Dynamic Network Topologies: Chord [SML+ 03] and Koorde [KK 03]

Greg Plaxton
Internet Algorithms, Fall 2003
Department of Computer Science
University of Texas at Austin

Chord [SML+ 03]

- Arrange all $2^{b} b$-bit IDs on a ring ($b=128$, say $)$
- Each node chooses a random ID; collisions unlikely
- Each object stored in the DHT is hashed to a random ID
- Each node x is responsible for objects with IDs in the interval between the predecessor of x and x (excluding the predecessor of x)
- Each node maintains a finger table

The Chord Finger Table

- The i th finger of a node x is the first node succeeding x by at least 2^{i-1} positions on the ring
- The number of distinct fingers is $\Theta(\log n)$ whp
- Maximum node indegree is $\Theta\left(\log ^{2} n\right)$ whp

Lookup

- Number of messages per lookup $\sim \frac{1}{2} \log n$ expected, $O(\log n)$ whp
- The constant factor can be improved by increasing the number of fingers, e.g., by having a finger for each power of $1+\varepsilon$ offset instead of each power of 2

Load Balance

- Maximum fraction of the namespace "owned" by a single node is $\Theta\left(\frac{\log n}{n}\right)$ whp
- By simulating $O(\log n)$ virtual nodes at each physical node, this fraction can be improved to $\Theta\left(\frac{1}{n}\right)$ whp
- But this increases the expected degree of each node to $O\left(\log ^{2} n\right)$

Join

- Pick your ID and look it up to find you successor
- Node i updates its fingers periodically by looking up ID $i+2^{j}$ modulo 2^{d} for each j
- The total cost of these lookups is $O\left(\log ^{2} n\right)$ expected and whp

Leave

- Passive approach
- Some fingers may become invalid
- This is a temporary problem since fingers are periodically recomputed
- The lookup protocol still works since fingers are just an optimization, i.e., successor pointers alone suffice to perform lookups (albeit slowly)

Dynamic Behavior of Chord [LBK 02]

- In practice, a large Chord network is rarely in an "ideal" state, since nodes are constantly joining and leaving
- Any peer-to-peer network needs to expend $\Omega(n \log n)$ messages per half-life in order to remain connected
- A dynamic version of Chord is presented that matches this lower bound to within a polylogarithmic factor
- Understanding the dynamic behavior of peer-to-peer systems is an important area for future research

Fault Tolerance

- Modify Chord so that each node keeps track of $O(\log n)$ successors instead of just one
- Modify the lookup algorithm to use an appropriate successor pointer whenever the desired finger node is down
- Even if each node independently crashes with probability $\frac{1}{2}$, each lookup (of an object at a live node) succeeds within $O(\log n)$ messages whp

Koorde [KK 03]

- A modified version of Chord based on de Bruijn graphs, one type of bounded degree hypercubic topology
- In a d-dimensional de Bruijn graph, there are 2^{d} nodes, each of which has a unique d-bit ID
- The node with ID i is connected to nodes $2 i$ and $2 i+1$ modulo 2^{d}
- Can route to any destination in d hops by successively "shifting in" the bits of the destination ID

Koorde Neighbors

- A node with ID i maintains pointers to two other nodes:
- The successor of i
- The predecessor of node $2 i$ modulo 2^{d}, where d denotes the number of bits in an ID, e.g., 128
- Koorde emulates the de Bruijn lookup path by visiting the predecessor of each de Bruijn ID on that path
- Sometimes it is necessary to follow additional successor pointers in order to maintain this invariant
- Still, the total number of messages per lookup is $O(\log n)$ whp

Non-Constant Degree Koorde

- The d-dimensional de Bruijn can be generalized to base k, in which case node i is connected to nodes $k \cdot i+j$ modulo $k^{d}, 0 \leq j<k$
- The diameter is reduced to $\Theta\left(\log _{k} n\right)$
- Koorde node i maintains pointers to k consecutive nodes beginning at the predecessor of $k \cdot i$ modulo k^{d}
- Each de Bruijn routing step can be emulated with an expected constant number of messages, so routing uses $O\left(\log _{k} n\right)$ expected hops
- For $k=\Theta(\log n)$, we get $\Theta(\log n)$ degree and $\Theta\left(\frac{\log n}{\log \log n}\right)$ diameter

Fault Tolerance

- Koorde node i maintains pointers to:
- A block of $\Theta(\log n)$ successors as in Chord
- A block of nodes consisting of $\Theta(\log n)$ nodes before, and $\Theta(\log n)$ nodes after, position $i \cdot k$ modulo 2^{d}
- Even if each node independently crashes with probability $\frac{1}{2}$, each lookup (of an object at a live node) succeeds within expected $O\left(\frac{\log n}{\log \log n}\right)$ messages

