
SLAC -PUB-1403 
(T) 
April 1974 

NEW APPROACH TO THE SEPARATION OF ULTRAVIOLET 

AND;^NFRAREDDTVERGENCES~FFEYNMAN-PARAMETRICINTEGRALS* 

Predrag Cvitanovic/ 
Laboratory of Nuclear Studies 

Cornell University, Ithaca, New York 14850 

and 

Stanford Linear Accelerator Center 
Stanford University, Stanford, California 94305 

T. Kinoshita?, 3: 

Laboratory of Nuclear Studies 
Cornell University, Ithaca, New York 14850 

ABSTRACT 

A scheme for systematically separating ultraviolet divergences of 

Feynrnan amplitudes in parametric space is developed. It is summarized 

by an explicit formula which enables us to incorporate readily the ultra- 

violet-finite remainders thus constructed into the usual renormalization 

s theme . It is shown further that infrared divergences can be treated in 

a very similar way. Our method is particularly suitable for numerical -. 

integration. 

(Submitted to Phys. Rev. ) 

*Work supported in part by the U. S. Atomic Energy Commission and by the 
National Science Foundation. 

TAddress until June 30, 1974: Department of Physics, University of Tokyo, 
Tokyo, Japan. 

$John Simon Guggenheim Foundation Fellow. 



I. INTRODUCTION 

In order to evaluate Feynman integrals of higher orders numerically, it is 

neceszary to locate and subtract the ultraviolet (W) and infrared (IR) diver- 

gences beforehand. Since the removal of W divergence is the essential aspect 

of the renormalization procedure, various pres&iptions have been proposed in 

the literature for the extraction of W-finite parts, although they vary in mathe- 

matical rigor and practicality depending on the purpose for which they have been 

formulated. On the other hand, the treatment of IR divergence has been relatively 

underdeveloped, particularly in the Feynman-parametric form. Thus we have 

found it necessary to develop some workable scheme. The purpose of this 

article is to present a general and systematic scheme for separating both W 

and IR divergences of Feynman integrals, following the line first suggested in 

Ref. 1. This method has been applied to the evaluation of 6th order contributions 

to the electron magnetic moment. 2,3 

Our method is based on the parametric representation of Feynman integral 

summarized in the preceding article, 4 hereafter referred to as I. It is particu- 

larly suited for numerical calculation because of the following properties: 

(i) After the removal of divergences the integral is almost as simple as 

the original divergent intergral. 

(ii) The singularity is subtracted at each point of the domain of integration 

(rather than having cancellation of contributions from different parts of the 

domain). 

(iii) Subtraction terms introduce no new singularities. (Note that the 

standard renormalization introduces infrared divergence.) 
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(iv) Subtraction terms are factorizable into lower order expressions. Thus 

they are easier to evaluate analytically or numerically than the original integral. 

(VT Our construction of W and IR subtraction terms is also useful for 

crosschecking of trace calculation. 

In Section II we review the W power counting rule for arbitrary Feynman 

integral and propose a method for removing all leading W singularities of 

parametric integrand. In Section III we apply it to QED and derive an expression 

for Dyson-Salam-renormalized amplitudes in terms of finite integrals. A power 

counting rule for the degree of superficial IR divergence is developed in Section 

IV for arbitrary QED amplitudes by examining the properties of their denomina- 

tors. In Section V it is extended to the whole integrand taking account of the 

structure of numerator functions. A method for removing all lR divergences of 

QED amplitudes is sketched. Application of these methods is given in the 

subsequent article. 3 
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II. W SINGULARITIES 

Feynman-parametric integral associated with one-particle irreducible 

diagra^m G can be written in the dimensionally regularized form as 

MG=x dzGJG 
(4’7r i) s (2-l) 

JG=l 

UW C 
F. f F1 / (iU) + . . . + FM / (iv)m ewiv(‘) 

I (2.2) 

where the notation follows that of I. 5 We drop the suffix G referring to the 

diagram G whenever no ambiguity arises. For example, in the above, U = UG, 

‘(P) = vG@)7 etc- p in V(p) stands for the set of all external momenta of the 

diagram G. 

We define the Feynman integrand as the value of JG for ~=2. To determine 

its singularities, note that all parametric functions that comprise JG are homo- 

geneous forms of Feynman parameters zi. U, B ij, Qua, and V-are of degree 

n, n- 1, 0, and 1, respectively, n being the number of independent integration 

loops in G. 

The integral MG may diverge when U vanishes (for some z. -* 0) or V(p) 
1 

vanishes (and some z. 
1 

- 00). The second possibility occurs only if masses of 
- 

some internal lines vanish, and is associated with the lR divergence, or, more 

generally, the mass singularity. 6 In this section we shall concentrate on the 

first case. 

If all zi vanish, U,has a zero of order n. U also vanishes if all Feynman 

parameters of a loop or a set of loops are set equal to zero. Since zi - 0 

corresponds to large momentum flowing through the line i, such divergence will 

be the parametric space version of familiar W divergence in momentum space. 

In general, let S be a connected subdiagram of G (including G itself) consisting 
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of several closed loops. Then JG will be singular in the domain boundary defined 

by the limit G - 0 where 

[ ok3 if S 

‘i = 
1 00) igS 

(2.3) 

Let us examine the behavior of JG in this singular region. 

A. Overall W Singularities 

Suppose f(zi) is a function of Feynman parameters associated with the 

diagram G. We define its W limit 
C 
f(z ,1S iJW as the leading term in the expansion 

in small & defined in (2.3). Note that the word “W limit” is used to indicate 

possible relevance to W divergence of the integral, but does not necessarily 

mean that these functions actually lead to divergent integrals. 

The case S= G will be referred to as the overall W limit 

Let us now examine the overall W limit of the integrand JG. The exponent 

V(p) does not affect the nature of this singularity since 

re-““‘Biv = I 
L (2-J) 

Since Bij is of degree n-l in zi, the most singular term of JG is the one with 

most contractions (see I for definition). Thus we have 

II3 JG W = 
Fm 

U2(i U)m 
= O(& -2n-m)) -- 

In the integral (2.1) this singularity is suppressed by the phase space dzG which 

vanishes in the overall W limit as 

dzG = o(&N) (2.6) 

It follows from (2.5) and (2.6) that the integral (2.1) is convergent in the 

domain (2.3) if 

NG - 2nG - mG > 0 (2.7) 
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where NG, nG, and mG are the number of internal lines of G, the number of 

integration loops, and the maximum number of contractions, respectively. 

Dy - son-Nakanishi power counting rule 738 follows from (2.7) if one rewrites it 

in terms of the number of external lines. 

An obvious way to construct an integrand less singular than JG in the limit 

might have an IR 

divergence of its own since it is not damped exponentially for large zi because 

of (2.4). It corresponds to renormalizing Feynman amplitudes at the point 

where all external momenta as well as masses of all internal lines vanish. 

Instead let us perform renormalization by defining the subtraction integrand 

KGJG bY 

KGJG= JGWe [I -iV 
P-8) 

’ = v@)! p on mass shell (2.9) 

where KG stands for the operation of constructing an llon-the-mass-shell” 

subtraction term. 9 For now we shall take (2.8) as the definition of K-operation. 

By (2.4) We have 

(2.10) 

Thus JG - KGJG is also less singular than JG itself in the overall W limit. 

Unlike the usual Dyson-Salam construction of on-the-mass-shell subtraction 

term, this one introduces no new IR divergence since the definition (2.8) keeps 

only the most-contracted term F m in (2.2). In the case of QED, this is an 

important advantage over the standard method which, as is well known, introduces 

spurious lR divergences associated with the renormalization procedure. Moreover, 

since our subtraction is also defined on the mass-shell, it will not be difficult to 
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express the usual renormalized amplitude in terms of W-finite integrals 

constructed by K-operations. (See Section III.) 

T;;k numerator Fk depends in general on the external momenta p, so that 

one might wonder whether Fm in (2.8) is unambiguous. Since m is the maximum 

number of contractions, ‘Fm has either all factors D contracted or one D remains 

uncontracted. In the first case there is no ambiguity since Fm does not contain 

external momentum. The only case of importance of the second possibility is 

the electron self-energy diagram. In this case we evaluate Fm in (2.8) for the 

same external momentum p as for the original integrand JG. 

B. Subdiagram W Singularities 

From the definition (I. 24) 

U = det (Ust) , Ust= c 7. 77. z. 
iEG 1s 1t 1 

where the indices s and t run over a set of independent integration loops, it is 

clear that U vanishes if z . - 0 for all ie S, S being a connected subdiagram of G 
1 

consisting of several loops. More precisely, in the W limit (2.3), U factors 

aslo 

[u]& = u&,s(= ‘(+j) (2. 11) 

where ns is the number of independent loops within S. By G/S we mean the 

reduced diagram obtained by shrinking the subdiagram S of G to a point. When- 

ever a parametric function has a subscript or superscript S, G/S,.. . . , it is to 

be understood as defined in terms of parameters zi belonging to the diagrams S, 

G/S,. . . alone. I.1 
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Let us now derive the W limit of Bij starting from the definition (I. 51): 

Bij = C 7 ic77jc"c 
C 

where UC is a U function for the diagram obtained from G by shrinking a closed 

loop c to a point. 

Casei,jeS. Fort CS, wehave [I Uc&=U G'S U," (= O(tFnsvl)) since 

the whole loop c within S is shrunk to a point. If c belongs to both S and G/S, 

we have UC = 0 and its contribution can be neglected. We thus find 

Case i, j E G/S. 

[ 
1s 

Bij]UV 
= $/S Bs 

ij ’ i,je S (2.12) 

Applying (2.11) to each UC and noting that Us = c 
ww 

UE 

where P(AB) is any path entering and leaving S at the points A and B, we find 

“w = BG’S Us , 
11 

i, j E G/S (2.13) 

Case m E S, j E G/S. This will be of interest only when S is a self-energy 

subdiagram. In this case, according to I, Section 4. f, we find 

= BG/S As us 
ji m ’ jcG/S, meS (2.14) 

where i is the line of G/S in which S is inserted. 

W) The W limit of the scalar current Ai=Ai foilows from (I. 74): 

where P = P(AB) is any path from point A to point B. We can always choose a 

path avoiding the line i so that B!. = B. . . 
1.l 1J 

If i E G/S, we have B [ .I& = O(8”S) 

according to (2.13) and (2.14). Thus we can drop all terms with j E S in the 

above summation and obtain 

[’ Ai,& = AG’S 
1 

ie G/S (2.15) 
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If S is a self-energy insertion, we have according to (I. 93) 

meS (2.16) 

Since scalar currents remain rational homogeneous functions of degree 0 in 

the W limit, all zi, i E S, in the defining formula (I. 3) of V drop out and we 

obtain 

Decomposing Q;” into scalar currents and using (2.15) we find 

[‘@)]& = ‘G/s@) 
(2.17) 

We are now ready to consider the integrand JG !& as a whole. [I From (2.12) 

it is seen that only contractions within the subdiagram S maintain the most singu- 

lar feature in the W limit (2.3). The leading singularity is thus given by all 

terms in Fk that have the maximum number of contractions within S. If S *is a 

vertex part, all D’s in S can be contracted among themselves and the entire 

integrand factorizes as 

[I S JGw=J [I S 
G/S JS W (2.18) 

where we have used (2.11) through (2.17) and (2.5). Thus the power counting 

rule (2.7) applies not only to the diagram G as a whole but also to any subdiagram 

S. Again (2.18) itself is not suitable as a subtraction term since it might intro- 

duce new IR divergences. Instead, by generalizing (2.8), we choose 

-iVS (2.19) 

as the subtraction term. 

If the number of D’s in S is odd, the factorization of the subtraction integrand 

is slightly more complicated than (2.18). This case will be treated later in con- 

nection with the electron self-energy subdiagram. 
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C. Formal Definition of KS Operation 

Let us now restrict our attention to Feynman integrals having at most 

logari3;mic W divergence. Then the K-substraction defined above is sufficient 

to render such integrals W-finite. 12 This operation may be case in a form 

similar to the renormalization prescription of Refs. 13 - 15 as follows: Let 

us define a generalized integrand JG(ol, cr2,. . .) by first scaling 

‘j 
--,O!Z Sj ’ jc S (2.20) 

within JG and then multiplying the scaled JG with 

ciNs e 
-i(l-as)Vs 

i (2.21) 

for each subdiagram S, where Ns is the number of internal lines of S. The 
NS factor as takes care of the scaling of the phase space (2.6) and Vs is the func- 

tion V,(p) for the diagram S evaluated with all external momenta p on the 

mass-shell. 
4 

The generalized integrand has the following properties: 

JG(l, 1,. . .) = JG 

f 
0 if Ns-2ns-ms > 0 

JG(l, cws=O, 1,. . .) = - 
-iV S if Ns-2ns-ms = 0 

(2.22) 

(2.23) 

I 
0 if NG-2nG-mG > 0 

JG(crG=O, 1,. . .) ,= (2.24) 

[I JG W e 
-iV if NG-2nG-mG= 0 

Thus the K-subtraction terms of (2.8) and (2.19) are obtained by setting appro- 

priate os equal to zero. According to (2.23) and (2.24) the subtraction terms 

will be nonvanishing only for S E 9, 9 being the set of all superficially divergent 
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subdiagrams S of G (possibly including G itself) such that NS-2n s -m s=O. In 

this formulation the operation KS KS . . . KS 
i j 

is defined as setting os =0, as =0, . . . , 
- m i j 

asm=O, and all remaining as=l. 

By construction an integrand of the form n 
siE~ 

(l-KSi) JG(QI~, a2,. . -) leads 

to a W-finite integral. ‘We shall define this integral as the K-finite part 

of the Feynman amplitude MG and denote it symbolically as 

A’MG = n (1 -KS) MG 
SC9 

(2.25) 

In order to assure that AIMG is well-defined, we must show that it is 

independent of the order of KS factors. This is easy to confirm if Si n Sj = 0 

(no common point) or if Sic Sj or Sj C Si. The only case where KS and KS do 
i j 

not commute is when Si and S. are overlapping diagrams. 
J 

This happens, for 

example, when Si and Sj are overlapping vertex parts within a self-energy 

diagram Sk such that Si n Sj#O and Si U Sj=Sk. Fortunately our definition (2.25) 

enables us to avoid this complication automatically. 
14,15 To see this note that 

each zn that acquires a factor CY~ 
k 

by (2.20) will also have Q! q or 01 sj Or both 

factors. Since setting as = 0 and os = 0 simultaneously is the same as setting 
i j 

as =O, we find 
k 

(1 - Ksk’ KSiKSj = 0 

which may also be written as 

(l-KS )(I-KS)(l-KS) = (1-K 
k i j 

)(1-K, -KS) 
% ij 

(2.26) 

(2.27) 

Thus the overlapping divergence KS KS MG never contributes to the formula (2.25) 
i j 

and the K-finite part A’MG is uniquely defined independent of the order of KS 

operations in (2.25). 
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III. RENORMALIZED QED AMPLITUDES 

In this section we shall study how to express the renormalized QED ampli- 

‘tudes% terms of W-finite integrals. We postpone the discussion of IR diver- 

gence to Sections IV and V. For now we shall assume a finite photon mass h. 

As is well-known, the only superficially divergent diagrams of QED are 

electron self-energy, photon self-energy, vertex and photon-photon scattering 

diagrams. Due to gauge invariance, photon-photon scattering integrals are 

actually convergent. (A method for rendering individual photon-photon scattering 

diagram separately convergent is given in Ref. 16. Hence we shall not discuss 

it here.) We define the remaining three W-divergent diagrams, i. e. , proper 

electron self-energy part, proper photon self-energy part, and proper vertex 

part, using the conventions of Ref. 17. In the dimensionally regularized form 

they are 

i 1 
n 

ZG=i “, 1 
s 

dZF IF ,-iv(P) 
(47Ci) - U” - 

H~‘=i a! &G 
G 

1 Ts 

- g ,-iW-4 
(47#-l u” 

(3.1) 

(3.2) 

(3.3) 

Here n is the number of integration loops. Operators IF, II?‘, IF’ consist of 

(Di+mi) factors from fermion lines, a y factors from vertices, and a factor -1 

for each closed fermion loop. When there is an ambiguity as to which amplitude 

they refer to, we shall write them as IF = lF’ 2 [ G], flu =IF [#:I, etc. The 

maximum number of contractions is m G= nG-1 for electron self-energy, and 

mG= nG for photon self-energy and vertex. According to the power counting 

rule (2.7) electron self-energy and vertex diagrams are (superficially) 
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I 

logarithmically divergent whereas the photon self-energy is linearly divergent 

(remember that z. N 1 l/p: dimensionally so that this corresponds to the familiar 

quadra& divergence in the momentum space). 

A. Photon Self-Energy Diagram 

In practical calculations it is more economical to use the Kallen-Lehmann 

spectral representation for renormalized photon propagators than to utilize the 

KS subtraction method for divergences associated with photon self-energy 

diagrams. Nevertheless, for completeness, we shall include the K-renormali- 

zation of photon propagators in our discussion. We know that the sum of a gauge- 

invariant set of photon self-energy diagrams has the form 

lIPU = (pPpV - $c”p2) rI(p2) (3.4) 

Thus the factor of $pV in (3.2) may be regarded as a contribution of the diagram 

G to II (p2) and denoted as IIG(p2). Thus, if we consistently replace everywhere 

as 

rIPU(p) - -gclVp2 n G G (p2) (3.5) 

(dropping p’p”), the sum over contributions from a gauge invariant set of 

Feynman diagrams will remain unchanged by gauge invariance. Now, IIG(p2) 

is only logarithmically W-divergent, and K-subtractions are sufficient to 

render finite all photon-self-energy contributions redefined by (3.5). In the 

Appendix we discuss the calculation of lIG(p2) in the parametric form. 
I 

B. Renormalization Constants 

On-the-mass-shell renormalization constants are defined by 

6mG= ZG 
I $=m 
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LG= z rl*G 
I 

q=O,$=m = ( 
-1 -I- z;’ 

) G 

(3.7) 

(3-V 

(3.9) 

for the electron self-mass, wave function renormalization, charge renormali- 

zation, and vertex renormalization, respectively. 6mG, CG, and LG are 

obtained by evaluating 2 G, IIG, and I’: on the mass shell. BG can be 

calculated from 

2 = i [(4rtU-lr s 2 (II? + 2ipP GlF’ emi’ 

\ 
and 

electron only 
lEp zz e = c A& 

P i 

(3.10) 

(3.11) 

where IF: is obtained from II? by the replacement (Di+mi) - fl, and G is 

given by (I. 36). Since G is linear in zi, the second term in (3.10) is not overall 

W-divergent. The maximum number of contractions in IF! is still mG=nG-1 

so that BG has a logarithmic overall W divergence arising from the Em term. 
G 

C. Overall W Divergences of Renormalization Constants 

Let us now apply KS operations to isolate overall W divergences of 

renormalization constants. According to 2.8 the overall W divergent parts of 
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6mG, BG, CG, and LG are 

4 
663, z KG6mG=- -ia! n &G Fn-l 6mJ t 

Lwu w-l - 1J U w+n- 1 
-iV e 

F n-l [ 1 BG in (3.13) is defined by 

Ecel ‘G = 3Y.Fnwl BG [I [ 1 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

noting that all fermion lines are contracted so that E: 1 is proportional to yP. 

Fn-l !G’ in (3.14) is defined by 
J 

a2Fn s I 1 a”c” 

aP,aP f F (3.17) 
P c!=p, p=v 4P 

Finally Fn LG II I in (3.15) is given by 

=?)tF k I nL G (3. 18) 

since all fermion lines are contracted. We shall not compute any of the W 

divergent parts explicitly. However, they will be useful in showing the equiva- 

lence of Dyson-Salam and our approach. 

D. Subdiagram W Divergences 

We have defined the subtraction integrand KSJG by (2.19). We shall now 

examine how the integral over KSJG is to be interpreted in QED. 
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For definiteness let G be a vertex diagram containing a vertex subdiagram 

S. Then the number of (Di+mi) factors, i E S, is even (2nS). According to 

‘(2.18j^and (3.18) all dependence of the numerator on the parameters zi of the 

subdiagram S is contained in the factor F and the subtraction integral 

takes the form 

KS rg = “w l- 
(47ri) - . 

I- 

xF 
nS 11 [ Ls uF r[,,’ e-i(vG/S(p) +‘S) 

which is clearly factorizable as 

~~ rg = isr$/, 

(3.19) 

(3.20) 

Actually G does not have to be a vertex diagram. Any QED diagram which 

contains a vertex subdiagram S will factor in the same fashion. 

If S is an electron self-energy subdiagram, the numerator does not factor 

since not all D,, m E S, are contracted. For the uncontracted Dm, because of 

the factorizations (2.14) and (2.16)) we can write symbolically 

(3.21) 

where i” is a fictitious line for which we set pi,, =pit =pi after D G/S operations 

have been carried out. 

For notational convenience let us put T* = G/S and denote as T the diagram 

G/S, it obtained fromIT* by shrinking the line if to a point. All parametric 

functions for T are obtained from those for T* by the replacement zii, - zi . 

The Feynman diagram for T* has one more propagator than T so that 

NT* =NT+l (3.22) 
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s &T* = dzTdzit (3.23) 

and tli; numerator of T* contains an additional factor i(Di, + mi,) . 

Let us first suppose that S is a second order electron self-energy diagram. 

Then the part of the numerator referring to S may be written as 

(3.24) 

where fi is used symbolically; set $= 1 after all contractions over P “‘yP are 
performed. Fn l BS and Fn 1 6mS -[I -[ I are defined by (3.14) and (3.12), with 

n =l in this case. S Equation (3.24) is just the leading W singularity of the 

expansion 

&-Jpi) = 6mS + BS(pli-mi) + . . . 

T” of the electron self-energy insertion S, where tii corresponds to D. 
1" 

in the 

parametric space. Such a decomposition works for any nS giving 

KSr; = 

x [ FnSBl IIBs] IF’[r;] (D:*. DE: - 1) + Ens-l[Sms]lF’~$+]] e+s+vT*(P’ 

(3.25) 

The first term is obtained by noting that we can set 

(3.26) 

where the right-hand-side corresponds to the numerator factor pi” - rnf in the 

unparametrized Feynman integral, which cancels one of the propagators (pf 2 -1 -mi) . 

In the parametric space the same effect is achieved by the use of Nakanishi’s 

- 17 - 



identity (I. 8 3) 

- 
m2 

-ivT”@) dzT -ivT @) 

it 
e = 

s 
(3.27) 

Applying this to the first term in (3.25) one finds 

KsI$ = &I$ + &iSr& (3.28) 

Thus our single subtraction term contains both mass and wave function renor- 

malization terms. This decomposition is valid for any QED diagram, not just 

r:. However, (3.27) must be generalized if MG has parametric functions 

other than U and V(p) in its definition (before gi operation is performed). In 

such a case we must use (I. 86) 

T* . DT* -m2 
dzT*HT*(zi) -ivT*@) 

i1 iI it 
u;* e 

= @$E z&) HT(Zii] e-iVT(p) 

T- 
(3.29) 

where H (z .) is any homogeneous function of z 
T J 

j, jeT. As an example, the 

reader may prove (3.28) for the Feynman integral (3.10) for aZG/dpP , where 

the parametric integral contains explicit factors of Ai and G. For this purpose 

it is useful to note 

aG/az i=A; , aAj/azi = -AjBij/U (3.30) 

which follows from (I. 36) and (I, 101). We shall not dwell on such generalizations, 

however, since we can just as well carry out the KSXG operation before taking 

the a/a# derivative in (3. lo), and in that case there is no doubt that the rule 

(3.27) applies. 

If S is a photon self-energy diagram, by our rule of imposing gauge 

invariance in the form (3.5)) the numerator already contains an explicit factor 
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-Di. Di, (i, i’ being photon lines, rnf = 0) so that we have 

: - 
4 

K rp = 6 S G r+ S G/S,i’ (3.31) 

In summary, if S is a divergent subdiagram of the diagram G, and MG is 

a Feynman amplitude defined on G., then 

* 
KS”G = LS”G/S if S is a vertex 

A 
(3.32) KS”G = *%ii”G/S + BS”G/S, iI if S is an electron s. e. 

c 
KS”G = ‘S”G/S, it if S is a photon s. e. 

where the self-energy subdiagram lies between the lines i and i’ of the reduced 

diagram G/S. 

E. On-The-Mass-Shell Renormalization 

We shall first rephrase the usual Dyson’s definitionof the on-the-mass- 

shell renormalized amplitude7 as follows: Let MG be a Feynman amplitude in 

QED. Then its finite renormalized part is given formally by 

%,= n (l-%S)MG 
SE9 

(3.33) 

where es is an operator describing the extraction of renormalization constant 

associated with the subdiagram S according to the rules 

%S”G = LS”G/S if S is a vertex 

%S”G = 6mSMG/S ’ BS”G/S, i1 if S is an electron s. e. (3.34) 

?ZsMG= C M S G/Si, it if S is a photon s. e. 

The result of usual analysis of overlapping divergences can be incorporated in 

(3.33) by imposing the condition14’ l5 

(l- qgjcek= 0 (3.35) 

. 
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where j and k are overlapping vertex subdiagrams of a self-energy part i. 

Because of (3.35) the operators gs in (3.33) become effectively commutative, 

enablzg us to define %I G unambiguously. 

Let us now examine the relation between the renormalized amplitude %, 

and the K-finite A’MG. For this purpose we note that 

Ksgs = KS (3. 36) 

which follows from the definitions (3.32) and (3.34). This may also be written 

as 

(l-%‘s) = (l-KS)(l-?Zs) 

Substituting this in (3.33) we obtain 

‘,= n (l-KS)(l-%‘S) MG 
SE9 

(3.37) 

(3.38) 

Now all operators in (3.38) can be freely commuted since the contribution of 

overlapping subdiagrams is excluded from the defining formula. We can 

therefore rewrite (3.38) as 

I%,= r-i (l-KS) n (l-S)lLZG si EL9 i Sj e.9 j 
(3.39) 

Comparing this with the definition of A’MG in (2.25), we arrive at our main 

result 

I%, = 17 (l- A’$Ys) A’MG 
SE9 

(3.40) 

where A’ gs is an operator extracting the K-finite part of the renormalization 

constants associated with the subdiagram S. 

The meaning of the operator A’?Zs may be seen most clearly by working 

out some examples. Let us start by considering the simple case where S is 
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the only W-divergent vertex subdiagram of G. Then we have 

MG= (l-%FS)MG by (3.33) 
- 4 

= (l- KS) (1- gs) MG by (3.37) 

= (1 - Ks)MG - (l-KS)L&,S by (3.34) 

= A’MG - A’LSMG/s by (2.25) 

= A’MG - A’LSA’MG,S (since M 
G/S = A’MG,s’ 

= (1 - A’ %S) A’MG (definition of A1 %Zs) (3.41) 

in agreement with (3.40). Next consider the case with two divergent vertex 

subdiagrams S and T such that S 1 T. In this case we find 

I%,= (lXS)(l- CGT)MG= (l-%‘T)(l-%Zs)MG 

= A’MG - A’LSA’MG,S - A’LTA’MG,T + A’LTA’LS,TA’MG,S 

(3.42) 

following steps similar to those of (3.41). The last term is nothing but the 

expanded form of 

(1 - A’ gs) (1 - A’ wT) A’MG (3.43) 

showing how the operators A1 %F, and A1 VZT work. . 

As is obvious from these example, l%, can be expressed uniquely as a sum 

of products of K-renormalized quantities A’MG, A’MG,s, . . . which are all 

W-finite. This result therefore constitutes another proof that the amplitude 

GG renormalized in the usual sense is in fact finite. To complete the renor- 

malization program of QED we must of course carry out the remaining steps 

of absorbing all divergent terms into a few multiplicative factors in the usual 

way. 
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IV. INFRARED SINGULARITIES 

The integral (2.1) may also diverge if JG is not sufficiently damped as 4 
z. --r-w. 

1 
The damping is usually provided by the exponent iv(p) which grows 

linearly with z i. However V(p) may vanish in some parts of parametric space. 

The most familiar case for which this happens is the infrared (IR) divergence 

of QED. This problem has been analyzed in great detail so that there appears 

to be hardly any room for another article. 6,18 Nevertheless we believe that 

our treatment of lR divergence, which emphasizes the formal similarity with 

that of UV divergences in the preceding sections, presents a fresh and interesting 

point of view. Furthermore our method is readily applicable to numerical treat- 

ment of IR divergences. 3 

For a systematic analysis of IR singularity it is more convenient to go back 

to the original parametric integral (I. 5) defined over a compact domain 

MG= &G 6U-zG) JG (4. la) 

with 

JG= 
(N-2n-1) ! F. (N-2n-2) ! FI (N-Bn-m-l) ! Fm 

U2VN-2n + u3 VN-2n-1 + ’ ’ * + U2+m VN-2n-m (4. lb) 

where we assume that W divergences have already been taken care of by the 

K-method so that no regularization is required. Unlike the formula (2.1) where 

IR divergences are associated with zi - 00, IR divergences arise in (4.1) from 

the V- 0 singularities of the integrand JG which can be treated in analogy with 

theU- 0 singularities studied in Sections II and III. This is why we prefer the 

representation (4. 1) over (2. 1). 

We shall restrict ourselves to the electron QED. Our method applies to any 

IR divergence. For simplicity, however, we shall develop it for a class of 
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Feynman diagrams with two electron legs on the mass-shell and B (= 0, 1,2, . . . ) 

photon legs shown in Fig. 1. The string of electron lines connecting the two 

electro~legs will be referred to as the path Pe = Pe(AB) . The crosshatched 

area represents the photon cloud which may contain electron loops. To avoid 

unnecessary complication we shall assume that all external photons are attached 

to Pe. (This restriction can be easily lifted. ) Then we may choose the fixed 

momenta qi as 

qi+ O 

qi= 0 

and write V(p) in the form 

for i E pe 

otherwise 
(4.2) 

V(P) = X 
i E Pe 

zi(l-qi*Q;) + c zi (4.3) 
electron 

loops 

where we have put me= 1 and h=O. (The choice (4.2) is arbitrary, but it is sort 

of natural since IR divergences arise when virtual photons carry no momentum. ) 

A. Overall IR Singularities 

We shall first study the property of V(p) when all virtual photons are soft, 

i. e., when all external momenta are routed through the path Pe. For this purpose 

it is instructive to recall the electric circuit analogy of zi and Ai (or Q{): zi 

corresponds to the resistance of the line i and Ai= Ai (AB) represents the fraction 

of the current flowing through the line i when it enters G at A and leaves at B. 

Thus, in order that the currents flow only through Pe, we must “short out” the 

path Pe (i.e., put zi = 0 on Pe) while keeping the resistances of other lines finite. 

This observation leads us to the (tentative) definition of the overall IR limit 

[ 1 f(zi) i (where we shall drop the superscript G whenever no ambiguity arises) 

of an arbitrary parametric function f(zi) as the leading term in the 6 expansion 
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where 

- oh%, 6 << 1 for i E Pe 
z. = 

1 i 
(4.4) 

w for i k Pe 

If G has closed.electron loops, we find [v(p)], = O(1) because of the second 

term in (4.3). Thus the integral (4.1) is convergent (note also [U], = O(1)) and 

no overall IR divergence arises. From now on we shall therefore consider only 

diagrams with no electron loop. Then (4.3) reduces to the simple form 

V(P) = c 
iePe 

Zi(l- qi’ Q:) (4.5) 

Since we now have y@)]IR = 0 ( 6 ) , the denominator V(p) of the Feynman integral 

MG vanishes in the limit (4.4). However this does not lead to IR divergence of 

MG immediately. To see this it is sufficient to examine the F. term of JG, 

which is the most singular term in (4. lb). Noting that G for Fig. 1 has n 

ne= 2n+Q-1 electron lines on Pe and np=n photon lines (hence N=ne+np=3n+Q-1) 

and that U # 0 in the limit (4.4)) we obtain 

&G 
U2VN-2n = ’ = 43 (4.6) 

This shows clearly that V(p) must vanish more rapidly than 6 in order that MG 
- 

develops an IR divergence. 

To explore the IR property of Feynman integrals we must therefore study 

the structure of V(p) more closely. It turns out that the short-circuit behavior 

of the current &I mentioned above is crucial for this consideration. In terms of 

the scalar current Ai we may express it as 

(4.7) 
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In order to prove this explicitly let us recall the formula (I. 75): 

- AtAB) = jy c qipup i 
WW 

(4.8) 

where the summation is over all possible paths P = P(AB). For concreteness 

let us consider the diagram in Fig. 2a. Then, for Upe , obtained by shrinking 

the electron path Pe to a point (see Fig. 2b), one finds 

[ 1 
photons 

Upe m = Upe = r-l i ‘i (= O(l)) (4.9) 

Next consider the paths P1 which include one and only one photon line i, such as 

Pg in Fig. 2c. We find UP9 IR = z123z7z8 . In general we have [ I 
(4.10) 

where z f is the sum of Feynman parameters of all electron lines between the end 

points of the internal photon line i. All other paths contain two or more photon 

lines and are at most of order 62. 

UII, = (4. 11) 

The formula (4.7) follows immediately from (4. 11). 

(CD) This result can be readily extended to the scalar current Ai , C and D 

being any vertices on Pe: 

We are now ready to evaluate [V(pflLR . To avoid unnecessary complication 

let us consider the case Q= 2 where external photons of momenta ki and k2 are 
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attached to the vertices C and D on the electron path Pe. Then we have 

-c, Q; = A!*‘) p +- AtcD) @ + kl) + AiD*) p’ 
1 1 1 

, (P’ = p+kl+k2) (4. 13) 

and 

c ziqi.Q; = c 
ieP(AC) 

zi biAc)p2 + AiCD) p . (p+k$ -I- A;DB)p.p;l 

+ c 
ieP(CD) 

zi 
[ 
AiAC)p. @-tkl) + AiCD) (p+kl)2 + AiD*) (p+kl)-p’l 

+ c + AICD) (p+k$p’ + AiDB)pf2] (4.14) 
ieP (DB) 

Taking account of (4.12)) we can write the II3 limit of (4.14) as 

c z AtAC) p2 + 
iEP(AC) i i 

c z.A!CD)(p+kl)2 + c 
ieP(CD) ’ ’ 

z.A!~*)~‘~ + 9(6 2, 
ieP(DB) ’ ’ 

(4.15) 

which leads to 

V(P)- c 
ieP(AC) 

zi 1-Ai ( tAc’J + icZ& Zi (1 -*~CD)(P+‘l)2/ 

-I- lx 
it-P(DB) 

(4.16) 

Note that the first and third terms are of order 82 because of (4.12) and the 

mass-shell condition p2=pf2= 1. On the other hand, the second term is of order 

6 unless (p+kl)2 = 1 which is not the case for general values of kl. Obviously 

these features of (4.16) can be readily generalized to arbitrary 8. 

As was noted already for (4.6)) the integral will not have II3 divergence 

unless V(p) vanishes more rapidly than 6. Thus it would appear from (4.16) that 

the integral cannot be JR divergent for Q> 2. This is of course a nonsense. The 

trouble is with (4.4) which is too simple-minded to take advantage of the fact 

that some terms of (4.16) are already of order 62. One way to solve this problem, 19 
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which we adopt here, is to define the overall lR limit by a sharper condition 

eta if ieP I”= Pe(AC) + Pe(DB) 

O(S2) if i E Pe(CD) or Pe/Pe i (4.17) 

O(1) if i $ Pe = Pe(AB) 

where C and D are external vertices nearest to A and B, respectively. Obviously 

[WPil, is now of order 62. 

We are now ready to examine how the integral MG behaves in the limit (4.1’7). 

Suppose first that soft virtual photons are all attached to PI” and at least one 

photon connects Pe(AC) and Pe(DB). Then we find 

&G 
U2VN-2n = ’ = O(1) for Q> 1 (4.18a) 

(for nonexceptional external photon momenta)which reveals the presence of IR 

divergence in MG. The leading term of this logarithmic singularity is of the 

form (Qn h)a where the value of 2 depends on the details of soft photon structure 

of G. If some soft virtual photons are attached to Pe(CD), on the other hand, the 

numerator will acquire extra powers of 6 and the integral will be IR-finite. 

For Q=O we obtain 

&G 
u2 VN-2n = o(6 

2 
) 

- 

(4.18b) 

instead of (4.18a). Thus the electron selfmass 6mG is not overall Eklivergent. 

However, the wave function renormalization constant BG has an overall IR 

divergence as is required by the Ward identity. 

The requirement in (4.17) that z., 
1 

i E Pe(CD), tend to zero faster than others 

means that these lines can be ignored insofar as the IR structure of MG is con- 

cerned. In other words, the II3 divergence is determined completely by the 
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mass-shell property of electron lines on PF. This is a generalization of the 

result found previously. 6 

ThGs far we have considered only diagrams with two electron legs. For 

diagrams with 4, 6, . . . electron legs some photons must be hard in general so 

that they do not fit exactly in the overall IR limit -(4.17). However, by selecting 

a minimum number of photons which are required to be hard by kinematics, 

and treating the remaining photons as soft, we can repeat the above analysis 

without trouble. Of course, it must be kept in mind that for some exceptional 

momenta the integral MG may have IH singularities stronger than the general 

logarithmic behavior. 

Before discussing the subdiagram IH singularities in the following sub- 

section, we shall extend the above results to generalized diagrams that contain 

not only the electron-electron-photon vertices of the standard QED but’ also 

generalized vertices with any number of photon legs and any even number of 

electron legs. 

Let us first consider a diagram containing a generalized vertex with 2k 

photon legs and no electron leg (any of these photons may be external) as shown 

in Fig. 3. Since it has ne= 2n+Q-l- 2(k-1) electrons and n =n+l photons, we 
P 

obtain 

&G 0 (s2@-1)) for Q=O 

U2VN-2n = 0(*w-2)) for Q?l 
(4.19) 

Thus the integral appears to be IR divergent for k=l, Q>_ and k=2, Q>l. Actually 

no IH divergence occurs in these cases because of gauge invariance. (Strictly 

speaking, gauge invariance is outside the scope of this section since it requires 

consideration of numerators of the integral MG. However, we only need some 

of its consequences. ) 
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In the case k=l, which is obtained by shrinking a photon self-energy insertion 

S to a point, we may replace all photon lines with self-energy insertions by the 

KallenTLehmann spectral representations for renormalized photon propagators. 

This leads to parametric integrals with “massive” internal photons. Diagrams 

with such massive photons will have no overall IR divergence since V(p) does not 

vanish in the limit (4.17). 

To dispose the case k=2, I> 1, which is obtained by replacing a photon-photon 

scattering subdiagram S by a four-photon vertex, let us rewrite the photon- 

photon scattering polarization tensor in a manifestly UV-finite form 16 

HKpv -1 
(P ,P2,P3,P) = -P 

v a -rI 
ab” 

KpGv(PIpP2,P3,p) 9 (4.20) 

which follows trivially from the gauge invariance of lI 
KPW ’ 

If p’ is the 

momentum of an internal photon i, then (4.20) introduces an explicit DV factor 

in the numerator of the integral MG. In the limit (4.17) we have Dr - Aip’ = 0( 6 ) 

since i $ Pe so that the k=2 divergence of (4.19) is suppressed by an extra factor 

of 6 in the numerator, rendering MG finite in the overall IR limit (4.17). 

Next consider a diagram containing a vertex with two electron legs and 

m (= 0, 1,2, . . . ) photon legs (see Fig. 4). It has ne=2n-l+Q-(m-l) electron 

lines and np = n photon lines . Thus in the limit (4.17))we have 

0 Urn) for Q=O 
% m-l 

I,2VN-2n = O(6 ) for Qzl vertex on PF 

Wrn) for Q> 1 vertex on P(CD) 

(4.21) 

For m 22 the integral MG is convergent. The case m=l is an ordinary vertex 

already covered by (4.18). The case m=O corresponds to mass counterterm 

insertion. Such a diagram can have worse IR divergence than a diagram without 
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an insertion for Q> 1. However this can be reduced to the case (4.18) by carrying 

out the mass renormalization of electron lines. 
-n 

Other conceivable generalized vertices have 4 or more electron legs. By 

the same kind of argument as above it can be shown that no new type of overall 

lR divergence arises in these cases. 

B. Subdiagram IR Singularities 

In order that V(p) behaves as d2 it is not really necessary that the external 

momenta p, p1 flow exclusively through the electron path Pe. What is crucial 

is the existence of nonempty paths Pe(AC) and Pe(DB) such that 

1 - A(*‘) = O(6) i 

1 - Ay) = O(6) 
(4.22) 

(CD) As was noted already the behavior of Ai is irrelevant. This means in 

particular that parts of p and p’ may be diverted to some photon.lines. Thus 

IR divergence may appear even if some photons become hard insofar as other 

photons enables us to satisfy (4.22). When the photon i become hard, the 

corresponding zi tend to zero in the IR limit and generate closed paths along 

which all zi vanish. This means that U vanishes, too. In fact this is what is 

needed to maintain the degree of IR divergence in spite of suppression of lR 

singularity coming from the phase space. 

In order to generalize the IR limit (4.17) to subdiagrams, it is therefore 

necessary to combine (4.17) with the W limit (2.3). Suppose we vvish to examine 

the IR singularity arising from the reduced diagram G/S where the subdiagram 

S consists of a set of closed loops. Noting that V(p) must be of order 62 for 

lR divergence to occur, let us define the lR limit f(zi) LR [ 1 G/S of an arbitrary 

parametric function f(zi) as the leading term in the double expansion in 6, & 
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where 

for i E PI” 

for i E Pe/Py i E G/S 

for i dPe 

(4.23a) 

zi= O(G) ) &ei2, for ieS (4.23b) 

PI” being the subset defined in (4.17). 

In Section II. B we have already seen that (4.23b) leads to the separation of 

parametric functions into functions defined on S alone and ones defined on G/S 

alone. Then (4.23a) reduces the latter to an overall IR limit on G/S. 

Let us consider a general subdiagram S of the diagram G shown in Fig. 5. 

The path Pe(CD) may be empty, i. e., we allow a subdiagram S which does not 

contain any electron line from Pe. (In that case m is even by Furry’s theorem. ) 

Photons entering S can be either internal or external to the diagram G as a 

whole. By Pe/S we mean the reduced electron path obtained by shrinking Pe(CD), 

the part of Pe contained in S, to a point. If there are any massive particle lines 

other than those of Pe, we have to consider only the case where they belong to 

S since V would be finite in the limit (4.23) otherwise. 

The IR limit of various parametric functions now-follow directly from the 

results of Section II. B. First of all we have 

CulIfJ G’S = us [uG/Sl, (= op)) 

II 1 Bij gs =‘B: [UG’qIR (= O(&nS-l)) , i,j E S 

(4.24) 

(4.25) 

For other pairs of i and j , [ 1 G/S Bij IR is of order 8’ nS and can be ignored compared 

with (4.25). 
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From (2.15) the scalar currents within G/S satisfy 

-L+]~~=[A~‘~]~=I for iePe, ieG/S 

(4.26) 
= O(6) for iq!Pe, i E G/S 

For A,, me S, we- can determine the IR limit by -first taking the W limit of the 

defining formula (4.8) 

(4.27) G/S S 
%ieUP uP 

G/S Now, in taking the limit (4.23a), we note that Upe IR = Upe and Up c 1 G/S c 1 G/S m = 0( 6 ) 

if PfPe. Thus, only paths containing P”/S will contribute to the above summation 

in the IR limit, yielding 

c 1 A G/S 
mlR = ASm (CD) = As m for m E S; C,DonPe 

(4.28) 
= O(6) for m E S; C, D not on Pe 

In terms of these results we can now evaluate [V]g” as follows: 

1 
G/S 

Zmtl-qm*Qh) + C 
electron 

Zimf? 
I ” loops in S 

I 
G/S Zitl- qi’ Q~) 
IR 

= c zm(l-~-Qc)+ c z 
iePe(CD) electron 

loops in S 

zi(l - qi’ Q;G’S) 1R 
I 

JIR 

m2 i i 

(4.29) 
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Thus in the IR limit the function V separates into the S and G/S parts of the same 

order 
-h 

[V-j G’S JR = ‘S + vG/S JR [ 1 (4.30) 

Just as in Section III the separation of U and V into the S and G/S pieces 

enables us to factor the parametric integral over the IR limit integrand into a 

product of S and G/S integrals. This factorization is trivial in the Schwinger- 

Nambu representation (2.1). In the compact domain representation (4.1) it is 

implemented by inserting the identity 

and resealing 

z. - sz. ieS 
1 1 

z. - tz. 
1 1 

i E G/S 

< - in the separated integral 

The desired factorization is then achieved by the Feynman formula 

r&+Q) j- 81-s-t) sk-’ ds i!--‘dt ---J?(k) Qkj 
(sA+ tB)k+Q Ak BQ 

(4.31) 

(4.32) 

(4.33) 

The reduced diagram G/S is one of the diagrams with generalized vertices 

discussed in Section IV.A, and determining whether the diagram G has a 

divergence in the IR limit (4.23) reduces to determining all G/S that are overall 

Ix. -divergent. 

Thus far we have concentrated on the no-contraction term in (4.1). In the 

overall IR limit this is sufficient for determining the leading singularity of the 
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integrand since each contraction diminishes the power of V in the denominator. 

For the IR limit (4.23), however, it is possible that the higher contractions are 

as sing;Iar as the no-contraction term since the decrease in the singularity due 

to vanishing of V may be compensated by the increased singularity coming from 

vanishing of U. Each contraction introduces a factor BijV/U. From (4.25) we 

note that if m, neS 

[ I B mn v/u $” 2g [v]I”R/” = o (&-l) (4.34) 

Thus internal contractions within S will produce terms of the same order in the 

IR limit as the noncontracted term. All other contractions introduce factors of 

order 62 and do not contribute in this limit. Again IR divergences occur only 

if G/S has an overall JR divergence. 

Let us summarize this section by giving a prescription for locating all IR 

singularities of a diagram G. Find all subdiagrams S, consisting of several 

closed loops, of G such that the reduced diagram G/S is free from any massive 

particle lines not belonging to the electron path Pe. Find the degree of overall 

IR divergence of the reduced diagram G/S in each case. Repeat this procedure 

for the reduced diagram G/S successively. Finally find the JR singularity of 

the diagram G itself. This procedure will exhaust all IR singularities associated 

with a QED diagram G. 
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V. SEPARATION OF IR DIVERGENCE 

In Section IV we have derived rules for locating IR singularities in the 
4r 

parametric space and determining whether they give rise to IR divergences. 

For that purpose it was sufficient to consider zeros of the denominator V(p). 

We have also seen that, in the II&singular region, parametric functions 

separate, suggesting the factorization of the integrand. We shall now extend 

our consideration to the whole integrand, determine the IR limits of all terms, 

and show that such a factorization indeed takes place. We shall then construct 

an IR subtraction scheme analogous to the K-method for W divergence. 

To avoid unnecessary complication let us consider in this section only a 

vertex diagram G with qf 0. The electron self-energy diagram can be treated 

as a special case of vertex diagram with q= 0. Some extension of our method 

is necessary to deal with general diagrams. 

A. Overall IR Limit 

The numerator F. of the no-contraction term consists of y-matrices from 

vertices and electron propagator factors @;+ 1, where, according to (I. 77), 

Q# = A(*V) 

i i (p - q/2)’ + A?) (p + q/2)cL (5-l) 

V being the position of the vertex ?/” to which the external photon is attached. In 

the following we shall drop the superscript (AB) whenever no ambiguity arises so 

that we denote A =A(**), V@)=V(**)(p), etc. According to (4.12), in the i i 

overall lR limit, we have 

i 

P-q/2 = P’ i c Pe(AV) 

Cl Q! = 
1IR 

p+q/2 = p” i E Pe(VB) (5.2) 

oh3 otherwise 

i.e., all external momenta flow through the electron path Pe. 
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The general structure of the numerator F. is of the form 

F. = i;(p”) F;u@‘) = ti(p”) yo(p”+ 1). . . y’. . . @‘+l) y 
P 

u(p’) (5 - 3) 
-c, 

where y Q! P , y , . . . are contracted with y y 
o!!’ P’“’ 

somewhere in the above product. 

To simplify (5.3) we recall 

(I++ 1) r,u@‘, = BP;‘-@‘) (5.4) 

(In the following we shall not write the spinor factor ii( u(p’) explicitly. But 

it is to be understood that all Fk are evaluated sandwiched between spinors.) By 

repeated applications of (5.4) we can readily reduce the factors to the right (left) 

of ?y in (5. 3) to F (2~;) (i (2~“)~). Thus F. in (5.3) can be written, for 

p’2 ,pl’2 = 1, as 

-V 

11 F o IR = 4y-p’. p”)rn yv z fEy” (5.5) 

(if G has no fermion loop) where m is the number of photons crossing the external 

vertex V. In the overall IR limit the numerator therefore reduces to the bare 

vertex yv , and hence the magnetic contribution is at most of order 6: 

>i Imag. mom.] IR = O(*) (5.6) 

Since vertex diagrams are superficially logarithmically IR divergent, (5.6) will 

suppress the singularity and make the contribution to--the magnetic moment 

overall lR-finite. Charge form factors are of course overall IR-divergent. Let 

us define the overall IR divergent part of the vertex diagram lYv (‘@ of (I. 70) by 

dzG s(l-zG) G 
b-l)! Yv j- U2VN-2n fIR = gGYv (5 * 7) 

Note that f& in (5.7) could be replaced by any parametric function that has the 

same IR limit as (5.5). W-d v For example, we could have defined rIR using the 
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entire F. for the numerator. Similarly U and V could have been replaced by 

some other functions, as long as they have the same IR limits as U and V. 

B-. Sucdiagram IR Limit 

According to (4.26) and (4.28) we have 

r P’ i e Pe(AV) , i E G/S 

I P” i E Pe(VB) ,, 

[I &I G/S = 
iIR 

i 

om idPe, 

A;p’ Pe(CD) C Pe(AV) , 

Asp’! Pe(CD) C Pe(VB) , 

i E G/S 

i E G/S 
(5.8) 

ie S 

ie S 

I if the vertex V is in S , ie S 

where A: z Ay(CD). The definition of the paths is clarified in Fig. 5. 

The contribution of G/S lines to the numerator Fk will reduce to the numer- 

ical factor G/S 
5.R while the lines from S will retain the y-matrix structure. 

Because of (4.34) all contractions will occur within S and the numerator factor 

arising from the (noncontracted) G/S lines will be the same for all Fk. We 

G/S therefore expect factorization of the type IF - F. L ’ _ ,R It?‘. Since there are 

only few possible subdiagrams S for our vertex diagram G, let us establish it 

for each type of S separately. - 

9 Electron self-energy. With the help of (5.8) we find 

c3 G/S = F. IR fgs yVFO pm,] (5 * 9) 

where f”R/” is a generalization of (5.5) to electron self-mass insertion diagram 

G/S. Repeating this for all Fk we obtain 

c 1 uFv G/S= fG/S v JR IR _ Y w pm,] , S = electron s.e. (5.10) 
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(ii) Internal vertex (excludes the vertex V). We have 

c, [ 1 IF” G/S LR = fgSyVlyLs] 
(iii) External vertex (includes the vertex V). We find 

[I lFv G/S IR 

(5. 11) 

(5. 12) 

Similar results are obtained if G is an electron self-energy diagram; G/S 

G/S always gives a factor fIR . Thus we have established the factorization of 

parametric integrands in the IR limit. 

C. Subtraction of IR Singularities 

The simplest way for constructing an integrand less singular than JG in the 

IR limit (4.23) would be to replace it by JG - JG IR 
[J 

G’s . . However [u]$’ is too 

singular in the zi - 0 limit where i is a photon line in G/S. Thus such a sub- 

traction would introduce a spurious W divergence. We shall avoid this by 

.20 defining the subtraction term using the IG,s operation defined by 

‘G/S JG = fIR 
G/‘SFS 1 

‘; u;,~&+v~,&N-2n 
(5. 13) 

where fg” must be replaced by y v G/S fIR if G/S includes the external vertex V. 

By construction we have [IG,s Jdzs = [Jdgs so that (1 -IG,s) JG is also less 

singular in the IR limit (4.23) than JG. We choose to make the replacements 

[ 1 ‘G/S IR - ‘G/S ’ ‘G/S IR - vG/S [ 1 in defining (5.13) so that our I-operation 

parallels the K-operation. We could also have replaced the numerator factor 

G/S fIR by any function f h/S such that fG’S IR = f2. c 3 (In the subsequent article’ 

we shall find such redefinition to be convenient. ) 
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We are now ready to define the I- and K-finite part of the Feynman amplitude 

mG = r \ 

i 
’ - ‘G/Si, A’“G 

(5.14) 

where AtMG is given by (2.25) and the product goes over all electron self-energy 

and vertex subdiagrams Si. Strictly speaking, (5.14) may still contain logarithmic 

IR divergence since the superficial IR divergence may be linear for the electron 

self-energy subdiagram S. However such problems do not arise in our particular 

application. 3 We shall therefore not worry about this problem any further. 

In terms of (4.33) and (5.10 - 5.12) we find that the subtraction terms 

factorize as 

gG/S ” 6mS if S is an electron s. e. 

‘c/S% = gG/S yv LS if S is an internal vertex (5.15) 

gG/S r”s if S is an external vertex 

where gG is defined by (5.7). Physically the decomposition (5.15) means that 

IR divergence occurs whenever the diagram G separates into a cloud of soft 

photons attached to the external electron lines (reduced diagram G/S) and an 

“inner” diagram S whose photons carry arbitrary momenta. gG/S may be a 

complicated integral. However, in calculating physical processes, these 

IR-divergent integrals will cancel each other identically and need not be 

evaluated explicitly. 

Let us also note that, according to (5.15), only those diagrams containing an 

external vertex subdiagram will give m-divergent contributions to the magnetic 

moment. All other magnetic moment contributions defined by (5.14) will be 

IR-finite. 
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APPENDIX. CALCULATION OF I@p2) 

We shall describe how (3.5) can be consistently implemented in the 
-h 

parametrized Feynman integrals. Note that for /.t $ v , 

a a -- 
aPa! 

,,p 47 =, (ca gi + !$f$) nG + (df, pv , - l . terms) (A. 1) 

All external momentum p dependence of IIF is contained in FLV terms in the 

numerator and the exponent V(p). One can symbolically write 

a a - (IFpv aP, ap 
e + (l?PP, terms) 

P 

-iv@) ) = ;:I@; ,-iv@) 
01 P 

4-l 

with 

a2Fpv electrons 

ap, aP =c 
P f i j AiAj lF;” o!p 

(A. 2) 

(A. 3) 

where (A. 3) is obtained by noting that all p dependence of F is in the non- 

contracted factors Q; + mi, Qi=Aid . IF?;’ G/3 is obtainedkfr om IF” by 

replacing factors pli+mi and gj+mj by yQ and y’. Then lIG is obtained by 

- 
The redefinition (3.5) has to be consistently incorporated in all diagrams 

with photon self-energy subdiagram S. One way of doing this is by first 

parametrizing the subintegral IIY , substituting (3.5) and (A. 4)) and then 

parametrizing the rest of the integral. It is not obvious that this two step 

parametrization will lead to the same form of the parametric integral as our 

usual overall parametrization. However, following the arguments of Section 3 
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of I, it is easy to show that 

u=uu (z S G/S ii1 - ‘ii’ + Gs) (A. 5) 

where S is inserted between the lines i and i1 and GS is given by 

Vs= c z.m”-p;GS 
j&S ’ ’ 

(A- 6) 

Thus the two-step parametrization is in fact the same as the overall parametri- 

zation. Making use of (I. 95) we can also rewrite AiAi appearing in (A. 3) in 

terms of overall parametric functions, noting that 

AS m = Am/A. 
1 

meS (A. 7) 
Thus, if some diagram G contains a photon self-energy insertion S, we obtain 

MG = i”(4.J s &G 

(4 ni) 7 
IF (D,) emi’@) 

with 

lF(D)=lEPvIF k IJV 

(A. 8) 

(A. 9) 

where lEPv contains numerator factors from j BS, and IF is the numerator 
PV 

factor from the electron lines in S. Then (3.5) is implemented by the replace- 

ment 

IFIDk) 
(-Di * Di,) electron 

A2 ZntS 
A A lF@ m n pv,mn 

i 

a=p, p=v; cY#p . (A. 10) 
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LIST OF FIGURES 

1. Feynman diagram G with two electron legs, 1 photon legs and a cloud of 

$?tual photons and electrons. 

2. (a) A diagram G with no internal photon loops. (b) The reduced diagram 

obtained by shrinking the electron path in G. (c) A path Pg going through 

photon line 9. 

3. A diagram with a generalized 2k-photon vertex. 

4. A diagram with a generalized vertex with two electron and m photon lines. 

5. A diagram G with a general subdiagram S. 
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