its weight, w(τ),
is the sum of the block sizes. Associated to each schedule or fragment σ is its site
sequence s(σ) = (s1, s2, . . .) of length |σ|, where si is the weight of the first i blocks.
We will also refer to si as the site of the ith block of σ.

Example 2.6. P = {1, 2, 3} and τ is the fragment {1, 2, 3}{1, 2}{2, 3}{2}{3}.
Then |τ | = 5, w(τ) = 9, and s(τ) = (3, 5, 7, 8, 9).



1458 MICHAEL SAKS AND FOTIOS ZAHAROGLOU

Let σ be a schedule or fragment. Then a block σi of σ is hidden if σi is not the
last block and no processor in σi appears in any later block. Note that any two hidden
blocks are necessarily disjoint and that whether σ is a schedule or a fragment, at least
one processor belongs to no hidden block. Thus we have the following proposition.

Proposition 2.7. A schedule or fragment σ has at most |P | − 1 hidden blocks.
A schedule or fragment that has no hidden blocks is said to be compressed.

We now define operators for “eliminating” hidden blocks. For a positive integer
s, the merge operator Ms is defined as follows. If σ is a schedule or fragment, Ms(σ)
is the schedule or fragment obtained as follows: if there is a block σi at site s and the
block is hidden, then replace σi and σi+1 by their union; otherwise, Ms(σ) = σ. The
following facts are easy to verify.

Proposition 2.8.

(1) If σ is compressed, then Ms(σ) = σ for all s.
(2) The operators Ms and Mr commute for all integers r and s.
(3) If σ is a schedule or fragment and r1, r2, . . . , rk are the sites of its hidden

blocks, then Mr1Mr2 . . .Mrk(σ) is a compressed sequence.

The compressed sequence obtained from σ in the third part of Proposition 2.8 is
called the compression of σ and is denoted σ̂. More generally, a sequence τ which can
be obtained from σ by application of some sequence of merge operators is said to be
a partial compression or σ. An easy consequence of Proposition 2.8 is the following.

Corollary 2.9. If τ is a partial compression of σ, then τ̂ = σ̂. Thus σ̂ is the
unique compressed sequence that can be obtained from σ by applying merge operators.

The compression map σ −→ σ̂ defines an equivalence relation on Σ(P ) ∪ Φ(P ):
σ and τ are compression equivalent if σ̂ = τ̂ . The equivalence class of σ is called the
compression class of σ and is denoted 〈σ〉.

Let σ be a compressed schedule, let χ be the smallest prefix of σ containing all
faulty processors, and write σ = χφ. Then any schedule that compresses to σ is of the
form τφ, where τ is a fragment of the same weight as χ. In particular, this implies
the following.

Proposition 2.10. The compression class 〈σ〉 of any schedule is finite.
Example 2.11. Suppose P = {1, 2, 3, 4} and let σ be the compressed schedule

{1, 2}{1, 3, 4}{1, 2, 3}[3] = {1, 2}{1, 3, 4}{1, 2, 3}{3}{3} . . . . There are eleven uncom-
pressed schedules whose compression is σ:

σ1 = {1, 2}{1, 3, 4}{1}{2, 3}[3],
σ2 = {1, 2}{1, 3, 4}{2}{1, 3}[3],
σ3 = {1, 2}{1, 3, 4}{1}{2}[3],
σ4 = {1, 2}{1, 3, 4}{2}{1}[3],
σ5 = {1, 2}{1, 3, 4}{12}[3],
σ6 = {1, 2}{4}{1, 3}{1, 2, 3}[3],
σ7 = {1, 2}{4}{1, 3}{1}{2, 3}[3],
σ8 = {1, 2}{4}{1, 3}{2}{1, 3}[3],
σ9 = {1, 2}{4}{1, 3}{1}{2}[3],
σ10 = {1, 2}{4}{1, 3}{2}{1}[3],
σ11 = {1, 2}{4}{1, 3}{1, 2}[3].
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In σ10, for instance, the hidden blocks are at sites 3, 6, and 7. Applying M6 yields
σ11, and then applying M7 yields σ

6, and applying M3 yields σ.
The following result characterizes public indistinguishability. Recall the definition

of the public tally vector Count(σ) from the previous section as the public record of
the counting protocol Γ.

Theorem 2.12. Let σ and τ be schedules or fragments. Then the following are
equivalent:

(1) σ is publicly indistinguishable from τ,
(2) Count(σ) = Count(τ),
(3) σ̂ = τ̂ .
Proof. (3) ⇒ (1). Assume that σ̂ = τ̂ ; we will show that σ and τ are publicly

indistinguishable.
Lemma 2.13. σ is publicly indistinguishable from Ms(σ) for all s.
Proof. The result is trivial if σ =Ms(σ), so assume they are distinct. Then σ has

a hidden block σk at site s and

φi = σi if i < k,
φk = σk ∪ σk+1,
φi = σi+1 if i > k.

Let C(σ, i) be the configuration of the protocol Π on schedule σ after the execution of
i blocks. Clearly C(φ, i) = C(σ, i) for every i < k. The configuration C(σ, k + 1) and
C(φ, k) have exactly the same memory configuration but they may differ on the state
configuration of the processors in the set σk. But these processors will not execute
another step later in any of the schedules. Therefore, for i > k, C(φ, i) differs from
C(σ, i + 1) only in the state of the processors in σk. Therefore σ and φ are publicly
indistinguishable.

Corollary 2.14. σ is publicly indistinguishable from σ̂.
Proof. Let r1, r2, . . . , rk be the sites of the hidden blocks of σ. Then by proposition

2.8, σ̂ = Mr1Mr2 . . .Mrk(σ) and the result follows by applying the previous lemma
and induction.

Therefore σ is publicly indistinguishable from σ̂ and τ is publicly indistinguishable
from τ̂ . Since σ̂ = τ̂ , then σ and τ are publicly indistinguishable.

(1) ⇒ (2). This is trivial since if σ is publicly indistinguishable from τ, then by
definition every protocol, including Γ, has the same public record on σ as τ .

(2) ⇒ (3). Let σ and τ be schedules such that Count(σ) = Count(τ). From
Corollary 2.14 and the fact that (1) ⇒ (2) we have Count(σ) = Count(σ̂) and
Count(τ) = Count(τ̂), hence Count(σ̂) = Count(τ̂).

Now suppose for contradiction that σ̂ �= τ̂ . Write φ = σ̂ and µ = τ̂ and consider
the least k such that φk �= µk. Let φ

′ and µ′ be the prefixes ending with φk and
µk, respectively. Then the tally vectors t(φ

′) and t(µ′) are different; we may assume
that either t(φ′) < t(µ) or t(φ′) and t(µ′) are crossing vectors (defined in section
2.5). Then the vector t(φ′) does not appear in the tally sequence of µ and does not
appear in Count(µ). On the other hand, since φ is compressed, we may choose a
processor q in φk that writes again. Its next write in the counting protocol will be
t(φ′), contradicting that Count(φ) = Count(µ).

This completes the proof of Theorem 2.12.

2.7. Quasi extensions of fragments. We have defined the notion of a public
record associated to an execution as the vector �R indexed by p, where the entry �Rp is
the list of all writes done by p during the execution. It is convenient to call any such
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vector �R indexed by P, where the entry �Rp is an arbitrary list of elements, a public

record. A public record is finite if each list is finite and infinite otherwise. If �R and
�R′ are public records, then we say that �R′ is an extension of �R if each of the lists �Rp

is a prefix of the corresponding list �R′
p.

Now if τ is a fragment which is a prefix of the schedule or fragment σ, then clearly
the following condition holds:

(QE) For any protocol Π and input �x, the public record of the execution (Π, �x, σ)
is an extension of the public record of the execution (Π, �x, τ).

We say that a schedule or fragment σ is a quasi extension of the fragment τ if
condition (QE) holds. For a fragment τ, Qτ denotes the set of schedules that are
quasi extensions of τ .

Condition (QE) does not imply that τ is a prefix of σ. For instance, we have the
following.

Lemma 2.15. Let ρ be a fragment, φ a schedule or fragment, and Y ⊆ Active(φ).
If σ = ρφ and U ⊆ Active(φ), then σ quasi-extends ρU .

Proof. For any protocol, the public records of ρφ and ρU trivially agree up through
the end of ρ. Now in ρU, each of the processors in U write once more, and they write
the view observed during their last step in ρ. But for each p ∈ U, the same write will
occur when executing ρφ since p ∈ Active(φ).

We have the following combinatorial characterization of quasi extension, which is
analogous to Theorem 2.12.

Theorem 2.16. Let µ be a fragment and let σ be a schedule or a fragment. Then
the following are equivalent:

(1) σ is a quasi extension of µ.
(2) Count(σ) extends Count(µ).
(3) There exists a prefix ρ of σ, a schedule or fragment φ, and a subset U of

Active(φ) such that σ = ρφ and µ̂ = ρ̂U .

Proof. (1)⇒ (2). This follows from the definition of quasi extension and the fact
that Count(σ) and Count(µ) are the respective public records arising from a protocol.

(2) ⇒ (3). Write µ̂ as τU, where U is the last block of µ̂. By hypothesis, and
the fact that µ is publicly indistinguishable from µ̂, we have that Count(σ) extends
Count(τU). Since τU is compressed, there is a processor p ∈ U that also appears in
the last block of τ . Let i be the number of steps that p makes in τ . By definition of the
counting protocol, Countp,i+1(τU) = t(τ), where t(τ) is the tally vector associated
with fragment τ . By hypothesis, Countp,i+1(σ) = Countp,i+1(τU). Let ρ be the
minimal prefix of σ containing the first i steps of p. Again, by the definition of the
counting protocol, Countp,i+1(σ) = t(ρ). Hence t(τ) = t(ρ). Write σ = ρφ. Now,
since Count(ρφ) extends Count(τU) it is clear that each processor in U must take

a step in φ, so U ⊆ Active(φ). Finally, we claim that ρ̂U = τU, and for this it
is enough, by Theorem 2.12, to show that Count(ρU) = Count(τU). By Lemma
2.15, Count(ρφ) extends Count(ρU) and since Count(ρφ) also extends Count(τU)
(by hypothesis) and every processor takes the same number of steps in ρU as in τU,
we must have Count(ρU) = Count(τU), as required.

(3)⇒ (1). Assume that (3) holds. By Lemma 2.15, σ is a quasi extension of ρU .

But since ρ̂U = µ̂, ρU and µ are publicly indistinguishable and so σ is also a quasi
extension of µ.

2.8. Knowable sets. For a set of schedules S, let Ŝ = {σ̂|σ ∈ S}. In particular,
Σ̂ is the set of all compressed schedules. By Theorem 2.12, to check that a protocol
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for an input-output problem is correct, it suffices to check it for schedules in Σ̂.

In this subsection, we are interested in the dependence of the public record of a
run (Π′, �x, σ) on σ while holding Π′ and �x fixed. Therefore it is easier to consider the
corresponding input-free protocol Π given by Proposition 2.1.

In an input-free protocol, each processor’s decision depends only on the schedule.
One can view the computational steps taken by the processors as “collecting infor-
mation” about the schedule. When a processor “knows enough” about the schedule,
it can make a decision. Let K(Π, d) be the set of all compressed schedules on which
some processor running the input-free protocol Π writes d on its list. The pair (Π, d)
is an acceptor and d is its accepting value. We say that (Π, d) accepts schedule σ if
σ ∈ K(Π, d). A set K ⊆ Σ̂ is publicly knowable or simply knowable if it equals K(Π, d)
for some acceptor (Π, d). Below we give several examples. In each example, d =“@.”

Example 2.17. Σ̂ is knowable. If Π is the protocol where every processor writes
“@” at every opportunity, then Σ̂ = K(Π,@).

Example 2.18. ∅ is knowable. If Π is the protocol where every processor writes
“0” at every opportunity, then K(Π,@) = ∅.

Example 2.19. For each integer k and processor p, let Sp,k be the set of com-
pressed schedules in which processor p takes at least k steps. It is easy to see that Sp,k
is knowable; a simple input-free protocol that accepts this set is the one where proces-
sor p writes “0” for its first k − 1 steps and “@” thereafter, and all other processors
always write “0.”

Example 2.20. Let Si be the set of schedules where every processor takes at least
i steps. Si is a knowable set. The protocol that accepts the set is as follows: Each
processor has two possible states, “continue” and “accept.” While in the “continue”
state, each processor appends “0” to the list in its shared register, reads the shared
memory, and enters the “accept” state if all of the processors took i steps (have output
list of length at least i). Once the processor is in the “accept” state, it writes “@.”

Example 2.21. Let τ be any fragment. The set Q̂τ of compressed schedules
that are quasi extensions of τ is knowable. Define the following modification of the
counting protocol defined in section 2.5: if any processor ever observes that the public
record is an extension of Count(τ), then it writes “@” at its next opportunity. When
this protocol is run on an (infinite) compressed schedule σ, “@” is written if and
only if Count(σ) is an extension of Count(τ). By Theorem 2.16 this is equivalent to
σ ∈ Q̂τ .

For contrast, we give some examples of sets that are not knowable.

Example 2.22. Let Tp,k be the set of compressed schedules where processor p
takes exactly k steps for some k. Then Tp,k is not a knowable set. Suppose to the
contrary that (Π, d) is an acceptor for Tp,k. Let σ ∈ Tp,k be arbitrary; then d is written
in the public record of the run (Π, σ). Now the first write of (a, “d”) occurs at some
finite block σm of σ, so if we define φ = σ1, σ2, . . . , σm, {p}, {p}, . . . , then φ is also

accepted by (Π, d). Then φ̂ is a compressed schedule accepted by (Π, d) but not in Tp,k,
a contradiction.

Example 2.23. The complement of a knowable set need not be knowable, e.g.,
consider the complement of Sp,k and apply an argument analogous to the previous
one.

Example 2.24. Let Np be the set of compressed schedules that do not begin
with {p}. Then Np is not knowable. Suppose to the contrary that (Π, d) is an ac-
ceptor for N1. Let σ ∈ N1 be the schedule {1, 2}, {2}, {2}, . . . . Then there is a
block σk of σ such that d is first written in the public record of the run (Π, σ). If
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φ = {1}, {2}k, {1, 2}{2}, {2}, {2}, . . . , then the public record corresponding to its first
k+1 blocks will match the public record of the first k blocks of σ. Thus φ is compressed,
is not in N1, and is accepted by (Π, d), a contradiction.

The last example illustrates an important point: it is not hard to construct a
protocol such that for any schedule σ in Np, the fact “σ ∈ Np” is recorded in the
local state of at least one processor q. (Each processor q �= p records “yes” in its local
state, if its first read does not see a write by p, and p records “yes” in its local state
if its first read sees at least one write other than its own.) However, in this case, if p
appears in the first block and never writes again, this fact does not become “public.”
The term publicly knowable reflects the fact that the value v is written in the memory
and thus every nonfaulty processor “eventually knows” that the schedule belongs to
K.

An acceptor (Π, d) is said to accept a fragment τ if d appears in the public record
of Π on τ . The definition of a run of a protocol implies the following.

Proposition 2.25. Let K be a knowable set. Then a compressed schedule σ
belongs to K if and only if for some fragment τ of σ, Q̂τ ⊆ K.

The concept of knowable set allows us to reformulate the impossibility result for
a k-set agreement problem. We do this in the next section.

3. Reformulating Theorem 1.1 and a topological analogy. We want to
prove that, in the weakly synchronous model, there is no wait-free protocol that
solves the k-set agreement problem in a system of n processors for any k < n. Clearly
it suffices to prove the impossibility result for k = n− 1. As a first step in the proof
of Theorem 1.1, we use the notation of the previous section to reformulate it.

Assume, for contradiction, that there exists a wait-free protocol Π that solves
the (n − 1)-set agreement problem for a processor set P = {1, . . . , n}. Consider the
behavior of Π on the input �x = (1, . . . , n) ∈ In. For each i ∈ P, let Di be the set of
compressed schedules σ such that on the run (Π, �x, σ) at least one processor reaches
decision i. By definition, each Di is a knowable subset of Σ̂. Also, if Π is correct, then
for any schedule σ, at least one processor decides some value in {1, . . . , n}, so the sets
D1, D2, . . . , Dn together cover Σ̂. An arbitrary sequence A1, A2, . . . , An of subsets of
Σ̂ satisfies the activity property if for each p ∈ P, processor p is active in each σ ∈ Ap.

In other words Ap is disjoint from Σ̂(P − {p}).
Proposition 3.1. If Π is a fully fault-tolerant protocol for k-set agreement, then

the sequence of sets D1, D2, . . . , Dn satisfies the activity property.
Proof. Assume for the sake of contradiction that for some schedule σ ∈ Dp,

processor p is not active. Consider a run of protocol Π on σ with the input vector
�y defined by yp = n + 1 and yq = xq for q �= p. Then Pub(Π, �x, σ) = Pub(Π, �y, σ);
therefore, on input �y some processor decides p although p does not appear in �y, which
violates the validity condition.

Our main theorem will thus follow from the following general result about know-
able sets.

Theorem 3.2. If K1, . . . ,Kn is a collection of knowable subsets of Σ̂(P ) that
cover Σ̂ and satisfy the activity property, then

n⋂
p=1

Kp �= ∅.

Applying this to the sets D1, D2, . . . , Dn, we obtain that there is a single schedule
σ in which every possible decision 1, 2, . . . , n is reached, contradicting that Π solves
the (n− 1)-set agreement problem.
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Table 1
The syntactic correspondence between Rn and knowable set topologies.

Hull(EP ) ←→ Σ̂(P )

point �z ∈ Hull(EP ) ←→ compressed schedule σ

relatively open subset of Hull(EP ) ←→ knowable subset of Σ̂(P )

Hull(EP−{p}) ←→ Σ̂(P − {p})
boundary property ←→ activity property

vertex �ep ←→ schedule [p] = {p}{p} . . .

There is a striking analogy between the statement of Theorem 3.2 and a well-
known theorem concerning the topology of Euclidean space. Let Hull(Z) denote the
convex hull of a set of points Z in the Euclidean space. Let EP = {�e p|p ∈ P} be
the set of standard unit basis vectors of RP , which we identify with Rn. Note that
Hull(EP ) is the (n − 1)-dimensional simplex consisting of the set of nonnegative
vectors whose coordinates sum to 1. We say that a sequence of subsets A1, A2, . . . , An

of Hull(EP ) satisfies the boundary property if for each p ∈ {1, . . . , n}, Ap is disjoint
from Hull(EP−{p}), which is the face of Hull(EP ) opposite the vertex �e p, i.e, each
vector �z ∈ Ap has positive pth coordinate. Finally, a subset U is relatively open in
Hull(EP ) if it is the intersection of Hull(EP ) with an open subset of Rn.

The following theorem is essentially equivalent to the Brouwer fixed point theorem
for the (n− 1)-dimensional closed ball.

Theorem 3.3 (KKM theorem; see [1]). If U1, . . . , Un is a collection of relatively
open subsets of Hull(EP ) that cover Hull(EP ) and satisfy the boundary property,
then

n⋂
i=1

Ui �= ∅.

There is a tight syntactic correspondence between the two situations described by
Theorems 3.2 and 3.3, which is given in Table 1.

The obvious question is, Is there some way to make use of this correspondence to
prove the desired result for knowable sets? The natural way to do this would be to find
a bijection between Σ̂(P ) and Hull(EP ) which obeys the syntactic correspondence.
Given such a bijection Theorem 3.2 would follow from Theorem 3.3. In fact, we believe
that there is such a bijection and that we have an existential argument for this. But
the technical details involved in turning this argument into a rigorous proof seem to
be considerable and except for the case n = 2, we have not completed such a proof.

It turns out we don’t really need such a bijection. We prove Theorem 3.2 directly
by analyzing and imitating the proof of Theorem 3.3. Nevertheless, the ideas of the
proof are based on the intuition we developed in trying to construct an appropriate
bijection between Σ̂(P ) to Hull(EP ). In the next section, we discuss some of these
intuitions and give an explicit bijection for the n = 2 case (which corresponds to the
impossibility of 2-processor consensus), a not-so-explicit bijection for the n = 3 case,
and a glimpse at the n > 3 case. While our proofs do not explicitly depend on this
section, it provides the key intuitions which motivate the succeeding sections.

4. Bijections between Σ̂(P )and Hull(EP ). As described in the previous
section, the most natural way to prove our result would be to provide a bijection f
obeying the syntactic correspondence. For n = 2 we can explicitly construct such a
map. For higher dimensions we have no explicit map, although we are fairly certain
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that the facts we develop later could, if one wanted, be used to prove existence of
such a map. We emphasize that the proofs of our results do not rely on this section,
and so we freely make claims here without proof.

The conditions we need on a bijection between Σ̂(P ) and Hull(EP ) are
(A) for J ⊆ P, each compressed schedule σ ∈ Σ̂(P ) is mapped to the simplex

Hull({ei : i ∈ J});
(B) the image of any knowable set of Σ̂(P ) is a relatively open subset ofHull(EP ).
The first condition is fairly explicit; it says, for instance, that schedules of the

form (p)(p)(p) . . . must be mapped to a corner vertex �e p. The second relies on the
notion of knowable sets, whose definition in terms of protocols is hard to deal with
directly. We now state a combinatorial characterization of knowability. We don’t
prove this now, but we note that it is equivalent to the characterization proved below
as Theorem A.4. If τ is a schedule fragment, the cylinder of τ, Bτ is the collection of
all schedules that have τ as a prefix.

Theorem 4.1. A set S of compressed schedules is knowable if and only if the set
{σ ∈ Σ(P )|σ̂ ∈ S} can be expressed as a (possibly infinite) union of cylinders.

Now suppose we can find a function f whose domain is the set Σ(P ) of all schedules
(not just compressed ones), such that f satisfies the following four conditions:

(1) f maps Σ(P ) onto Hull(EP ).
(2) Each schedule σ is mapped to the simplex Hull({ei : i ∈ J}), where J =

Active(σ).
(3) f(σ) = f(τ) if and only if σ and τ have the same compression.
(4) f maps schedules with a “large” common prefix to points that are “close.”

More precisely, there exists a function α(j) on the nonnegative integers that
tends to 0 such that for any two schedules σ and φ, if σ and φ have a common
prefix of j blocks, then ‖f(σ) − f(φ)‖ ≤ α(j), where ‖ · ‖ denotes the usual
Euclidean length.

The second condition is just condition (A) above. It is not hard to show that
conditions (1), (3), and (4) together with Theorem 4.1 imply condition (B). Note
that given a map f satisfying (1) and (3), its restriction to the set σ̂ of compressed
schedules is a bijection.

The following definitions will be useful. A schedule σ is degenerate if it has a
unique nonfaulty processor. Such a schedule is uniquely of the form τ [p] for some
segment τ and processor p, where either τ is the null fragment or the last block B of
τ is not equal to {p}. Writing τ as µB, we say that µ is the fundamental fragment of
σ and B is the fundamental block. We also say that σ is p-degenerate. A degenerate
schedule whose fundamental fragment has weight at most w is said to be w-admissible.

We now describe such a function f for the n = 2 case and give some indication
how it can be extended to the n ≥ 3 case.

4.1. A bijection for the 2-processor case. For simplicity, in the description
of f, we consider the range to be the interval [0, 1] instead of Hull(E{1,2}).

Let us start by describing a mapping that does not work. Take each schedule σ
and interpret it as an infinite ternary string t = t(σ) by mapping {1} to 0, {1, 2} to
1, and {2} to 2. Then any schedule can be interpreted as a real number between 0
and 1. Furthermore, this mapping is easily seen to satisfy properties (1), (2), and
(4) above: the map is onto, it sends the schedule [1] = {1}{1} . . . to the endpoint 0
and [2] to endpoint 1, and two schedules with a common prefix of j blocks map to
points that differ by at most (1/3)j . The problem is condition (3). The map sends
the schedules {1}[2] and {1, 2}[1] to the point 1/3, yet they do not have the same
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0

[1]

1

[2]

1
3

{1, 2}[2]

2
3

{1, 2}[1]

1
9

{1}{1, 2}[2]

❄

2
9

{1}{1, 2}[1]

❄

4
9

{1, 2}{1, 2}[1]

❄

5
9

{1, 2}{1, 2}[2]

❄

7
9

{2}{1, 2}[2]

❄

8
9

{2}{1, 2}[1]

❄

Fig. 1. The map from Σ̂({1, 2}) to the [0, 1] interval.

compression, and {1}[2] and {1, 2}[2] which have the same compression are mapped
to 1/3 and 2/3, respectively. To fix this problem we modify t = t(σ). Given t = t(σ),
define the infinite sequence a by ai = ti if t1, t2, . . . , ti−1 has an even number of 1’s
and ai = 2 − ti otherwise. Interpret a as a real number between 0 and 1 written in
base 3. The map f is now defined to take f(σ) = a. It still satisfies (1), (2), and (4),
but now it can also be shown to satisfy (3).

Figure 1 depicts the restriction of the mapping to compressed schedules. Under
this map, degenerate schedules get mapped to rational numbers whose denominators
are powers of 3. Observe that for n = 2, a compressed schedule σ is equal to the
compression of some other schedule if and only if it is degenerate, in which case there
is exactly one uncompressed schedule whose compression is σ. The mapping sends
these two schedules to the same point. For example, the inverse image of 2/9 is
{1}{1, 2}[1] and {1}{2}[1].

The bijection has a geometric description. Each prefix τ is associated with an
interval Rτ which corresponds to the schedules that start with this prefix. The end-
points of the interval τ are the images of the schedules τ [1] and τ [2]. The empty
prefix corresponds to the entire interval, and if τ is a prefix of µ, then the interval
corresponding to µ is a subinterval of that corresponding to τ . In general, the interval
corresponding to τ is divided into three subintervals, corresponding to τ{1}, τ{1, 2},
and τ{2}.

It will be useful to describe this process of subdivision in levels. The level 0 subdi-
vision is the subdivision into three intervals, corresponding to the prefixes {1}, {1, 2},
and {2}. The level i subdivision is obtained from the level i−1 subdivision by taking
each interval corresponding to a prefix of weight i (that is, the sum of the block sizes
is i) and subdividing it into three subintervals as above. Thus the level 1 subdivision
consists of the subdivision of the intervals [0, 1/3] and [2/3, 1] into three parts and
the level 2 subdivision subdivides each of the intervals [0, 1/9], [2/9, 1/3], [1/3, 2/3],
[2/3, 7/9], and [8/9, 1] into three intervals.

4.2. The case of more than two processors. For P = {1, 2} we were able to
give an explicit map from schedules to Hull(EP ). For |P | > 2, we don’t know how
to do this. However, in the 2-processor case, we saw that the map can be defined by
a process of successive subdivision. For each fragment τ we defined an interval Rτ

which is the image of all schedules with prefix τ . For each schedule σ, the sequence of
regions Rσi , where σi is the unique prefix of σ that appears in the level i subdivision,
are nested, and their intersection is the image of σ. It should also be apparent that
the lengths of the intervals into which we subdivided each interval are not critical;
all we really needed was that the length of Rτ goes to 0 as we take larger and larger
prefixes.

For |P | ≥ 3 we will attempt to construct a map along similar lines. We will
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[1]

{13}[3] {12}[2]

{13}[1] {12}[1]

{123}[2]                  {123}[3]

{123}[1]

[3] {23}[2] {23}[3] [2]

{1}

{13} {12}

{123}

{3}

{23}

{2}

Fig. 2. The subdivision D0({1, 2, 3}).

construct a sequence Dm(P ) of decompositions of the simplex Hull(E
P ). The de-

composition D0(P ) consists of 2
|P | − 1 regions RJ , one for each nonempty subset of

J of P ; all schedules with first block J are mapped to RJ . This tiling is called the
level 0 decomposition of the simplex. More generally, in the level m decomposition
Dm(P ), m ≥ 0, the regions correspond to fragments that are minimal subject to their
weight being greater than m. The level m + 1 decomposition is obtained from the
level m decomposition by taking each region corresponding to a fragment τ of weight
exactly m and tiling it by 2n − 1 regions corresponding to the fragments of the form
τJ, where J is a block. The region Rτ is the image of the map applied to schedules
with prefix τ . Given the level m decomposition for all m, the image of a schedule σ
is determined as follows: for each m, σ is assigned to a unique Rm(σ) region in the
level m decomposition corresponding to the appropriate prefix of σ. The sequence of
regions Rm(σ) is nested and their diameters tend to 0, so σ is mapped to the unique
point in their intersection. A key property will be that a point on the boundary of two
or more regions will correspond to a set of schedules all having the same compression,
where each schedule corresponds to one of the regions. The “vertices” of the decom-
position Dm(P ) will correspond to schedules whose compression is an m-admissible
degenerate schedule.

We now sketch how this can be done for |P | = 3; the same approach would also
seem to work for higher dimensions. The combinatorial structure underlying the map
is regular, but it is sufficiently complicated that writing a complete description and a
rigorous proof that it works seems to be a very tedious undertaking, which is why we
do not rely explicitly on this construction in the proof of our main result. The devel-
opment in the later sections is closely related to the present construction; the reader
will see that this construction is the basis for the “triangulation graphs” presented in
section 6.2. Conversely, the interested reader can use the precise description of the
triangulation graphs to get a precise description of the map in higher dimensions.

Let P = {1, 2, 3}. Figure 2 shows the level 0 decomposition, D0(P ) into seven
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regions. Each region is labeled by a nonempty subset of P . Each singleton set
corresponds to a pentagonal region and each other set corresponds to a triangular
region. All 0-admissible compressed degenerate schedules map to vertices in the fig-
ure. Each vertex is labeled by the unique compressed schedule that maps to it, and
for each such vertex its inverse image is the set of all schedules whose compression is
equal to its label. For example, the vertex labeled {1, 2, 3}[2] lies on the boundary
of the four regions {1}, {3}, {1, 3}, {1, 2, 3} and for each such region there is a cor-
responding schedule that maps to that vertex: of {1}{2, 3}[2], {3}{1, 2}[2], {1, 3}[2],
and {1, 2, 3}[2]. Consider a segment that separates two regions. Each point on the
segment corresponds to two schedules, one that begins with the fragment defining
the first region and one that begins with the fragment defining the other region. For
example, the segment joining {1, 2, 3}[2] and {1, 3}[1] separates the regions {3} and
{1, 3} and each point on the segment is the image of exactly two schedules {1, 3}σ
and {3}{1}σ, where σ ∈ Σ({1, 2}).

In the higher level decompositions, we successively subdivide each region into
seven subregions. When we focus on a region associated to fragment τ, it is useful to
relabel each vertex of the region by the unique schedule beginning with τ that maps
to that vertex. Thus, for instance, for the region {1, 2}, we can view its vertices as
{1, 2}[1], {1, 2}[2], and {1, 2}[3]. When we subdivide this region we do it in a way anal-
ogous to the level 0 decomposition of the entire triangle, with {1, 2}[i] corresponding
to the schedule [i]. Any triangular region is subdivided in this way.

To decompose a pentagonal region we treat it as a “distorted” triangle. In general,
a pentagonal region will correspond to a fragment τ whose last block is a singleton
set {i}. (The reader should follow this for the region labeled {1}.) The vertices of the
region will correspond to the schedules τ [i], τ [j], τ{j, k}[k], τ{j, k}[j], τ [k]. When we
subdivide, we view τ [i], τ [j], τ [k] as the vertices of the distorted triangle. The three
segments joining τ [j] and τ [k] are together viewed as one “side” of the triangle. The
two intermediate vertices τ{j, k}[k] and τ{j, k}[j] play the role of the vertices that
are added when we subdivide that side.

Figure 3 depicts the level 1 decomposition with the vertices labeled and Figure 4
shows the decomposition with faces labeled. Note that the level 1 decomposition is
produced from the level 0 decomposition by decomposing each of the three pentagons
corresponding to regions whose fragment has weight 1.

The level 2 decomposition is not shown; it is obtained from the level 1 decompo-
sition by subdividing each of the 12 regions that correspond to fragments of weight 2.

This completes our discussion of our attempt to prove Theorem 3.2 by an ap-
propriate bijection between Hull(EP ) and Σ̂(P ). While we did not complete this
approach, the constructions motivate much of what comes in the proof.

5. Reviewing the geometric case. As we stated, the proof of Theorem 3.2
is obtained by following closely the proof of its geometric analog Theorem 3.3. It is
useful to review the outline of that proof.

Recall that we have a cover of the simplex Hull(EP ) by relatively open sets
U1, . . . , Un that satisfy the boundary property and we want to show that there is
a point belonging to all of the sets. We begin with a lemma which applies to an
arbitrary open cover of Hull(EP ). For �x ∈ Hull(EP ), let B(x, ε), the closed ε-ball
around x, denote the set of points �y ∈ Hull(EP ) within Euclidean distance ε of �x.

Lemma 5.1. For any finite collection U of open sets that covers Hull(EP ) there
is an ε = ε(U) > 0 such that for each point �x ∈ Hull(EP ), some member of U contains
B(�x, ε).
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{2}{12}[2]

{2}{12}[1]

{2}{23}[3]

[1]

{13}[3] {12}[2]

{13}[1] {12}[1]

{123}[2]                  {123}[3]

{123}[1]

[3] {23}[2] {23}[3] [2]

{1}{13}[3]

{1}{13}[1]

{1}{12}[2]

{1}{12}[1]

{1}{123}[2] {1}{123}[3]

{1}{123}[1]

{3}{13}[3]

{3}{13}[1]

{3}{123}[3]{3}{123}[2] {2}{123}[3]{2}{123}[2]

{3}{23}[3]{3}{23}[2] {2}{23}[2]

{3}{123}[1] {2}{123}[1]

Fig. 3. The subdivision D1({1, 2, 3}) with vertex labels.

{1}{1}

{1}{13} {1}{12}

{1}{123}

{1}{3} {1}{2}

{1}{23}
{13} {12}

{123}

{3}{1} {3}{12}                      {2}{13} {2}{1}

{3}{13}
{3}{123}

{3}{2}

{23}

{2}{3}

{2}{123} {2}{12}

{3}{3}

{3}{23}

{2}{2}

{2}{23}

Fig. 4. The subdivision D1({1, 2, 3}) with face labels.

The key point is that the same ε works for all �x. Now given our covering U1, . . . , Un

satisfying the boundary property we choose an ε > 0 for which the conclusion of the
above lemma is satisfied. We then define a function (labeling) λ of the points of
Hull(EP ) to [n] = {1, . . . , n} as follows: λ(�x) is the minimum j such that B(�x, ε) ⊆
Uj . Note that, by the boundary property, this labeling satisfies the following coherence
condition: for each J ⊂ P, each point of Hull(EJ) is labeled by an element of J . It
suffices to show that
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(**) for some �y ∈ Hull(EP ), B(�y, ε) contains n points with distinct labels, since
then �y ∈ ⋂n

i=1 Ui.
The proof of (**) relies on the notion of a triangulation of the simplex. Roughly,

a triangulation T of Hull(EP ) is a decomposition into a finite collection of n-vertex
simplices with the property that any two simplices in the triangulation are disjoint or
their intersection is a face of each (where by a face, we mean a subsimplex spanned
by a subset of the vertices). The set of all simplices in T and faces of simplices in T
are the faces of T .

For the ε given by Lemma 5.1, we construct a triangulation T satisfying the
following.

Lemma 5.2. For each positive ε there exists a triangulation T of Hull(EP ) all
of whose simplices have diameter at most ε.

Consider the labeling λ restricted to the vertices of T . The following lemma now
completes the proof of (**) and Theorem 3.3.

Lemma 5.3 (Sperner’s lemma [1]). Let λ : Hull(EP ) −→ [n] be a coherent
labeling and let T be a triangulation of Hull(EP ). Then some n-vertex simplex of T
has all of its vertices distinctly labeled.

6. Proof of Theorem 3.2. Recall that we have knowable sets K1,K2, . . . ,Kn

that cover Σ̂(P ) and satisfy the activity property. We wish to show that they have a
nonempty intersection.

The first step in adapting the proof of Theorem 3.3 is to prove an analog of Lemma
5.1. Recall that for a fragment τ the set of schedules that are quasi extensions of τ is
denoted Qτ , and Q̂τ = Σ̂P ∩Qτ . The sets Q̂τ play the role of ε-balls. For example,
for each compressed schedule φ, and for each integer w, let φ(w) denote the maximal
prefix of φ whose weight (sum of block sizes) is at most w. If we consider the sequence
of sets Q̂φ(w) we see that Q̂φ(1) ⊇ Q̂φ(2) ⊇ · · · and that the intersection of all of them
is just φ itself. This is analogous to a sequence of balls of decreasing radius around a
particular point. The analog of Lemma 5.1 is the following.

Lemma 6.1. Let K be a collection of knowable sets that covers Σ̂(P ). Then there
is an integer w = w(K) with the property that for each schedule φ, some member of
K contains Q̂φ(w) .

Proof. Suppose for contradiction that for each w there is a schedule φ(w) such
that the set Q̂φ(w)(w) is not contained in any member of K. Let Φ = {φ(w) : w ≥ 1}.
Construct a schedule σ as follows. Let σ1 be any set that is the first block of infinitely
many members of Φ, and inductively for i > 1, having defined σ1 . . . σi−1, let σi be a
set such that σ1σ2 . . . σi is a prefix of infinitely many members of Φ. The compression
σ̂ must belong to some member K ∈ K. By Proposition 2.25, there is a fragment τ of
σ̂ such that Q̂τ ⊆ K. By construction of σ, τ is a prefix of infinitely many members of
Φ. In particular, it belongs to some φ(w) with w > w(τ). Then Q̂φ(w)(w) ⊆ Q̂τ ⊆ K
contradicts the choice of φ(w).

Remark. The above result implies the fact mentioned in section 2.1 that the
existence of a wait-free protocol Π for k-set agreement implies the existence of a
bounded wait-free protocol. Given Π, define protocol Π′, where each processor behaves
as in Π except that if it sees that any processor has decided before it has decided, it
immediately takes the lowest decision value it sees as its decision value. Clearly Π′ is
correct if Π is. Letting Di be the set of schedules where some processor decides i, the
above Lemma implies that there is a w such that after at most w total steps (by all
of the processors) some processor has reached a decision. Thus, after taking at most
w + 2 steps a processor will have decided and written its decision value.
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Now given our covering K1, . . . ,Kn satisfying the activity property we choose an
m for which the conclusion of the above lemma is satisfied. We then define a function
(labeling) λ of the points of Σ̂(ΣP ) to [n] = {1, . . . , n} as follows: λ(σ̂) is the minimum
j such that Q̂σ̂(m) ⊆ Uj . Note that, by the activity property, this labeling satisfies

the following coherence condition: for each J ⊂ B, each σ̂ ∈ Σ̂(ΣJ) is labeled by an
element of J . It suffices to show the following analog of (**).

Lemma 6.2. Let K1, . . . ,Kn be knowable sets that cover Σ̂(P ) and let λ be a
labeling of the schedules that satisfies the coherence condition. Then for any integer
m ≥ 1, there is a fragment τ of weight at least m that is a prefix of n schedules having
different labels.

The proof of this relies on abstracting the notion of a triangulation for the set of
compressed schedules and proving an analog of Sperner’s lemma.

6.1. Triangulation graphs. By analyzing the proof of Sperner’s lemma, it can
be seen that the lemma can be interpreted as a statement about graphs embedded in
Hull(EP ) that have certain properties. This motivates the definition of the following
class of graphs defined on Σ̂(P ).

A triangulation graph on Σ̂(P ) is a finite graph G = (V,E) whose vertex set is a
subset of Σ̂(P ) and which satisfies the following properties:

(1) For each p ∈ P, the schedule [p] = {p}{p}{p} . . . is a vertex.
(2) If C is a clique contained in Σ̂(J) of size |J | − 1, then

(a) if C is contained in Σ̂(I) for any proper subset I of J, then there is a
unique clique of size |J | in Σ̂(J) that contains C;

(b) if C is not contained in Σ̂(I) for any proper subset I of J, then there are
exactly two cliques of size |J | in Σ̂(J) that contain C.

Here we use clique to mean a not necessarily maximal complete subgraph.

These conditions correspond to those satisfied by the skeleton of a triangulation
in the geometric case. The first condition comes by associating the schedules [p]
to the generators �e p of the simplex Hull(EP ), which are necessarily vertices of any
triangulation. The second condition corresponds to the fact that in any triangulation
of the simplex, if a (|J | − 1)-vertex face of T lies in Hull(EJ), then (i) if it lies on the
boundary of Hull(EJ), then it is a face of a unique |J |-vertex face of T, while (ii) if
it lies in the interior of Hull(EJ), then it is the common boundary of a pair of |J |-
vertex faces of T .

These conditions are sufficient to prove an analog of Sperner’s lemma.

Lemma 6.3. Let λ : Σ̂(P ) −→ [n] be a coherent labeling and let G be a triangu-
lation graph on Σ̂([n]). Then some n-vertex clique of G has all of its vertices labeled
differently.

Proof. For k ∈ [n], let g(k) be the number of k vertex cliques in Σ̂([k]) whose
vertices are labeled differently. Since λ is coherent these labels must be {1, 2, . . . , k}.
The key step is the following claim.

Claim. For each k between 2 and n, g(k) ≡ g(k − 1) mod 2.
It then follows that g(n) ≡ g(1) ≡ 1 mod 2 since the schedule [1] is the unique

vertex in Σ̂([1]), and we conclude that g(n) �= 0.

It suffices to prove the claim. For k between 2 and n, define p(k) to be the number
of pairs (C ′, C), where C is a k-clique in Σ̂([k]) and C ′ is a (k − 1)-clique contained
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in C that is distinctly labeled 1, 2, . . . , k − 1. Then the claim follows from

g(k) ≡ p(k) mod 2,

p(k) ≡ g(k − 1) mod 2.

The first relation is obtained by computing p(k) in the following manner. Each
k-clique C in Σ̂([k]) which is not distinctly labeled contains either 0 or 2 cliques of
size k − 1 that are labeled 1, 2, . . . , k − 1 and so contribute 0 mod (2) to p(k). On
the other hand, each distinctly labeled k-clique C has a unique subclique of size k− 1
that is labeled 1, 2, . . . , k − 1 and so contributes 1 to p(k).

The second relation follows by considering, for each (k − 1)-clique C ′ with labels
1, 2, . . . , k−1, the number of k-cliques of Σ̂([k]) to which it belongs. By the definition
of triangulation graph, if C ′ does not lie in Σ̂(I) for some proper subset I of [k],
then it belongs to exactly two cliques C of size k in Σ̂([k]) and so contributes 0 mod
(2) to p(k). On the other hand, if C ′ ⊂ Σ̂(I) for some proper subset I of [k], then
the definition of triangulation graph implies that C ′ is in a unique k-vertex clique
C ⊂ Σ̂([k]) and so contributes exactly 1 to p(k). Thus p(k) mod 2 counts the parity
of the number of (k− 1)-cliques C ′ labeled by 1, 2, . . . , k− 1 that are in Σ̂(I) for some
I properly contained in [k]. But the fact that C ′ contains all labels 1, 2, . . . , k − 1
implies, by the coherence of λ, that I contains [k−1] and so C ′ must be in Σ̂([k−1]).
Therefore, p(k) ≡ g(k − 1) mod 2.

Next we will prove the following lemma.
Lemma 6.4. For any integer w, there exists a triangulation graph G on Σ̂(P )

with the property that for any clique of G there is a fragment τ of weight at least w
such that every vertex of the clique is contained in Q̂τ .

Together with Lemma 6.3, this lemma completes the proof of Lemma 6.2 and
hence of Theorems 3.2 and 1.1.

Finally, it remains to show the existence of the desired triangulation graphs. This
turns out to be the most technically arduous part of the proof.

6.2. Constructing triangulation graphs. We will define a sequence of trian-
gulation graphs {Gm(P )|m ≥ 0} on Σ̂(P ) with the property that any clique of Gm(P )
is a subset of Q̂τ for some fragment τ of weight at least w = m− n (where n = |P |).

The precise description of Gm(P ) is technical, but the “picture” of the construc-
tion is nice. The graph Gm(P ) is closely related to the decomposition Dm(P ), de-
scribed in section 4, but since we have only given a hint as to the general construction
ofDm(P ), we cannot use theDm(P ) explicitly in our formal description of theGm(P ).
Nevertheless to help understand the technical description, the reader should compare
the graphs G0(P ) and G1(P ) depicted in Figures 5 and 6 with the pictures of D0(P )
and D1(P ) in section 4. The following properties are evident from the examples and
will also hold in general:

(1) The vertex set of Gm(P ) corresponds to the vertex set of Dm(P ), i.e., it is
the set Vm(P ) of m-admissible compressed degenerate schedules in Σ(P ).

(2) The graphGm(P ) is obtained from the decompositionDm(P ) by adding edges
in order to triangulate the pentagonal regions in Dm(P ). Recall that each
pentagonal face is labeled by a fragment that ends with a singleton block, i.e.,
one of the form τ = µ{i}. The pentagon is triangulated by connecting the
vertex corresponding to (the compression of) τ [i] to the vertices corresponding
to (the compression of) τ{j, k}[j] and τ{j, k}[k].
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[1]

{13}[3] {12}[2]

{13}[1] {12}[1]

{123}[2]                  {123}[3]

{123}[1]

[3] {23}[2] {23}[3] [2]

Fig. 5. The graph G0({1, 2, 3}).
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{13}[3] {12}[2]

{13}[1] {12}[1]

{123}[2]                  {123}[3]

{123}[1]

[3] {23}[2] {23}[3] [2]

{1}{13}[3]

{1}{13}[1]

{1}{12}[2]

{1}{12}[1]

{1}{123}[2] {1}{123}[3]

{1}{123}[1]

{3}{13}[3]

{3}{13}[1]

{3}{123}[3]{3}{123}[2] {2}{123}[3]{2}{123}[2]

{3}{23}[3]{3}{23}[2] {2}{23}[2]

{3}{123}[1] {2}{123}[1]

Fig. 6. The graph G1({1, 2, 3}).

(3) The edges in Gm(P ) are depicted as either solid or dashed lines. The reason
for this distinction will be clear only after we give a precise definition of the
graphs.

Let us now give the formal definition of the graphs Gm(P ). A schedule σ is de-
generate if it has a unique nonfaulty processor. Let V (J) denote the set of compressed
degenerate schedules σ with Active(σ) ⊆ J . We say that σ ∈ V (J) is p-degenerate if
p is the unique nonfaulty processor, and we denote by V p(J) the set of p-degenerate
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schedules. Note that a p-degenerate schedule can be written in the form τ [p], where τ
is a fragment and [p] denotes the schedule all of whose blocks are singleton p blocks.

Recall that the weight of a fragment is the sum of its block sizes. For an arbitrary
schedule σ and nonnegative integer m, let σ(m) be the maximal prefix of σ having
weight less than or equal to m and let Bm(σ) be the block of σ following σ

(m). We
say that σ is m-admissible if (i) it belongs to V (P ) and (ii) all blocks after Bm(σ)
are singleton p blocks. (This definition is equivalent to the definition of m-admissible
given in section 4.) Thus an m-admissible schedule is of the form σ(m)Bm(σ)[p]. Note
that if σ is m-admissible, then it is j-admissible for all j ≥ m. Also, observe that
since σ is compressed, p ∈ Bm(σ). We denote by V p

m(J) the set of m-admissible
p-degenerate schedules in V (J) and Vm(J) is the union over p of V

p
m(J). Vm(P ) is the

vertex set of Gm(P ). Note that for j ≥ m, this implies that the vertex set of Gm(P )
is a subset of the vertex set of Gj(P ).

We now define the edge set of Gm(P ). The edge set is the union of two relations:
m-similarity, which is an equivalence relation, and m-shadowing, which is acyclic.

Two m-admissible schedules σ and φ in Vm(P ) are m-similar if σ
(m) = φ(m) and

Bm(φ) = Bm(σ). This is clearly an equivalence relation.

If σ ∈ V p
m(P ) and φ ∈ V q

m(P ), we say that σ m-shadows φ if there is a set T
satisfying q ∈ T ⊆ Bm(σ) − {p} such that the compression of the fragment σ(m)T
is equal to φ(m)Bm(φ). In particular this implies that φ is equal to the compression
of σ(m)T [q]. The m-shadow relation is acyclic since σ m-shadows φ implies that
w(σ(m)Bm(σ)) > w(φ

(m)Bm(φ)).

Example 6.1. Consider the compressed schedules:

σ = {1, 2}{2, 3}{1, 2}[2],
ρ = {1, 2}{1, 2, 3}[1],
φ = {1, 2}{1, 2, 3}[2],
ν = {1, 2}{1, 3}[3],
µ = {1, 2}[1].

Each of the schedules is in Vm(P ) for m ≥ 4, all but σ also belong to V2(P ) and
V3(P ), and µ belongs to V0(P ) and V1(P ). σ 4-shadows ρ, and is otherwise unrelated
to all other schedules. ρ is m-similar to φ for 2 ≤ m ≤ 4 and does not m-shadow
any of the other schedules for any m. φ 2-shadows both µ and ν and 3-shadows ν. ν
2-shadows µ.

We can now define the edge set Em(P ) of the graph Gm(P ). The pair (σ, φ) ∈
Em(P ) if either (i) σ and φ are m-similar, (ii) σ m-shadows φ, or (iii) φ m-shadows σ.
In Figures 5 and 6, the solid edges correspond to those that come from m-similarity
and the dashed edges arise from m-shadowing. It should be emphasized that while
Vi(P ) ⊂ Vj(P ) for i < j, the edge sets are not nested.

To complete the proof of Lemma 6.4 and hence the proof of the impossibility of
wait-free m-set agreement it is now enough to prove two facts, as follows.

Lemma 6.5.

(1) The graph Gm is a triangulation graph for Σ̂(P ).
(2) For any clique C in Gm(P ), C is contained in a set of the form Q̂τ for some

fragment τ with m− n < w(τ).
Gm(P ) trivially satisfies the first condition of triangulation graphs since [p] is

m-admissible for all m ≥ 0.
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Table 2
Summary of terminology for cliques and flags.

σ(m) the largest prefix of σ with weight ≤ m

Bm(σ) the first block of σ following σ(m)

σ is m-admissible σ is compressed and of the form σ(m)Bm(σ)[p]

flag F a finite family of nested sets including ∅

F is a J-flag the largest set in F is J

F+(p) the unique smallest set in F containing element p

I-clique consists of a p-degenerate vertex for each p ∈ I

(I, J)-clique I-clique contained in Vm(J)

(τ,F) is (m,J)-admissible τ a fragment, F a J-flag, Active(τ) ⊆ J,
w(τ) ≤ m, and w(τF ) > m for F ∈ F − {∅}

CI(τ,F) {σp|p ∈ I} where σp is the compression of τF+(p)[p]

(τ,F) is a (m,J)-flag
representation of I-clique C C = CI(τ,F) and (τ,F) is (m,J)-admissible

The hard part is proving that Gm(P ) satisfies the second condition of triangula-
tion graphs. The key is to obtain a complete characterization of the cliques of Gm(J).
Along the way we will also prove the second part of Lemma 6.5 (which will follow
from Lemma 6.7). We advise the reader to refer frequently to Figure 6 to help in
understanding what follows.

Alas, we need some more definitions. (Table 2 provides a summary of some of the
key definitions.) Let J ⊆ P . A flag is a finite family F of sets that are totally ordered
by inclusion and includes the emptyset. The unique maximal set of F is denoted FM .
If J = FM we say that F is a J-flag. For p ∈ J, F+(p) denotes the unique smallest
set containing p, and F−(p) denotes the unique largest set not containing p.

By the definition of the edge set, any clique C consists of schedules that are p-
degenerate for distinct p. If I ⊆ P and C is a clique that consists of one p-degenerate
schedule for each p ∈ I, then C is a called an I-clique. We typically denote such a
clique by {σ(p)|p ∈ I}, where σ(p) denotes a p-degenerate schedule.1 As noted when
defining m-admissibility, each σ(p) is equal to σ(p)(m)Bm(σ(p))[p]. If C is an I-clique
all of whose vertices belong to Vm(J), we say that C is an (I, J)-clique.

Let C = {σ(p)|p ∈ I} be an (I, J)-clique. A processor q ∈ I is said to be
dominant in C if it maximizes w(σ(p)(m)Bm(σ(p))) among all p ∈ I. The following
lemma provides a simple combinatorial representation for (I, J)-cliques.

Lemma 6.6. Let C = {σ(p)|p ∈ I} be an I-clique in Gm(J). Let q be a dominant
processor and τ = σ(q)(m). Then

(1) for each p ∈ I, there is a subset Fp of J containing p such that σ(p) is equal
to the compression of τFp[p];

1A remark on notation: The (p) in σ(p) is simply an index, and so σ(p) in this case stands for a
p-degenerate schedule. This should not be confused with the notation σ[p], which denotes a schedule
consisting of a fragment σ followed by an infinite sequence of {p} blocks.
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(2) the family of sets F = {Fp|p ∈ I} ∪ {∅, J} is a J-flag;
(3) for each p ∈ I, Fp = F+(p), and w(τFp) > m.

Proof. Since q is dominant in C, then for each p ∈ I − {q}, σ(q) either is m-
similar to or m-shadows σ(p), which implies that for p �= q, σ(p) is the compression
of a schedule of the form τFp[p], where p ∈ Fp ⊂ J . This proves the first part.
For the second part, let p, r ∈ I. If σ(p) is m-similar to σ(r), then the condition
that the compression of τFp is equal to the compression of τFr implies Fp = Fr.
Otherwise σ(p) m-shadows σ(r), which means that σ(r)(m)Bm(σ(r)) can be written
as the compression of σ(p)(m)B for some B ⊆ Bm(σ(p))−{p}. Since τFr and σ(p)

(m)B
have the same compression and τFp and σ(p)

(m)Bm(σ(p)) have the same compression
(by comparing the total number of steps taken by each processor in each of these
fragments), we conclude that Fr ⊆ Fp − {p}. From this it follows that F = {Fp|p ∈
I} ∪ {∅, J} is a J-flag and for each p ∈ I, Fp = F+(p), completing the second part.
Finally, the m-admissibility of the vertices in C implies that w(τF ) ≥ m for all
nonempty F ∈ F+(p).

This motivates the following definitions. An (m,J)-admissible pair is a pair (τ,F),
where τ ∈ Φ(J) (recall that Φ(J) is the set of fragments whose blocks are subsets of
J) and F is a J-flag such that w(τ) ≤ m and w(τF ) > m for all nonempty F ∈ F .
For such a pair, we define CI(τ,F) to be the set {σ(p)|p ∈ I} of schedules where σ(p)
is the compression of the schedule τF+(p)[p]. Note that since p ∈ F+(p) this is equal
to the schedule obtained by compressing the fragment τF+(p) and appending [p].

From Lemma 6.6 we have that every (I, J)-clique is of the form CI(τ,F) for some
(m,J)-admissible pair. In fact, the converse of this statement also holds and we state
them together in the following lemma.

Lemma 6.7.

(1) For I ⊆ J ⊆ P, each (I, J) clique of Gm(P ) has the form CI(τ,F) for some
(m,J) admissible pair (τ,F).

(2) If (τ,F) is an (m,J)-admissible pair and I ⊆ J, then CI(τ,F) is an (I, J)-
clique.

Proof. The first part follows from Lemma 6.6. To prove the second part, suppose
that (τ,F) is m-admissible. We first must show that each schedule in CI(τ,F) =
{σ(p)|p ∈ I} is a vertex of Vm(J). Proposition 6.8 follows easily from the definition
of compression.

Proposition 6.8. If (τ,F) is (m,J) admissible, F = F+(p), and p ∈ J, then
the compression of τF [p] can be written in the form µB[p], where w(µ) ≤ w(τ) and
w(µB) = w(τF ). Thus σ(p) is m-admissible and so belongs to Vm(J).

Next we must show that for p, q ∈ I, σ(p) and σ(q) are adjacent in Gm(P ), i.e.,
either they arem-similar or onem-shadows the other. Let A = F+(p) andB = F+(q).
Thus σ(p) is the compression of τA[p] and σ(q) is the compression of τB[q], and also
w(τA) and w(τB) are both greater than m. If A = B, then τA[p] and τA[q] have
exactly the same hidden blocks, and so σ(p) and σ(q) are clearly m-similar. If A �= B,
then without loss of generality A ⊂ B. Furthermore, p ∈ A and q ∈ B − A, since
A = F+(p) and B = F+(q). Let σ(q) = µB′[q] be the compression of τB[q]. Then
B′ = B ∪C, where C is the union of some number of blocks (possibly 0) at the end of
τ . Also, w(µB′) = w(τB). Every hidden block of τB[q] is also hidden in τA[p], and
so τA[q] can be partially compressed to µA′[p], where A′ = A ∪ C. This implies that
p ∈ A′ ⊆ B′ − {q}, and so σ(q) m-shadows σ(p).

This lemma provides a nice combinatorial characterization of cliques. If C is an
I-clique and C = CI(τ,F), where (τ,F) is an (m,J)-admissible pair, then (τ,F)
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is called an (m,J)-flag representation of C. This representation is in general not
unique. Lemma 6.6 gave such a representation for each I-clique C in Vm(J). This
construction has the properties that τ is equal to the prefix σ(q)(m) for some (in fact,
any) dominant processor q and that F consists exactly of those sets Fp for p ∈ I,
where Fp is the unique set such that σ(p) is the compression of τFp[p]. In particular,
F is the unique minimal J-flag for which (τ,F) is a (k, J)-flag representation of C.
We call this representation the (m,J)-canonical representation of C. It is clear that
the (m,J)-canonical representation of the I-clique C is unique.

Example 6.2. Let m = 2 and P = {1, 2, 3, 4, 5}. The set consisting of {1, 2, 3}[3],
{1, 2}{1, 3}[1], and {1, 2}{1, 5, 3, 4}[4] has four (2, P )-flag representations: (τ,F),
(µ,F), (τ,G), and (µ,G), where F = {∅, {3}, {1, 3}, {1, 3, 4, 5}, {1, 2, 3, 4, 5}}, G =
{∅, {3}, {1, 3}, {1, 3, 5}, {1, 3, 4, 5}, {1, 2, 3, 4, 5}}, τ = {1, 2}, and µ = {2}{1}. The
canonical representation is (τ,F).

We can now prove the second part of Lemma 6.5. If C is any I-clique, let (τ,F)
be an (m,P )-flag representation of C. The (m,P )-admissibility of (τ,F) implies that
w(τ) > m − n. Every schedule in C is the compression of a schedule of the form
τF [p] for some F ∈ F and p ∈ I and is thus a quasi extension of τ . Thus σ ∈ Q̂τ as
required.

It remains only to check that Gm(P ) satisfies the third condition of the definition
of triangulation graphs. We will prove the following.

Lemma 6.9. Let I ⊆ J ⊆ P and let C be an I-clique in Gm(J). Then the number
of (J, J)-cliques that contain C is equal to the number of distinct J-flag representations
of C.

In light of this lemma, the two parts of the second property of triangulation graphs
follow, respectively, from the two parts of the following lemma.

Lemma 6.10. Let J ⊆ P, p ∈ J, and I = J − {p}. Let C be an I-clique that is
contained in Vm(J).

(1) If C is contained in Vm(I), then C has a unique J-flag representation.
(2) If C is not contained in Vm(I), then C has exactly two J-flag representations.

Thus, all that remains is to prove Lemmas 6.9 and 6.10, which we now do. We
first make some preliminary observations about flags and flag representations.

Proposition 6.11. Let F and H be J-flags. If H+(r) = F+(r) for every r ∈ J,
then H = F .

Proof. Suppose that H �= F are J-flags and let A be a set that is in one but
not the other, say, it is in H but not in F . Then there is an element r such that
H+(r) = A, and so H+(r) �= F+(r).

Lemma 6.12. Let C = {σ(p)|p ∈ I} be an (I, J)-clique and let q be a dominant
processor. Let (τ,F) be the canonical (m,J)-flag representation of C. Let (µ,H) be
an arbitrary (m,J)-flag representation of C. Then

(1) σ(q) = τF+(q)[q].
(2) µ can be written in the form νλ, where ν is a fragment such that the com-

pression of νF+(q) is τF+(q) and λ is a possibly empty fragment consisting
of pairwise disjoint blocks.

(3) Let B denote the union of the blocks of λ. Then B ⊆ J − I and H+(p) =
F+(p)−B for each p ∈ I.

(4) I ⊆ H+(q) ⊆ F+(q) ⊆ J .
Proof. The first part follows immediately from the definition of the canonical

(m,J)-flag representation. For the second part, note that µH+(q)[q] must compress
to σ(q) = τF+(q)[q], which means that µH+(q) must compress to τF+(q). Let ν be
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the portion of µ that compresses to τ and let λ be the portion of µ that is merged
with H+(q) to form F+(q). Then µ = νλ, and λ must consist of disjoint blocks. For
the third part, if p ∈ I, then τF+(p) must have the same compression as νλH+(p),
which means that λH+(p) must compress to F+(p), so H+(p) = F+(p) − B. Since
p ∈ H+(p), we must have p �∈ B, so B ⊂ J − I. For the fourth part, H+(q) contains
H+(p) for all p ∈ I, so I ⊆ H+(q).

Lemma 6.13. Each (J, J)-clique has a unique (m,J)-flag representation.

Proof. Let C = {σ(p) : p ∈ J} be a J-clique contained in Vm(J) and let (τ,F) be
its J-canonical representation. Suppose that (µ,H) is any other J-flag representation.
Since H is a J-flag, there must be q ∈ J such that H+(q) = J . Then µJ [q] is
compressed and must be equal to σ(q). Furthermore q is dominant in C, so by the
definition of the canonical representation τ = µ.

By Proposition 6.11, if G �= F , then there exists r such that F+(r) �= G+(r). But
then the compression of τF+(r)[r] cannot be equal to the compression of τG+(r)[r].
Therefore F = G and the (m,J)-flag representation is unique.

Now we are ready to prove Lemmas 6.9 and 6.10, to finish the proof of the main
theorem.

Proof of Lemma 6.9. Let C be an (I, J)-clique, and let C1, C2, . . . , Cr be the
distinct (J, J)-cliques that contain C. By Lemma 6.13, each of the Ci has a unique
(m,J)-flag representation, (τi,Fi), and by the definition of the representation, (τi,Fi)
is also an (m,J)-flag representation of C, i.e., C = CI(τi,Fi). Also, these are the only
(m,J)-flag representations of C, since any such representation for C is also an (m,J)-
flag representation of some J-clique containing C.

Proof of Lemma 6.10. Let C = {σ(r)|r ∈ I} be an I = J − {p}-clique and let
(µ,H) denote an arbitrary (m,J)-flag representation of C. Let q denote a dominant
processor of C. From Lemma 6.12, I ⊆ H+(q) ⊆ J .

To prove the first part of the lemma, suppose that C is contained in Vm(I). Then
H+(q) �= J soH+(q) = I. Let G = H−{J}. Then (µ,G) is a (m, I)-flag representation
of C. But, by Lemma 6.13, there is only one such representation, so this implies that
(µ,H) must be the unique (m,J)-flag representation.

We proceed to the second part of the lemma. Let (τ,F) be the canonical (m,J)-
flag representation of C and let q be a dominant processor of C. We want to show that
there is exactly one other representation. Now, by Lemma 6.12, either F+(q) = J or
F+(q) = I. We proceed by analyzing these two cases separately.

Case I. F+(q) = I. First we construct another (m,J)-flag representation. Let
S be the last block of τ that contains p. There is such a block since, by hypothesis,
C �⊂ Vm(J − {p}). If S = {p}, then τF+(q) would not be compressed, contradicting
the definition of the canonical representation. So S �= {p}. Let ψ be the sequence
obtained by replacing the block S by {p} followed by S−{p}. Then (ψ,F) is also an
(m,J)-representation of C.

Now we show that this is the only other (m,J)-flag representation of C. Let
(µ,H) be an arbitrary (m,J)-flag representation of C. Then, by Lemma 6.12, I ⊆
H+(q) ⊆ F+(q) implies that H+(q) = F+(q) = I. Defining ν, λ,B as in Lemma 6.12
we must have B = ∅ and λ is the empty string. Then H+(r) = F+(r) for all r ∈ I,
and also H+(p) = F+(p) = J, so Proposition 6.11 implies H = F . Finally, µI[q] must
compress to τI[q]. Then either µI[q] is already compressed (and µ = τ) or µ contains
a hidden block. But a block in µI[q] can be hidden only if it is disjoint from I, i.e., it
is a singleton p block, and it must be the last appearance of p. This means that µ is
equal to ψ above and so (µ,H) = (ψ,F).



1478 MICHAEL SAKS AND FOTIOS ZAHAROGLOU

Case II. F+(q) = J . Then J−{p} is not in F . Again, we must construct another
(m,J)-flag representation of C and show that this is the only other one. First note
the following.

Proposition 6.14. If (µ,H) is any (m,J)-representation of C, then either µ = τ
or µ = τ{p}.

To see this, note that by Lemma 6.12, either H+(q) = J or H+(q) = I. Also
σ(q) = τJ [q] is the compression of µH+(q)[q]. Thus if H+(q) = J, then µ = τ, and if
H+(q) = I, then µ must be τ{p}.

Now we proceed with constructing an alternative representation of C. Let A =
F−(p) ∪ {p}. Note that A �∈ F since in the canonical representation, every set in
F is of the form F+(r) for some r �= p. Let G = F ∪ {A}; then G+(r) = F+(r)
for each r �= p. Thus (τ,G) would seem to be another (m,J)-representation of C.
This is indeed true, except in one case. The problem is that the definition of (m,J)
representation requires that (τ,G+(s)) be m-admissible for all s ∈ J, which means
that w(τ) ≤ m < w(τG+(s)). Now, this is true for all s �= p, since it was true for
(τ,F). However, it is possible that w(τG+(p)) ≤ m. This happens if and only if
w(τ) < m and F−(p) = ∅ so that A = {p}. So we consider two subcases, depending
on whether this happens.

Subcase IIa: (τ,G) is (m,J)-admissible. As we have just discussed, this means
that either F−(p) �= ∅ or F−(p) = ∅ and w(τ) = m. Then (τ,G) is a second (m,J)-
representation of (τ,F); we need to prove that there are no others.

If (µ,H) is an (m,J)-flag representation of C, then let ν, λ,B be as in Lemma
6.12. Then B = {p} or B = ∅. We claim B = ∅. If B = {p}, then w(µ) = w(τ) + 1
and so the (m,J)-admissibility of (µ,H) requires w(τ) < m and so F−(p) �= ∅. Let
s ∈ F−(p); then F+(s) ⊆ F−(p). But τ{p}H+(s) must compress to τF+(s), which
is impossible since p �∈ F+(s).

Thus B = ∅, and so H+(q) = F+(q) = J, which means by Proposition 6.14 that
µ = τ . We now need to show that H = F or H = G, i.e., F ⊆ H ⊆ G. H must contain
F , since H+(r) = F+(r) for all r ∈ I and F was defined only to contain ∅, J, and the
sets F+(r) for r ∈ I. If H is not a subset of G let D be the minimal member of H−G
and let D0 be the largest subset of D in G. Choose x ∈ D−D0 and note that x �= p,
since F−(p) and A are both in G. Then H+(x) = D �= G+(x), which contradicts that
(τ,H) and (τ,G) both are (m,J) representations of C.

Subcase IIb: (τ,G) is not (m,J)-admissible. This means that F−(p) = ∅ and
w(τ) < m. Thus (τ{p}, E) is another (m,J)-flag representation, where E is obtained
from F by deleting p from each set in F and adding the set J .

Suppose that (µ,H) is any (m,J)-flag representation of C; we want to show that
(µ,H) = (τ,F) or (µ,H) = (τ{p}, E). Let ν, λ,B be as in Lemma 6.12. Once again
we have either µ = τ and B = ∅ or µ = τ{p} and B = {p}.

In the case µ = τ, we also have that F+(r) = H+(r) for all r �= p. We claim
that F+(p) = H+(p), which would imply that F = H. To see the claim, observe
that F+(p) is the smallest nonempty set of F , and it belongs to H since F ⊆ H.
Thus it suffices to show that H contains no smaller set. H cannot contain {p} since
w(τp) ≤ m would violate m-admissibility of (τ,H). H cannot contain any other
subset of H because H+(r) = F+(r) for all r �= p. Thus F = H, and (µ,H) = (τ,F).

In the case that µ = τ{p}, for any r �= q we must have that τF+(r) and τ{p}H+(r)
compress to the same vertex of C. Then for every r �= p, H+(r) = F+(r) − {p} =
E+(r). We also have H+(p) = E+(p) = J since J − {p} is a member of both of them.
From Proposition 6.11, H = E , and thus (µ,H) = (τ{p}, E).
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This completes the proof of Lemma 6.10 which, as explained, completes the proof
that Gm is a triangulation graph and thus completes the proof of the main theorem.

Appendix. The topology of knowable sets. In this appendix, we look
more closely at the structure of the collection of knowable sets, K = {K|K ⊆
Σ̂ is a knowable set}. In particular, we prove that K defines a compact Hausdorff
topological space on Σ̂(P ). Along the way we give two characterizations of this space:
(i) we give a nice basis for K, and (ii) we show that K is the quotient of the Cantor
topology on Σ(P ) with respect to the compression map.

Notions from point set topology are briefly reviewed as needed. For more details,
see [24].

A.1. K is a Hausdorff topology. Recall that formally, a topological space on
a set X is a collection U of subsets of X that includes ∅ and X and is closed under
arbitrary union and finite intersection. The members of U are the open sets of the
topology, and complements of members of U are the closed sets of the topology.

Theorem A.1. K is a topology on the set Σ̂.

Proof. We observed in section 2.8 that ∅ and Σ̂ are both in K. We need to
show that the union of an arbitrary collection of knowable sets is knowable and the
intersection of a finite collection of knowable sets is knowable.

Let {Ki}i∈Λ be an arbitrary collection of knowable sets. We will show that
K∪ = ∪i∈ΛK

i is a knowable set. Let (Πi, di) be an acceptor for Ki and V
i be the

set of values that can be written to the registers by this protocol. We exhibit an
acceptor (Π∪, d) for K∪. Informally the protocol simulates all the protocols in the
above collection in parallel and a processor writes the accept value d when it sees that
at least one of accept values di has been written.

More formally protocol Π∪ is defined as follows. The set of processor states S
consists of the (possibly infinite) product set

∏
i∈Λ(S

i) together with a special state
s�. Thus a state value s is either s� or a tuple (si|i ∈ Λ), where si ∈ Si. (A state
value of s� will mean that a processor is ready to write the accept value d.) The initial
state ep is the tuple (e

i
p|i ∈ Λ). The set of write values V is the product set

∏
i∈Λ V

i

together with the accept value d. If no processor has ever written d, then the contents
of shared memory �l can be viewed as a tuple (�l i : i ∈ Λ), where �l i corresponds to
the run of Πi. The write map w is defined as w(s) = d if s = s� and otherwise w(s)

is the tuple (wi(si) : i ∈ Λ). The state update map u is defined as u(s,�l) = s� if

d appears in �l or there is at least one i ∈ Λ such that di appears in �l i; otherwise
u(s,�l) = (ui(si,�l i) : i ∈ Λ). It is easy to see that the accept value d is written by Π∪

on schedule σ if and only if there is an i ∈ Λ such that di is written by Πi on σ. Thus
the set K∪ is knowable.

Next we want to show that the intersection of a finite collection of knowable
sets is knowable. As above, let {Ki}i∈Λ be a collection of knowable sets and (Π, di)
be acceptors. We define a protocol Π∩ by a minor modification of Π∪. The only
difference is in the state update map u. The condition for a processor to enter state
s� is either that some processor has written d or for every i ∈ Λ, di appears in �l i.

It is easy to see that if the accept value d is written by Π∩ on schedule σ, then for
all i ∈ Λ, di is written by Πi on σ and thus K(Π∩, d) is a subset of K∩. The reverse
containment holds if Λ is finite (although it need not hold if Λ is infinite; see below).
For σ ∈ K∩ let ji be the index of the block of σ in which di is first written and let
j be the maximum of the ji. Then any processor taking a step subsequent to block
j will see all of the decision values di and thus move to state s�. At least one such
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processor will take another step and will thus write d.

Observe that this final argument fails when the collection {Ki} is infinite because
the index j may not be defined. As an example, let Ki be the set of compressed
schedules where processor p takes at least i steps, and let i range over the positive
integers.

Next, recall that a topological space (X,U) is a Hausdorff space if for any two
distinct points x, y ∈ X there are disjoint open sets Ux and Uy with x ∈ Ux and
y ∈ Uy.

Lemma A.2. (Σ,K) satisfies the Hausdorff condition.
Proof. In this case the Hausdorff condition means that if σ and φ are distinct

compressed schedules, then there is a pair of acceptors (Π, d) and (Φ, d′) such that Π
accepts σ and Φ accepts φ and no schedule is accepted by both. We will take Π and
Φ to be a minor modification of the counting protocol: when processor p writes for
the ith time, it writes (T, p), where T is its current tally vector (instead of just T ).

Now we need to choose the accepting values for Φ and Π, which will be of the form
(T, p). Since σ and φ are distinct compressed schedules, Theorem 2.12 implies that
their tally records must be different. Apply Lemma 2.5. Under the first conclusion of
this lemma, there is a processor p and a positive integer i such that p takes at least
i steps in both schedules and tally vectors Countp,i(φ) and Countp,i(φ) are different.
Thus take d = (Countp,i(σ), p) and d

′ = (Countp,i(φ), p). Note that for any schedule
ρ, at most one of d and d′ can appear in its public tally since both can appear only
in the list of processor p, and that list can contain only one vector that has an i− 1
in position p, while both of these vectors have an i− 1 in that position.

Under the second conclusion of Lemma 2.5 there is a pair of crossing vectors v
and w such that v appears in the public tally corresponding to σ and w appears in
the public tally corresponding to φ. Let q be a processor that writes v during σ and r
be a processor that writes w during φ. Let d = (v, q) and d′ = (w, r); the fact that v
and w are crossing ensures that no schedule can be accepted by both protocols.

A.2. A basis for K. A basis for a topology (X,U) is a collection B of open sets
with the property that every open set is a union of members of B. Equivalently, B is
a basis if for any point x and open set U containing x, there is a B ∈ B such that
x ∈ B ⊆ U .

Recall that for a fragment τ, the set Qτ is the set of schedules that are quasi
extensions of τ, and Q̂τ = Qτ ∩ Σ̂(P ). Then Example 2.21 and Proposition 2.25 imply
the following.

Theorem A.3. The set {Q̂τ : τ a fragment} is a basis for the knowable set
topology.

A.3. Representing K as a quotient topology. Let (X,U) be a topological
space and f : X −→ Y be any surjective map. It is easily checked that the collection
U/f = {W ⊆ Y : f−1(W ) ∈ U} defines a topology on Y, called the quotient of (X,U)
by f . Here we represent the knowable set topology on Σ̂(P ) as a quotient of a simple
topology on Σ(P ).

For a fragment τ, let Bτ be the set of all schedules that have τ as a prefix. Let
(Σ(P ),S) be the topology whose open sets are unions of sets Bτ . (This is called the
Cantor topology on Σ(P ).)

Consider the map f : Σ −→ Σ̂, where f(σ) = σ̂. In this case, the quotient
topology R = S/f is defined on Σ̂ and is given by R = {U ⊂ Σ̂|f−1(U) ∈ S}.

Theorem A.4. K and R define the same topology on Σ̂.
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Proof. (1) K ⊆ R. Since {Q̂τ |τ ∈ Φ(P )} is a basis for K, it suffices to show that
for each fragment τ, Q̂τ is in R, i.e., that f−1(Q̂τ ) is open in the Cantor topology.
For this, it suffices to show that if σ ∈ f−1(Q̂τ ), then there is a fragment µ so that
σ ∈ Bµ ⊆ f−1(Q̂τ ). Since σ is in f−1(Q̂τ ) it is a quasi extension of τ, which by
Theorem 2.16 means that its public tally is an extension of the public tally of τ .
Since τ is finite, there is a prefix µ of σ such that the public tally of µ extends the
public tally of τ . This implies that any schedule in Bµ is a quasi extension of τ, i.e.,

Bµ ⊆ f−1(Q̂τ ).

(2) R ⊆ K. Let S ⊂ Σ̂ be a set such that f−1(S) is an open set in the Cantor
topology. We will prove that S is a knowable set. Let σ ∈ S be arbitrary. It suffices
to show that there is a knowable set K containing σ such that K ⊂ S.

Let f−1(σ) = {σ1, . . . , σk}, which is a finite set by Proposition 2.10. For each
σi ∈ f−1(σ) let Bρi be a basis set in the Cantor topology such that σ

i ∈ Bρi ⊂ f−1(S).
Choose a prefix ρ of σ that has greater weight (total number of steps) than each

of the ρi and also contains all of the steps of the faulty processors of σ. We write
σ = ρχ, where Active(χ) is equal to N, the set of nonfaulty processors of σ. Hence,
ρN is compressed since ρχ is. By Lemma 2.15, σ ∈ Q̂ρN . We claim that Q̂ρN ⊆ S,
which will complete the proof.

Let γ be an arbitrary schedule in Q̂ρN ; we show that γ ∈ S. For this it suffices to
find a j such that γ ∈ Bρj , i.e., ρj is a prefix of γ. By Theorem 2.16 there is a prefix τ

of γ, a schedule φ, and a subset U of Active(φ) such that γ = τφ and τ̂U = ρN . Since

τ̂U = ρN we must have U ⊆ N and τ = βζ, where ζ consists of some sequence of
disjoint blocks whose union is U−N and the last block of β has nonempty intersection

with N . Thus β̂N = τ̂U = ρN .

We now claim that β̂χ = σ. Now, since σ is compressed, so is χ. It is easy to see
that a block is hidden in βχ if and only if it is hidden inside β within the fragment βN,

and since the compression of βN is ρN, we have β̂χ = ρχ = σ. Hence βχ ∈ f−1(σ),
and βχ ∈ Bρj for some j. Since β and ρ have the same weight, which is at least the
weight of ρj , we have that ρj is a prefix of β. Therefore γ = βζφ ∈ Bρj

.
A topological space (X,U) is compact if for any collection of open sets whose

union is X there is a finite subcollection whose union is X. We remark that since
the Cantor topology is known to be compact, and a quotient of a compact topology
is compact, we have the following.

Corollary A.5. The topological space (Σ̂,K) is compact.
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