
Yale University
Department of Computer Science

The Consensus Problem in Unreliable
Distributed Systems

(A Brief Survey)

Michael J. Fischer

YALEU/DCS/TR-273
June 1983

Reissued February 2000

To be presented at the International Conference on Foundations of Computation Theory,
Borgholm, Sweden, August 21–27, 1983.

[This is a reissue of Research Report YALEU/DCS/RR-273, June 1983, reformatted in LaTeX.
It also appeared in M. Karpinsky, editor, Foundations of Computation Theory, volume 158 of
Lecture Notes in Computer Science, pages 127–140, Spring-Verlag, 1983.]



The Consensus Problem in Unreliable Distributed
Systems (A Brief Survey)

�

Michael J. Fischer
Yale University

New Haven, Connecticut

Abstract

Agreement problems involve a system of processes, some of which may
be faulty. A fundamental problem of fault-tolerant distributed computing is
for the reliable processes to reach a consensus. We survey the considerable
literature on this problem that has developed over the past few years and give
an informal overview of the major theoretical results in the area.

1 Agreement Problems

To achieve reliability in distributed systems, protocols are needed which enable
the system as a whole to continue to function despite the failure of a limited num-
ber of components. These protocols, as well as many other distributed computing
problems, requires cooperation among the processes. Fundamental to such coop-
eration is the problem of agreeing on a piece of data upon which the computation
depends. For example, the data managers in a distributed database system need to
agree on whether to commit or abort a given transaction [20, 26]. In a replicated
file system, the nodes might need to agree on where the file copies are supposed to
reside [19, 30]. In a flight control system for an airplane [35], the engine control
module and the flight surface control module need to agree on whether to continue
or abort a landing in progress. The key point here is not what the processes are
agreeing on but the fact that they must all come to the same conclusion.

An obvious approach to achieving agreement is for the processes to vote and
agree on the majority value. In the absence of faults, this works fine, but in a
close election, the vote of one faulty process can swing the outcome. Since distinct

�

This work was supported in part by the Office of Naval Research under Contract N00014–82–
K–0154, and by the National Science Foundation under Grant MCS–8116678.

1



1 AGREEMENT PROBLEMS 2

reliable processes might receive conflicting votes from a faulty process, they might
also reach conflicting conclusions about the outcome of the election and hence fail
to reach agreement. Davies and Wakerly [2] realized this difficulty and proposed a
multistage voting scheme to overcome the problem.

A simple form of the problem is to achieve consensus on a single bit. Assume
a fixed number of processors, some of which are initially faulty or may fail during
the execution of the protocol. Each processor

�
has an initial bit ��� . The consensus

problem is for the non-faulty processes to agree on a bit � , called the consensus
value. More precisely, we want a protocol such that each reliable process

�
eventu-

ally terminates with a bit ��� , and ������� for all
�
.

� in general will depend in some way on the initial bits � � . In the absence
of such a requirement, the problem becomes trivial, for each process can simply
choose �����
	 . Some dependency requirements that have been studied, in order of
increasing strength, are:

1. (non-triviality): For each �����	������ , there is some initial vector ��� and
some admissible execution of the protocol in which � is the consensus value.
(The qualification “admissible” allows for additional restrictions, such as
bounds on the number of faulty processes, on the kinds of computations we
are willing to consider.)

2. (weak unanimity): If �����������	������ for all
�
, then ����� , provided that no

failures actually occur during the execution of the protocol.

3. (strong unanimity): If �����������	������ for all
�
, then � ��� .

Two other closely related problems have been studied extensively in the liter-
ature. The interactive consistency problem is like the consensus problem except
that the goal of the protocol is for the non-faulty processes to agree on a vector ! ,
called the consensus vector. Again, we add dependency requirements:

1. (weak): for each " , !$#%�&��# if " is non-faulty, provided that no failures
actually occur during the execution of the protocol.

2. (strong): for each " , ! # ��� # if " is non-faulty.

Finally, in the generals problem or reliable broadcast problem, one assumes
a distinguished processor (the “general” or “transmitter”) which is trying to send
its initial bit � to all the others. As before, all the reliable processes have to reach
consensus on a bit, and we add dependency requirements:

1. (weak): �'��� if no failures occur during the execution of the protocol.



2 MODELS OF COMPUTATION 3

2. (strong): � ��� if the general is non-faulty.

Without further qualification, any reference to one of these problems will refer
to the version with the strong dependency requirement.

2 Models of Computation

The kinds of solutions that can be obtained to agreement problems depend heavily
on the assumptions made about the model of computation and the kinds of faults
to which it is prone. Throughout this paper, we will assume a fixed number � of
processes. A protocol is said to be

�
-resilient if it operates correctly as long as no

more than
�

processes fail before or during execution.
We consider two kinds of processor faults. A crash occurs when a process

stops all activity. Up to the point of the crash, it operates correctly and after that it
is completely inactive. A protocol that can tolerate up to

�
crashed processes is said

to be
�
-crash resilient. We do not concern ourselves with the problem of repairing

a faulty process and reintegrating it into the system, although that of course is a
crucial problem in the practical implementation of any of these ideas [28].

A more disruptive kind of failure is the so-called Byzantine failure 1 in which
no assumptions are made about the behavior of a faulty process. In particular, it
can send messages when it is not supposed to, make conflicting claims to other
processes, act dead for awhile and then revive itself, etc. A protocol that can tol-
erate up to

�
processes which exhibit Byzantine failures is said to be

�
-Byzantine

resilient and is sometimes called a Byzantine protocol. The problem of finding a
�
-Byzantine resilient protocol for the (weak) generals problem is called the (weak)

Byzantine generals problem.
To show that a protocol is Byzantine resilient, one has to consider all possi-

ble faulty behaviors, including those in which the failed processes act maliciously
against the protocol. This doesn’t mean that Byzantine protocols are only appro-
priate in adversary situations. The folklore is full of stories in which systems failed
in bizarre and unexpected ways, and in the absence of good ways of characterizing
the kinds of failures that occur in practice, protecting against Byzantine failures is
a conservative approach to reliable systems design.

We assume the message system to be completely reliable and that only pro-
cesses are subject to failure. We also assume that any process can reliably deter-
mine the sender of any message it receives, and any message so delivered arrives
intact and without errors. Unless stated otherwise, we assume the network is a
completely connected graph.

1The terminology comes from [25], in which a fable is recounted concerning a problem of mili-
tary communications in times of old.



2 MODELS OF COMPUTATION 4

Of course, in real systems, communication links as well as processors are sub-
ject to failure. However, a link failure can be identified with the failure of one of
the processors at its two ends, so a

�
-resilient protocol automatically tolerates up to

�
process and link failures. Nevertheless, this may give an overly pessimistic view

of the reliability of the system. Reischuk [32] greatly refines the fault assump-
tions, enabling him to obtain more informative results on the actual behaviors of
the systems.

A crucial assumption concerns whether or not the failure of a process to send
an expected message can be detected. If so, then the expectant receiver gains the
valuable knowledge that the sender is faulty. In a model with accurate clocks and
bounds on message transit times, such detection is possible through the use of
timeouts. (Cf. [21].) Also, detection is automatic in a synchronous model in which
the processes run in lock step and messages sent at one step are received at the
next. However, detection is impossible in a fully asynchronous model in which no
assumptions are made about relative step times or message delays, for there is no
way to tell whether the sender has failed or is just running very slowly. This turns
out to have a profound effect on the solvability of agreement problems.

We use the terms synchronous and asynchronous to distinguish between these
two extreme cases, while remaining fully cognizant of the fact that synchronous
message behavior can be achieved in systems with weaker assumptions than full
synchrony. For our purposes, we will assume that a synchronous computation
proceeds in a sequence of rounds. In each round, every process first sends as many
messages as it wishes to other processes, and then it receives the messages sent to
it by other processes. Thus, messages received during a round cannot affect the
messages sent during the same round.

One further significant assumption is whether or not the model supports signa-
tures. We assume that the author of a signed message can be reliably determined
by anyone holding the message, regardless of where the message came from and
regardless of anything that the faulty processes might have done. In other words,
signatures cannot be forged by faulty processes, so if

�
receives a message from�

signed by � , then
�

knows that � really sent the message and that it was not
fabricated by

�
. Signatures, too, have a profound effect on the solvability of agree-

ment problems. We sometimes use authenticated to refer to a protocol using signed
messages.

Digital signatures can be implemented using cryptographic techniques [3, 4,
27, 33], or if one is willing to assume that faulty processes are not malevolent, sim-
ple signature schemes which are not cryptographically secure can be used instead.
All that we require is that it be unlikely for a faulty process to generate a valid
signature of some other process. Note that no special techniques are needed to im-
plement signatures if only crashes (and not Byzantine failures) are considered, for



3 RELATIONS AMONG AGREEMENT PROBLEMS 5

then no incorrect messages are ever sent.
The practicality of agreement protocols depends heavily on their computational

complexity. Some factors that might be important are the amount of time needed to
complete the protocol, the amount of message traffic generated, or the amount of
memory needed by the participants. All of these quantities are in general dependent
on which faults actually occur and when. A reasonable assumption in many situa-
tions is that faults happen rarely, so it is acceptable to spend considerable resources
handling them, but one wants the normal case to be handled quite efficiently. Note
however that in a very large system, the probability of at least one fault is high, and
the expected number of faults grows linearly with the size of the system.

We measure time in terms of the number of rounds of message exchange that
take place. Thus, we assume every process can potentially exchange messages
with every other in a single unit of time. Just how realistic this notion of time is
depends highly on the structure of the message system and on the reasonableness
of the assumption that a process can really send or receive � messages in a single
time step. We measure message traffic variously as the total number of messages
sent, the total number of bits in those messages, or the number of signatures (in the
case of an authenticated protocol).

3 Relations Among Agreement Problems

The three agreement problems are closely related. The generals problem is a spe-
cial case of the interactive consistency problem in which only one process’s initial
value is of interest, so a protocol achieving interactive consistency also solves the
generals problem. Conversely, � copies of a protocol for the generals problem can
be run in parallel to solve the interactive consistency problem.

The consensus problem appears to be slightly weaker than the other two. An
interactive consistency algorithm can be modified to solve the consensus problem
by just having each process choose as its consensus value the majority value in the
consensus vector. This works as long as fewer than 1/2 of the processes are faulty.

Using a consensus algorithm to solve either of the other two problems, how-
ever, seems to require an additional round of information exchange. For example,
the general’s problem can be solved as follows:

Algorithm I

1. The general sends its value to each of the other processes.

2. All of the processes together run a consensus algorithm using as initial values
the bits received from the general at the first step. (The general of course uses



4 SOLVABILITY OF AGREEMENT PROBLEMS 6

its own bit.)

This solves the generals problem since if the general is reliable, then all of the
processes receive the same value in step 1. By the strong unanimity condition, this
value will be chosen as the caonsensus value. In any case, agreement is reached.
The extra cost is one additional round of 1-bit messages in step 1. Thus, we have
proved:

Theorem 1 Given a
�
-resilient solution to the consensus problem, there is a

�
-

resilient solution to the generals problem which uses one more “round” of message
exchange and sends �

� � additional messages of 1-bit each.

Many solutions to the generals problem have the general structure of Algo-
rithm I and thus appear to have embedded within them solutions to the consensus
problem, seemingly obviating the need for Algorithm I and the extra round of mes-
sages. However, the embedded consensus algorithm does not necessarily solve the
full consensus problem, for the case in which the general is reliable yet the � � ’s are
not all the same can never arise when the ��� ’s are obtained from the general on the
first step.

Similar remarks apply to the corresponding weak versions of these problems.
In fact, a weak Byzantine generals algorithm solves the weak consistency problem
directly (without first using it to solve the interactive consistency problem), for if
all the initial values are the same and no process is faulty, then it suffices to simply
agree on the general’s value. There is not, however, any readily apparent way to
use a solution to any of the weak versions of the agreement problem to solve any of
the strong ones. In fact, for a slightly different “approximate” agreement problem,
Lamport [22] shows that the weak version has a solution whereas the strong one
does not.

4 Solvability of Agreement Problems

Perhaps the most basic question to ask of a proposed agreement problem is whether
or not it has a solution at all. By the previous discussion and Theorem 1 the con-
sensus problem and the interactive consistency problem have

�
-resilient solutions

iff the generals problem does, so we will restrict attention to the latter problem in
this section.

Consider first the synchronous case. With signatures, Pease, Shostak, and Lam-
port [25, 29] give a

�
-resilient solution for any

�
.

Theorem 2 There is a
�
-resilient authenticated synchronous protocol which solves

the strong (weak) Byzantine generals problem.



4 SOLVABILITY OF AGREEMENT PROBLEMS 7

Briefly, the protocol consists of
� � � rounds. In the first round, the general sends

a signed message with its value to each other process. At each round thereafter,
each process adds its signature to each valid message received from the previous
round and sends it to all processes whose signature does not already appear on the
message. A message received during round � is valid if it bears exactly � distinct
signatures, the first of which is the general’s. Let ��� be the set of values contained
in all the valid messages received by

�
through the end of round

� � � . If ��� is
a singleton, then that value is chosen as the consensus value. Otherwise, a fixed
constant NIL is chosen.

To prove agreement, we argue that if
�

and " are both reliable, then ��� ��� # .
There are two cases to consider. If the general is reliable, then both � � and � #
consist solely of the general’s value, since no other value ever appears in a valid
message. Otherwise, consider the message � from which

�
first learned of � . �

consists of � followed by a list of distinct signatures ��� �
	
	
	 ���� , the first of which
is the general’s, and ��� � � � . If ��� � � � and process " does not already know
about � , then " learns of � from

�
on the next round. If �'� � � � , then ��� �
	
	
	 �����

are all faulty or else
�

would have learned of � earlier. But then � ����� is reliable, so
" learns of � at the same round as

�
. Correctness of the protocol easily follows.

Without signatures, there is a solution if and only if the fraction of faulty pro-
cesses is not too large.

Theorem 3 There is a
�
-resilient synchronous protocol without authentication

which solves the strong (weak) Byzantine generals problem iff
��� � � � ��� .

The impossibility argument for
��� ��� � ��� appears in [25, 29] for the strong

case and in [22] for the weak case of the problem. Protocols demonstrating the
solvability of both problems for

��� � � � ��� appear in [25, 29]. Various protocols
have since appeared with additional desirable properties, some of which will be
discussed later in this paper.

In the fully asynchronous case, there is no solution. In fact, Fischer, Lynch, and
Paterson [18] show that the problem remains unsolvable even with much weaker
requirements:

Theorem 4 In a fully asynchronous environment, there is no 1-crash resilient so-
lution to the consensus problem, even when only the non-triviality condition is
required.

The proof is by contradiction. In general outline, one assumes the existence
of such a protocol. The protocol is committed to the eventual consensus value at
a certain point in time if thereafter only the one value is a possible outcome, no
matter how processes are scheduled or how messages are delivered. One shows



5 COMPLEXITY RESULTS 8

that at least for some initial configuration, the outcome is not already committed.
Starting from there, one constructs an infinite computation such that the system
forever stays uncommitted, contradicting the assumed correctness of the protocol.
The details get somewhat involved since it is necessary to insure that the infinite
computation results from a “fair” schedule. The interested reader is referred to [18].

Returning to the Byzantine generals problem in a synchronous environment,
we consider weaker connectivity assumptions on the network which nonetheless
permit a solution. With signatures, Lamport et al. [25] show that the Byzantine
Generals problem can be solved in any network in which the reliable processes
are connected. Without signatures, they show that a solution is possible in a

� �
-

“regular” graph. Dolev [5, 6] extends this latter result to completely characterize
the networks in which the problem is solvable:

Theorem 5 Consider a synchronous network with connectivity � having � proces-
sors,

�
of which may be faulty. Then the Byzantine generals problem is solvable

without authentication iff
��� � � � ��� and

��� � � � � � .

Three recent unpublished results deserve brief mention, all of which extend the
asynchronous model slightly in order to avoid the assumptions of Theorem 4. Ben-
Or [1] allows randomized algorithms and shows that crash-resilient consensus is
achievable with probability 1 when

��� � � � � � , and Byzantine-resilient consensus
is achievable with probability 1 when

��� � � � ��� . Rabin [31] uses randomized
algorithms with an initial random “deal” and signatures to achieve certain agree-
ment with an expected number of rounds that is only 4, independent of � and

�
, so

long as
��� � � � ��� . Finally, Dolev, Dwork, and Stockmeyer [7] distinguish among

the different kinds of asynchrony in the model of [18] to get tighter conditions on
when consensus protocols are and are not possible.

5 Complexity Results

5.1 Upper Bounds

The
�
-resilient Byzantine generals algorithms of [25, 29] take time

� � � and send
a number of message bits that is exponential in

�
. The first algorithm to use only

a polynomial number of message bits was found by Dolev and Strong [12] and
subsequently improved by Fischer, Fowler, and Lynch [16]. The still stronger result
below is from [8].

Theorem 6 Let
��� � � � ��� . There is a

�
-resilient solution without authentica-

tion to the Byzantine generals problem which uses
� � � �

rounds of information
exchange and ��� � � � �	��
��� ���

message bits.



5 COMPLEXITY RESULTS 9

It remains an open problem if there is any unauthenticated algorithm which simul-
taneously achieves fewer than

� � � �
rounds and uses only polynomially many

message bits.
With authentication, and counting number of messages instead of message bits,

we get:

Theorem 7

(a) There is a
�
-resilient authenticated solution to the Byzantine generals prob-

lem which uses
� � � rounds and sends ��� � ���

messages;

(b) There is a
�
-resilient authenticated solution to the Byzantine generals prob-

lem which uses � � ���
rounds and sends only � � � � � � �

messages.

Part (a) was shown by Dolev and Strong [15], and part (b) was shown by Dolev
and Reischuk [10].

For practical applications, these bounds are not very encouraging, especially
the

� � � bound on the number of rounds. As we shall see, this bound cannot be
improved in the worst case that

�
faults actually occur. However, Dolev, Reischuk

and Strong [11, 14] have looked at the question of whether Byzantine generals
solutions exist which stop early when fewer faults occur. The answer depends on
whether synchronization upon termination is also required.

For definiteness, we say that a process halts within � rounds if it is non-faulty
and it chooses its consensus value and enters a stopping state before sending or
receiving any round � � � messages. It halts in round � if it halts within r rounds
but does not halt within � � � rounds. An agreement protocol terminates when
all reliable processes have halted. If it terminates, we say it reaches immediate
agreement if all reliable processes halt in the same round, and it reaches eventual
agreement otherwise. Thus, immediate agreement serves to synchronize the pro-
cesses as well as enabling them to agree on a value. Note that all of the protocols
discussed previously achieve immediate agreement since all processes choose their
consensus value in the last round.

The following theorem is from [11]:

Theorem 8 Let
��� � � � ��� . There is a

�
-resilient protocol without authentica-

tion which solves the Byzantine generals problem and reaches eventual agreement
within � ��� � � � � � � ��� � ���

rounds, where
� � �

is the actual number of faults.

The same paper also contains a more refined protocol which stops even earlier
when

�
is only about � � .

If one assumes processes can fail only by crashing, then Lamport and Fischer
show that these bounds can be improved [23].



5 COMPLEXITY RESULTS 10

Theorem 9 There is a
�
-crash resilient protocol (without authentication) which

solves the generals problem and reaches eventual agreement by the end of round� � �
, where

� � �
is the actual number of crashes.

We give the protocol and sketch its proof. There are only four possible mes-
sages — 0, 1, NIL, and

�
. 0, 1 are the two possible initial values of the general,

�

means “I don’t know”, and NIL is a default consensus value which is chosen when
crashes prevent the reliable processes from discovering the general’s value.

Algorithm II

A. Round 1: Process 1 (the general) sends its value to every process.

B. Round � , � ��� ��� � � : Each process does the following:

1. If it received a value � ���	��������	��
 � from any process in round � � � , then
it:

� takes � as its consensus value;
� sends � to every process;
� halts.

2. Otherwise, if it received
�

during round � � � from every process not known
to have crashed before the beginning of that round, then it:

� takes NIL as its consensus value;
� sends NIL to every process;
� halts.

(It knows a process has crashed if it failed to receive an expected message
from it during the previous round.)

3. Otherwise, it sends
�

to every process.

C. End of Round � � � : Each process that has not halted does the following:

1. If it received a value ��� �	��������	�
 � from any process during round
� � � ,

then it takes � as its consensus value and halts.

2. Otherwise, it chooses NIL as its consensus value and halts.

Correctness of the algorithm follows readily from the following facts. Recall
that a crashed process is not considered to be halted.



5 COMPLEXITY RESULTS 11

1. If some process halts at step B1 or B2 during round � and chooses value � ,
then every other process which halts at step B1 or B2 during round � also
chooses � .

2. If some process halts at step B1 or B2 during round � and chooses value � ,
then every reliable process which has not already halted will choose � and
halt at step B1 in round � � � (if � � � � � ) or at step C1 in round

� � � (if
� � � � � ).

3. If no process crashes or halts during round � � � , then
�

is the only message
sent during that round.

4. If any process terminates at step C2 in round
� � � , then all reliable processes

do.

Moreover, if fewer than � processes crash in the first � rounds, then the protocol
terminates within � � � rounds; hence if there are at most

�
crashes, then the

protocol terminates within
� � �

rounds.
A more elaborate protocol with similar abstract properties but which is quite

possibly more efficient in practice appears in [34].

5.2 Lower Bounds

All of the protocols above use
� � � rounds in the worst case. Fischer and Lynch [17]

present a proof that
� � � rounds are necessary for achieving interactive consistency

without signatures and hence also for solving the unauthenticated Byzantine gen-
erals problem. Several people have extended this result in one way or another.
DeMillo, Lynch, and Merritt [3, 27] and independently Dolev and Strong [12, 15]
show that the t+1 lower bound holds for authenticated solutions to the Byzantine
generals problem. Lamport and Fischer [23], by a similar proof, show that the
same bound holds assuming that the protocol is only crash resilient and solves the
weak consensus problem, but they did not consider the authenticated case. We
summarize these results below.

Theorem 10 Assume
� � �

�

�
.

(a) Every
�
-resilient protocol without signatures for the weak consensus problem

uses at least
� � � rounds of message exchange in the worst case.

(b) Every
�
-resilient authenticated protocol for the Byzantine generals problem

uses at least
� � � rounds of message exchange in the worst case.



5 COMPLEXITY RESULTS 12

We note that the weak consensus problem has not been explicitly studied with
signed messages, but we conjecture that the same bound will still hold.

We sketch the basic structure underlying these proofs, although much more is
involved in really making them go through. For two distinct computations

�
and�

, define
��� �

if
�

and
�

“look” the same to some reliable process � , that is, �
receives the same messages and behaves exactly the same in both

�
and

�
. Hence,

� chooses the same consensus value in each, which must be the consensus value
for both

�
and

�
. Now, the proof proceeds by assuming at most

�
rounds and then

constructing a sequence of
�
-round computations

���
,
� ���
	
	
	 � � � such that

���
has

consensus value 0,
� � has consensus value 1, and

� �	� � �
� � for � � � � � . This
results in a contradiction. The constructions need one faulty process per round;
hence, they cannot be used to find computations of more than

�
rounds.

Dolev and Strong [14] show that
� � � a rounds are needed in a

�
-resilient imme-

diate Byzantine generals protocol even when the actual number of failures is less.
These theorems also appear without proofs in [11].

Theorem 11 Let
� � �

�

�
, and let � be a

�
-resilient (authenticated) protocol

solving the Byzantine generals problem which always reaches immediate agree-
ment. Then it is possible for � to run for at least

� � � rounds even when there are
no faults.

In the case of eventual agreement, they prove the following:

Theorem 12 Let P be a
�
-resilient (authenticated) protocol solving the Byzantine

generals problem which reaches eventual agreement, and let
� � �

. Then it is
possible for � to run for at least

� � �
rounds with only

�
faults.

We conjecture that this can be extended to
�
-crash resiliant generals protocols,

which would then show the optimality of 9.
Finally, we look at lower bounds on the number of messages and signatures

needed. Dolev and Reischuk [10] show:

Theorem 13 The total number of messages and signatures in any
�
-resilient (au-

thenticated) Byzantine generals solution is � � � ���
.

Theorem 6 shows that this bound is tight when � is large relative to
�
. If one counts

only messages, then they show

Theorem 14 The total number of messages in any
�
-resilient (authenticated)

Byzantine generals solutions is � � � � � � �
.

Theorem 7, part (b) shows this bound “best possible” for authenticated algorithms.



6 APPLICATIONS OF AGREEMENT PROTOCOLS 13

6 Applications of Agreement Protocols

The abstract versions of agreement problems considered in this survey are not gen-
eral enough to be directly applicable to many practical situations. We mention here
some extensions and applications of these problems.

First of all, one often wants to reach agreement on a value from a larger do-
main than just �	������ . If the domain has � elements, then one can encode the
elements in binary and run

� 
��� � ��� copies of the agreement protocol, one for each
bit, but more efficient algorithms might be possible. In applications such as clock
synchronization, the domain of values can be taken to be the real numbers, and
only approximate agreement is needed. Lamport and Melliar-Smith [24] studies
the clock synchronization problem, and Dolev, Lynch, and Pinter [9] look at the
abstract approximate agreement problem.

A difficult part of implementing these algorithms is building message systems
which actually have the reliability and synchronization properties that were as-
sumed in the models. Real distributed systems are quasi-asynchronous, and to
avoid the difficulties of Theorem 4 one must make reasonable timing assumptions
and make effective use of clocks and timeouts. Lamport [21] gives some insights
as to how this can be done.

Finally, we should mention the papers by Dolev and Strong [13] and Mohan,
Strong, and Finkelstein [28] that describe serious attempts to apply agreement pro-
tocols to real problems of distributed databases.

7 Acknowledgement

The author is grateful for Ming Kao for help in assembling the bibliography and to
Paul Hudak for many helpful comments on an early draft of this paper.

References

[1] M. Ben-Or. Another advantage of free choice: Completely asynchronous
agreement protocols. In Proc. 2nd ACM Symposium on Principles of Dis-
tributed Computing, 1983. To appear.

[2] D. Davies and J. F. Wakerly. Synchronization and matching in redundant
systems. IEEE Transactions on Computers, C-27(6):531–539, June 1978.

[3] R. A. DeMillo, N. A. Lynch, and M. J. Merritt. Cryptographic protocols. In
Proc. 14th ACM Symposium on Theory of Computing, pages 383–400, 1982.



REFERENCES 14

[4] W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans. on
Information Theory, IT-22:644–654, 1976.

[5] D. Dolev. Unanimity in an unknown and unreliable environment. In Proc.
22nd IEEE Symposium on Foundations of Computer Science, pages 159–168,
1981.

[6] D. Dolev. The Byzantine generals strike again. J. Algorithms, 3(1):14–30,
1982.

[7] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchronism needed
for distributed consensus. Manuscript, 1983.

[8] D. Dolev, M. J. Fischer, R. Fower, N. A. Lynch, and H. R. Strong. An efficient
Byzantine agreement without authentication. Information and Control, to
appear. See also IBM Research Report RJ3428 (1982).

[9] D. Dolev, N. A. Lynch, and S. Pinter. Reaching approximate agreement in
the presence of faults. Manuscript, 1982.

[10] D. Dolev and R. Reischuk. Bounds on information exchange for Byzantine
agreement. In Proc. ACM SIGACT-SIGOPS Symposium on Principles of Dis-
tributed Computing, pages 132–140, 1982.

[11] D. Dolev, R. Reischuk, and H. R. Strong. ‘Eventual’ is earlier than ‘immedi-
ate’. In 23rd IEEE Symposium on Foundations of Computer Science, pages
196–203, 1982.

[12] D. Dolev and H. R. Strong. Polynomial algorithms for multiple processor
agremment. In Proc. 14th ACM Symposium on Theory of Computing, pages
401–407, 1982.

[13] D. Dolev and H. R. Strong. Distributed commit with bounded waiting. In
Proc. Second Symposium on Reliability in Distributed Software and Database
System, Pittsburgh, July 1982.

[14] D. Dolev and H. R. Strong. Requirements for agreement in a distributed
system. In Proc. Second International Symposium on Distributed Data Bases,
Berlin, September 1982.

[15] D. Dolev and H. R. Strong. Authenticated algorithms for Byzantine agree-
ment. SIAM J. Comput., to appear. See also IBM Research Report RJ3416
(1982).



REFERENCES 15

[16] M. J. Fischer, R. J. Fowler, and N. A. Lynch. A simple and efficient Byzan-
tine generals algorithm. In Proc. Second IEEE Symposium on Reliability in
Distributed Software and Database Systems, pages 46–52, Pittsburgh, 1982.

[17] M. J. Fischer and N. A. Lynch. A lower bound for the time to assure interac-
tive consistency. Information Processing Letters, 14(4):183–186, 1982.

[18] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. In Proc. Second ACM Symposium on
Principles of Database Systems, March 1983.

[19] D. K. Gifford. Weighted voting for replicated data. Technical Report CSL-
79-14, XEROX Palo Alto Reserach Center, September 1979.

[20] J. Gray. A discussion of distributed systems. Research Report RJ2699, IBM,
September 1979.

[21] L. Lamport. Using time instead of timeout for fault-tolerant distributed sys-
tems. ACM Transactions on Programming Languages and Systems, to appear.
See also technical report, Computer Science Laboratory, SRI International
(June 1981).

[22] L. Lamport. The weak Byzantine generals problem. Journal of the ACM,
30(3), July 1983. To appear.

[23] L. Lamport and M. J. Fischer. Byzantine generals and transaction commit
protocols. Manuscript, 1982.

[24] L. Lamport and P.M. Melliar-Smith. Synchronizing clocks in the presence
of faults. Technical report, Computer Science Laboratory, SRI International,
March 1982.

[25] L. Lamport, R.. Shostak, and M. Pease. The Byzantine generals problem.
ACM Transactions on Programming Languages and Systems, 4(3):382–401,
July 1982.

[26] B. G. Lindsay et al. Notes on distributed databases. Research Report RJ2571,
IBM, July 1979.

[27] M. J. Merritt. Cryptographic protocols. Technical Report GIT-ICS-83/06,
School of Inf. & Comp. Sci., Georgia Institute of Techonology, February
1983.



REFERENCES 16

[28] C. Mohan, H. R. Strong, and S. Finkelstein. Method for distributed trans-
action commit and recovery using Byzantine agreement within clusters of
processors. Research Report RJ3882, IBM, 1983.

[29] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence
of faults. Journal of the ACM, 27(2):228–234, 1980.

[30] G. Popek et al. LOCUS: A network transparent, high reliability distributed
system. In Proc. 8th ACM Symposium on Operating Systems Principles,
pages 169–177, December 1981.

[31] M. Rabin. Randomized Byzantine generals. Manuscript, 1983.

[32] R. Reischuk. A new solution for the Byzantine generals problem. Research
Report RJ3673, IBM, November 1982.

[33] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, February 1978.

[34] F. B. Schneider, D. Gries, and R. D. Schlichting. Fast reliable broadcasts.
Computer Science Technical Report TR 82-519, Cornell University, Septem-
ber 1982.

[35] J. H. Wensley et al. SIFT: Design and analysis of a fault-tolerant computer
for aircraft control. Proc IEEE, 66(10):1240–1255, October 1978.


