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ABSTRACT 
 

 

NEW METHODS FOR VOICE CONVERSION 
 

 

This study focuses on various aspects of voice conversion and investigates new 

methods for implementing robust voice conversion systems that provide high quality 

output. The relevance of several spectral and temporal characteristics for perception of 

speaker identity is investigated using subjective tests. These characteristics include the 

subband based spectral content, vocal tract, pitch, duration, and energy.  Two new 

methods based on Wavelet Transform and selective preemphasis are described for 

transformation of the vocal tract spectrum. A new speaker specific intonational model is 

developed and evaluated both in terms of accuracy and voice conversion performance. A 

voice conversion database in Turkish is collected and employed for the evaluation of the 

new methods. 
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ÖZET 
 

 

KONUŞMACI DÖNÜŞTÜRME İÇİN YENİ YÖNTEMLER 
 

 

Bu çalışma, konuşmacı dönüştürmeyle ilgili farklı yönler üzerinde yoğunlaşmakta 

ve yüksek kalitede çıktı sağlayan gürbüz konuşmacı dönüştürme sistemlerinde 

kullanılabilecek yeni yöntemlerin geliştirilmesini amaçlamaktadır. Öznel deneyler 

kullanılarak farklı izgel ve zamansal özelliklerin konuşmacı kimliğinin algılanmasına 

etkileri incelenmektedir.  Bu özellikler arasında konuşma işaretlerinin farklı sıklık 

aralıklarındaki izgel içerikleri, gırtlak yapısı, ses perdesi, süre ve enerji yer almaktadır. 

Dalgacık dönüşümü ve seçici önvurgulamaya dayalı iki yeni yöntemle gırtlak yapısı 

dönüşümü gerçekleştirilmektedir. Konuşmacıya özgü yeni bir titremleme modeli 

geliştirilmiş, doğruluk ve konuşmacı dönüştürmedeki başarım açılarından incelenmiştir. 

Türkçe bir konuşmacı dönüştürme veri tabanı hazırlanmış ve önerilen yöntemlerin 

değerlendirilmesinde kullanılmıştır. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 vi

TABLE OF CONTENTS 

 

 
ACKNOWLEDGEMENTS...............................................................................................iii 

ABSTRACT.......................................................................................................................iv 

ÖZET...................................................................................................................................v 

LIST OF FIGURES............................................................................................................ix 

LIST OF TABLES.............................................................................................................xv 

LIST OF ABBREVIATIONS.........................................................................................xvii 

1. INTRODUCTION........................................................................................................1 

1.1. Motivation.............................................................................................................1 

1.2. Definition and General Framework......................................................................3 

1.3. Review of Literature.............................................................................................3 

1.4. Applications..........................................................................................................6 

1.4.1.  Dubbing Applications................................................................................6 

1.4.2.  Speech Processing Applications................................................................8 

1.4.3.  Multimedia/Music Applications..............................................................10 

2. PROBLEM STATEMENT.........................................................................................11 

3. THEORETICAL BACKGROUND.............................................................................13 

3.1.  Theory of Speech Production.............................................................................13 

3.2.  Modeling the Filter Component..........................................................................15 

3.2.1.  Linear Prediction Coefficients................................................................15 

3.2.2.  Alternative Parameter Sets......................................................................18 

3.2.3.   Cepstral Coefficients...............................................................................18 

3.2.4.   Line Spectral Frequencies (LSFs)...........................................................19 

3.2.5.   Sinusoidal Model....................................................................................22 

3.2.6.   Improved Power Spectrum Envelope (IPSE) Analysis..........................22 

3.3.  Modeling the Source Component.......................................................................24 

3.3.1.  Impulse/Noise Model..............................................................................24 

3.3.2.  Multiband Excitation (MBE) Model.......................................................25 

3.3.3.  Glottal Flow Models...............................................................................26 

3.4.  Modification of  the Filter Component...............................................................27 



 vii

3.4.1.  Training...................................................................................................28 

3.4.2.  Transformation........................................................................................29 

3.5. Modification of the Source Component..............................................................32 

3.5.1 Time Domain Pitch Synchronous Overlap-Add (TD-PSOLA)            

Algorithm................................................................................................32 

3.5.1.1.  Time Scale Modification.........................................................33 

3.5.1.2.  Pitch Scale Modification..........................................................34 

3.5.1.3.  Synthesis By Overlap-Add......................................................34 

3.5.2. Frequency Domain Pitch Synchronous Overlap-Add (FD-PSOLA)  

 Algorithm................................................................................................35 

3.5.2.1.  Harmonics Elimination-Repetition..........................................35 

3.5.2.2.  Spectral Compression-Expansion............................................35 

3.5.2.3.  Synthesis..................................................................................37 

3.5.3.  Excitation Transformation......................................................................39 

3.5.4.  Other Methods........................................................................................40 

3.6.  Modeling and Transforming the Pitch................................................................40 

3.6.1.  Mean/Variance Model............................................................................41 

3.6.2.  Sentence Codebooks...............................................................................42 

3.6.3.  Fujisaki’s Model.....................................................................................43 

3.7. Subband Processing and DWT...........................................................................44 

4. SUBJECTIVE TESTS FOR PERCEPTION OF SPEAKER IDENTITY...................48 

4.1. Subjective Assessment of Frequency Bands for Perception of Speaker  

Identity................................................................................................................48 

4.1.1.  General Framework................................................................................48 

4.1.2.  Methodology...........................................................................................49 

4.1.2.1.  Part I.........................................................................................50 

4.1.2.2.  Part II.......................................................................................51 

4.1.2.3.  Part III......................................................................................51 

4.1.3.  Results.....................................................................................................52 

4.2.  Acoustic Feature Transplantations......................................................................54 

4.2.1.  General Framework................................................................................54 

4. 2.2.  Vocal Tract Transplantation...................................................................58 

4. 2.3.  Pitch Contour Transplantation................................................................59 



 viii

4. 2.4.  Transplantation of Phonemic Durations.................................................61 

4. 2.5.  Energy Contour Transplantation.............................................................63 

4. 2.6.  Multi-Feature Transplantations...............................................................64 

4. 2.7.  Methodology...........................................................................................64 

4. 2.8.  Results.....................................................................................................65 

5. NEW METHODS FOR VOICE CONVERSION.......................................................74 

5.1.  DWT System for Subband Based Voice Conversion.........................................74 

5.1.1.  Training...................................................................................................76 

5.1.2.  Transformation........................................................................................77 

5.2.  Selective Preemphasis System............................................................................78 

5.2.1.  Analysis..................................................................................................80 

5.2.2.  Synthesis.................................................................................................82 

5.2.3.  Demonstration ........................................................................................83 

5.2.4.  Perceptual Filterbank Design..................................................................85 

5.2.5.  Training...................................................................................................86 

5.2.6.  Transformation........................................................................................87 

5.3.  Comparison of Vocal Tract Transformation Methods........................................88 

5.4.  A Segmental Pitch Contour Model for Pitch Contour Transformation..............90 

6. TEST DESIGN AND EVALUATIONS....................................................................94 

6.1.  Design of the Voice Conversion Database.........................................................94 

6.2.  Design of Perceptual Tests for Voice Conversion..............................................95 

6.2.1. Comparison of the DWT Based System with the Full-band  

System.....................................................................................................95 

6.2.2.  Evaluation of the New Methods.............................................................95 

6.3.  Objective Tests.................................................................................................104 

 6.3.1.  Comparison of LP and Selective Preemphasis Based Spectral  

  Estimation.............................................................................................104 

 6.3.2.  Source to Target and Transformed to Target Distances.......................105 

7. CONCLUSIONS......................................................................................................107 

APPENDIX A : VOX – A VOICE CONVERSION SOFTWARE.................................110 

REFERENCES................................................................................................................114 

 

 



 ix

LIST OF FIGURES 

 

 
Figure 1.1. General framework for voice conversion.………………….…………...2 

 

Figure 3.1.  Human speech production system…………………..….………...........13 

 

Figure 3.2.  Speech production model........................................................................14 

 

Figure 3.3.  Modified source/filter model for speech production .............................15 

 

Figure 3.4.   Spectral envelope obtained by LP analysis (left) and IPSE method  

  (right)(Prediction order  was 18 for a sampling rate of 16 KHz.)….….23 

 

Figure 3.5.   Excitation spectrum after the LP analysis (left) and the IPSE  

  method (right).………………….………………………………….…..23 

 

Figure 3.6.   Glottal waveforms for unvoiced (left) and voiced (right) signal     

  segments.………………….………………………………….………...24 

 

Figure 3.7.  LPC vocoder flowchart……………………………………….………..25 

 

Figure 3.8.  Glottal flow (Ug) and its derivative(dUg) in the LF model.....................27 

 

Figure 3.9.  Flow chart for STASC training algorithm.……………..……………...29 

 

Figure 3.10.  Flow chart for STASC transformation algorithm.………………..........30 

 

Figure 3.11.   Time scale expansion (left) and compression (right).………….…........33 

 

Figure 3.12.  Pitch scale compression (left) and expansion (right).…………........….33 

 



 x

Figure 3.13.  Original FFT and LPC spectrum (top), and excitation spectrum 

(bottom)………………………………………………..…………........36 

 

Figure 3.14.  Modified FFT spectrum (top) and modified excitation spectrum  

 (bottom) for a pitch scaling ratio of 2.0 using compression/expansion 

technique.………………………………….……………..…………….36 

 

Figure 3.15.  Human auditory system..........................................................................44 

 

Figure 3.16.  DWT flowchart for one level of decomposition and reconstruction    

 (left), the magnitude and phase responses of the filter pair (right)……45 

 

Figure 3.17.   Lowpass & highpass filtering followed by decimation.……….…........46 

 

Figure 4.1. Magnitude responses of the bandpass filters.……………….……........48 

 

Figure 4.2.  Intonation normalization using FD-PSOLA. Pitch contour of  a  

                           female speaker for the sentence “ Kaza nedeniyle ulaşım aksadı”    

 (top) and pitch contour after f0 normalization at 150 Hz (bottom)........52 

 

Figure 4.3.  Finding the corresponding analysis time instant in Speaker2.................57 

 

Figure 4.4.  Vocal tract spectra for Speaker1, Speaker2, and transplantation 

 output for a voiced phoneme.…………………………….……………59 

 

Figure 4.5.  Interpolation of unvoiced regions of the pitch contour for the 

 TIMIT sentence of a  male speaker “She had your dark suit and 

 greasy wash water all year.” …….…………………………………….60 

 

Figure 4.6. Speaker1 (blue), Speaker2 (black), and transplantation output  

 (red).........................................................................................................61 

 

 



 xi

Figure 4.7.  Speaker1 (top), Speaker2 (middle), output of duration  

 transplantation from Speaker2 onto Speaker1 (bottom).........................62 

 

Figures 4.8.   Energy contours for Speaker1 (top), Speaker2 (middle),   

  and transplantation output (bottom)........................................................63 

 

Figure 4.9.  Plot for a sample test result.....................................................................66 

 

Figure 4.10.  Transplantation subjective test results for all utterances........................68 

 

Figure 4.11.  Transplantation subjective test results for all utterances........................68 

 

Figure 4.12. Transplantation subjective test results for words....................................69 

 

Figure 4.13.  Transplantation subjective test results for words....................................69 

 

Figure 4.14.  Transplantation subjective test results for sentences..............................70 

 

Figure 4.15.  Transplantation subjective test results for sentences..............................70 

 

Figure 5.1.  Full-band vs. subband based voice conversion at 44.1KHz  

 (Whole spectrum is not displayed).……………………………...…….75 

 

Figure 5.2.  DWT based training algorithm.……………………………….……….77 

 

Figure 5.3.  Subband based transformation algorithm.…………………….……….78 

 

Figure 5.4.  Effect of  bandpass filtering on the LSF locations…….……………….79 

 

Figure 5.5.  Analysis algorithm for spectral estimation using selective 

preemphasis...............................................................................................82 

 

 



 xii

Figure 5.6.  Synthesis algorithm for spectral estimation using selective 

preemphasis............................................................................................83 

 

Figure 5.7.  Bandpass filterbank with equally spaced bands for demonstration........83 

 

Figure 5.8.  LPC vs. selective preemphasis based spectral estimation (left). 

Spectral estimation process from subbands (right) for the phoneme   

/a/ (male speaker) ……………………………………….......…............84 

 

Figure 5.9.  LPC vs. selective preemphasis based spectral estimation (left). 

 Spectral estimation process from subbands (right) for the phoneme    

 /sh/ (male speaker).……………………………….………………........84 

 

Figure 5.10.  LPC vs. selective preemphasis based spectral estimation (left). 

 Spectral estimation process from subbands (right) for the phoneme    

 /t/ (female speaker).………………………….………………………...84 

 

Figure 5.11.  Perceptual filterbank for selective preemphasis system.……….……...86 

 

Figure 5.12.  Flowchart for selective preemphasis based training algorithm..............87 

 

Figure 5.13.  Flowchart for selective preemphasis based transformation 

 algorithm.................................................................................................88 

 

Figure 5.14.  Vocal tract transformations for Turkish phoneme /e/ using full-band   

 (left), DWT (middle), and selective preemphasis (right) based 

 methods.……………….……………………….…………………........88 

 

Figure 5.15.  Vocal tract transformations for Turkish phoneme /I/ using full-band   

 (left), DWT (middle), and selective preemphasis (right) based 

 methods.……………….………………….………………………........89 

 

 



 xiii

Figure 5.16.  Vocal tract transformations for Turkish phoneme /i/ using full-band   

 (left), DWT (middle), and selective preemphasis (right) based 

 methods.…………………….………….…………………………........89 

 

Figure 5.17.  Vocal tract transformations for Turkish phoneme /s/ using full-band   

 (left), DWT (middle), and selective preemphasis (right) based 

 methods.……………………………………….……………………….89 

 

Figure 5.18.  Segmental pitch contour model for the utterance of a male speaker   

 (top), and a female speaker (bottom).……….……………………........92 

 

Figure 5.19.  Pitch contour transformation with the segmental pitch model.  

 The source contour is from a male utterance and the target is the   

 same utterance by a female speaker.……………….………………......93 

 

Figure 6.1.  Voice conversion subjective test results for all utterances.….…….....100 

 

Figure 6.2.  Voice conversion subjective test results for all utterances.…….….....100 

 

Figure 6.3.  Voice conversion subjective test results for words.……….……….....101 

 

Figure 6.4.  Voice conversion subjective test results for words.………….….........101 

 

Figure 6.5.  Voice conversion subjective test results for sentences.…………........102 

 

Figure 6.6.  Voice conversion subjective test results for sentences.…………........102 

 

Figure A.1.   Audio recording (left), and playing (right) interfaces.….………….....110 

 

Figure A.2.  Training interface.………………………………………….………....111 

 

Figure A.3.  Transformation interface.………………………….……………….....111 

 



 xiv

Figure A.4.  Filter designer (left) and reverb (right) interfaces.……...........……....112 

 

Figure A.5.  Batch processing (left), volume (middle), and format conversion  

 (right) interfaces.…………………………………….……………......112 

 

Figure A.6.  PSOLA (left), and enhancement (right) interfaces.…….………….....112 

 

Figure A.7.  Acoustic feature transplantation (left) and spectral analysis  

 interfaces.…………………………………………………….…….....113 

 

Figure A.8.  Objective (left) and subjective (right) testing interfaces.……….…....113 

 

Figure A.9.  Waveform editing interface.…………………………………….…....113 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xv

LIST OF TABLES 
 
 
 
Table 4.1. Upper (FU), lower (FL) cutoff, and center frequencies of the bandpass 

 filters.……………………………………….………………………........49 

 

Table 4.2.  Scoring instructions.………………………………………….………….50 

 

Table 4.3.  Modification of scores.…………………………………….…………….50 

 

Table 4.4.  Consistency score for each decision.………………….……………........51 

 

Table 4.5.  Means and standard deviations of the scores assigned to each subband 

 for all parts.………………………………………….…………………...53 

 

Table 4.6.  All possible combinations of feature transplantations from Speaker2   

 to Speaker1. “1” denotes that the corresponding feature comes from  

 Speaker1 and “2” denotes that it comes from Speaker2.……….………..55 

 

Table 4.7.  Dual acoustic feature transplantations....………….……………………..56 

 

Table 4.8.  Interquartile ranges of the identity scores for all utterances.….……........71 

 

Table 4.9. Interquartile ranges of the confidence scores for all utterances.….……...71 

 

Table 5.1.  Cut-off and center frequencies of the bandpass filters.…….……………86 

 

Table 6.1.  The most common 20 bigrams and trigrams of Turkish............................94 

 

Table 6.2.  Voice conversion methods tested..............................................................97 

 

Table 6.3.  Interquartile ranges for the identity scores..............................................103 

 



 xvi

Table 6.4.  Interquartile ranges for the confidence scores.........................................103 

 

Table 6.5.  Interquartile ranges for the quality scores................................................104 

 

Table 6.6.  Mean and standard deviations of spectral distances (dB/Hz) using  

 LP analysis and selective preemphasis based analysis.……….………..105 

 

Table 6.7.  Mean and standard deviations of source to target and transformed to  

 target LSF distances.………………………………….………………...106 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xvii

LIST OF ABBREVIATIONS 
 

 

ANN  Artificial Neural Network 

AR Auto-Regressive 

ASR Automated Speech Recognition 

AVC-TTS Adaptive Voice Conversion for Text-To-Speech Synthesis 

CWT Continuous Wavelet Transform 

DFT Discrete Fourier Transform 

DTW  Dynamic Time Warping 

DWT Discrete Wavelet Transform 

FD Frequency Domain 

FFT Fast Fourier Transform 

FIR Finite Impulse Response 

GMM  Gaussian Mixture Model 

HMM Hidden Markov Model 

Hz Hertz 

IDWT Inverse Discrete Wavelet Transform 

IPSE Improved Power Spectrum Envelope 

IVR Interactive Voice Response 

KHz Kilo-Hertz 

LF Liljencrants-Fant 

LP  Linear Prediction, Linear Predictive 

LSFs Line Spectral Frequencies  

LSPs  Line Spectral Pairs 

MBE  Multi-Band Excitation 

MPEG Moving Picture Experts Group 

OLA Overlap-Add 

PARCOR Partial Correlation 

PCM Pulse Code Modulation 

PR Perfect Reconstruction 

PSOLA Pitch-Synchronous Overlap-Add 

QMF Quadrature Mirror Filters 



 xviii

RBFN Radial Basis Function Network 

STASC Speaker Transformation Algorithm using Segmental Codebooks 

STC Sinusoidal Transform Coding 

STFT Short Time Fourier Transform 

TD Time Domain 

TTS Text-To-Speech Synthesis 

VC Voice Conversion 

VCS Voice Conversion System 

VQ Vector Quantization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 1

1.  INTRODUCTION 
 

 

 1.1.  Motivation 

 

Knowledge extraction by just listening to sounds is a distinctive property and has 

become an important milestone in the evolution of species. Most of the animals are not 

only equipped with the means to extract information from the rich acoustical content of 

the environment and act accordingly, but they have the ability to produce sounds to 

interact with the environment as well. Almost all the animals with auditory perception 

systems are able to distinguish between the enemies, the animals that are in their troops 

or the animals that they can hunt by just listening. They are also capable of 

communicating with their environment using sound as an interaction tool. Humans have 

gone one step further: they have fairly advanced mechanisms that enable interaction 

within the species by very abstract rules of communication using voice – the language.  

 

Perceiving the identity of others from their voices is yet another ability that only a 

limited number of species are known to possess. This ability is useful for heading 

towards the mother, avoiding the enemies, or gathering food. Human auditory system 

enables perception of speaker identity by just listening to a few words – in some cases 

even a word or a phoneme.  

 

This study focuses on two main topics related to:  

 

• the investigation of the abilities and properties that humans possess in perception of 

speaker identity 

• the development and evaluation of new methods for modifying the perceived 

speaker identity 

 

Recent years have witnessed the rapid advances in the speech technology with the 

increasing number of products which use speech as a means in human-machine 

interaction. This outcome was not by chance, but it was due to the efficient collaboration 

established between the individual speech researchers, laboratories, universities and high-
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tech companies. The need for the improvements in human-machine interaction was even 

more distinctive: Humans have always been investigating new ways to ease their lives. 

Although the answer to the question on whether the improvements in technology always 

lead to improved comfort and serve for the common good is beyond the scope of this 

study, it is clear that technology changes the way we survive.  

 

Naturally, speech recognition and TTS have been the priorities in research efforts 

directed at human-machine interaction. Effective solutions have emerged over the past 

years. The ways to improve naturalness in human-machine interaction is becoming an 

important matter of concern. Voice conversion technology will serve as a useful tool in 

this area because it provides new insights related to personification of speech enabled 

systems. 

 

As a speech researcher, it is possible to choose from a variety of fields to conduct 

research: acoustical modeling, perception, recognition, synthesis, coding, linguistics etc. 

All these fields share many common methods and approaches. There are also several 

topics that serve as a connection point between these major fields, and voice conversion 

is absolutely one of them. It combines the methods of automated knowledge and rule 

extraction in speech analysis and recognition with the methods of modification and 

construction in speech synthesis in the light of auditory perception and linguistics. 

 

 

 

 

 

 

 

 

Figure 1.1.  General framework for voice conversion 
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 1.2.  Definition and General Framework 

 

Voice conversion is a method that aims to transform the input (source) speech 

signal such that the output (transformed) signal will be perceived as produced by another 

(target) speaker. A general framework for voice conversion with basic building blocks is 

shown in Figure 1.1. 

 

1.3. Review of Literature 

 

It is hard to determine an optimal method for voice conversion that can achieve 

success for all possible speaker characteristics and combinations. Different voice 

conversion systems that employ different methods exist, but at least they all share the 

following components: 

 

• a method to represent the speaker specific characteristics of the speech waveform 

• a method to map the source and the target acoustical spaces 

• a method to modify the characteristics of the source speech using the mapping 

obtained in the previous step to produce converted speech 

 

The first component is referred to as analysis or modeling, the second as training 

and the third as transformation. Many studies have been carried out on voice conversion 

in the last two decades. Examples are (Abe et al., 1988), (Childers, 1995), (Baudoin and 

Stylianou, 1996), and (Stylianou et al., 1998). 

 

Although the details of modeling the speech waveform can be found in Chapter 3, 

we find it convenient to highlight major approaches here. It is common practice to model 

the speech waveform as a filter component driven by a source component. The filter 

corresponds to the vocal tract transfer characteristics which can be estimated using linear 

prediction (LP) methods. The parameters used in voice conversion that are extracted 

using LP methods include linear prediction coefficients and the parameters derived from 

these, such as the PARCOR coefficients (Rinscheid, 1996), the line spectral frequencies 

(LSFs)  (Arslan and Talkin, 1997), (Arslan, 1999), (Kain and Macon, 2001),  and Bark 

scaled LSFs (Kain and Macon, 1998a). It is also possible to approximate the vocal tract 
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spectrum using formant frequencies, the cepstral coefficients or the sinusoidal model 

parameters. In this case, appropriate processing is performed to modify the relevant 

parameters (i.e. the formant frequencies, cepstral coefficients, or the amplitudes, 

frequencies and phases of the sinusoidal components). Early studies and the studies 

related to vocoding applications used formant frequencies for representing and modifying 

the vocal tract spectrum as described in (Gutierrez-Arriola et al., 1998) and (Tang et al., 

2001). Sinusoidal modeling has become popular as it facilitates ease of compression and 

modification. In (Stylianou et al., 1998), the harmonic plus noise sinusoidal model 

parameters are used for representing and modifying the speech signals.  

 

The source component is usually harder to model as it contains all the remaining 

information in the signal such as the prosodic characteristics, lip radiation, noise, etc. 

Some of the problems in modeling and modifying the source component to produce 

natural sounding output remain unsolved. However, as the source component contains 

very important speaker specific information, an appropriate method to modify it for 

realistic voice conversion is needed. Modeling and transformation of suprasegmental 

characteristics such as pitch, duration and energy are are well studied and the algorithms 

developed provide the necessary framework for obtaining high quality output. Time 

Domain (TD) and Frequency Domain (FD) Pitch Synchronous Overlap-Add (PSOLA) 

methods (Moulines and Verhelst, 1995) are commonly used for pitch and duration 

scaling. The source component is also referred to as the excitation and in (Arslan, 1999) 

the source excitation magnitude spectrum is modified to match target speaker 

characteristics. It is also possible to predict the target excitation from the target training 

utterances as described in (Kain and Macon, 2001). Several studies investigate the 

relation between f0 and spectral envelope which supplies important clues in modifying 

the excitation spectrum: (Tanaka and Abe, 1997), and (Kain and Stylianou, 2000). 

 

The problem of estimating the correspondence between the source and the target 

acoustical spaces is in fact a learning problem. It is well studied in the machine learning 

and artificial intelligence literature. Principal learning methods were successfully applied 

for the purpose of training in voice conversion such as Vector Quantization (VQ), Hidden 

Markov Models (HMMs), Gaussian Mixture Models (GMMs), Artificial Neural 
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Networks (ANNs) and Radial Basis Function Networks (RBFNs). The main steps in 

training usually involve : 

 

• Pre-processing and proper alignment of source and target training data 

• Choice of a speech model that will capture important characteristics of the speakers 

• Analysis of  the training data for estimating the speech model parameters 

• Employing a learning method which will automatically estimate a mapping between 

the source and target models and is able to generalize to unobserved data 

successfully 

 

In order to obtain the corresponding acoustical events between  the source and the 

target, acoustical alignment should be carried out to determine the event boundaries 

within the utterances. The most straightforward way is to manually mark the 

corresponding acoustical events on the source and target recordings and to select the 

acoustical parameters corresponding to the current acoustical event. However, it is much 

time saving to use automatic methods for alignment before obtaining the mapping 

function. Dynamic Time Warping (DTW) was the former approach for alignment 

(Itakura, 1975). After the development of Hidden Markov Modeling techniques in speech 

processing, HMMs have been widely used for automatic alignment instead of DTW. 

Examples are (Kim et al., 1997), (Pellom and Hansen, 1997), and (Arslan, 1999). 

Automatic phoneme recognition can be an alternative (Kain and Macon, 1998a), however 

this will make the system language dependent.  

 

The mapping function can be obtained using vector quantization as in (Rinscheid, 

1996) using a self organizing map, or as in (Hashimoto and Higuchi, 1996) using vector 

field smoothing. The spectral vectors are usually kept in codebooks which correspond to 

a one-to-one mapping between the discrete source and target acoustical space. Previous 

research on voice conversion employing codebook based methods include (Abe et al., 

1988), (Baudoin and Stylianou, 1996), and (Arslan, 1999). In this case, interpolation is 

necessary for converting source vectors that are not in the codebook to account for the 

unobserved data. An alternative for avoiding interpolation is to use continuous 

transformation functions such as Gaussian Mixture Models (Stylianou et al., 1995), 

(Stylianou and Cappe, 1998), (Kain and Stylianou, 2000), and (Kain, 2001). In 
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(Gutierrez-Arriola et al., 1998), source to target mapping is learned through a set of linear 

regression rules. Artificial Neural Networks and Radial Basis Function Networks 

(Watanabe et al., 2002) are yet other alternatives for estimating the mapping between the 

source and the target parameter sets.  

 

Once training has been completed, the voice conversion system has gathered 

sufficient information to transform any source speech signal into the target’s voice in the 

transformation stage. This stage employs different methods to modify source speaker 

characteristics in order to obtain an output that sounds as close to the target speaker’s 

voice as possible. The nature of these methods heavily depend on the speech model being 

used. Appropriate modification of source parameters and re-synthesis using the modified 

parameters produces the output (transformed) speech. Most voice conversion systems 

employ the following steps in transformation: 

 

• Estimation of the speech model parameters from input speech 

• Modification of input speech by modifying model parameters using the knowledge 

extracted during training 

• Synthesis of the output speech from the modified parameters 

 

1.4.  Applications 

 

Voice conversion will serve as an invaluable tool for many applications in speech 

technology. The following sub-sections include applications of voice conversion with 

relevant references and new applications as demonstrated by this study. 

 

1.4.1.  Dubbing Applications 

 

Voice conversion can be used for looping and dubbing applications as we describe 

in (Turk and Arslan, 2002). Looping is defined as replacing the undesired utterances in a 

speech recording by desired ones. This method can be used for processing movies for TV 

broadcast. In order to obtain transparent quality such that the listeners will not be able to 

distinguish the replacement necessiates the use of voice conversion. Following dubbing 

applications are possible with voice conversion technology: 
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• Dubbing the whole movie by using only several dubbers 

• Regenerating the voices of actresses/actors who are not alive or who have lost their 

voice characteristics due to old age 

• Generating the voice of famous actresses/actors in another language which they do 

not know 

• Dubbing in radio broadcasts 

 

All these applications require high quality output. It is also important that the 

methods to be used must facilitate fast and convincing voice conversion. As an example 

for a dubbing application, we may consider a movie which is originally in English and 

which will be translated and dubbed in Turkish. When conventional dubbing methods are 

used, the English text is translated to Turkish. Dubbers perform dubbing using the 

translated text. Thus, the speaker identity of the actor in the original soundtrack is lost.   

However, with voice conversion technology, a famous actor can talk in a language that 

he does not know. The following steps provide the outline of the application: 

 

• The text in English should be read and recorded by a dubber who speaks both 

Turkish and English fluently. 

• The voice conversion system should be trained using the recordings of the dubber 

as the source and the original recordings in English as the target. 

• The dubber should record the corresponding Turkish text. 

• Turkish recordings of the dubber should be transformed to the voice of the  actor / 

actresses employing the information obtained in the training phase.  

 

Voice conversion can also be used in the applications in which the voice of a 

particular speaker should be produced on the fly. As an example, consider TV/radio 

broadcast flows. Momentary changes in the flow necessiates the speaker to record the 

changes immediately, so s/he must be available in the course of the broadcast. But if 

voice conversion is employed, the speaker should appear all at once, to record the 

training utterances. The voice of another speaker can be converted to the original 

speaker’s voice when s/he is not available. Even better solutions will emerge as voice 

conversion systems improve: you can pay for the voice of a particular speaker once, and 

then use that voice font forever, even after the speaker passes by. 
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1.4.2.  Speech Processing Applications 

 

Text-To-Speech Synthesis (TTS) has become an important tool in the systems that 

facilitate human-machine interaction. This is due to the fact that the quality of synthesis 

output has reached a level that is suitable for many practical applications. Although 

people have not been very comfortable with synthetic voice in the past years, the 

advances in TTS database design, development of new methods for selection from a large 

speech corpora, and advances in signal processing and language modeling produced 

several TTS systems that provide fairly high quality synthesis. E-mail readers, Interactive 

Voice Response (IVR) systems and screen readers for the blind have become the typical 

application areas for synthesized speech.  

 

Typically, TTS systems can generate speech by only a few speakers. The reason for 

synthetic voice being restricted to a few speakers is related to the cost of employing more 

speakers for synthesis because a separate database should be recorded, segmented and 

processed for each speaker. In fact, the performance of any synthesis system is also 

strictly dependent on the database and on the voice that is being used. Some voices are 

easier to analyze and produce better results when used in synthesis (Syrdal et al., 1998). 

It takes several days to several weeks to design the TTS database. On the other hand, 

voice conversion is very economical in the sense that  the database to be handled is 

significantly shorter (several minutes) than an ordinary TTS database. Voice conversion 

can be used to generate new TTS voices without the need to generate and process a 

separate TTS database for each speaker. We can even have the following scenario 

possible: an e-mail message can be read by the sender’s voice provided that he/she has 

recorded a voice conversion database once before. Several studies have addressed the 

problem of using voice conversion in TTS such as (Ribeiro and Trancoso, 1997), (Kain 

and Macon, 1998b), and (Kain and Macon, 1998c). 

 

Multilingual TTS provides the framework necessary for fast and reliable 

communication across the national borders. Several multilingual TTS sytems are in the 

market. While the number of languages that a TTS system can speak and the quality of 

the output are the major concerns of TTS research, an important question remains 

unattended: How can we have an adaptive TTS system that can produce speech in 
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another speaker’s voice? Of course, the straight answer is to create a separate database 

for each speaker. This method is employed in all TTS systems. However, this is 

unrealistic when the aim is to be able to generate synthetic voice with any user’s voice 

for real-time applications. We need a tool to modify the TTS database or the TTS output 

for modifying the perceived speaker identity, and the natural tool is voice conversion. In 

fact, we refer to the method of modifying TTS databases and/or outputs using voice 

conversion as Adaptive Voice Conversion for Text-To-Speech Synthesis (AVC-TTS). 

Synthesis of speech with any user’s voice will be possible with this method. 

 

Adaptive voice conversion systems might also be used in applications related to the 

healthcare industry. Patients of throat cancer and people with severe voice disorders 

could benefit from using voice-adaptive TTS systems. These people can record a voice 

conversion database in the early stages of their illness. This database can be used in the 

future to reproduce the voice of the patient in the case of a voice disorder or loss. 

 

E-mail readers serve as an important tool in Interactive Voice Response (IVR) 

systems. With these systems, people can listen to their e-mail messages on the phone. 

Personification of e-mail readers using voice conversion will provide the possibility to 

attach a voice font to each personality and the messages can be read by the sender’s voice 

or any voice the user may prefer. Voice disguise or modification is another application. 

 

Speech enhancement methods are widely used for the reconstruction of old 

recordings. Noise and unintelligible parts exist in these recordings due to problems in the 

recording technology and the recording environment. As an example, magnetic tapes are 

subject to corruption by time. However, it is impossible to restore a recording which is 

completely corrupted or the noise level is beyond a limit. If we have sufficient amount of 

clean recordings of the person whose voice we are trying to produce, we can generate 

good quality recordings using voice conversion. 

 

Automated Speech Recognition (ASR) technology aims to implement computer 

systems that are able to recognize speech. Training these systems with voices of many 

speakers is necessary for robustness. However, collecting and processing SR databases is 
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a tedious task. It is possible to use voice conversion in the recognition phase for reducing 

speaker variability instead of training the system with many voices.  

 

Speaker verification and identification systems are used in security and forensic 

applications for automated retrieval of identity from speech signals. The know-how 

obtained in voice conversion will serve as an important information source for such 

systems as the most important characteristics for perception of speaker identity will be 

determined. 

 

1.4.3.  Multimedia/Music Applications 

 

Voice conversion techniques can be successfully applied in multimedia and musical 

applications. An example is the Karaoke machine. An ordinary voice can be transformed 

into a famous singer’s voice. A study on the use of voice modification for Karaoke is 

described in (Verhelst et al., 2002). However, in that study only appropriate pitch scale 

and time scale modifications are carried out in a time warping framework and the identity 

of the Karaoke singer is left unchanged. Generation of virtual voices for virtual 

characters created with 3D face synthesis for animations and movies is another 

application. 

 

As musical applications are considered, pitch modification while preserving the 

spectral identity of the musical instrument is possible as described in (Drioli, 1999). In 

this case, the problem is to estimate the spectral envelope while modifying the pitch, 

because the spectral envelope changes with pitch in musical instruments. Voice 

conversion methods are applied for generating the spectral envelope at the desired pitch 

value. One can also train such a system with two different instruments and convert the 

spectral envelope as well while modifying the pitch. This method will be very useful for 

synthesizers. 
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2.  PROBLEM STATEMENT 

 

 

Voice conversion is a fertile field for speech research as the problems of concern 

are related to almost all of the primary topics in speech processing. First, the analysis 

stage of voice conversion is related to developing appropriate models that capture 

speaker specific information and estimating the model parameters which are closely 

related to acoustical modeling, speech coding, and psychoacoustics.  Next, the relation 

between the source and target models must be determined and generalized to unobserved 

data. The learning and generalization processes relate voice conversion with 

speech/pattern recognition, and machine learning. Finally, convenient methods must be 

employed for processing the source signal with minimized distortion and maximized 

resemblence of the output to the target speaker. These methods are also addressed in 

speech synthesis and coding applications. Robustness is perhaps the most important point 

of concern in voice conversion as the aim is to develop methods that perform well for a 

wide variety of source-target speaker pairs. In this study, we explore new methods related 

to all three dimensions described above- analysis, learning and synthesis, with the aim of 

developing a robust and automated system that minimizes the need for user interference. 

This research is far from being a complete solution to all the problems related to voice 

conversion, however it provides new insights and solutions. 

 

Subjective testing is the most realistic method for both the investigation of the 

characteristics that human auditory system possesses and the performance evaluation of 

the voice conversion systems. During this study we have designed several subjective 

evaluation methods for both assessing the importance of different characteristics for 

perception of speaker identity and evaluation of the new methods we have proposed. In 

the preliminary tests, we first evaluate the importance of different frequency bands for 

perception of speaker identity. We study the relevant features for voice conversion: the 

vocal tract, pitch contour, phonemic durations and energy contour. A subjective test is 

designed for evaluating all possible combinations of these features in perception of 

speaker identity. 
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Next, we investigate the problem of vocal tract modeling, which is one of the most 

important speaker specific characteristic in voice conversion. We describe new methods 

for detailed estimation and modification of the vocal tract spectrum. We address the 

problems at high sampling rates for obtaining high quality output. In general, we adapt a 

subband based framework taking into account perceptual characteristics of the human 

auditory system. Two new methods for modeling and transforming the vocal tract are 

proposed. The first method describes a subband based system that relies on Discrete 

Wavelet Transform (DWT) for subband decomposition and reconstruction. The second 

method, selective preemphasis, provides the means for detailed spectral envelope 

estimation and for modification of spectral resolution in different subbands. Modification 

of the speech prosody will be another point of concern. The evolution of the fundamental 

frequency values over time produces the intonational characteristics which is an 

important clue for the perception of speaker identity as the subjective tests demonstrate. 

For this reason, we investigate a new method for detailed pitch contour transformation. 

 

We describe the design of a voice conversion database to be used in the tests. A 

subjective test is designed for evaluating the new methods developed for voice 

conversion. DWT, selective preemphasis and pitch transformation methods are compared 

in this subjective test. We have carried out objective analysis on the performance of two 

spectral estimation methods. We have also investigated the objective performance of the 

new voice conversion methods. 

 

Finally, a software tool, VOX, is implementd for fast and reliable voice conversion. 

This software tool is also referred to as a Voice Conversion System (VCS). It integrates 

all necessary tools for voice conversion in a single interface: tools for waveform analysis, 

recording, training, transformation, subjective and objective testing. It enables people 

who are not speech processing experts to perform voice conversion in a fast, reliable 

manner offering high quality output with an ordinary personal computer (Please refer to 

Appendix A for more detail). 
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3.  THEORETICAL BACKGROUND 

 

 

3.1.  Theory of Speech Production 

 

Speech production process is initiated by the air flow generated by the lungs. The 

air flow passes through the larynx which contains vocal folds (cords). The space between 

the vocal folds is known as the glottis. In the voiced sounds like /a/ and /e/, the air flow 

causes the vocal folds to vibrate and produce a quasi-periodic glottal waveform. For the 

unvoiced sounds like /s/ and /f/, the vocal folds are open and the source component 

contains noise-like spectral energy distribution.  

 

 
 

Figure 3.1. Human speech production system (Wu, 2003)  

 

The spectrum of the source component is shaped further by the cavities in the vocal 

tract that reside in the pharynx, in the oral and nasal areas. Also the tongue and the lips 

modify the output. The characteristics of the filtering action does not change very fast in 

general, so it is possible to estimate the filter parameters from a short speech segment of 

typically 10 ms - 40 ms. length. Human speech production system is shown in Figure 3.1. 
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When examined on a short-time basis, the speech waveform may exhibit different 

characteristics. As an example, if the vocal folds vibrate as explained above, voiced 

sounds are produced. The glottal waveforms for unvoiced sounds have rather smooth 

spectra that can be successfully approximated by White Gaussian Noise. The speech 

signal has a sudden (impulse-like) change in the energy for plosive sounds like /p/ and /t/. 

The effect of the nasal cavities is much more dominant for nasalized sounds like /n/ and 

/m/ for which the spectra possess spectral nulls as well as spectral peaks.  

 

 

 

 

Figure 3.2. Speech production model 

 

The observations on different type of sounds that the human speech production 

mechanism is able to produce have led to a generalized model of speech production: The 

speech waveform is modeled as the output of a time-varying all-pole filter driven by the 

source component. The source component is the glottal waveform, noise or a mixture of 

two. This model is known as the source/filter model of speech production. Its flowchart is 

given in Figure 3.2. Note that u(n) denotes the source signal and it is shaped by the vocal 

tract transfer function V(z) to produce ul(n), the volume velocity at the lips. The lip 

radiation filter, R(z), shapes the signal spectrum further. R(z) can be approximated by the 

delay term 1-z-1. Finally, s(n) is the sound pressure at the microphone. The transfer 

function of the vocal tract filter can be approximated as the transfer function of an all-

pole filter (Equation 3.1). 

 

                                                                    (3.1) 

 

 

The delay term z 

–P/2 in the numerator of V(z) is usually neglected. The filter 

coefficients, aj’s, can be estimated using linear prediction methods. In fact, there are 

several methods for estimating the parameters of the general scheme described above. In 

Sections 3.2 and 3.3, we will cover several common methods for modeling the filter and 

the source component. The linear predictive methods will be in the focus of the 
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descriptions as we have extensively used it for acoustical modeling in the voice 

conversion methods proposed. 

 

3.2.  Modeling the Filter Component 

 

3.2.1.  Linear Prediction Coefficients 

 

As the vocal tract transfer function V(z) does not change much during the impulse 

response of R(z), we can use the model shown in Figure 3.3 instead of the model 

described above. 

 

 

 
 

Figure 3.3. Modified source/filter model for speech production 

 

                                                                                                                                        (3.2) 

 

The speech waveform s(n) is calculated by Equation 3.2. If the gains of the vocal 

tract resonances are high, the second term dominates in the calculation, so the speech 

waveform can be approximated as: 

                               

(3.3) 

 

Equation 3.3 clarifies the reason for referring to this analysis method as linear 

prediction: we predict (or estimate) the current sample of the speech waveform as a linear 

combination of the past samples. The prediction error is given by Equation 3.4 in the time 

domain and by Equation 3.5 in the z-domain. The aim of linear prediction (LP) analysis 

is to find a set of LP coefficients, aj’s, that minimize the sum of squared errors for an 

input speech segment. The values of aj’s that minimize QE = Σe2(n), where n is the index 

of the samples at the current frame is given in matrix-vector form by Equation 3.6. 
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                                                                       (3.4) 

 

 

                               (3.5) 

 

 

          (3.6) 

 

 

Note that, Φ is symmetric and positive semi-definite. If we can find a way to make 

Φ Toeplitz, we have considerable reduction in computation time and improved accuracy 

in finding the inverse of matrix Φ. Note that the number of operations for the inversion of 

a PxP matrix is on the order of P3. However, if the matrix under consideration is Toeplitz 

(i.e. has constant diagonals), inversion requires on the order of P2 operations which yields 

a considerable amount of reduction in computation. If we use windowing and calculate       

φi,j = Σs(n-i)s(n-j) as an infinite sum in the range (-∞,+∞), we have: 

 

(3.7) 

 

where Rk is the autocorrelation sequence of the windowed speech waveform. The matrix 

Φ becomes Toeplitz in this case. The set of equations to be solved are known as the Yule-

Walker Equations (Equation 3.8). Inversion procedure to find the LP coefficients a is 

known as the Levinson-Durbin algorithm. It requires on the order of P2 operations. 

 

   (3.8) 

 

It is also possible to obtain aj’s using the covariance method by calculating              

φi,j = Σs(n-i)s(n-j) for n=0,..., N-1 without windowing. In this case, the number of 

required operations increase as Φ is no longer Toeplitz. The covariance method may 

result in an unstable filter V(z), so the filter must be checked for stability. The poles 

outside the unit circle should be reflected to force stability. Checking the pole stability 

and reflecting the poles that cause unstability require extra computational effort. 
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Moreover, the covariance method is more sensitive to the precise position of the speech 

frame in relation to the vocal fold closure instants. The advantages of the covariance 

method are: 

 

• Windowing is not required 

• Infinite spectral resolution is obtained 

• Gives better results than the autocorrelation method 

 

The method of estimating the filter coefficients depend on the requirements of the 

application at hand. After the LP coefficients are estimated, the vocal tract filter V(z) is 

given by P+1 parameters : 

 

              (3.9) 

 

where aj’s are the LP coefficients, P is the prediction order, and G is the gain. In the 

autocorrelation approach G can be estimated as in Equation 3.10. Note that the LP 

coefficients are also referred to as AR coefficients because if we consider the input to the 

vocal tract filter as a random variable, the speech production model given above 

corresponds to an auto-regressive (AR) process of order P. 

 

                              (3.10) 

 

The matrix Φ is always non-singular but a measure of singularity provides insights 

to improve the numerical properties of the LP analysis procedure. This measure is known 

as the condition number and it is given by the ratio of the largest eigenvalue to the 

smallest eigenvalue of the matrix under consideration. For large prediction orders, the 

condition number of Φ tends to the ratio Smax(w)/Smin(w). So the numerical properties of 

the LP analysis procedure can be improved by applying a spectral flattening filter prior to 

analysis. This method is known as preemphasis and the spectral fall-off can be 

compensated with a 1st order high-pass filter with a zero near z = 1: 

 

         (3.11) 
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From a spectral flatness point of view, the optimum value for α is φ10/φ00. This 

value can be obtained by an LP analysis of order 1 prior to the actual analysis. The 

method of adaptively modifying α for each speech frame is known as adaptive 

preemphasis. Note that, P(z) is approximately a differentiator with a normalized corner 

frequency of approximately (1-α)/2π. The corner frequency is typically placed in the 

range 0-150 Hz in the applications. 

 

3.2.2. Alternative Parameter Sets 

 

Several alternative parameter sets derived from the LP coefficients have been 

proposed for different applications. Particularly, the LP coefficients do not possess 

desired characteristics for interpolation and quantization. Coding applications require 

good quantization characteristics and synthesis applications require good interpolation 

characteristics. The disadvantages of LP coefficients are: 

 

• Stability check problem: It is not easy to verify that a given LP coefficient set 

represents a stable filter.  

• Quantization problem: The frequency response of the vocal tract filter is sensitive to 

changes in the LP coefficients.  

• Interpolation problem: Interpolating two stable LP coefficient sets does not produce 

a smoothly modified version of the vocal tract frequency response. Stability is not 

even guaranteed. 

 

There are two parameter sets that are commonly used in applications: the cepstral 

coefficients and the line spectral frequencies (LSFs). These alternative representations 

exhibit different characteristics as explained in the following sections.  

 

3.2.3. Cepstral Coefficients 

 

The cepstral coefficients are extensively used in speech recognition because they 

posses well discrimination characteristics between phonemes. It is possible to 

approximate the cepstral coefficients using Gaussian distributions within a phoneme. The 

term cepstrum is defined as the Inverse Fourier Transform of the log spectrum: 
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(3.12) 

 

The cepstral coefficients, cn’s, can be obtained directly from the LP coefficients as 

follows: 

 

(3.13) 

 

The resulting coefficients are called the complex cepstrum coefficients although 

they are real. The cepstrum coefficients are calculated by a slight modification in the 

derivation of cn by using log|V(ejw)| instead of log(V(ejw)). In this case, the coefficients 

equal to the half of the cn’s given by Equation 3.13 except that c0 remains the same. Note 

that stability check is also difficult for the cepstral coefficients. 

 

3.2.4.  Line Spectral Frequencies (LSFs) 

 

The LSFs are calculated using a symmetric and an anti-symmetric polynomial 

obtained from A(z). The symmetric polynomial, P(z), and the anti-symmetric polynomial 

Q(z) are as follows: 

 

(3.14) 

 

 

(3.15) 

 

 

The vocal tract tansfer function V(z) is stable if and only if all the roots of P(z) and 

Q(z) are on the unit circle and they are interleaved. We proove that P(z) and Q(z) satisfy 

these conditions below.  If the roots of P(z) are at  exp(2πjfi)   for   i = 1,3,... and those of 

Q(z) are at exp(2πjfi)   for  i = 0, 2, ... with fi+1 > fi ≥ 0 then the LSF frequencies are 

defined as f1, f2, ..., fp. Note that f0 = +1 and fp+1 = -1. 
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Theorem: All the roots of P(z) and Q(z) lie on the unit circle 

 

Proof:  The roots of P(z) and Q(z) can be estimated by setting these polynomials 

equal to zero as follows: 

 

 (3.16) 

 

(3.17) 

where  

 

     (3.18) 

                                                                                                                      

xi’s are the roots of A(z). If all xi’s lie inside the unit circle, the absolute values of 

the terms making up H(z) are either all greater than 1 or all less than 1. Calculating the 

absolute value of a typical term, we get: 

 

 

 

 

 

 

 

(3.19) 

 

So, each term is greater than or less than 1 according to |z|. If |z|>1 then each term is 

greater than 1 and vice versa. So |H(z)|=1 if and only if |z|=1. So the roots of P(z) and 

Q(z) lie on the unit circle. 

 

Theorem: The roots of P(z) and Q(z) are interleaved. 

 

Proof: We want to find the values of z = ejw that make H(z) = +1 or H(z) = -1. This 

is equivalent to finding the values that make arg(H(z)) a multiple of π. If z = e jw, then: 
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(3.20) 

 

As w goes from 0 to 2π, arg(z-a) changes by +2π if |a|<1. Therefore, as w goes from 

0 to 2π, arg(H(ejw)) increases by (1-P)2π + 2P.2π = (1+P)2π. Since H(ejw) goes round the 

unit circle (1+P) times, it must pass through each of the points +1 and –1 at least (1+P) 

times. Since P(z) and Q(z) are (P+1)th order polynomials, they have only P+1 roots. So 

H(ejw) can not pass through either +1 or –1 more than P+1 times. It follows that H(ejw) 

passes through +1 and –1 alternately exactly P+1 times each. Note that arg(H(z)) varies 

most rapidly when z is near one of the xi, so the LSFs will cluster near the formants. 

  

The LSFs have the following useful properties: 

 

• Stability check is easy. If the LSFs are in ascending order in the range [0,1], the 

resulting filter is guaranteed to be stable. 

• Interpolation is possible. 

• As the LSFs are strongly correlated with each other, they can be quantized 

efficiently. 

• When two LSF values are close to each other, a spectral peak is likely to occur 

between them which is useful for tracking formants and spectral peaks. 

• It is easy to adapt a perceptual representation such as the Bark scale because the 

LSFs are pure frequency values. 

 

The disadvantage of LSFs is the requirement to calculate the roots of P(z) and Q(z) 

polynomials which correspond to solving polynomials of order P. When the sampling 

rate is high, the sufficient prediction order will be high and the performance of the root-

finding algorithms will degrade. As an example, in (Rothweiler, 1999), the proposed 

root-finding method works well for orders up to 24. In fact, this issue inspired our 

research on investigating new spectral estimation techniques at high sampling rates using 

lower prediction orders.   
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3.2.5.  Sinusoidal Model  

 

In fact the sinusoidal model is a complete model of the speech production 

mechanism (McAulay and Quatieri, 1995). The excitation signal is represented as a linear 

combination of sinusoids and passing this excitation signal through the vocal tract filter 

results in the sinusoidal representation of the speech wavefrom as given by Equation 

3.21. The amplitudes of the sinusoids, Al’s, are estimated using the peaks of the DFT 

spectrum and considering the harmonics of the neighbouring frames. 

 

(3.21) 

    

In the analysis stage, the parameters of the model are estimated frame-by-frame. 

Either these parameters or coded/modified versions of them are used in synthesis to 

output the kth synthetic frame as follows: 

 

(3.22) 

 

 

3.2.6.  Improved Power Spectrum Envelope (IPSE) Analysis  

 

IPSE analysis is a spectrum envelope extraction method proposed in (Tanaka and 

Abe, 1997). The aim is to extract the spectral envelope pitch-synchronously for 

estimating the vocal tract spectrum in detail. The algorithm makes use of the spectral 

peaks and f0 value in the estimation. The main steps are as follows: 

 

• A speech frame of 2 to 5 pitch periods is windowed using a Hamming window. 

• The log-power spectrum is calculated by FFT. 

• The local-maximum value of the log-power spectrum is sampled at fn intervals                      

( nfo – fo / 2 < fn < nfo + fo / 2, where n is an integer). 

• If the interval between fn and fn+1 is larger than 1.5 times fo, the local peaks of the 

log-power spectrum within the interval are added to the sequence obtained above. 

• The samples are linearly interpolated and resampled at fo/n intervals where n is the 

integer that gives the maximum value of fo/n while fo/n < 50 Hz. 



 23

• The resampled lines are approximated by the following cosine model: 

 

(3.23) 

 

However, we have used cubic spline interpolation for simplicity in the following 

examples. This type of interpolation also matches the spectrum well. In the following 

figures, we compare the performance of the LP analysis with the IPSE method for the 

estimation of the spectral envelope. It is clear that IPSE tracks the spectral peaks better 

than the LP method. 

 

 

 

 

 

 

 

 

Figure 3.4. Spectral envelope obtained by LP analysis (left) and IPSE method (right). 

(Prediction order  was 18 for a sampling rate of 16 KHz.) 

 

 

 

 

 

 

 

 

Figure 3.5. Excitation spectrum after the LP analysis (left) 

and the IPSE method (right) 

 

As the IPSE method tracks the spectral envelope in more detail than LP analysis 

(Figure 3.4), the resulting excitation spectrum is smoother as shown in Figure 3.5.   
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3.3.  Modeling the Source Component 

 

We can estimate the source component by applying inverse filtering techniques on 

the speech signals. The method relies on estimating the vocal tract filter and extracting 

the source component using the estimated filter coefficients frame-by-frame. Figure 3.6 

shows a simple inverse-filtering algorithm output. Most algorithms output the derivative 

of the glottal flow for voiced sounds. The noise-like components in the voiced source 

signal are usually filtered out by a lowpass filter. 

 

 

 

 

 

 

Figure 3.6. Glottal waveforms for unvoiced (left) and voiced (right) signal segments  

  

3.3.1. Impulse/Noise Model 

 

The simplest model for the source component relies on voiced/unvoiced decisions. 

For voiced sounds like /a/, /e/ we observe a periodic pattern in the speech waveform as 

explained above. In this case, the source component can be approximated as impulses 

located according to the pitch period. For the unvoiced sounds like /s/, /sh/ the spectrum 

of the source component is well approximated by white noise spectrum.  

 

The flowchart for a simple LPC vocoder is shown in Figure 3.7. In LPC vocoders, 

the vocal tract filter is excited with either impulses or noise in the synthesis stage. The 

impulse assumption in voiced segments is an approximation and the output of LP based 

synthesizers is buzzy.  
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Figure 3.7. LPC vocoder flowchart 

 

3.3.2. Multiband Excitation (MBE) Model 

 

This model is a generalization of the impulse/noise model. The excitation spectrum 

is processed in different subbands and a voicing measure is estimated for each subband. 

This is in agreement with the observations of the excitation spectrum because in voiced 

sounds, the higher frequency regions usually contain noise-like components that are not 

modeled appropriately with impulses.  

 

Ther first step in the analysis algorithm is determining the pitch period using an 

autocorrelation based method. The excitation spectrum is divided into harmonic bands 

using the pitch period information. Robust pitch detection is required in this step. This is 

one of the disadvantages of the model. The voiced and unvoiced spectral envelope 

parameters are estimated using sinusoidal modeling techniques. Voiced/Unvoiced 

decisions are made for each harmonic subband which is centered around each integer 

multiple of the f0. Each harmonic subband covers a range that is equal to the f0 value. 

The pitch period estimate is refined and the parameters are re-estimated for improving 

robustness in the case of pitch detection errors. 

 

In the synthesis stage, amplitudes, phases and center frequency values are 

interpolated between frames. Voiced portions of the signal are synthesized using the 

corresponding sinusoidal model parameters. The unvoiced portions are approximated by 
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bandpass filtered White Gaussian Noise multiplied by the spectral envelope in the 

frequency domain. Inverse FFT is employed to obtain the unvoiced waveform in time 

domain. Finally, these voiced and unvoiced  portions are summed up to obtain the 

synthetic  segment. The segments are concatenated using weighted overlap-add similar to 

PSOLA methods. The details of the MBE model can be found in (Griffin, 1987). 

 

The major advantage of the MBE model relies on the fact that the excitation 

spectrum is represented in detail. It is possible to quantize or interpolate the sinusoidal 

model parameters. The disadvantages are related to the requirements for robust pitch 

detection, phase interpolation and voiced/unvoiced harmonic subband decisions. Besides 

these disadvantages, MBE model has become a popular model for coding and synthesis 

applications over the years as described in (Hardwick and Lim, 1988), (Nishiguchi et al., 

1993), and (Wang et al., 1996). 

 

3.3.3.  Glottal Flow Models 

 

Several parametric models exist for estimating and modifying glottal flow 

waveforms both in the time domain and in the frequency domain. The Liljencrants-Fant 

(LF) model is a well known example (Fant et al., 1985). It represents the derivative of the 

glottal flow with the following timing parameters: 

 

• T0: instant of glottal opening 

• Tp and U0: instant and value of maximum glottal flow 

• Te and Ee: instant and absolute value of the minimum of the glottal flow derivative 

• Ta: return phase that can be defined as the absolute time difference between te and 

the projection of the tangent of the glottal flow derivative at te 

• Tc: instant of glottal closure 

 

In the LF model, the derivative of the glottal flow is composed of two parts. The 

first part characterizes the glottal flow derivative from the glottal opening to the 

maximum negative peak. The second segment characterizes the closure of glottis. 
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Figure 3.8. Glottal flow (Ug) and its derivative(dUg) in the LF model (Strik, 1998) 

 

 (3.24) 

 

(3.25) 

 

(3.26) 

 

 (3.27) 

 

(3.28) 

 

The synthesis parameters E0 , α, ωg ,and  ε can be derived from the timing 

parameters using Equations 3.24 to 3.28. Then, the glottal flow g(t) is synthesized using 

these parameters in Equation 3.29. 

 

 

(3.29) 

 

 

3.4.  Modification of the Filter Component 

 

We must estimate the mapping between the source and the target vocal tract 

parameters in order to modify the source vocal tract parameters to match the target 

speaker characteristics. The mapping can be obtained in several ways. The primary 

methods were based on vector quantization and a discrete mapping was estimated. The 

involvement of continuous mapping methods has led to considerable improvement in 

voice conversion performance. It is possible to employ a mapping method that inherently 
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estimates continuous mapping functions as in the case of ANNs, GMMs or RBFNs. 

Another possibility is to employ appropriate interpolation methods in a discrete mapping 

framework. An example for this approach is codebook mapping which is employed in 

STASC (Arslan, 1999). As we investigate new methods in the framework described in 

STASC, we will describe the training and transformation algorithms in the following sub-

sections. These algorithms are modified appropriately in Chapter 5 for the new methods 

proposed but the general framework is similar. 

 

3.4.1. Training 

 

The training data used in STASC are the same sentences uttered by both source and 

target speakers. The sentences must be phonetically balanced in order to obtain 

successful transformation results. The source sentence is aligned first and the target 

sentence is force-aligned with it next. A Hidden Markov Model (HMM) is generated for 

each sentence so the alignment procedure is called the Sentence HMM method. It is also 

possible to use manually generated labels. However, the Sentence HMM method enables 

the automation of the entire training process.  

 

After alignment, we extract the model parameters from the corresponding HMM 

states in the case of Sentence HMMs. These states are the phonemes in the case of 

phonetic labeling. The parameters include LSFs for the vocal tract, instantenous f0 values 

as well as mean and variance of source and target pitch values, durations, and energy 

values. So, we obtain all parameters in a single training step. Finally, we employ 

confidence measures to eliminate states that do not possess sufficient similarity in terms 

spectrum, pitch, duration and energy characteristics. The parameters of all remaining 

states are kept in the codebooks. The details of the training procedure is shown in Figure 

3.9. 

 

Two codebooks are generated for the source and the target speaker separately. The 

codebook entries include average line spectral frequencies, f0, energy, and duration of 

each state. The mean and the standard deviation of the f0 values are also included. We 

use these in the pitch transformation as described in Section 3.6.1. 
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Figure 3.9. Flow chart for STASC training algorithm 

 

It is also possible to apply pre-filtering using the long-term spectra for the source 

and the target recordings. The spectrum of the speech frame to be transformed is 

multiplied with the target long-term spectrum and divided by the source long-term 

spectrum during FD-PSOLA. This pre-filtering step transforms the long term spectral 

characteristics of the source speaker to those of the target speaker. This method is useful 

if the source and target training utterances were recorded in different acoustical 

environments.  

 

3.4.2.  Transformation 

 

At the transformation stage, we analyze the input signal pitch-synchronously. 

Source/filter decomposition is performed using LP analysis. We modify the source and 

the filter components separately. We employ FD and TD-PSOLA based modifications on 

the source signal as described in Section 3.5. In this section, we will focus on the 

transformation of the vocal tract parameters. Prosodic modifications are described in 

Sections 3.5 and 3.6. 

 

We use the source LSFs for searching the closest match(es) in terms of vocal tract 

spectrum in the source codebook. Then, we estimate the output vocal tract spectrum 

using time varying filtering techniques in the frequency domain. The flowchart of the 

transformation algorithm is shown in Figure 3.10. Target LSFs are interpolated for vocal 
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tract transformation. For this purpose, we estimate the LP coefficients of the input frame, 

ak
s ’s, and convert them to LSFs, wk’s. We compare these LSFs with the source codebook 

LSF entries using the distance measure given in Equation 3.30 and determine the entries 

with minimum distance. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Flow chart for STASC transformation algorithm 

 

(3.30) 

 

 

where wk’s are the LSFs for the input frame, P is the order of linear prediction analysis, 

Sk
i is the kth LSF of ith source codebook entry. di’s correspond to the estimated distances 

in a codebook of size L. i is the codebook entry index. The LSF weights, hk’s, are 

estimated using the perceptual weighting criterion given in Equation 3.31. The LSFs with 

closer values are assigned higher weights because they usually correspond to formant 

locations. 

 

  (3.31)           

 

Based on the distances, di’s, we estimate the normalized codebook weights, vi’s 

using: 
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(3.32) 

 

 

where γ can be adjusted. Typical values of  γ are in the range [0.2, 2] but we have used a 

value of 1.0 for most of the cases. We estimate the target vocal tract spectrum using these 

weights and the corresponding target codebook entries: 

 

(3.33) 

 

where ŵk
t is the  kth LSF of the estimated target LSF vector and Tk

i is the kth LSF entry of 

the ith target codebook entry. We convert the estimated LSFs, ŵk
t ’s, to LPC coefficients, 

âk
t’s, and obtain the estimated target vocal tract spectrum Vt(w): 

 

(3.34) 

 

The vocal tract filter Hv(w) is estimated as follows: 

 

(3.35) 

 

We multiply the input spectrum with Hv(w) to convert the vocal tract. Note that 

Vs(w) represents the source vocal tract spectrum. It can be obtained directly from the 

input speech segment using ak
s’s as in Equation 3.36. As an alternative, we can estimate 

the source vocal tract spectrum estimated as an approximation to the source codebook 

LSF entries. In this case, we interpolate the source codebook LSFs using the codebook 

weights, vi’s, to obtain ŵk
s ’s using Equation 3.37. We convert ŵk

s ’s to LP coefficients, 

âk
s’s. The source vocal tract spectrum, Vs(w), is calculated using Equation 3.38. 

 

(3.36) 

 

 

(3.37) 

 

(3.38) 
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3.5.  Modification of the Source Component 

 

In many applications, it is necessary to modify the prosodic characteristics of 

speech signals in a natural and efficient manner. Examples include speech synthesis, 

voice conversion, speech compression and transcription applications. In concatenative 

speech synthesis, appropriate segments are collected from a TTS database and 

concatenated applying necessary modifications in real-time. These modifications include 

time, pitch and energy scaling, and spectral smoothing to reduce discontinuities across 

segment boundaries. Efficient time/pitch scale and energy contour modifications are 

possible employing the methods we describe in this section.. As duration and pitch 

characteristics serve as important clues in perception of speaker identity, more 

convincing results are obtained by using prosodic modification methods in voice 

conversion. As a compression application, the possibility to preserve a time scale 

compressed version of the speech signal that requires less space for storage can be 

proposed. On the other hand, a time scale expanded version of a speech signal may be 

easier to understand for transcription applications. In the next sub-sections, we describe 

two methods for performing prosodic modifications.  

 

3.5.1.  Time Domain Pitch Synchronous Overlap-Add (TD-PSOLA) Algorithm  

 

TD-PSOLA is a simple and effective method for performing prosodic modifications 

on speech signals. It is well suited for real-time applications. The idea is to process the 

speech signal on a short-time basis where the segments are obtained pitch synchronously. 

These segments are concatenated in an appropriate manner to obtain the desired 

modifications. The overall process is as follows: 

 

• The start and end instants of pitch periods over the voiced regions are determined 

by pitch marking. The algorithm described in (Gold and Rabiner, 1969) can be 

used. Pitch detection methods are not suitable for this purpose as the exact instants 

where the pitch period starts and ends are required.  

• Pitch synchronous speech segments are extracted by covering 2 to 5 pitch periods 

per frame. Windowing is applied. 
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• Time and pitch scale modifications are performed as described later on and the 

output is reconstructed using overlap-add synthesis by windowing. 

 

 

 

 

 

 

 

Figure 3.11. Time scale expansion (left) and compression (right) 

 

 

 

 

 

 

Figure 3.12. Pitch scale compression (left) and expansion (right) 

 

3.5.1.1.  Time Scale Modification. It is common practice that when the audio signals are 

played back at a lower rate, the spectrum of the output is also modified. We know from 

the properties of the Fourier Transform that expanding the time scale of a signal causes a 

compression in the frequency domain so the output is a pitch scale compressed version of 

the original signal. On the other hand, when the time scale is compressed -i.e. when the 

signal is played back faster, the pitch will be higher. The aim of time scale modification 

is to prevent these inherent modifications in the signal spectrum while modifying the time 

axis and obtain an output that has similar spectra as the original signal.  

 

TD-PSOLA modifies the temporal content by repeating or removing integer 

number of speech segments. Segment repetition produces a signal that is expanded in the 

time domain while the output using deletion is a time-compressed version of the original 

signal (Figure 3.11). Repetition/deletion of integer number of frames does not modify the 

short-time spectral content and distort the relationship between the pitch harmonics.  
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3.5.1.2.  Pitch Scale Modification. In this case, the aim is to modify the short-time 

spectral content of the signal without modifying its temporal characteristics. The spectral 

envelope must also remain constant but rather the locations of the pitch harmonics must 

be modified because modifying the vocal tract will severely effect the perceived speaker 

identity. As an example, if the spectrum of male speech is shifted to higher frequencies, 

the output will not only have increased pitch but the quality of a female’s or even a 

child’s voice depending on the amount of shift applied. In order to prevent this effect, 

TD-PSOLA modifies the amount of overlap between successive pitch-synchronous 

segments as demonstrated in Figure 3.12. It is also clear that pitch scale modification 

results in the modificiation of the time-scale. Since this is not desired, compensating 

time-scale modification must be employed.   

 

3.5.1.3.  Synthesis By Overlap-Add. In the final step, the output signal is constructed 

using overlap-add method with windowing. All the procedure described above 

determines the new locations and overlap ratios of the frames. We multiply each frame 

with a Hamming window in order to prevent discontinuities. The frames are then 

concatenated using the overlap ratios obtained in the pitch-scale modification step. The 

main advantage of TD-PSOLA is its simplicity and efficieny which make it suitable for 

real-time applications. However, when severe amounts of time and pitch scaling are 

applied, the output quality degrades. There also other drawbacks: 

 

• The pitch modification introduces scaling of the  time axis which must be 

compensated. 

• The duration modification can only be implemented in a quantized manner, with a 

one pitch period resolution because the time scale factor can have the values 

1/2,2/3,3/4,...,4/3,3/2,2/1, etc. 

• When performing a duration expansion, the repetition of the segments can introduce 

metalic artifacts. This can be compansated by reversing even indexed frames during 

repetition of voiced segments. Unvoiced regions are not modified during both time 

and pitch scale modification.  

• The spectral envelope changes with f0. The effect is apparent for large amounts of 

pitch scaling. As TD-PSOLA does not modify the spectral envelope, output quality 

degrades for very large and very small pitch scaling factors. 
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3.5.2.  Frequency Domain Pitch Synchronous Overlap-Add (FD-PSOLA) Algorithm 

 

The second method to be considered for prosodic modifications is FD-PSOLA that 

operates in the frequency domain. The algorithm is composed of the following steps: 

 

• The short term spectrum of the signal is estimated pitch-synchronously. 2-5 pitch 

periods are used as the window size. It is possible to use pitch marks as in TD-

PSOLA but FD-PSOLA performs considerably well without the pitch marks. 

However, a robust pitch detection algorithm is reqired. 

• The spectral envelope is estimated. Although it is common to employ linear 

prediction techniques, any spectral envelope estimation method can be used. It is 

important to obtain a smooth excitation spectrum. As the excitation spectrum is 

warped to obtain the desired modifications, any region of the excitation spectrum 

that is not sufficiently flat will be translated to other spectral regions and this may 

cause distortion. 

• To perform pitch-scale modifications different methods can be employed as 

described in (Moulines and Charpentier, 1990). Two methods are discussed in 

Sections 3.5.2.1 and 3.5.2.2. 

• Time domain segments are overlap-added as described in Section 3.5.2.3. 

 

3.5.2.1.  Harmonics Elimination-Repetition. In this method, we first determine the pitch 

harmonics. The harmonics are then eliminated (repeated) for pitch scale expansion 

(compression). However, this method has its own problems. Firts, precise estimation of 

the pitch value is required to determine the pitch harmonics. Next, the phase coherence 

between the harmonics of the spectrum must be maintained in order to ensure good 

quality. For this purpose, the original frames should be set at locations corresponding to 

maximal source excitation which occurs at the glottal closure instants. 

 

3.5.2.2.  Spectral Compression-Expansion. The original freqency axis is linearly warped 

using the pitch scale factor β. The synthetic DFT coefficients are estimated by Equation 

3.39 where kv is obtained by truncating the real value k/β. Note that the original DFT 

coefficient index is denoted by k. The weight α is found by Equation 3.40. As the local 

properties of the spectrum are translated from one spectral region to another, this method 
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may cause distortion. However, if the spectral envelope is tracked well, the distortion will 

be less than TD-PSOLA or harmonics elimination-repetition for pitch scale expansion.  

 

(3.39) 

 

           (3.40) 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 3.13. Original FFT and LPC spectrum (top), and excitation spectrum (bottom) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14. Modified FFT spectrum (top) and modified excitation spectrum 

(bottom) for a pitch scaling ratio of 2.0 using compression/expansion technique 
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When decreasing the pitch, an empty region appears at the high frequencies. In 

order to generate an acceptable spectral distribution, either the lower part of the spectrum 

is copied or the higher part is folded to the empty region. Figures 3.13 and 3.14 

demonstrate the method of spectral expansion for increasing the pitch. 

 

3.5.2.3.  Synthesis. The Short Time Fourier Transform (STFT) plays a key role in the 

analysis, modification and synthesis stages of the FD-PSOLA algorithm (Moulines and 

Verhelst, 1995). At the analysis stage, the speech samples x(n) are windowed by the 

analysis window hu(n) pitch-synchronously. If we assume that the windowing function 

hu(n) is centered around time t=0, is of finite duration Tu, is symmetric and is the impulse 

response of a lowpass filter, the analysis short-time signal x(ta(u),n) associated to the 

analysis time instant ta(u) can be represented as in Equation 3.41. Its DFT is given by 

Equation 3.42. 

 

(3.41) 

 

(3.42) 

 

The STFT X(ta(u),w) is modified as described above to produce the synthesis 

spectrum Y(ts(u),w). The problem is that the modified spectra may no longer be a valid 

STFT in the sense that a signal which has Y(ts(u),w) as its STFT may not exist. In this 

case, we wish to obtain a signal y(n) which has its STFT as close as possible to the 

desired synthesis spectra. If we denote the STFT of y(n) as an approximation to the 

desired signal spectrum: 

 

(3.43) 

 

The problem of estimating y(n) can be solved by least-squares fitting to minimize 

the following summation:  

 

(3.44) 
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The sum is over all time instants ts(u) where Y(ts(u),w) is defined. fu(n) is the 

synthesis window. The solution to the least squares problem is given by: 

 

(3.45) 

 

 

(3.46) 
 

The synthesis algorithm is similar to weighted overlap-add. The successive short-

time synthesis signals are combined with appropriate weights and time-shifts. If we 

choose the synthesis window such that Σufu
2(n-ts(u)) = 1, the synthesis operation is 

simplified. Let’s consider an example to see how the synthesis algorithm operates: 

 

• Let hu(n) = h(n) be the fixed analysis window of length L for a constant analysis 

rate ta(u) = uR where R<L (so the analysis frames are overlapping) 

• To compute x(uR,n), the signal is advanced R points in time and windowed to 

obtain x(uR,n) = h(n)x(n+uR). The STFT is calculated to obtain X(uR,w) 

• Let’s have no modification in order to demonstrate the OLA synthesis method. The 

inverse STFT is computed to recover the windowed segments x(uR,n). The result is 

windowed again with the synthesis window fu(n)=h(n) to obtain h(n)x(uR,n). Of 

course this is not the case when considering pitch-scale modifications, so the 

synthesis window will be different than the analysis window. As all these segments 

were positioned around time origin during the analysis, they have to be delayed to 

move each one back to its original location along the time axis (i.e. around time uR 

for segment number u). The result is given by a time-varying normalization weight 

as follows: 

 

(3.47) 

 

Thus, OLA synthesis formula reconstructs the original signal if the analysis STFT 

X(ta(u),w) is a valid STFT. This is the case when we have no modifications. If 

modifications are performed, Equation 3.47 will estimate the signal which has a 

maximally close STFT to X(ta(u),w) in the least-squares sense. In fact, this procedure 
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provides a framework suitable for different approaches. Reconstruction of speech signals 

using only the short time magnitude spectra, OLA time-scaling, synchronized OLA time-

scaling, and WSOLA are examples. 

 

The main drawback of FD-PSOLA is the requirement for high computational 

power. A comparative study of several PSOLA methods can be found in (Moulines and 

Charpentier, 1990) and (Violaro and Böeffard, 1998).  

 

In STASC, the excitation spectrum is modified using the compression/expansion 

technique of FD-PSOLA for pitch scale expansion. However, for pitch scale compression 

we have used TD-PSOLA to reduce distortion by avoiding the empty spectral region in 

lowering the pitch. In this case, the excitation spectrum is not modified but the synthesis 

time instants are arranged in order to obtain the desired amount pitch scale compression. 

It is also possible to modify the excitation magnitude spectrum employing the method 

described in Section 3.5.3. After all these modifications, we multiply the excitation 

spectrum with the transformed vocal tract spectrum and obtain the synthesis segment 

using Equation 3.47. Duration and energy scaling can be performed at this stage also as 

shown in Figure 3.10. 

 

3.5.3.  Excitation Transformation 

 

Although the spectral envelope contains important clues of speaker identity, the 

residual signal possesses the rest of the information that may be useful for both speaker-

specific modeling and modification. In the following paragraphs, we describe the 

excitation spectrum modification method as employed in (Arslan, 1999). In this 

approach, the magnitude of the excitation spectrum is transformed to match the target 

speaker characteristics. 

 

In STASC, an excitation transformation filter is constructed using the selected 

codebook entries for vocal tract conversion. The same set of weights are used as in 

Equation 3.48 to construct the filter. Using this filter and the converted vocal tract 

spectrum, the speech spectrum can be obtained as in Equation 3.49. 
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(3.48) 

 

(3.49) 

 

where X(w) is the input speech spectrum. The frames are then overlap-added pitch 

synchronously to generate the output. 

 

It is also possible to modify the phase component. In (Kain, 2001), the author 

describes a method for transforming both the magnitude and the phase component of the 

excitation spectrum. The excitation magnitude spectrum vectors are employed to train a 

GMM to account for different vectors that can be observed in different phonemes. The 

phase vector of the centroid of each class is used in synthesizing the output. 

 

3.5.4.  Other Methods 

 

The sinusoidal parameters are used in several studies for modification of speech 

prosody (Quatieri and McAulay, 1992). As these parameters are a set of amplitudes, 

frequencies and phases, it is pretty straightforward to realize pitch, time-scale and energy 

modifications. Phase vocoding techniques are also used for modifying speech prosody. 

The baseline phase vocoder system is described in (Flanagan and Golden, 1966). Pitch 

scaling can be obtained by applying appropriate amounts of time-scaling and resampling 

(Laroche and Dolson, 1999). In (Tang et al., 2001), pitch, duration, and energy 

modification are performed using a phase vocoder without explicit pitch detection.  

 

3.6.  Modeling and Transforming the Pitch 

 

Pitch contour modeling has been addressed in many studies on speech synthesis. 

For improving the naturalness of the synthesizer output, appropriate intonational patterns 

should be generated automatically. Particularly the study in (Taylor, 1992) describes 

many approaches in pitch contour modeling. Here, we will only cover several techniques 

for demonstrating the approaches that can be used. In Section 5.4, we describe a new 

pitch contour modeling and transformation method, and compare it with the 

mean/variance model. 
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3.6.1.  Mean/Variance Model  

 

The simplest approach for modeling the pitch contours is to assume that the f0 

values come from a single Gaussian distribution and estimate the mean and the variance 

of the distribution. For this purpose, after the pitch values are detected, only voiced 

segments are used for estimating the parameters of the distribution. Once the mean and 

the variances of two speakers are estimated, transformation becomes easy. Let’s define 

two random variables S and T from two separate Gaussian distributions with means and 

variances     (µs, σ2
s) and (µt, σ2

t). Let’s denote the pdf’s of these distributions as fS(s) and 

fT(t) respectively. Assuming a linear transformation rule from source to target pitch, the 

target pitch value is given by: 

 

   (3.50) 

 

The problem is to estimate a and b using the source and the target pitch statistics. 

The pdf of a linear transformation of a random variable is given by: 

 

(3.51) 

 

(3.52) 

 

If we assume that a>0: 

 

(3.53) 

 

As both distributions are approximated by two Gaussian distributions with means 

and variances (µs, σ2
s) and (µt, σ2

t), we have: 

 

(3.54) 

 

 

Taking the logarithm of both sides of the equation and replacing t = as+b, we get: 
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(3.55) 

 

Considering s2 terms: 

 

(3.56) 

 

The log term is thus eliminated. Using this value for a in Equation 3.55, and taking 

square root of both sides: 
 

 (3.57) 

 

In fact, this pitch transformation method is used in several studies and performs 

quite well as the mean and variance of the pitch values are successfully converted to 

match the target speaker characteristics. This model is used in STASC for modeling and 

transforming pitch characteristics. For this purpose, a time-varying pitch scale factor β(t) 

is estimated using the instantenous pitch value on the signal to be transformed. We 

estimate β(t) using the source and the target pitch statistics as in Equation 3.58. 

 

 (3.58) 

 

where f0
s(t) is the instantenous source f0 value, µs and µt are source and target mean  f0 

values, σs and σt are the standard deviations of the source and target f0’s respectively.  

 

3.6.2.  Sentence Codebooks   

 

It is possible to generate a pitch contour codebook for modeling a speaker’s pitch 

characteristics on the sentence level as described in (Chappel and Hansen, 1998). In this 

case, the advantage is to be able to use real pitch contours in synthesis or modification. 

However, the codebook should contain sufficient number of pitch contours. This is 

impossible when the aim is to be able to synthesize all kinds of pitch contours. This 

approach works well for a limited vocabulary or for specific applications in which the 

variability of the pitch contours are restricted. 
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3.6.3.  Fujisaki’s Model 

 

In this model, pitch (or intonation) contour’s are assumed to be composed of two 

different components: the phrase and the accent. The production of these contours is 

modeled as a filtering action of the glottal oscillation mechanism. Impulses and step 

functions are input to two critically damped filters to generate the corresponding 

intonation contour. The first filter accounts for the phrase component and the second for 

the accent component. Phrase components are generated by using impulses as input to the 

phrase  filter and the accent components are obtained by using step functions to excite the 

accent filter (Fujisaki and Kawai, 1982). 

 

 

 (3.59) 

 

 

 

(3.60) 

 

 

(3.61) 

 

 

Here, Gpi’s are the filters corresponding to phrase commands (Equation 3.60) and 

Gaj’s are the filters corresponding to the accent commands (Equation 3.61). Successive 

phrases can be added to the tails of the previous ones creating the contours using 

Equation 3.59. The accent commands are useful for controlling the duration of each 

movement in the intonation contour. By the use of step functions of sufficient duration, 

the accent commands can be shaped. In (Narusawa et al., 2002), the authors describe 

methods for estimating the model parameters automatically. 
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3.7.  Subband Processing and DWT 

 

In this section, we summarize both the motivation and the theoretical background 

for subband processing. We start with a brief description of the human auditory system. 

Next, we summarize the Discrete Wavelet Transform (DWT). 

 

Human auditory system serves as a frequency analyzer. This function is performed 

by the basilar membrane which resides in the inner ear (cochlea). The principal structures 

of the human auditory system is shown in Figure 3.15. When tones of different 

frequencies are transmitted to the inner ear, different regions in the basilar membrane 

vibrate enabling analysis of the frequency content of the incoming signals. This 

behaviour is modeled by a bank of bandpass filters in auditory scene analysis, coding and 

recognition applications.  

 

 

 

 

 

 

 

 

 

 

Figure 3.15. Human auditory system (Kenny, 2001) 

 

In this study, we investigate the use of subband processing in voice conversion, 

particularly in vocal tract conversion. Chapter 5 describes two new methods based on 

subband processing for this purpose. Multi-resolution signal processing techniques serve 

as a useful tool for subband processing. Wavelet Transform provides a practical 

framework. 

 

Continuous Wavelet Transform (CWT) of a finite-energy signal f(t) is defined by 

the relation in Equation 3.62 where                  is a time-shifted and time-scaled copy of 
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the mother wavelet φ(t). Note that φ(t) is a fixed function in                             as 

described in (Torresani, 1999). 

 

(3.62) 

 

The discrete version of CWT, called the Discrete Wavelet Transform (DWT) is 

obtained using digital filtering and subsampling operations as given in Equation 3.63. 

These equations correspond to a single step of decomposition for DWT. Subband 

decomposition at the desired scale can be performed by a cascade of these operations. 

 

(3.63) 

 

 

 Equation 3.64 corresponds to Inverse Discrete Wavelet Transform (IDWT) for 

reconstructing the signal from its subband components ylow[k] and yhigh[k]. The filters 

h[n] and g[n] are not independent of each other but their filter coefficients has the relation 

given in Equation 3.65. These are known as Quadrature Mirror Filters (QMF). If the filter 

pairs h[n] and g[n] form an orthonormal pair, then IDWT will produce the input signal 

x[n] exactly. This is known as perfect reconstruction (PR). The orthonormal filter pairs 

developed by Daubechies are well known and used in many applications. 

 

 (3.64) 

 

(3.65) 

 

 

 

 

 

 

 

Figure 3.16. DWT flowchart for one level of decomposition and reconstruction (left), 

the magnitude and phase responses of the filter pair (right) 
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DWT can be implemented either using a pyramid structure or using a lattice 

filtering approach. In this study, the pyramid structure shown in Figure 3.16 is 

implemented. One can use a cascade of this basic structure to implement DWT 

decomposition and reconstruction filterbanks of any order (Burrus et al., 1998). DWT 

based subband decomposition is employed in training for voice conversion as discussed 

in Section 5.1. The transformation stage involves both DWT based subband 

decomposition on the input signal and DWT based subband reconstruction to obtain the 

voice conversion output. Following characteristics of the DWT make it an attractive tool 

for  designing filterbanks: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17.  Lowpass & highpass filtering followed by decimation 

 

• Perfect reconstruction is guaranteed if appropriate filter pairs are used. 

• FIR filters can be used which are guaranteed to be stable having linear phase and by 

increasing the order of the filters, a filterbank with sharp cut-off filters can be 

designed. This is useful for bandpass filtering. 

• Subband decomposition (reconstruction) can be realized fully in time-domain using 

convolution and decimation (interpolation). 
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• Aliasing can be prevented since appropriate lowpass and highpass filters are used 

before decimation and after interpolation. 

 

The baseband signal corresponding to the higher subband have inverted spectrum 

due to decimation in the case of one-level decomposition. The reason is that decimation 

in time domain corresponds to stretching the spectrum as shown in the Figure 3.17. After 

each high-pass filter, spectral inversion due to shifting is observed. In Figure 3.17, X(ejw) 

is the original signal spectrum. The signal is first lowpass and highpass filtered with 

filters having cut-off frequencies at π/2 rad/s. XL(ejw) and XH(ejw) denotes the filtered 

versions of the original spectrum. Then, we apply decimation by 2 in time and obtain the 

baseband signal spectra XL(ejw/2) and XH(ejw/2). 

 

By comparing X(ejw) with XH(ejw/2), we observe that the spectrum is inverted. We 

must consider this inversion when the purpose is to bandpass filter a signal using DWT. 

As an example we can consider a DWT filterbank with order 3. This filterbank will 

produce  23 = 8 baseband signals. Using these baseband signals with sequences of zeros 

in the appropriate channels of the reconstruction filterbank, we can obtain the bandpass 

filtered versions of the original signal.  
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4. SUBJECTIVE TESTS FOR PERCEPTION OF  

SPEAKER IDENTITY 
 

 

4.1. Subjective Assessment of Frequency Bands for Perception of Speaker Identity 

                                         

In this part, we have designed subjective tests to assess the importance of frequency 

bands for perception of speaker identity. Section 4.1.1 starts with a brief description of 

the procedure and describes the filterbank used for subband decomposition for the 

construction of the test database. In Section 4.1.2, we focus on the design of the 

subjective tests, the content of the database used and evaluation methods. Section 4.1.3 

presents the results obtained. In (Ormancı et al., 2002), we have only described the first 

two parts of the subjective tests performed in this chapter (Sections 4.1.2.1 and 4.1.2.2). 

Part III, as described in Section 4.1.2.3 is a complementary work which provides further 

explanations on the evidence. 

 

4.1.1. General Framework 

 

The procedure can be briefly described as a test in which the subjects were required 

to listen to several utterances along with the bandpass filtered versions of these utterances 

and provide a subjective score on the similarity of speaker identities. The bandpass 

filterbank used in the experiment has been adapted from MPEG coding (ISO/IEC, 1993) 

by taking the frequency bands relevant to speech. Figure 4.1 and Table 4.1 show the cut-

off and center frequencies and the magnitude responses of the filters employed in the 

filterbank. 10 FIR filters of order 50 were used in the design. 

 

 

 

 

 

 

 

Figure 4.1.Magnitude responses of the bandpass filters 
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Table 4.1.Upper (FU), lower (FL) cutoff, and center frequencies of the bandpass filters 

 

4.1.2. Methodology 

 

We have used 10 words in Turkish uttered by eight native Turkish speakers in 

different ages (four female, four male) to generate the database. The words cover all the 

phonemes of the Turkish language. The primary advantage of a word database is that the 

intonational differences are reduced. So, the subjects are less likely to focus on the 

prosodic characteristics of the speakers when identifying them. Using a sentence database 

without normalized prosody will always lead to more biases related to prosody than a 

word database recorded in the same conditions. This is due to the fact that speakers are 

more likely to utter words in a smooth manner without employing intonational patterns 

much. 

 

First, each word in the database is decomposed using the bandpass filters with 

properties described in Figure 4.1 and Table 4.1. Three separate lists of speech  files were 

prepared. In the first list, the original and bandpass filtered version of the same word is 

used. Different words were used to generate the pairs in the second list in order to reduce 

the dependence of the results on prosody further. This was the case because the database 

still possesses prosodic differences in the word level. In the last list, we use the f0 

normalized versions of the words and the pairs consisted of different word pairs as in the 

second list. By this method we ensure complete removal of the intonational information 

in the database. The order of the speech file pairs were arranged randomly in all lists in 

order not to have pairs containing the same word one after another. A graphical user 

interface in VOX (See Appendix A) was designed by which the subjects were able to 

listen to the speech files and score them accordingly. 
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Table 4.2. Scoring instructions                            Table 4.3. Modification of scores              

 

In order to get a measure of the consistency of the subjects, ten pairs in the list are 

arranged such that the original versions and the bandpass filtered versions were uttered 

by different speakers. The subjects were expected to recognize that the word in the 

corresponding pair is uttered by different speakers for consistency. The consistency 

information is used in the calculation of the scores for the second part of the experiment. 

We had 20 subjects for Part I and Part II of the test. In Part III, 10 subjects have provided 

the scores. In all parts, they were asked to rate the probability of each pair of words being 

uttered by the same speaker using the scoring instructions given in Table 4.2. 

 

4.1.2.1. Part I. We use the first list in this part. Each subject listened to the files in the list 

and provided scores as described in Table 4.2. The scoring method used was summation 

of the modified scores as given in Equation 4.1. This score calculation method does not 

rely on the consistency of the subjects. We used Table 4.3 to modify the scores. 

Modification is required because some of the pairs were uttered by different speakers. As 

an example, consider the case when the speakers in the utterance pairs were different. In 

this case, a score of “0” for the similarity of the speakers should be regarded as the 

perfect answer and assigned a score of “100” instead of “0”. Note that similarityn  denotes 

the scores in Table 4.2 and M[similarityn] denotes the modification performed as given in 

Table 4.3. The means and standard deviations of the scores provided for each subband 

are then calculated and used as a measure of the importance of a subband in perceiving a 

speaker’s identity (Table 4.5).  
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(4.1) 

 

 

4.1.2.2. Part II. The second part of the experiment is similar to the first part with two 

major differences: 

 

• Each pair contained different words as the original utterance and the bandpass 

filtered utterance. We have observed that the subjects were likely to use prosodic 

clues in their decisions in Part I. We have used different words in each pair to 

prevent the use of these clues. 

• We have calculated consistency scores for each subject to be used in obtaining the 

statistics in order to reject inconsistent responses. 

 

We employ Table 4.4 to obtain the consistency score for each subject. The 

consistency score of each subject is determined by summing up the consistency score 

assigned for each pair of sound files. However, if the consistency score is below a 

threshold, the responses are not included in the subband statistics. The least consistent 10 

percent of the subjects were rejected. We have used Equation 4.1 to obtain the subband 

scores.  The means and the standard deviations of the scores for each subband is given in 

Table 4.5.  

 

 

 

 

 

 

 

 

Table 4.4. Consistency score for each decision 

 

4.1.2.3. Part III. In this part, all the recordings are re-synthesized at fixed f0 to remove 

the intonational bias on the test results. The results of the first two parts indicate that the 

second subband was the most important frequency band in perception of speaker identity 
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as demonstrated in Section 4.1.3. Although we have employed a method to reduce the 

prosodic biases in Part II, we were not able to investigate the effect of f0 on the responses 

of the subjects. Fixed f0 resynthesis was performed using FD-PSOLA as described in 

Section 3.5.2. We provide a fixed f0 value and perform appropriate amount of pitch 

scaling. Figure 4.2 shows the output pitch contour after f0 normalization. Next, we 

decompose the signals into subbands using the filterbank described above.  

 

We have extended the number of pairs in the list to 90. 10 pairs contain different 

speakers for scoring the consistency of the subjects as in Part II. The remaining 80 pairs 

contain 10 words from each speaker with one of the 10 possible subband versions. As we 

have eight speakers, the number of all pairs sum up to 80. We have prepared two lists of 

90 pairs that were f0-normalized at 100 Hz and 180 Hz. Using two different target f0s, 

we are able to investigate the effect of the specific f0 value in the test results. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Intonation normalization using FD-PSOLA. Pitch contour of a female 

speaker for the sentence “Kaza nedeniyle ulaşım aksadı” (top)                                    

and pitch contour after f0 normalization at 150 Hz (bottom) 

 

4.1.3. Results 

 

The means and the standard deviations of the scores assigned for each subband are 

shown in Table 4.5. The second subband located between [1034 Hz, 1895 Hz] was 

assigned the highest mean score for all three parts. The standard deviation was also lower 
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for this subband. The subband of second importance turned out to be the third one which 

covers the frequency range [1895 Hz, 2756 Hz] with a center frequency of  2325.5 Hz. 

 

If we compare the scores provided in Part I and II, we observe that the scores for 

Part I are higher because of the prosodic information present in the recordings used. With 

the prosody information available, the subjects were more accurate in their decisions. We 

have also calculated the consistency scores for Part I using Table 4.4 in order to compare 

them with the scores of Part II. The mean consistency score for Part I turned out to be 

27.39 which is considerably higher than 19.03 - the mean consistency score for Part II. 

Note that these values were in the range [8.00,30.25]. So, the subjects had more 

information for the perception of speaker identity in Part I in which more prosodic clues 

were present. In Part III, the mean consistency score for a fixed f0 of 100 Hz was 16.00 

(in the range  [12.00, 20.00]). For the case of 180 Hz, the mean consistency score was 

17.00 (in the range [7.00, 27.00]). Note that in the f0-normalized case, the consistency 

scores were lower than Part I, and Part II as the prosodic clues were removed further by 

f0 normalization. We also observe higher scores for the higher frequency subbands when 

f0 was fixed at 180 Hz as compared to 100 Hz. In the 100 Hz. case, lower subbands were 

assigned higher scores. 

 

 

 

 

 

 

 

 

 

Table 4.5. Means and standard deviations of the scores assigned to each subband for 

all parts 

 

We have also calculated the consistency scores  for the first and the last 25 pairs in 

Part II. The subjects had a mean consistency score of  14.26 for the first 25 pairs and 

23.68 for the last 25 pairs. We observe that the performance of the subjects has increased 
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for the last 25 pairs. This indicates that the subjects were able to assign a talking pattern 

to each speaker. The consistency scores remained low for the first 25 pairs because the 

subjects had not yet gained sufficient information on each speaker. For Part III, the 

difference in the consistency scores for the first and the last 45 pairs was less as prosodic 

clues were minimized. For the 100 Hz case, the subjects had a mean consistency score of 

6.75 for the first 45 pairs, and 9.25 for the last 45 pairs. For the 180 Hz case, the mean 

consistency score for the last 45 pairs (10.50) was even less than the mean consistency 

score for the first 45 pairs (11.37). 

 

4.2. Acoustic Feature Transplantations 

 

In this section, we have used PSOLA based methods for transplanting different 

target speaker characteristics onto the source speech signal to determine the relevance of 

these characteristics for perception of speaker identity and voice conversion. Four 

different acoustic features are investigated for their importance in perception of speaker 

identity:  

 

• Vocal Tract (VT) 

• Pitch Contour (PC) 

• Phonemic Durations (DU) 

• Energy Contour (EN) 

 

4.2.1. General Framework 

 

In what follows, we represent these features by the shorthand notations in the 

parantheses above. We append a number to the right of each feature to show that it comes 

from either the source speaker (Speaker1) or the target speaker (Speaker2). In our 

convention, the features follow the order “vocal tract-pitch-duration-energy” and each 

feature is separated from the others using the “-“ sign. As an example, if we have the 

vocal tract, pitch and duration information from Speaker1 and the energy contour from 

Speaker2 (i.e. an energy transplantation), the output is represented as VT1-PC1-DU1-

EN2. The procedure for transplantations is as follows: 
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• Recordings of the same utterances from the source and the target speakers are 

obtained along with the transcription of the utterance in a separate text file. 

• The utterances are automatically labeled and the labels are manually corrected. 

• Acoustical feature(s) of Speaker1 is (are) modified to match the acoustic feature(s) 

of Speaker2 using the phonetic alignment information in a PSOLA based 

framework.  

 

Alignment is performed automatically with a phonetic alignment tool which 

determines the phoneme boundaries given the Turkish transcription. The labels are 

manually corrected. Most of the labeling errors occured at plosive sounds like /t/ and /p/. 

There were also errors in the case of liaison and when the phonemes containing /n/, /m/ 

or /y/ had extended duration. Note that in liaison two consecutive words are uttered as a 

single word without having any silence period in between. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.6. All possible combinations of feature transplantations from Speaker2 to 

Speaker1. “1” denotes that the corresponding feature comes from Speaker1 and “2” 

denotes that it comes from Speaker2  
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If we consider the possible number of feature transplantations between Speaker1 

and Speaker2, a direct calculation yields 24 = 16. Two of these combinations correspond 

to original utterances of Speaker1 and Speaker2 (i.e. VT1-PT1-DU1-EN1 and VT2-PT2-

DU2-EN2). So we are left with 16-2=14 possibilities. These 14 acoustic feature 

transplantations can be obtained by performing 7 different types of transplantations as 

described in rows 2-8 of Table 4.6. Each transplantation is repeated by reversing the 

order of speakers to obtain the rest of the combinations as shown in rows 9-15 in Table 

4.6. The first row corresponds to the original utterance of Speaker1 and the last row to 

the original utterance of Speaker2 in this table. We denote the pair of transplantations that 

can be obtained by reversing the order of speakers as dual transplantations. Table 4.7 lists 

the dual acoustic feature transplantations. 

 

 

 

 

 

 

 

 

Table 4.7. Dual acoustic feature transplantations 

 

The corresponding time instant in the utterance of Speaker2 is determined by using 

the information from the labels and the analysis time instant in Speaker1 in Equation 4.2 

during PSOLA. Note that we assume a linear time-warping scheme within the phoneme. 

 

     (4.2) 

 

The parameters in Equation 4.2 are as follows: 

  

• i: index of the current label 

• t1
i: time instant in Speaker1 (which is in the ith label) (s.) 

• t2
i: corresponding time instant in Speaker2 (s.) 

• t1
s: start time of the ith label in Speaker1 (s.) 
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• t1
e: end time of the ith label in Speaker1 (s.) 

• t2
s: start time of the ith label in Speaker2 (s.) 

• t2
e: end time of the ith label in Speaker2 (s.) 

 

As an example, consider Figure 4.3. This snapshot is taken from VOX where two 

waveform files are displayed. The waveform on the top is from Speaker1 and at the 

bottom is from Speaker2. The blue lines show the starting and ending instants of the 

labels. Current time instant in Speaker1 is shown with a red cursor line as t1
i = 0.692 sec. 

We want to find the corresponding time instant in Speaker2, t2
i,  using the phonetic labels 

and Equation 4.2. Note that the starting and ending instants of current labels are also 

shown in Figure 4.3 as ts
1, te

1, ts
2, and te

2. For the values given, t2
i is calculated as 0.435 s. 

Note that t2
i is marked with a red cursor line on the waveform for Speaker2. The current 

feature value for Speaker1 is extracted using t1
i and appropriate modification is 

performed on this value to match the corresponding feature value for Speaker2 at t2i. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Finding the corresponding analysis time instant in Speaker2  
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4.2.2.Vocal Tract Transplantation 

 

The target vocal tract is transplanted onto the source signal using the corresponding 

time instant in the target signal. If the target phoneme has extended duration as compared 

to the source phoneme,  the vocal tract vectors should be repeated during synthesis. On 

the other hand, if the duration of the target phoneme is less than the duration of the 

source phoneme, appropriate amount of target frames are skipped in PSOLA. We use 

LSFs as the vocal tract parameters. Once the corresponding target vocal tract parameters 

are found, the output is synthesized as in Equation 4.3 where w(n) is the coefficients of a 

Hamming window of size N and x(n) is the current frame obtained from the speech signal 

pitch-synchronously. Next, we calculate the spectrum H(w) using FFT (Equation 4.4). In 

Equation 4.4, ceil(k) is a function that rounds k towards +∞. The size of FFT (fftsize) is 

taken as the minimum power of 2 which is greater than or equal to N. The excitation 

spectrum E(w) is given by Equation 4.5 where Ps is the vocal tract spectrum estimated 

using the LSFs.  

 

 (4.3) 

 

 (4.4) 

 

 (4.5) 

 

(4.6) 

 

The output frame FFT, Y(w), is calculated as in Equation 4.6 where Pt is the vocal 

tract spectrum of the corresponding target frame calculated using  the target LSFs. 

Overlap-add synthesis is then performed to obtain the time domain output. As the vocal 

tract parameters estimated are the LSFs, we apply preemphasis on the source signal 

(using a filter 1-αz-1) and remove the effect of preemphasis at the output using the 

inverse preemphasis filter 1/(1-αz-1) with α=0.97. 

 

The output of the vocal tract transplantation for a voiced frame is shown in Figure 

4.4. The LP spectrum of the transplantation output does not exactly match the spectrum 



 59

of Speaker2 because the spectrum of the transplantation output is estimated using the 

synthesized signal.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Vocal tract spectra for Speaker1, Speaker2, and transplantation output for 

a voiced phoneme 

 

4.2.3.  Pitch Contour Transplantation 

 

We determine the amount of pitch scaling for transplanting the target pitch contour 

on the signal by using the phonemic time alignment as in the case of vocal tract 

transplantation. Current pitch value of the source speaker is used with the corresponding 

target pitch value at the corresponding time index to get the pitch scaling ratio as follows: 

 

 (4.7) 

 

where f0target is the instantenous target pitch value, f0source is the instantenous source pitch 

value and β(t) is the instantenous pitch scale modification factor. We smooth the source 

and target pitch contours to prevent sudden jumps. We also limit the value of β(t) in the 

range [0.3, 3.0] in order to avoid exceptionally small or large pitch scaling factors. 

 

In some cases, voiced segments of the source pitch contour will correspond to 

unvoiced segments in the target contour. We interpolate the target pitch contour linearly 
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in the unvoiced regions. This approach produces satisfactory results as the interpolation is 

carried out using the pitch values of the target contour at voiced parts. The interpolation 

of unvoiced regions of the f0 contour is demonstrated in Figure 4.5. 

 

Note that if there is an unvoiced region at the beginning of the utterance, the 

interpolation is performed by assigning the mean pitch value for the first frame and 

linearly interpolating the unvocied values until the first voiced frame. If we have an 

unvoiced region at the end of the pitch contour, we simply replicate the last voiced value. 

Both situations are demonstrated in Figure 4.5. 

 

Figure 4.6 demonstrates pitch contour transplantation. Note that the output time 

axis corresponds to the time axis of Speaker1 and the pitch contour of Speaker2 is 

stretched and shifted on this axis to generate the pitch contour of the transplantation 

output. Speaker1 is a male and Speaker2 is a female speaker. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Interpolation of unvoiced regions of the pitch contour for the TIMIT 

sentence of a  male speaker “She had your dark suit and greasy wash water all year.” 
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Figure 4.6. Speaker1 (blue), Speaker2 (black), and transplantation output (red) 

 

4.2.4. Transplantation of Phonemic Durations 

 

In transplanting the phonemic durations, we use the original duration information 

by extracting the excitation signal from the target speaker and modify the rest of the 

acoustic features to match the source speaker characteristics. This method was preferred 

because employing TD-PSOLA or FD-PSOLA for phonemic duration modification 

results in considerable amount of distortion at the output. Both methods are capable of 

high quality output when the duration scaling ratio does not vary much across 

neighbouring speech frames. However, there may be drastic changes in the duration 

scaling ratio of two neighbouring phonemes in the case of phonemic duration 

transplantation. As the change in the instantenous duration scaling factor increases across 

phonemes, we get significant distortion at the output. In most of the cases, the output can 

not be considered as natural. However, we need to have different duration scaling ratios 

for mimicking the target speaker’s duration characteristics in an exact manner. The 
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method we have used does not modify the original target durations but transplants the 

rest of the features onto the target signal. This is best explained by an example: 

 

Let’s have two speakers, Speaker1 and Speaker2. Let us try to obtain a signal which 

has the duration characteristics of Speaker2 and the vocal tract, pitch and energy 

characteristics of Speaker1. The straighforward method will be to estimate the phonemic 

durations of Speaker1 and Speaker2, and apply appropriate amount of duration scaling 

across each phoneme of Speaker1 to get the output. However, this results in severe 

distortion as explained above. The duration scales across phonemes can be smoothed but 

in this case the output will no longer have the exact duration characteristics of Speaker2. 

In order to minimize the processing distortion, we follow the alternative path, and modify 

the vocal tract, pitch and energy contour of Speaker2 to match Speaker1 while not 

modifying the durations in Speaker2. The output quality is high with the expense of 

increased computation. This method performs well because the modifications applied to 

the vocal tract, pitch and energy features do not distort the signal as much as applying 

duration scaling with a time-varying duration scaling ratio.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. Speaker1 (top), Speaker2 (middle), output of duration transplantation 

from Speaker2 onto Speaker1 (bottom) 
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This method does not lead to any loss of flexibility because we can change the 

order of speakers to transplant the duration characteristics of Speaker1 on Speaker2. 

Figure 4.7 demonstrates the results of a phonemic duration transplantation. As an 

example consider the phoneme /e/ that is shown highlighted in the waveforms. It had 

rather extended duration in Speaker1 as compared to Speaker2. The output matches the 

duration in Speaker2. 

 

4.2.5. Energy Contour Transplantation 

 

The energy contour transplantation method is similar to the method used in pitch 

contour transplantation. Instantenous values of the energy contours are used to obtain the 

instantenous energy scaling ratio ε(t) as given by Equation 4.8. The energy contours are 

smoothed before transplantation to reduce discontinuities at the phoneme boundaries. An 

example is shown in Figure 4.8. 

 

(4.8) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8. Energy contours for Speaker1 (top), Speaker2 (middle), and 

transplantation output (bottom)  
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4.2.6. Multi-Feature Transplantations 

 

The rest of the transplantations (Vocal tract/Pitch, Pitch/Energy, and Vocal 

tract/Energy) are obtained by applying a combination of the four basic methods to 

transplant the features. As an example, we modify the pitch and the energy contour 

simultaneously for pitch and energy contour transplantation. When we reverse the order 

of the speakers, we get all the possible combinations of acoustic feature transplantations. 

 

4.2.7. Methodology 

 

We have used four male and four female speakers for designing the test database. 

Four types of transplantations are performed as the gender of the speakers are concerned: 

male-to-male, male-to-female, female-to-female,and female-to-male. The testing 

procedure is as follows: 

 

• 16 sentences and 16 words are selected randomly from the database for each 

speaker pair. 

• Two sentences and two words are reserved as original signals and will be used for 

assessing the reliability of the subjects in the tests. 

• Each remaining sentence and word is used in one type of transplantation, so we 

obtain all possible transplantations using a sentence and a word. The subjects were 

provided with 128 utterance triples. Each triple contained two original utterances 

from two different speakers and one transplantation output. For reliability 

measurements, we have used original utterances of either the first or the second 

speaker as the third item as explained above.  

• 10 subjects responded to the triples they have listened by providing one choice and 

one score. The choice reflected their opinion on the identity of the speaker in the 

third item. They simply decided whether the third item was uttered by the Speaker1, 

Speaker2 or none of them. The subjects were also asked to provide a score 

reflecting how confident they are on their choice of speaker identity. The score was 

in the range 1-5 on an increasing confidence scale. A score of “1” shows that the 

subject’s confidence about his/her decision is low meaning that even if the subject 

has given a decision on the speaker identity, he/she thinks that the third item does 
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not sound like the identity decided. If the identity choice was “none” then the score 

reflects the confidence of the speaker about this decision also. The upper limit for 

the score is “5” which indicates that the subject is confident with his/her choice. 

Special care is taken for the case of choice “none”. In the case that the 

transplantation output is similar to both speakers, the subjects were told to assign 

“none” as the speaker identity with a low confidence score. If the output sounds like 

a third speaker, the confidence score should be high. 

 

We have used different sentences and words for each case in order to minimize the 

effect of the acoustical content of the signals and to maximize the capability of listeners 

to recognize speakers. We observed that when the same recording is used over and over 

again, the ability of listeners to recognize the speaker identity degrades considerably.  

 

A graphical user interface was designed in VOX to carry out the tests. The subjects 

were allowed to listen to the sound files as much as they desired. This was the case 

because we want to evaluate the performance of the subjects on perception of speaker 

identity when they had sufficient information on the identity of the speakers. We have 

also used voices of speakers that the subjects were familiar with.  

 

4.2.8. Results 

 

The responses of the subjects are mapped onto a numerical scale to estimate the 

statistics. We have two scores: the identity score and the confidence score. The identity 

score is a numerical counterpart of subject decisions on speaker identities and it is 

obtained by mapping the identity decisions obtained to either “1”,”2”, or “3”. “1” 

indicates that the transplantation output sounds like Speaker1. “2” shows that the subject 

can not decide on the speaker identity because it sounds like both speakers or like a third 

speaker. The subjects were told to assign the lowest confidence score if the output sounds 

like a third speaker. An identity score of “3” indicates that the perceived identity is 

Speaker2.  

 

As we reverse the order of the Speaker1 and Speaker2 randomly, the decisions are 

preprocessed to reflect the similarity to Speaker2. After this preprocessing step, we 
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normalize the scores to cover the range [0.0, 1.0] and estimate the mean and the 

interquartile ranges for different cases as the gender of the speaker pairs are concerned. 

The shorthand notations for all the cases are: Overall, M→M, M→F, F→M, F→F, 

M→?, F→?, ?→M, and ?→F. “Overall” indicates that the statistics are calculated over 

all gender combinations. M denotes a male speaker, and F a female speaker. The “?” 

mark indicates that both genders are considered. As an example, F→? denotes the case in 

which Speaker1 is a female and Speaker2 is either a male or a female. In this case, 

acoustic features of either a male or a female speaker were transplanted onto a female 

speaker’s utterance. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9. Plot for a sample test result 

 

In the figures below, we present the average scores for different cases. In Figure 

4.10 and 4.11, the statistics were estimated for all utterances while in Figure 4.12 and 

4.13, we estimate them only for words. Figure 4.14 and 4.15 show the mean statistics for 

sentences. In each figure, we have two subplots. In the first subplot, the average values 

estimated for different conditions for the identity score are shown. In the second subplot, 

confidence scores are presented.  

 

In each subplot, we have different group of lines each corresponding to the cases 

described above regarding the genders. These groups are labeled on the x-axis by the 

corresponding case. Note that the case “Overall” is included in all plots in order to 

compare the results of a specific case with the overall trends in which the gender of the 
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speaker pairs are not considered. For each case, we have a group of 16 lines either 

differing in color or differing on the small mark on their top.  

 

Figure 4.9 shows two group of lines in a sample plot. The line with a small square 

on the top (line 1) denotes the case when file 3 was exactly the same as file 1 (the source 

speaker). Theoretically, the identity score should be 0.0 and confidence score should be 

1.0 for this case. The results match the theoretical values exactly indicating that the 

subjects successfully recognized the source speakers. The lines 2-15 correspond to 14 

types of transplantations as described above. The last line (line 16) corresponds to the 

case when the subject was presented the original target recording as the third file. The 

theoretical identity score for this case is 1.0 with a confidence score of 1.0 and the values 

observed match these theoretical values exactly. So the target speakers were also 

identified perfectly.  

 

In the second and third column of Table  4.6, we list the type of transplantations 

with corresponding lines used in the plots of Figure 4.10 to 4.15 . Note that in each group 

of lines we have 7 different colored lines with a small circle on the top, each 

corresponding to the first 7 different type of transplantations. The lines with a small ‘x’ 

on the top correspond to the dual of these transplantations as described in Section 4.2.1 

and Table 4.7. 

 

In Tables 4.8 and 4.9, we present the interquartile range of the scores for all 

utterances for the identity score and the confidence score. Note that the interquartile 

range is defined as the difference of the value which is greater than 75 percent of the data 

and the value which is greater than 25 percent of the data. So, it is an indicator of the 

spread of data like the standard deviation.  

 

The possible values of the interquartile range are between 0.00 and the difference 

between the maximum value and the minimum value of the data. This difference was 

1.00 in our case. If the interquartile range is close to 0.00, the data is not wide-spread. 

This is desired in the case of the transplantation test results because we investigate the 

general tendency of the subjects for a given transplantation type. Interquartile range 
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values close to 1.00 indicate that the scores are wide-spread. This indicates that the 

decisions of the subjects are not in agreement for a particular type of transplantation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10. Transplantation subjective test results for all utterances 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11. Transplantation subjective test results for all utterances 
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Figure 4.12. Transplantation subjective test results for words 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13. Transplantation subjective test results for words 
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Figure 4.14. Transplantation subjective test results for sentences 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15. Transplantation subjective test results for sentences 
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Table 4.8. Interquartile ranges of the identity scores for all utterances 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.9. Interquartile ranges of the confidence scores for all utterances 

 

As the overall trends are considered, the most convincing transplantation is 

obtained when the vocal tract, pitch and durations are transplanted. The average 

confidence scores are also high for this type of transplantation. The interquartile ranges 

are low as shown in Tables 4.8 and 4.9, so most of the subjects provided similar (high) 

scores for this type of transplantation. The dual transplantation –i.e. transplantation of the 
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energy contour- was rated as the least convincing one regarding the similarity to 

Speaker2 in most of the cases. Pitch contour and Pitch/Energy contour transplantations 

had lower scores also.  

 

In the case of the words, these scores were closer to the scores obtained for energy 

contour transplantation indicating that pitch information is not as important as in the case 

of sentences. This is expected because prosodic characteristics are more variant in 

sentences. Vocal tract/Pitch contour transplantation, Vocal tract/Duration/Energy 

transplantation and Vocal tract/Duration transplantation also had high scores.  

 

In the case of single feature transplantations, vocal tract appears as the most 

relevant feature. In most of the cases, pitch and duration had similar scores. The least 

relevant feature was the energy contour. As the gender of the speakers is considered, 

pitch transplantations had relatively higher scores when the genders of the two speakers 

were different. 

 

As the dual transplantations are considered, the average scores indicate that if any 

transplantation is assigned a higher score, the dual transplantation gets a lower score. As 

an example consider the energy contour transplantation and the vocal tract/pitch/duration 

transplantation in Figure 4.10 for the overall case (i.e. first group of lines in the plot). We 

observe that the average similarity to the target speaker is lowest for energy contour 

transplantation (blue line with a ‘o’ sign on top). The dual case which corresponds to 

vocal tract/pitch/duration transplantation (blue line with a ‘x’ sign on top) was rated with 

a high score. It is clear that if transplanting a subset of the features does not produce an 

output that sounds like the target speaker, transplanting the rest of the features or 

including more features will have a better chance. 

 

The importance of these transplantations stems from the following facts: 

 

• Transplantations provide the framework for evaluating the importance of any 

feature combination in terms of perception of speaker identity. 

• Transplantations demonstrate the theoretical limits for conversion of any feature. 

As an example, consider the case of pitch transplantation. It corresponds to the ideal 
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case for voice conversion, i.e. the case that we already have the natural pitch 

contour of the target speaker at hand and carry out pitch scaling accordingly. So any 

transplantation provides the means to evaluate the voice conversion output in which 

the feature(s) is (are) automatically modified by the voice conversion algorithm. 
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5.  NEW METHODS FOR VOICE CONVERSION 
 

 

This chapter introduces three new methods that can be used in the design of voice 

conversion algorithms. The first two methods described in Sections 5.1 and 5.2 employ 

subband processing to estimate and modify the vocal tract characteristics considering the 

perceptual properties of the human auditory system. In Section 5.3, we present the 

comparison of the new vocal tract transformation methods with the full-band method. 

The last method is described in Section 5.4 and it can be used for transformation of the 

pitch contours. 

 

5.1. DWT System for Subband Based Voice Conversion 

 

In this section, we describe the framework for a subband based voice conversion 

system that makes use of the DWT (Turk and Arslan, 2002). As described in Section 3.4, 

STASC algorithm operates on the full-band spectrum in both training and transformation 

stages. However, the subjective tests presented in Section 4.1 demonstrate the 

dependence of perception of speaker identity on the spectral distribution of the signals. 

Thus, it will be useful to design a voice conversion method that takes these perceptual 

characteristics into account. For this purpose, we modify the training procedure described 

in Section 3.4.1 by estimating the spectral parameters from the subbands. In the 

transformation stage, different subbands are processed separately in order to reduce 

distortion and increase computational efficiency. The method presented in this section 

produces satisfactory results at a sampling rate of 44.1KHz as demonstrated by the 

subjective tests. The opportunity to perform voice conversion at high sampling rates is 

required for dubbing and looping applications. 

 

Modeling the source and the target spectra in detail becomes tedious as the 

sampling rate increases. The number of parameters should be high enough to represent 

the spectrum accurately. It is common practice to use 16-18 LSFs at 16 KHz. When the 

sampling rate is higher than 16 KHz, the number of sufficient LSFs increase. However, in 

some cases, when we increase the order beyond 18, we get significant distortion in 

transformation quality using the full-band based method due to several reasons:  
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• Accuracy of the root-finding algorithms used for calculating LSFs degrade for 

higher order polynomials that must be solved in the case of higher prediction 

orders. 

• Interpolation of the LSFs for the full-band spectrum as defined by Equation 3.33 

may lead to formant shifts. This is due the fact that LSFs are pure frequency values 

and as the range they cover increases, linear interpolation results in more shifts in 

LSF pairs. This causes the formants to shift. 

• Modification of higher frequency bands may degrade output quality. These regions 

of the spectrum contain non-speech components that cause distortion  when 

modeled and transformed like speech.  

 

 

 

 

 

 

 

 

 

Figure 5.1. Full-band vs. subband based voice conversion at 44.1KHz.  

(Whole spectrum is not displayed) 

 

As an example, consider Figure 5.1. In the case that we use 18th order LPC to 

represent the spectrum at 44.1 KHz, the transformed speech had a child-like voice 

quality. This is due to shifts in formants towards higher frequencies by interpolation as 

given in Equation 3.33 in Section 3.4.2. When the LSFs are interpolated in the baseband 

range (i.e. 0-5512.5 Hz), the amount of shift in the formants will be less as compared to 

the full-band range (i.e. 0-22050 Hz). This is shown in Figure 5.1. In this figure, the 

source is a male speaker and the target is a female speaker. The speech segments 

correspond to /a/ and /e/ in the utterance “It’s h/a/rd to t/e/ll an original from a forgery” 

respectively. The spectrum for the full-band based conversion (dotted plots) possesses 

severe shifts of formants below 5KHz which cause a child-like voice quality. 
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In general, training is computationaly the most intensive process in voice 

conversion especially when the source and target acoustical spaces are well covered 

using sufficient amount of training data. Using the DWT based method, the 

computational load is reduced as lower prediction orders can be used.  The codebook 

based transformation procedure relies on codebook search basically. We search the 

closest parameter vectors to the incoming speech frame parameters in the source 

codebook. The corresponding target parameters are obtained from the target codebook. 

As the number of parameters in the codebook increases, the search from the codebook 

(which contains typically 1000 - 5000 speech units) to find the closest entries takes more 

time. However, employing the DWT based method, transformation takes less time as 

sampling rate is reduced. This is due to the fact that at a lower sampling rate the 

sufficient number of vocal tract parameters are reduced. Following sections describe the 

DWT based training and transformation stages in more detail. 

 

5.1.1.  Training 

 

In the training stage, separate codebooks are generated for each subband to be 

transformed. We have observed that using only the lower subbands for Sentence HMM 

based alignment produces satisfactory alignment performance. In our experiments, we 

have reduced the sampling rate up to 11 KHz and obtained satisfactory results. This is 

expected since speech signals are restricted to lower frequencies due to the physical 

properties of the human speech production system. Most of the formants that contribute 

to perception of speaker identity reside in the frequency band [0, 5.5] KHz. In Section 

4.1, we have shown that this frequency range was very important for perception of 

speaker identity. 

 

The flowchart for the subband based training algorithm is shown in Figure 5.2. 

First, source and target training utterances are decomposed using DWT. Using the 

subband signals for automatic alignment, the codebooks are generated which contain the 

acoustical parameter mapping between the source and target speakers. For 44.1 KHz 

recordings, we have used four subbands each covering 5.5 KHz frequency range. The 

first subband covers approximately all the speech components to be used in the 

generation of the codebooks. The rest of the subbands cover the frequency range 5.5 
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KHz-22 KHz. We employ only FD-PSOLA based prosody modifications in these 

subbands. As the sampling rate is reduced to 11025 Hz, training takes much shorter time. 

It is possible to obtain a detailed spectral representation using even 16th order LP 

analysis. Subband codebooks for both  speakers are generated using the alignment 

information similar to the full-band case. The codebooks contain LSFs, f0, energy and 

duration as acoustical information. Although extra processing must be carried out for 

subband decomposition, the time required for the overall training process is reduced 

considerably. This is due to the fact that DWT based decomposition can be realized fully 

in time domain using FIR filters as described in Section 3.7. 

 

 

 

 

Figure 5.2. DWT based training algorithm 

 

5.1.2. Transformation 

 

The flowchart for the subband based transformation algorithm is shown in Figure 

5.3. The input speech signal from the source speaker is first decomposed using the DWT 

filterbank. The subband signals are processed separately for transforming the vocal tract 

characteristics from the source speaker to the target speaker in the subband domain. The 

vocal tract transformation process is a frequency domain filtering operation in which the 

source vocal tract spectrum is transformed to the target vocal tract spectrum using the 

codebook entries as described in Section 3.4.2. Post-filtering may be applied optionally 

for removing audible noise in different frequency bands. In most of the cases, attenuating 

high frequencies produce better results. We have preferred another method that does not 

modify the spectral envelope at high frequency subbands. We have noticed that 

transforming higher frequencies does not contribute much to the quality of the 

transformation but increases distortion as non-speech components are modeled and 

transformed as speech. In this case, we have applied bandpass filtering at the subbands 

that will not be transformed. 
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The subbands are separated into two groups for reconstruction. The subbands with 

modified vocal tract characteristics (i.e. the lower subbands) are input to the DWT 

reconstruction filterbank. This filterbank is provided with zeros at the non-modified 

subbands. By this way, we reconstruct the vocal tract modified signal. The rest of the 

spectrum is obtained by summing the vocal tract modified signal with the bandpass 

filtered signals. The prosodic modifications are performed at the second pass after the 

vocal tract is modified. We have used the STASC framework described in Section 3.5 

and 3.6 for prosodic modifications. The excitation spectrum is processed in the full-band 

range. 

 

 

 

 

 

 

 

 

Figure 5.3. Subband based transformation algorithm 

 

In Section 5.3, we present several spectral plots for vocal tract transformation using 

DWT. The subjective tests of Section 6.2 compare the performance of the full-band and 

the DWT based subband voice conversion systems. Section 6.3 presents more detailed 

subjective tests for the comparison of three vocal tract conversion methods. 

 

5.2.  Selective Preemphasis System 

 

In this section, we combine the motivation for preemphasis with perceptual subband 

processing to estimate the vocal tract spectrum in detail. The new method is evaluated in 

terms of objective and subjective measures in Chapter 6. This spectral estimation method 

is used as part of the vocal tract conversion system for increasing the resolution at each 

subband and converting the vocal tract in more detail. We refer to this new method as 

selective preemphasis. 
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Although the DWT based system described Section 5.1 provides efficient solutions 

at higher sampling rates, it has disadvantages. When the aim is to perform modification 

in all subbands, aliasing distortion causes a reduction in the output quality. There are two 

reasons for this kind of distortion: 

 

• The reconstruction filterbank does not provide perfect reconstruction because each 

subband is a modified version of the original.  

• If a spectral peak occurs at one of the subband boundaries, it is not estimated and 

transformed accurately. 

 

For these reasons, we have investigated a new method that provides the means to 

model and transform different frequency regions in different amounts of spectral detail 

with less distortion and more flexibility. As described in Section 3.2.4, the LSFs cluster 

close to the peaks in the spectrum. This property has led to the preemphasis methods to 

improve the numerical properties of LPC analysis prior to the estimation of the LSFs. We 

have observed that more LSFs are devoted to the bandpass region of the spectra by 

applying LP analysis for bandpass filtered spectra. The bandstop regions of the spectrum 

contain less number of LSFs as compared to the bandpass regions. This is illustrated for 

several bandpass filtered signal spectra in Figure 5.4. 

 

 

 

 

 

 

 

 

Figure 5.4. Effect of  bandpass filtering on the LSF locations  

 

In Figure 5.4, LSFs are marked with small circles on the spectrum. They are 

calculated using the LP coefficients obtained in the corresponding subband. Black plots 

are the original spectral estimates using a prediction order of 18 (for 16 KHz). In the first 

plot (leftmost), 10 LSFs fall in the region 0-4KHz whereas the number of LSFs in the 
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range 0-4 KHz increase to 12 when a bandpass filter having the bandpass region at 0-4 

KHz is used. In the second (middle) plot, the signal is filtered with a bandpass filter with 

a pass-band between 2-6 KHz. Note that the number of LSFs increases from 10 to 16 in 

the bandpass region in this case. The last figure (rightmost) indicates an increase from 8 

to 13 LSFs in representing the region between 4-8 KHz. Note that we have a total of 18 

LSFs as the prediction order is 18 for all the cases. It is clear from Figure 5.4 that by 

bandpass filtering, it is possible to enforce the analysis process to model a specific region 

of the spectrum in more detail. In this section, we describe the general framework for a 

new subband based spectral analysis and synthesis algorithm that performs detailed 

spectral estimation using linear prediction. 

 

5.2.1.  Analysis 

 

The flowchart of the analysis algorithm is shown in Figure 5.5. It can be used to 

estimate the vocal tract and the excitation spectrum as follows: 

 

• The speech signal s(k) is bandpass filtered with N bandpass filters in the perceptual 

filterbank to obtain the subband signals. 

• Each subband signal is processed frame-by-frame. We denote the ith windowed 

speech frame by si
w. (A Hamming window is used) 

• LP analysis is performed at each subband to obtain the nth LPC coefficient vector 

for the ith frame of  the analysis stage which is denoted by ai
n

 . Note that n is the 

subband index, and i is the frame index. 

• LP spectrum vector Pi
n is calculated for each subband using the corresponding LP 

coefficient vector ai
n. 

• The vocal tract spectrum Hi(w) is estimated from the subband LP spectra using the 

following formula: 

 

(5.1) 

 

where W is the FFT size (which was dependent on the pitch-synchronous analysis 

frame size in our case), n is the subband index, and i is the frame index. 
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• The weight of the LP spectrum of a subband at a specific frequency w is denoted by 

cn(w) and it is given by: 

 

 

(5.2) 

 

 

where  w1 : lower cut-off frequency of the (n+1)th bandpass filter 

 w2 : higher cut-off frequency of the nth bandpass filter 

 

The condition w1 ≤ w ≤ w2 ensures that the bandpass regions of the neighboring 

filters in the filterbank have a specific amount of overlap in the frequency domain. 

This overlap ensures better spectral estimation at the bandpass filter boundaries. If 

bandpass filters without overlap are used, the spectral estimation performance at the 

subband boundaries will degrade as in the case of DWT. It is possible to use sharp 

cut-off filters to prevent this situation. In this case, the order of the filters should be 

high and the computational load is increased. The interpolation procedure described 

above provides reliable spectral estimates at the subband boundaries as it uses 

information from both of the subbands in the overlapped region. cn(w) given by 

Equation 5.2 is in fact a linear interpolation rule at the overlapping region. It is also 

possible to use a different interpolation scheme. 

• The original speech signal is processed frame-by-frame using windowing. FFT 

spectrum Si
w is estimated using the original signal for the ith frame. 

• The excitation spectrum for the ith frame is given as: 

 

(5.3) 

 

The vocal tract spectrum and/or excitation spectrum can be processed separately 

after the analysis procedure. We describe the application of this method for voice 

conversion in Sections 5.2.5. and 5.2.6. However, this is a general analysis-by-synthesis 

scheme which can be used in different applications. 
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Figure 5.5. Analysis algorithm for spectral estimation using selective preemphasis 

 

5.2.2.  Synthesis 

 

In the synthesis stage, we use the synthesis LP coefficient vectors to reconstruct the 

vocal tract spectrum using Equation 5.1. The synthesis LP coefficients can be a modified 

version of the analysis coefficients depending on the application. For example, they are 

the target LP coefficients estimated from codebooks for voice conversion. The synthesis 

algorithm is shown in the flowchart of Figure 5.6 and it proceeds as follows: 

 

• Use the synthesis LP coefficients for the ith frame and nth subband, ai
n, to estimate 

the synthesis vocal tract spectrum vector Hi. The formulas given in the analysis 

stage are used by replacing the analysis parameters with the synthesis parameters. 

The synthesis LP coefficients and the synthesis LP spectrum calculated from these 

coefficients are employed. 

• Obtain the synthesis FFT spectrum for the ith frame by multiplying the synthesis 

vocal tract spectrum by the synthesis excitation spectrum. The synthesis vocal tract 

spectrum can also be a modified version of the analysis excitation spectrum 

depending on the application. For voice conversion, the analysis excitation 

spectrum is modified using FD-PSOLA.  

 

In the following subsection, we demonstrate the selective preemphasis based 

spectral estimation method using a simple bandpass filterbank. This example 
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demonstrates that detailed spectral analysis at a low  LP order is possible with this 

method. 

 

 

 

 

 

Figure 5.6. Synthesis algorithm for spectral estimation using selective preemphasis 

 

5.2.3.  Demonstration 

 

The equally spaced bandpass filters in Figure 5.7 are used for demonstration 

purposes. For voice conversion, we have employed a perceptual bandpass filterbank and 

used higher resolution in lower frequencies (i.e. the bandwidths increased with the 

increasing center frequency logarithmically). 

 

 

 

 

 

 

 

 

 

Figure 5.7. Bandpass filterbank with equally spaced bands for demonstration 

 

Figures 5.8, 5.9, and 5.10 present the selective preemphasis based spectral 

estimation. The TIMIT utterances “She had your dark suit and greasy wash water all 

year” by a male and a female speaker was used for demonstration purposes. A prediction 

order of 18 was used both in the LP and selective preemphasis based spectral estimation. 

The sampling rate was 16 KHz. Each colored spectrum plot corresponds to a subband. 

We observe that spectral estimation is more detailed and spectral nulls are betted 

modeled using the selective preemphasis method. 
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Figure 5.8. LP vs. selective preemphasis based spectral estimation (left). Spectral 

estimation process from subbands (right) for the phoneme /a/ (male speaker) 

 

 

 

 

 

 

 

          

 

 

Figure 5.9. LP vs. selective preemphasis based spectral estimation (left). Spectral 

estimation process from subbands (right) for the phoneme /sh/ (male speaker) 

 

 

            

 

 

 

 

 

 

Figure 5.10. LP vs. selective preemphasis based spectral estimation (left). Spectral 

estimation process from subbands (right) for the phoneme /t/ (female speaker) 
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In fact, this method is similar to increasing the prediction order in the LP analysis. 

As 16 KHz is concerned, it is possible to increase the LP order up to 50 and get sufficient 

spectral detail. However, as we use LSFs for voice conversion and there is a limit for the 

prediction order for the entire root finding algorithms for calculating LSFs, it becomes 

impossible to perform detailed spectral analysis. When the sampling rate is 44.1KHz or 

more, the prediction order should be increased to obtain sufficient spectral detail. 

Although the procedure described here increases the amount of computation, this can be 

compensated because if we had the possibility to increase the prediction order beyond the 

limits, we should also have increased computation time. We can increase the spectral 

resolution by employing more subbands at a constant prediction order.  

 

It is also possible to use variable prediction orders at each subband and this 

provides great flexibility in the voice conversion system design. The subbands in which 

detailed estimation is required can be analyzed using higher prediction orders. The 

performance of the selective preemphasis based method is evaluated in Chapter 6 in an 

objective test for spectral modeling accuracy and in subjective tests for voice conversion. 

 

5.2.4.  Perceptual Filterbank Design 

 

We have designed a perceptual filterbank for training and transformation using the 

selective preemphasis system. The center frequencies and bandwidths of the bandpass 

filters were similar to the filterbank described in Section 4.1.1. The only difference was 

that each subband had been extended to allow overlap between the neighbouring bands. 

This method improves the performance at the subband boundaries.  

 

Figure 5.11 shows the magnitude responses of the bandpass filters. The center and 

cut-off frequencies of the filters are given in Table 5.1. Note that these filters were FIR 

bandpass filters of order 50 as in Section 4.1.1. 
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Figure 5.11. Perceptual filterbank for selective preemphasis system 

 

 

 

 

 

 

 

 

Table 5.1. Cut-off and center frequencies of the bandpass filters 

 

5.2.5.  Training 

 

Training is performed by analyzing the source and target utterances using selective 

preemphasis. LSF vectors for each subband are obtained and the parameters of the first 

subband are used in the Sentence HMM framework for acoustical alignment. The labels 

generated using the first subband are used for the remaining subbands. The codebooks 

are generated for each subband for the source and the target speakers.  

 

An important point in this subband based training approach is the requirement of 

perfect time synchronization among the analysis of subbands. This can be achieved by 

either performing analysis using fixed skip rates among frames or employing exactly the 

same starting and ending instants of the frames for each subband. Using the labels 

generated for the first subband in the remaining subbands is also necessary for 
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synchronization. The flowchart for the selective preemphasis based training algorithm is 

shown in Figure 5.12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12. Flowchart for selective preemphasis based training algorithm 

 

5.2.6.  Transformation 

 

The subband codebooks are used for transforming each subband of the vocal tract 

spectrum separately. This requires the analysis of the input signal using selective 

preemphasis. The full-band excitation spectrum is processed separately for pitch scale 

modifications. Each subband of the vocal tract spectrum is converted employing 

Equation 3.42 separately for each subband with the corresponding source and target 

codebook. Note that the closest codebook entries are estimated using the first subband 

and same indices are used for all subbands. Synthesis is performed using the method 

described in Section 5.2.2. The output frame spectrum is obtained by multiplying the 

modified excitation spectrum with the vocal tract spectrum estimated. The flowchart of 

the transformation system is shown in Figure 5.13. 
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Figure 5.13. Flowchart for selective preemphasis based transformation algorithm 

 

5.3.  Comparison of Vocal Tract Transformation Methods 

 

In this section, we present several spectral plots for demonstrating the performance 

of three different vocal tract transformation methods for different sounds. The methods 

compared are the full-band approach (Section 3.4), DWT based method (Section 5.1) and 

selective preemphasis based method (Section 5.2). For Figures 5.14-5.17, we have three 

types of vocal tract transformation outputs along with the source and target spectral 

envelope. The original and transformed signals are all from the voice conversion database 

described in Section 6.1. A prediction order of 50 was used for obtaining the spectral 

envelopes for a sampling rate of 44.1 KHz. 

 

 

 

 

 

 

 

 

Figure 5.14. Vocal tract transformations for Turkish phoneme /e/ using full-

band (left), DWT (middle), and selective preemphasis (right) based methods 
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Figure 5.15. Vocal tract transformations for Turkish phoneme /I/ using full-

band (left), DWT (middle), and selective preemphasis (right) based methods 

 

 

 

 

 

 

 

 

Figure 5.16. Vocal tract transformations for Turkish phoneme /i/ using full-

band (left), DWT (middle), and selective preemphasis (right) based methods 

 

 

 

 

 

 

 

 

Figure 5.17. Vocal tract transformations for Turkish phoneme /s/ using full-

band (left), DWT (middle), and selective preemphasis (right) based methods 
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5.4.  A Segmental Pitch Contour Model for Pitch Contour Transformation 

 

In this section, we describe a new method for pitch contour modeling and 

transformation. The simplest approach for pitch transformation is to assume the pitch 

values to be a random variable that is well described by a single Gaussian distribution. In 

this case, it is fairly easy to estimate and modify the mean and variance of the pitch 

values between speakers as described in Section 3.6.1. However, the local shapes of the 

pitch contour segments are not well described and converted using this approach. 

Although transforming the mean pitch while adjusting the range of pitch values (by 

adjusting the variance) yields reasonable results, it is clear that the intonational 

characteristics will be better transformed with a detailed model. For this purpose, we 

estimate the corresponding pitch contour segments of the source and the target speakers 

and use this mapping in the transformation stage. If a database containing sufficient 

intonational information is used, it is possible to generate detailed target pitch contours as 

we demonstrate below. The method can be described as follows: 

 

• Source and target training utterances are phonetically aligned. 

• Pitch contours are extracted & smoothed. 

• Target pitch contours are interpolated (linear interpolation or cubic spline 

interpolation) in the unvoiced parts. 

• Voiced segments from the source f0 contours are extracted and for each voiced 

source f0 segment, the corresponding target segment is found using the phonetic 

alignment information. We represent the  ith source segment as the vector  f0s
i and 

the corresponding target segment as f0t
i. 

• The vectors f0s
i’s and f0t

i’s are written into a pitch contour codebook file along with 

the mean and the standard deviation of the f0 values of the source and target 

speakers. This completes the training procedure for pitch transformations. 

• In the transformation stage, the voiced segments, f0j’s, of the input pitch contour 

are found. We denote the length of segment as Nj. Source and target codebook 

entries are interpolated to the length Nj before calculating the distance measure di. 

Then, the Euclidean distance of the current input segment, f0j, to each source 

codebook entry is estimated (Equation 5.4). The DC shifts of the segments are 

removed before distance calculation in order to ensure that they do not cause an 
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increase in the distance when two segments were similar in shape but differing in 

mean value. 

 

 (5.4) 

 

where µj denotes the mean of the vector f0j and µi
s is the mean of the interpolated 

version of the vector f0s
i. 

• The distances are normalized such that they sum up to unity using Equation 5.5.  

 

 (5.5) 

 

 

• A weight for each source segment in the codebook is estimated using the 

normalized distances (di’s) employing Equation 5.6. The new weights are 

normalized to sum up to unity again. We have used α=500 as the weighting factor. 

This ensures that only a few close matches from the codebook are included in the 

generation of the synthetic codebook. For smaller values of α, a weighted average 

of more and more codebook entries will be used which will result in a smoother 

pitch contour. 

 

(5.6) 

 

 (5.7) 

 

• All target codebook segments are interpolated to match the length f0j and the 

synthetic pitch contour segment is estimated using the weights and the target 

codebook entries: 

 

(5.8) 

 

where f0j
synth is the pitch contour segment vector to be used in pitch scaling. 
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The procedure above is performed in the training stage. However, it is also possible 

to use a separate database for modeling the source and target pitch contours. Figure 5.18 

shows two examples of modeling pitch contours by this method. Note that, the model 

tracks the general shape of the pitch contours well but there are mismatches when the 

contours possess sudden jumps. These jumps may be both due to the intonational 

characteristics of the speakers and pitch estimation errors. So, employing an 

intonationally rich pitch contour database extracted with a robust pitch detection 

algorithm is required. We have used both autocorrelation (Rabiner and Schafer, 1978) 

and RAPT (Talkin, 1995) algorithms for pitch detection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18. Segmental pitch contour model for the utterance of a male speaker 

(top), and a female speaker (bottom) 

 

In Figure 5.18, the original pitch contours and the estimated pitch contours using 

the segmental model for an utterance of a male speaker (top) and a female speaker 

(bottom) is shown. The black contours are original contours from Turkish sentences that 

were not used for generating the pitch contour codebooks. Red contours are estimated 

using the segmental pitch codebooks. 
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Figure 5.19. Pitch contour transformation with the segmental pitch model. The source 

contour is from a male utterance and the target is the same utterance by a female speaker 

 

In Figure 5.19, pitch contour transformation using the segmental pitch contour 

model is demonstrated. The blue contour corresponds to the output of the mean/variance 

model for the same source sentence for comparison. Notice that the shape of the source 

pitch contour (black) is also modified in the output contour produced by the segmental 

pitch model (red) while increasing the pitch. In Chapter 6, we use this method in voice 

conversion and compare the subjective performance of the model with the simple 

mean/variance model which was described in Section 3.6.1. 
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6. TEST DESIGN AND EVALUATIONS 
 

 

6.1. Design of the Voice Conversion Database 

 

We have collected several databases both in Turkish and in English during this 

study. The most general databasecontains 18 Turkish speakers (10 male, 8 female) in 

different ages. It was used in evaluating the new methods described in Chapter 5, and for 

acoustic feature transplantations. It consists of 31 sentences (containing 3-5 words) and 

50 words for training. Five long sentences (containing 6-8 words) and 10 words were 

recorded for testing. All recordings were at 48 KHz and in 16-bit PCM files. We have 

considered the bigram and trigram probabilities in Turkish in designing this database. 

Special care was taken for including the most common bigrams and trigrams. We have 

used a simple text search algorithm with a Turkish text database of approximately 

220000 words to estimate the probabilities. The results described in (Yapanel, 2000) for 

Turkish trigram probabilities were also used as they were obtained from a larger corpus 

of 2.2 million words. The most common 20 bigrams and trigrams are given in  Table 6.1. 

 

 

 

Table 6.1. The most common 20 bigrams and trigrams of Turkish 

 

In our previous studies, we have used other voice conversion databases that were 

more restricted in terms of corpus size and number of speakers as compared to the 

general database described above (Turk and Arslan, 2002, and Ormancı et al., 2002). In 

the subjective tests performed in Section 4.1, the database was restricted to 8 Turkish 

speakers (four male, four female) and contained 15 sentences and 20 words recorded at 

44.1 KHz. Another database was used to compare the DWT based vocal tract conversion 

system with the full-band system as described in Section 6.2.1 and it contained 10 

speakers (five male, five female). In this case, one female and three males were native 

American-English speakers. More information regarding the databases is included in the 

description of the tests. 
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6.2. Design of Perceptual Tests for Voice Conversion 

 

In the following sub-sections, we describe several subjective tests for the evaluation 

of the new methods proposed. 

 

6.2.1. Comparison of the DWT Based System with the Full-band System 

 

In (Turk and Arslan, 2002), we have performed ABX listening tests to evaluate the 

subjective performance of the DWT based vocal tract conversion method described in 

Section 5.1. We have used different combinations of five male and five female speakers 

as the source and the target. Four speakers (one female and three males) were native 

American-English speakers and the remaining were native Turkish speakers. Four types 

of voice conversion is performed as far as the gender of the source and the target is 

concerned (female-to-female, female-to-male, male-to-female,and male-to-male). First, 

training and test utterances were recorded  at 44.1KHz. Full-band and subband based 

codebooks are generated by two separate training sessions for each conversion. We have 

not used preemphasis for the full-band case. A linear prediction order of 50 was used for 

full-band based training and transformation. In the subband case, four subbands were 

employed and only the first subband is converted using an LP order of 18. Each of the 20 

subjects listened to 10 sentences and 10 words that were transformed using the subband 

and full-band codebooks. The subjects were provided with three recordings each time 

they were asked to make a decision: (A) Full-band based conversion output, (B) Subband 

based conversion output, and (X) Target recording. The conversion outputs were 

presented in random order and the listener was asked to judge whether (A) or (B) sounds 

more like the target speech (X). The order of the full-band and the subband based output 

was also changed randomly. The subband based voice conversion output was preferred 

over the full-band based output by 92.9 percent for sentences, 91.3 percent for words, 

resulting in an overall preference rate of  92.1 percent. 

 

6.2.2. Evaluation of  New Methods 

 

 In this section, we describe a subjective testing procedure for assessing the 

performance of the proposed methods for voice conversion regarding the similarity of the 
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output to target speaker’s voice and its quality. All combinations of three vocal tract and 

two pitch conversion methods are evaluated. The vocal tract conversion methods are the 

full-band system in STASC with preemphasis (Section 3.4), the DWT based system 

(Section 5.1), and the selective preemphasis system (Section 5.2). For pitch conversion, 

we have employed the mean/variance model (Section 3.6.1) and the segmental pitch 

contour model (Section 5.4). We use the following short-hand notations for these 

methods: 

 

• Full-band system: FBS 

• DWT Based System: DBS 

• Selective Preemphasis System:  SPS 

• Mean/Variance Model: MVM 

• Segmental Model: SM 

 

We use the same shorthand notations for the vocal tract and vocal tract/pitch 

contour transplantations as in Section 4.2: 

 

• Vocal tract transplantation: VTT 

• Vocal tract/Pitch contour transplantation: VTT-PCT 

 

A subset of the general database was used for evaluations including four male and 

four female speakers. Four types of conversion is performed as the gender of the source 

and the target speakers are considered: M→M, M→F, F→M, and F→F where M denotes 

a male speaker and F denotes a female speaker. We have used 30 sentences and 50 words 

by the source and the target speakers in training and generated separate codebooks for the 

sentences and the words. Five sentences and 10 words are converted with different 

methods using corresponding codebooks (i.e. word codebooks were used for converting 

words and vice versa). Considering all the combinations that employ vocal tract 

conversion, we have the cases shown in Table 6.2.  
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Table 6.2. Voice conversion methods tested 

 
The test database is prepared as follows: 

• The original recordings are selected from the database (at 48KHz) 

• Downsampling to 44KHz 

• Automated phonetic labeling followed by manual correction 

• For each source/target pair, we have trained the fullband, DWT and selective 

preemphasis systems for vocal tract conversion. The segmental pitch contour model 

was trained while performing fullband training – i.e. we have extracted the pitch 

contours of the training utterances and used them to estimate the parameters of the 

segmental model.  

• Nine types of conversion methods are employed as described in Table 6.2. 

 

In the tests, 10 subjects were provided with several utterance triples. The first and 

the second utterances in each triple are the original recordings of the source and target 

speakers. The third utterance contains the output to be evaluated by the subject. It is one 

of the following:  

 

• An original recording (of the source, target, or a third speaker as given in rows 1-3 

of  Table 6.2), 
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• A transplantation output (either vocal tract only or vocal tract/pitch transplantation 

as given in row 4 or row 8 of Table 6.2), 

• A conversion output (obtained using one of the voice conversion methods given in 

rows 5-7 and rows 9-14 of Table 6.2). 

 

The subjects have provided three scores: 

 

• Identity Score: For this score, the subjects have provided the decisions “source”, 

“target”, and “in between”. These decisions are mapped onto a numerical scale by 

assigning “0.0” for the “source” decisions, “0.5” for “in between” decisions, and 

“1.0” for the target decisions. The subjects were told to respond with an “in 

between” decision with a low confidence score when the output sounds like a third 

speaker. This does not result in loss of generality because if the subjects think that 

the output sounds like both speakers, they should provide a higher confidence score. 

It is possible to discriminate between “in between” and “third speaker” cases using 

the confidence score. 

• Confidence Score: This score indicates the confidence of the subject on the identity 

score. It is in the range 1-5, where 1 corresponds to low confidence and 5 

corresponds to high confidence. For the case that the output sounds like a third 

speaker, the speakers were told to respond with the lowest confidence score as 

explained above.  

• Quality Score: This score is a measure of the quality of the output as compared to 

the first two files. This score is also in the range 1-5. 1 corresponds to very low 

quality. A quality score of 5 indicates that the quality of the output is similar to the 

original recordings. 

 

The subjects have listened to 112 triples (72 voice conversion outputs, 16 

transplantation outputs, 8 source recordings, 8 target recordings, 8 recordings of a third 

speaker). The results are evaluated in a similar manner as in the transplantation tests 

(Section 4.2). The only difference is that the subjects have also provided a score on the 

quality of the output. Note that we have normalized all scores to the range [0.0, 1.0]. The 

test took 20-30 minutes for each subject. In Figures 6.1-6.6, we present the subjective test 

results. In general, we observe that the source, target and third speakers were identified 



 99

correctly. The identity score for the source speaker is low indicating that average 

similarity to target speaker is less. The target speaker had high identity scores (close to 

1.0). The subjects have responded with identity scores close to 0.5 with low confidence 

scores in the case of “third speaker”. This is expected since the subjects were told to 

respond with low confidence scores when the output sounded like a third speaker. The 

quality scores for all the original recordings (source, target, and third speaker) were close 

to 1.0 as expected. Figures 6.1 and 6.2 show the statistics for all types of utterances (i.e 

the words and the sentences together). Figures 6.3 and 6.4 are for words. Finally, Figures 

6.5 and 6.6 are for the sentences. As the overall case is considered, we observe that 

converting only the vocal tract does not produce convincing results. Even the vocal tract 

transplantation case was evaluated as in between the source and the target speaker. Vocal 

tract conversions generally had higher identity scores when the source is a male speaker. 

The performance is reduced when the source is a female speaker. All voice conversion 

methods produce more convincing results in terms of similarity to the target speaker 

when pitch transformation strategies are involved as expected. However, we observe a 

reduction in both the confidence and the quality scores as the amount of processing 

increases. Vocal tract only transplantations and conversions received higher scores in 

terms of confidence and quality in general. We observe different tendencies as the gender 

of the source and target speaker pairs change for different vocal tract conversion 

methods. The fullband based method is more robust in different gender combinations. 

The segmental pitch model improves the identity scores in general. 

 

Tables 6.3-6.5 show the interquartile ranges of the scores. We observe that the 

lowest ranges were for the original recordings. Vocal tract only conversions had lower 

interquartile ranges in the case of identity scores. For the confidence scores, the ranges 

were lower for the new vocal tract conversion methods when they were used with pitch 

transformation methods. The interquartile ranges for the quality scores were similar for 

all type of conversions and transplantations. We observe that the performance of the full-

band based method is improved when preemphasis was employed. The full-band based 

method has performed better as the results are compared with the results of Section 6.2.1. 
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Figure 6.1. Voice conversion subjective test results for all utterances 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2. Voice conversion subjective test results for all utterances 
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Figure 6.3. Voice conversion subjective test results for words 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4. Voice conversion subjective test results for words 
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Figure 6.5. Voice conversion subjective test results for sentences 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6. Voice conversion subjective test results for sentences 
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Table 6.3. Interquartile ranges for the identity scores 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.4. Interquartile ranges for the confidence scores 
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Table 6.5. Interquartile ranges for the quality scores 

 

6.3. Objective Tests 

 

6.3.1. Comparison of LP and Selective Preemphasis Based Spectral Estimation 

 

We have performed an objective test for the comparison of the spectral estimation 

performance of LP analysis and selective preemphasis system. For this purpose, 

recordings from different speakers were analyzed. We have calculated the spectral 

distance measure defined by Equation 6.1 frame-by-frame for both methods.  

 

(6.1) 

 

 

A fixed frame duration of 30 msec. with 10 msec. skip rate is used. The recordings 

were at 44.1 KHz. The prediction order was 50 for the LP analysis. We have used the 

analysis scheme described in Section 5.2 with the bandpass filterbank given in Figure 

5.11 for selective preemphasis based spectral estimation. The prediction order was 24 for 

all subbands. In Table 6.6, the mean and the standard deviations of the distances obtained 

are given. The selective preemphasis based system performs better than LP analysis in 

terms of spectral distance at a lower prediction order. 
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Table 6.6. Mean and standard deviations of spectral distances (dB/Hz)  using 

LP analysis and selective preemphasis based analysis 

 
 

6.3.2. Source to Target and Transformed to Target Distances 

 

Although subjective testing provides extensive information on the performance of 

the new voice conversion methods, it is possible to employ objective distance measures 

for a numerical evaluation. The procedure is as follows: 

 

• The source, target and transformed utterances are labeled. It is possible to use 

manual labels or automatically generated labels by the Sentence HMM method. 

• The average LSF distance (L) is estimated for each phoneme in the case for manual 

labeling, or state in the case of a Sentence HMM. Equations 6.3 and 6.4 provide a 

measure based on LSF distances. They can be employed to calculate a measure of 

similarity of two spectra. In fact these are the same equations used in STASC for 

vocal tract transformation as described in Section 3.4.2 (Equations 3.29 and 3.30). 

• The overall statistics (mean and standard deviations) are estimated using the source-

target-transformed triples generated for the subjective tests in Section 6.2.2. 

 

(6.3) 

 

(6.4) 
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We have used the vocal tract and vocal tract/pitch conversion outputs along with 

the corresponding source and target pairs to obtain the results given in Table 6.7. We 

have also included the transplantation outputs. In particular, we expect to reduce the 

spectral distance between the source and target utterances by voice conversion. So the 

transformed to target spectral distances should be lower than the source to target 

distances in general. 

 

 

 

 

 

 

 

 

 

 

 

Table 6.7. Mean and standard deviations of source to target and transformed to 

target LSF distances 
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7.  CONCLUSIONS 

 
 

In the first part of this study, we have investigated the role of different factors on 

perception of speaker identity (Chapter 4). We have found that the frequency range [1034 

Hz, 1895 Hz] is the most important spectral region. The frequency range between [1895 

Hz, 2756 Hz] is of second importance. We have designed another subjective test for 

evaluating the relevance of different acoustic features in the perception of speaker 

identity. Four acoustic features were transplanted using PSOLA based methods: Vocal 

tract, pitch contour, phonemic durations, and energy contour. The vocal 

tract/pitch/duration transplantation had the highest scores in terms of similarity to the 

target speaker. In the case of single feature transplantations, vocal tract was the most 

important feature. Pitch and duration had less importance than the vocal tract. Both 

features had similar importance, but the pitch characteristics were more important in the 

case that the gender of the speakers was different. The least important feature was the 

energy contour. We have also shown that dual transplantations had complementary 

scores as expected. 

 

In the second part, we have developed new methods that can be used for voice 

conversion system design (Chapter 5). Two new vocal tract conversion methods based on 

subband processing were developed: the DWT based system (Section 5.1) and the 

selective preemphasis-based system (Section 5.2). We have shown that these methods 

possess comparable performance at lower prediction orders. This is an advantage for 

voice conversion applications at high sampling rates. The subband-based framework 

provides flexibility in voice conversion algorithms because of the following reasons: 

 

• Different frequency bands can be analyzed and modified using different amounts of 

spectral resolution. Even different methods can be employed at different subbands. 

• It is possible to obtain the mapping between the source and the target acoustical 

spaces. 

• The computational load is reduced. 
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We have also developed a new speaker-specific intonational model in Section 5.4. 

A segmental pitch contour model for pitch contour transformation. We have shown that 

this model yields satisfactory results both in pitch contour modeling and transformation. 

The average similarity to target speaker is increased by employing the segmental model 

as shown in Section 6.2.2. 

 

In the last part, we have used subjective and objective testing for the evaluation of 

the new methods (Chapter 6). We have designed a voice conversion database in Turkish. 

In a subjective test, we have shown that the voice conversion output by the DWT based 

system was preferred over the output of the full-band based system by 92.1 percent. In 

this test, we have not employed preemphasis in the full-band based spectral estimation. 

We have used the subjective testing procedure described in Section 6.2.2 for the 

evaluation of the new methods proposed and the STASC system. Three vocal tract 

conversion methods and two pitch transformation strategies were evaluated. The vocal 

tract conversion methods include the full-band based system in STASC (Section 3.4.2), 

the DWT based system (Section 5.1), and the selective preemphasis based system 

(Section 5.2). The mean/variance model (Section 3.6.1) and the segmental pitch contour 

model (Section 5.4) were used for pitch transformation. We have shown that it is possible 

to obtain satisfactory performance at lower prediction orders using the DWT based 

system and the selective preemphasis based system as compared to the full-band based 

system. The segmental model improved the similarity to target speaker when employed 

with vocal tract conversion. 

 

In Section 6.3.1, we have shown that the selective preemphasis based spectral 

estimation performs better than the LP analysis at a lower prediction order. We have 

compared the performance of the new voice conversion methods using objective tests in 

Section 6.3.2. The full-band based system performed better than the subband based 

systems, but the results were closer when pitch transformation is employed. 

 

We are planning to conduct research on the integration of voice conversion and 

TTS. Several experiments with multilingual synthesizers have shown that the voice 

conversion methods described in this study can be used for personification of TTS 
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systems. The extensive phonetic and prosodic information in the TTS databases can be 

used for developing new voice conversion methods suitable for TTS applications. 

 

We have observed that better alignment improves the quality of the voice 

conversion output considerably. So, we have started collecting a multi-speaker database 

for accurate phonetic alignment. This method will also enable the use of contextual 

information in voice conversion. We are expecting to have further improvements by 

employing contextual information as the short-term characteristics of the speech signals 

are strongly correlated with the context. We will also be able to use contextual 

information in the segmental pitch model. In this manner, the pitch segments can be 

matched and modified applying contextual constraints. 

 

Although the test results obtained during this study provide extensive information 

on the performance of the new methods proposed, it would be helpful to perform 

extended subjective tests using more speaker pairs in voice conversion and employing 

more subjects.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 110

APPENDIX A: VOX – A VOICE CONVERSION SOFTWARE 

 

 
VOX is a voice conversion software for Windows 98/ME/2000/XP. It has been 

developed during this study for incorporating all the necessary tools and components of a 

voice conversion system in a single interface. It is possible to perform fast, efficient, and 

convincing voice conversion using VOX. It includes the following components: 

 

• Waveform Playing/Recording/Editing Interfaces  

• Training and Transformation Interfaces 

• Acoustic Feature Transplantation Interface 

• Subband Processing Toolbox 

• Speech and Audio Processing Tools (PSOLA Interface, Pitch Contour Calculation, 

Spectral Analysis Tools, Enhancement Interface, Filter Design Toolbox, Equalizer 

Interface, Reverbarator Interface, Manual Labeling Tools) 

• Objective and Subjective Testing Interfaces 

 

Several snapshots from VOX are shown in Figures A.1-A.9. The software was 

developed in MS Visual C++ 6.0 using the MFC architecture. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.1.  Audio recording (left), and playing (right) interfaces  
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Figure A.2. Training interface 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.3. Transformation interface 
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Figure A.4. Filter designer (left) and reverb (right) interfaces 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.5. Batch processing (left), volume (middle), and format conversion (right) 

interfaces 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.6. PSOLA (left), and enhancement (right) interfaces 
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Figure A.7. Acoustic feature transplantation (left) and spectral analysis interfaces 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.8. Objective (left) and subjective (right) testing interfaces 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure A.9. Waveform editing interface 
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