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I. Introduction

A neural network consists of a highly intercon-
nected array of simple processing elements. When
the number of processors (neurons) is very large, the
massive parallelism, high speed, low crosstalk and
high-density connectivity advantages of optics moti-
vate their use in neural networks. The simple optical
neural network model requires only two basic opera-
tions: vector matrix multiplication and thresholding.
Psaltis and Farhat (1985) first demonstrated an opti-
cal implementation of Hopfield’s neural network
model (Hopfield, 1982) based on a vector matrix
multiplier. The Hopfield model with bipolar neural
states (–1,1) has an output signal to noise ratio 
times that of the Hopfield model with unipolar (0,1)
states. Also, the information storage capacity of a
bipolar states neural network can be twice that of a
unipolar neural network (Hopfield, 1982).

It is difficult to implement bipolar quantities in
an intensity distribution. In order to handle both pos-
itive and negative quantities of inter connection
weights two sets of hardware were required (Psaltis

and Farhat, 1985) one for handling positive intercon-
nection weights and the other set for negative
weights. In this dual channel hardware system, posi-
tive and negative interconnections are processed sep-
arately and then combined electronically or optically.
The hardware in this system is complex. Jang and
Jung (1988) introduced a positive offset to the inter-
connection weights so as to make them nonnegative
and make possible a single channel optical realiza-
tion. Dynamic thresholding is needed to eliminate
this added offset effect caused by the output. To
overcome the problem that arises due to an imbal-
ance between the number of ones and of zeros in
stored images, a modification of the Hopfield model
has been presented, and the result of this modifica-
tion is a model with bipolar addressing (Oh et al.,
1988; Ramachandran and Gunasekaran, 1996).

A method for optical implementation of the
bipolar Hopfield algorithm has been proposed by
David and Saleh (1990), who used inner products of
unipolar data. Wang and Mu (1992) achieved fully
bipolar performance in a single channel optical asso-
ciative memory by coding the biased interconnection
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ABSTRACT

The Hopfield model with bipolar neural states (-1,1) has an advantage in that the output signal-
to-noise ratio is times that of the unipolar neural states (0,1). Also, the information storage capaci-
ty of the bipolar neural states can be twice that of the unipolar model. It is difficult to represent bipo-
lar quantities in an intensity distribution. A method to achieve full bipolar performance in a single
channel optical associative memory is presented in this paper. A two dimensional bipolar Hopfield
model optical neural network has been implemented by coding the biased interconnection weights, a dis-
tributed background and an input-dependent dynamic threshold on a single mask. Content addressability
properties are improved through the introduction of a distributed background. Computer simulations of
two dimensional bipolar neural networks have been performed .
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weights (a distributed background) and an input-
dependent dynamic threshold on a single mask.

In this study, by using an outer-product ap-
proach and adding a distributed background to the
output of an optical associative memory, a two-
dimensional bipolar optical Hopfield model was sim-
ulated. We will show that the performance of the
bipolar state network is superior to that of the
unipolar one. We will also present the optical set up
for the optical implementation of the bipolar model.

II. Two Dimensional Hopfield Model

The two dimensional Hopfield model neural
network can be summarized as follows. It consists
of N2 mutually interconnected neurons, whose cur-
rent states are characterized by binary states:

with Vij (1 or 0) denoting the state of neuron Vij. A
set of M patterns or images V(m), m = 1, 2, ..., M,
each with N × N elements or pixels, is stored in the
network. The stored memory matrix element Tijkl

denotes the interconnection strength between neurons
ij and kl:

(1)

where δijkl is a Kronecker delta function defined as

δijkl = 1      if i = k and j = l

= 0      otherwise.

To iterate the two dimensional neural network,
the next state of neuron (i,j) is determined by the
current states of the remaining neurons as

where

(2)

If Tijkl is multiplied by one of the stored images Vmo
ij ,

then the product Umo
ij is an estimate of the stored

image [2V mo
ij – 1]:

(3)

When the input differs from any of the stored
images, for example, in the case of an incomplete or
partially erroneous version of a stored image, the
network updates the neural states in accordance with
the following iteration form:

(4)

where Vij(n) and Vij(n + 1) are the values input to
the (i,j)th neuron for the nth and the (n + l)th itera-
tions, respectively, and Uij(n) is the output estimate
of the (i,j)th neuron for the nth iteration. This
process of determining the next state from the cur-
rent state is repeated until convergence to the stored
image is accomplished, which is the nearest neigh-
bour of the input from among the stored images.

III. Two Dimensional Bipolar Hopfield
Model

A neural network with bipolar neural states and
bipolar interconnections possesses an improved out-
put signal-to-noise ratio, a large convergence radius,
high converging speed, and increased storage capaci-
ty. For the bipolar Hopfield model, the four dimen-
sional memory interconnection is that shown in Eq.
(1). However, the output estimate of the (i,j)th neu-
ron is modified to obtain

(5)

(6)

The second term in the last equation acts as the neu-
ron dependent threshold (TH):
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The process is conducted by means of fixed neuron-
dependent thresholding of the resultant output for a
unipolar input. That is, a neuron dependent TH
(DTH) gives to the current optical neural nets a
bipolar neural property. The distributed threshold
may be expressed as

(8)

where Nm
0 is the number of ones in the stored image

Vij
(m).

IV. Optical Implementation of Bipolar
Neural Network

Because it is impossible to realize negative val-
ues with an optical mask and because adding a
background is much easier when using optics, the
interconnection weights are biased in order to yield a
nonnegative memory matrix:

(9)

where the bias A is the absolute value of the mini-
mum element of the former matrix Tijkl. The effect
of the bias on the output estimate produces an input
dependent uniform background, which can be elimi-
nated by properly adjusting the output threshold
level. The expected output estimate of the bipolar
Hopfield model is expressed in terms of the unipolar
model as

where N0(n) is the number of ones in the input
image Vkl(n), max is the maximum of DTH and

Tijkl p is the biased interconnection strength.
This expression implies that the bipolar associa-

tive recall can be accomplished by applying dynamic
neuron independent thresholding TH(n) to the resul-
tant output of a unipolar system and a distributed
background (BD). All the quantities in the above
equation are unipolarly expressed, so that computing
may be performed in a single-channel optical system.
Therefore, unipolar data is used to realize a bipolar-
like neural network.

Comparing Eq. (4) with Eq. (10), we can see
that the bipolar output estimate consists of extra
terms; hence, we have to form an enlarged matrix
Xijkl.

For 1 ≤ i, j, k, l ≤ N:

Xijkl = Tijkl p,

X(N+1)jkl = A,

Xi(N+1)kl = BD,

X(N+1)(N+1)kl = max. (11a)

For 1 ≤ i, j ≤ (N + 1):

Xij(N+1)l = A,

Xijk(N+1) = BD,

Xij(N+1)(N+1) = max, (11b)

The input image will have an additional dimension:

V(N+1)j = 1,

Vi(N+1) = 1,

V(N+1)(N+1) = 1. (12)

Then, Eq.(10) becomes

(13)

This implies that the thresholded output can be
obtained by thresholding the multiplication of an (N
+ 1) × (N + 1) dimensional input and (N + 1)2 × (N +
1)2 element matrix, where the (N + 1)th dimension of
the output estimate is used as the threshold. The
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additional matrix column and row represent the dis-
tributed background and the dynamic threshold. It is
the (N + 1)th column of the enlarged memory matrix
that distinguishes the implementation of the bipolar
Hopfield model from the current optical implemen-
tation of the unipolar Hopfield model.

V. Computer Simulations

Computer simulations were performed for stored
patterns with unequal numbers of ones and zeroes
(Fig.1). Four patterns with the order 5 × 5 were cho-
sen for computer simulations. The computer simula-
tion results are listed in Table 1, and the conver-
gence properties of the bipolar and unipolar models
are compared. The initializing patterns with
Hamming distances that are listed in the first column
of Table 1 are erroneous versions of the stored pat-
terns. In the other columns, the number denote the
stored patterns, the numbers in parantheses denote
the numbers of iterations, and O indicates an oscilla-
tory output.

The initializing input patterns were created by
successfully switching the states of the correspond-

ing stored patterns. The switching order in one pat-
tern was chosen so that the Hamming distances from
the other stored patterns were as large as possible.
The switching orders were

V (1) = {(1,3), (2,3), (3,3), (4,3), (5,3), (1,4),
(2,4), (3,4), (5,4), (4,4)},

V (2) = {(1,3), (2,3), (3,3), (4,3), (5,3), (1,2),
(2,2), (3,2), (5,2), (4,2)},

V (3) = {(2,2), (2,4), (3,2), (3,4), (4,2), (4,4),
(2,3), (3,3), (4,3), (5,3)},

V (4) = {(1,2), (1,3), (1,4), (2,2), (2,3), (2,4),
(3,3), (5,2), (5,3), (5,4)}.

For example, according to the fourth line in the
above switching order, we changed the state of the
particular element of the original stored pattern V (4).
For a Hamming distance of four, we changed the
states of the (1,2), (1,3), (1,4) and (2,2) elements in
the stored pattern V (4). Then, this altered V (4) pattern
became an  initializing erroneous input sent to our
bipolar neural network. This erroneous version V (4)'

was as follows:

V(4)' = 01110
00110
00100
01110
00000.

The Hamming distance between V (4) and V (4)' was
four. As indicated in the fourth row of Table 1, the
unipolar neural network produced an incorrect out-
put, i.e., the third stored pattern V (3) after 9 itera-
tions. On the other hand, the bipolar network con-
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V(1) = 11000 V(2) = 00011
11000 00011
11000 00011
11000 00011
11000 00011

V(3) = 11111 V(4) = 00000
10001 01110
10001 00100
10001 01110
11111 00000

Fig. 1. Stored patterns with unequal numbers of ones and zeroes.

Table 1. Comparison of Computer Simulation Results for a Bipolar and a Unipolar System

Final output pattern (Number of iterations)
Hamming

Bipolar Scheme Unipolar Scheme
distance

from Vi
(m) m=1 m=2 m=3 m=4 m=l m=2 m=3 m=4

1 1(1) 2(1) 3(1) 4(1) 3(4) 3(4) 3(1) 4(2)
2 1(1) 2(1) 3(1) 4(1) 3(4) 3(4) 3(1) 4(2)
3 1(1) 2(1) 3(1) 4(1) 3(4) 3(4) 3(1) O
4 1(1) 2(1) 3(1) 4(1) 3(5) 3(5) 3(1) 3(9)
5 1(1) 2(1) 3(1) 4(3) 3(4) 3(4) 3(1) 3(9)
6 1(2) 2(2) 3(2) 4(3) 3(4) 3(4) 3(1) 3(3)
7 1(1) 2(1) 3(2) 4(2) 3(4) 3(4) 3(2) 3(3)
8 1(3) 2(3) 3(2) 4(3) 3(4) 3(4) 3(2) 3(4)
9 1(3) 2(3) 3(2) 4(5) 3(3) 3(3) 3(2) 3(3)

10 1(3) 2(3) O O 3(3) 3(2) 3(2) 3(3)



verged correctly to the fourth stored pattern V (4) in
the first iteration. Thus, the bipolar network in-
creased the speed of convergence. The distributed
background which we used improved the storage
capacity and content addressability.

We have also tested the bipolar state network
using stored patterns with equal numbers of ones and
zeroes (Fig. 2). This test also confirmed the in-
creased retrieval capability of the network. Simula-
tion results are listed in Table 2.

The switching orders for these patterns are as
follows:

V (1) = {(1,1), (1,5), (2,1), (2,5), (1,2), (3,3),
(4,3), (3,1)},

V (2) = {(4,1), (4,5), (5,1), (5,5), (1,2), (2,3),
(3,4), (4,2)},

V (3) = {(1,4), (1,5), (5,4), (5,5), (2,4), (1,1),
(3,1), (5,3)},

V (4) = {(1,1), (1,2), (5,1), (5,2), (1,5), (2,4),
(3,3), (5,5)}.

The unipolar scheme for this input set produced
erroneous results. The simulation results prove that

the two-dimensional bipolar scheme is far better than
the two-dimensional unipolar model.

VI. Optical Setup

Figure 3 shows a schematic diagram for the
experimental setup for optical implementation of the
Bipolar Hopfield neural network. An area encoding
technique can be used to fabricate the enlarged
matrix mask. The enlarged matrix elements are rep-
resented by transparent rectangles. The area of each
rectangle is proportional to the value of the corre-
sponding element of the enlarged matrix. However,
in this case, when the number of neurons in the net-
work is large, it is difficult to converge the light
that has passed through the mask to a single spot.
Also, the multiplier system will not be free of cross
talk. Hence, in order to improve the performance of
the system, the input is generated as follows: the
plane wave illuminates the pattern displayed on the
electrically addressed spatial light modulator (SLM).
Liquid crystal display devices (LCD) has many
advantages, such as low controlling voltage, low
switch energy and no radiation. High-speed optical
switches such as ferroelectric liquid crystal devices
can improve the speed.

The plane wave illuminates the SLM and passes
through the mask, which is placed so as to be in
contact with SLM. The cylindrical lens converges the
light to the detector array. The distance between the
mask and the cylindrical lens is short. Each trans-
parent area in the mask is several millimeters in
size. The LCD-SLM with a pixel size about one
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Fig. 3. Optical setup (schematic).

V (1) = 11111 V (2) = 00000
11111 00000
00000 00000
00000 11111
00000 11111

V (3) = 00011 V (4) = 11000
00011 11000
00011 11000
00011 11000
00011 11000

Fig. 2. Stored patterns with equal numbers of ones and zeroes.

Table 2. Simulation Results for the Bipolar Scheme with Equal
Ones and Zeroes Patterns

Hamming
V (1) V (2) V (3) V (4)

Distance
1 1(2) 2(2) 3(2) 4(2)
2 1(2) 2(2) 3(2) 4(2)
3 1(2) 2(2) 3(2) 4(2)
4 1(2) 2(2) 3(2) 4(2)
5 1(2) 2(2) 3(2) 4(2)
6 1(2) 2(2) 3(2) 4(2)
7 1(2) 2(2) 3(2) 4(2)
8 1(2) 2(2) 3(2) 4(2)



micrometer reduces the light cross talk and diffrac-
tion noise.

The electrical signal output of the detector is
thresholded in the thresholding circuit, where the (N
+ 1)th signal acts as a dynamic threshold. The last
neuron states stored in the register and the new neu-
ron states are compared to determine whether or not
to stop iterating. The input/output control circuit con-
trols the input/output data flow and displays the neu-
ron states stored in the register. When stored in the
register, the new neuron states control the driving
circuit so that it displays a new input pattern in the
SLM. A clock controls the period of time used in
one iteration. The period of one iteration is mainly
determined by the switching time of LC-SLM.

VII. Conclusion

Computer simulations of two-dimensional bipo-
lar networks have shown that the performance of the
bipolar scheme is much better than that of the corre-
sponding unipolar scheme. It is faster in terms of
convergence and more accurate when compared to
the unipolar scheme, as demonstrated by the tabulat-

ed results. The optical set up for implementation of
the bipolar two-dimensional Hopfield algorithm has
also been presented.
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