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Search Problems

Each instance is associated with a finite set of feasible
solutions.

Each feasible solution has a cost.

Objective is to find a solution of minimum (maximum)
cost.
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Search Problems

Each instance is associated with a finite set of feasible
solutions.

Each feasible solution has a cost.

Objective is to find a solution of minimum (maximum)
cost.

Define a “Neighborhood” for each solution.

A solution is said to be locally optimal if there is no
solution in its neighborhood with “better” cost.
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Motivation

Local search algorithms have been observed to be
efficient in practice.

The assumption that local optima are easy to obtain
has never been challenged.
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Motivation

Local search algorithms have been observed to be
efficient in practice.

The assumption that local optima are easy to obtain
has never been challenged.

How easy is it to find a local optimum ?
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The Class PLS -Polynomial-time LocalSearch

A PLS problem L can be a maximization or minimization
problem:

L has a set DL of instances.

For each instance x ∈ DL we have a finite set FL(x) of
solutions, all with the same polynomially bounded
length.

For each solution s ∈ FL(x), we have a non-negative
integer cost cL(s, x) and also a subset N(s, x) ⊆ FL(x)
called the neighborhood of s.

And the following algorithms must exist.
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The Class PLS -Contd.

Polynomial-time algorithms AL, BL & CL such that:

Given an instance x ∈ DL, AL produces a particular
standard solution AL(x) ∈ FL(x).

Given an instance x and a string s, BL checks if
s ∈ FL(x) and if so, computes that cost cL(s, x).

Given an instance x and a solution s, CL identifies an
solution s′ ∈ N(s, x) with better cost if it exists OR
reports that s is locally optimal.
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Standard Local Search Algorithm

Inherent in the definition of a PLS problem, is the following
algorithm:

1. Given x, use AL to produce a starting solution
s = AL(x).

2. Repeat until locally optimal:
Apply algorithm CL to x and s.
If CL yields a better cost neighbor s′ of s, set s = s′.
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Standard Algorithm Problem

Given x, find the local optimum s that would be output by
the standard local search algorithm for L on input x.
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Standard Algorithm Problem

Given x, find the local optimum s that would be output by
the standard local search algorithm for L on input x.

LEMMA 1. There is a PLS problem L whose standard
algorithm problem is NP-hard.

Hence, general polynomial time algorithms for the standard
algorithm problems, seems unlikely.
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What About Some Local Optimum ?

LEMMA 4. If a PLS problem is NP-Hard, then NP=co-NP.

Finding some local optimum for a PLS problem L is an
“easier” task than finding the local optimum that is output by
the standard algorithm for L.
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PLS Reducibility

A problem L in PLS is PLS-reducible to another, K, if there
are polynomial-time computable functions f and g such that

1. f maps instances x of L to instances f(x) of K.

2. g maps (solution of f(x), x) pairs to solutions of x.

3. For all instances x of L, if s is a local optimum for
instance f(x) of K, then g(s, x) is a local optimum for x.

L ≤pls K

f

x −→ f(x)

g

(g(s), x) ←− (s, f(x))
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PLS Reducibility -Contd.

LEMMA 5. If L,K, J are problems in PLS such that
L ≤pls K and K ≤pls J , then L ≤pls J .

LEMMA 6. If L,K are problems in PLS such that L ≤pls K

and if there is polynomial-time algorithm for finding local
optima for K, then there is also a polynomial-time algorithm
for finding local optima for L.

A problem L in PLS is said to be PLS-Complete if every
problem in PLS is PLS-reducible to L.
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Problem Definition: FLIP

FLIP: Given a circuit x with m inputs and n outputs, a
solution in FFLIP (x) is any bit vector s with m components.
It has m bit vectors of length m with hamming distance one
from s as neighbors. The cost of solution s is defined as
∑n

j=1
2jyj, where yj is the jth output of the circuit x with

input s.

Algorithm AFLIP returns the all-1 vector, BFLIP

(cost-computation) is straight-forward from above and
CFLIP returns the best of the m neighbors of s (ties broken
lexicographically) if s is not locally optimal.

FLIP is a minimization problem.
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First PLS-Complete Problem

THEOREM 1. FLIP is PLS-Complete.

So is MAXFLIP.

COROLLARY 1.1.
(a) The standard algorithm problem for FLIP is NP-hard.
(b) There are instances of FLIP for which the standard
algorithm requires exponential time.
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Other PLS-Complete Problems

GRAPH PARTITIONING under Kernighan-Lin
neighborhood. Johnson, Papadimitriou & Yannakakis
1988.

GRAPH PARTITIONING under the Swap
neighborhood. Schäffer & Yannakakis 1991.

MAX CUT under the Flip neighborhood. Schäffer &
Yannakakis 1991.

MAX 2SAT under the Flip neighborhood. Schäffer &
Yannakakis 1991.

TSP under the k-opt neighborhood. Krentel 1989.

TSP under the Lin-Kernighan neighborhood.
Papadimitriou 1990.
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