
Dynamic Network Topologies: Chord
[SML+ 03] and Koorde [KK 03]

Greg Plaxton

Internet Algorithms, Fall 2003

Department of Computer Science

University of Texas at Austin

Chord [SML+ 03]

• Arrange all 2b b-bit IDs on a ring (b = 128, say)

• Each node chooses a random ID; collisions unlikely

• Each object stored in the DHT is hashed to a random ID

• Each node x is responsible for objects with IDs in the

interval between the predecessor of x and x (excluding the

predecessor of x)

• Each node maintains a finger table

Internet Algorithms, Plaxton, Fall 2003

The Chord Finger Table

• The ith finger of a node x is the first node succeeding x by

at least 2i−1 positions on the ring

• The number of distinct fingers is Θ(log n) whp

• Maximum node indegree is Θ(log2 n) whp

Internet Algorithms, Plaxton, Fall 2003

Lookup

• Number of messages per lookup ∼ 1
2 log n expected,

O(log n) whp

– The constant factor can be improved by increasing the

number of fingers, e.g., by having a finger for each power

of 1 + ε offset instead of each power of 2

Internet Algorithms, Plaxton, Fall 2003

Load Balance

• Maximum fraction of the namespace “owned” by a single

node is Θ(log n
n) whp

– By simulating O(log n) virtual nodes at each physical

node, this fraction can be improved to Θ(1
n) whp

– But this increases the expected degree of each node to

O(log2 n)

Internet Algorithms, Plaxton, Fall 2003

Join

• Pick your ID and look it up to find you successor

• Node i updates its fingers periodically by looking up ID

i + 2j modulo 2d for each j

– The total cost of these lookups is O(log2 n) expected

and whp

Internet Algorithms, Plaxton, Fall 2003

Leave

• Passive approach

• Some fingers may become invalid

– This is a temporary problem since fingers are periodically

recomputed

– The lookup protocol still works since fingers are just

an optimization, i.e., successor pointers alone suffice to

perform lookups (albeit slowly)

Internet Algorithms, Plaxton, Fall 2003

Dynamic Behavior of Chord [LBK 02]

• In practice, a large Chord network is rarely in an “ideal”

state, since nodes are constantly joining and leaving

• Any peer-to-peer network needs to expend Ω(n log n)
messages per half-life in order to remain connected

– A dynamic version of Chord is presented that matches

this lower bound to within a polylogarithmic factor

• Understanding the dynamic behavior of peer-to-peer

systems is an important area for future research

Internet Algorithms, Plaxton, Fall 2003

Fault Tolerance

• Modify Chord so that each node keeps track of O(log n)
successors instead of just one

• Modify the lookup algorithm to use an appropriate successor

pointer whenever the desired finger node is down

• Even if each node independently crashes with probability 1
2,

each lookup (of an object at a live node) succeeds within

O(log n) messages whp

Internet Algorithms, Plaxton, Fall 2003

Koorde [KK 03]

• A modified version of Chord based on de Bruijn graphs, one

type of bounded degree hypercubic topology

• In a d-dimensional de Bruijn graph, there are 2d nodes,

each of which has a unique d-bit ID

– The node with ID i is connected to nodes 2i and 2i + 1
modulo 2d

– Can route to any destination in d hops by successively

“shifting in” the bits of the destination ID

Internet Algorithms, Plaxton, Fall 2003

Koorde Neighbors

• A node with ID i maintains pointers to two other nodes:

– The successor of i

– The predecessor of node 2i modulo 2d, where d denotes

the number of bits in an ID, e.g., 128

• Koorde emulates the de Bruijn lookup path by visiting the

predecessor of each de Bruijn ID on that path

– Sometimes it is necessary to follow additional successor

pointers in order to maintain this invariant

– Still, the total number of messages per lookup is O(log n)
whp

Internet Algorithms, Plaxton, Fall 2003

Non-Constant Degree Koorde

• The d-dimensional de Bruijn can be generalized to base k,

in which case node i is connected to nodes k · i + j modulo

kd, 0 ≤ j < k

• The diameter is reduced to Θ(logk n)

• Koorde node i maintains pointers to k consecutive nodes

beginning at the predecessor of k · i modulo kd

– Each de Bruijn routing step can be emulated with an

expected constant number of messages, so routing uses

O(logk n) expected hops

– For k = Θ(log n), we get Θ(log n) degree and Θ(log n
log log n)

diameter

Internet Algorithms, Plaxton, Fall 2003

Fault Tolerance

• Koorde node i maintains pointers to:

– A block of Θ(log n) successors as in Chord

– A block of nodes consisting of Θ(log n) nodes before,

and Θ(log n) nodes after, position i · k modulo 2d

• Even if each node independently crashes with probability 1
2,

each lookup (of an object at a live node) succeeds within

expected O(log n
log log n) messages

Internet Algorithms, Plaxton, Fall 2003

