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ABSTRACT
Spatial databases are prominently used in Geographic Information
System (GIS) applications. However, many of the current archi-
tectures rely on a centralized data repository. The next evolution
will be GIS applications that utilize and integrate a multitude of
remotely accessible data sets, for example via Web services. Our
involvement in a project where geotechnical borehole information
is retrieved from a large number of repositories that are under dif-
ferent administrative control has motivated us to design an effi-
cient distributed access structure and routing middleware for spa-
tial queries. In this study we present our middleware design based
on distributed R-tree and Quadtree index structures. Importantly,
the framework supports both spatial range and k nearest neighbor
queries. We have performed a theoretical analysis and simulations
with synthetic and real data sets. The results show a large reduction
in message traffic to a level only slightly above what is minimally
necessary.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—distributed databases;
H.2.8 [Database Management]: Database Application—spatial
databases and GIS

General Terms
Algorithms
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1. INTRODUCTION
The combination of spatial database systems and Web services

promises to form the foundation of powerful new applications that
dynamically integrate data from multiple, distributed repositories.
The use of a Web services infrastructure allows direct program-
matic access to remote data and applications have the opportunity
to obtain a plethora of data without storing and managing a lot of in-
formation locally. There are clearly a number of advantages to this
concept. First, data is often maintained by specific entities or orga-
nizations. By allowing remote access to their data sets, these enti-
ties continue to have administrative control over their data. Second,
the correct data set for a specific calculation can be downloaded
automatically without manual user intervention, reduced data ac-
quisition time. Third, updates and changes to the data are almost
instantly available to remote applications. Here we report on our
design of an efficient spatial indexing and query routing middle-
ware where requests are sent only to the specific repositories that
most likely have relevant data.

This research has been inspired by our involvement in a project
to manage geotechnical borehole information [17, 1]. Local, state
and federal agencies, universities and companies need geotechnical
information on soil deposits for various applications in civil engi-
neering and urban planning, e.g., mapping of natural hazards, soil
liquefaction and earthquake ground motions. For instance, state
agencies rely on available geotechnical data for producing hazard
maps, from which insurance companies evaluate potential earth-
quake risks and calculate insurance premiums. We have imple-
mented a distributed Geotechnical Information Management and
Exchange (GIME) system based on a spatial database engine to
maintain these geotechnical data sets [17].

The geotechnical borehole information is collected and managed
by a multitude of private and public agencies, such as the U.S. Ge-
ological Survey (USGS), the California Department of Transporta-
tion (CalTrans), etc. Given such a federation of spatial database
servers, our research focuses on the efficient querying of this dis-
tributed infrastructure and we report here on our proposed frame-
work. We introduce a tree-based design, which is built upon dis-
tributed and replicated R-tree [4] and Quadtree structures [2, 12] in
Section 2. We evaluate our design with simulations using both syn-
thetic and real data and report on the results in Section 3. Section 4
contains a brief discussion and survey of related work. Finally, con-
clusions and future research directions are presented in Section 5.

2. SYSTEM DESIGN
Our distributed query access middleware is motivated by the de-

sign of our Geotechnical Information Management and Exchange



(GIME) system. The GIME architecture as shown in Figure 1 is
comprised of a number of geographically distributed spatial databases.
Access to the data is public and available through a Web services
interface. Specifically, the following features and goals have guided
our design.

• Autonomy: Each of the archives contains data that is main-
tained by a specific organization, for example the U.S. Geo-
logical Survey (USGS). For organizational rather than tech-
nical reasons, it is undesirable to replicate or cache the data
sets at other participating archives. Data sets may geograph-
ically overlap. For example, the USGS maintains data about
all of the United States, while the California Geological Sur-
vey (CGS) collects data about California.

• Cooperative and efficient query processing: When presented
with a query at any one of the participating database nodes,
the overall system must cooperatively execute the request
and return all relevant data. For this purpose, an efficient ac-
cess method is required which can rapidly decide which other
nodes contain potentially relevant data and which do not.
The query must then be forwarded to the candidate nodes
and the result returned expediently to the querying host. Both
spatial range queries and k nearest neighbor queries (k-NN)
must be supported.

• Decentralization: Because the data archives are geographi-
cally disbursed, we also expect the query access method and
routing mechanism to be fully decentralized. Hence, a cen-
tralized indexing system is not considered a suitable solu-
tion. Furthermore, an archive that is temporarily unavailable
should have minimal impact on the query execution capabil-
ities of the overall system.

Note that our target application involves mostly large organiza-
tions, corporations, and educational institutions as service providers.
Therefore, we assume a relatively stable environment1 . Nonethe-
less, the system must be able to gracefully handle volatility.

We have designed an efficient distributed access method that ful-
fills the requirements and goals described above, based on replicat-
ing well-known spatial index structures. Before we detail our pro-
posed techniques that leverage R-tree and Quadtree access meth-
ods, we will briefly introduce a baseline algorithm for comparison
purposes.

2.1 Baseline: Exhaustive Query Routing
We assume a non-volatile environment where occasionally, but

not very frequently, a node leaves or joins. The data sets that we
consider are large and valuable, and hence they are usually pro-
fessionally managed. As a result, we can compile a list of all the
participating archives. This list may not be completely up-to-date
at a specific time instance, but accurate enough to result in few dis-
ruptions.

If the list of database servers is known, it can be distributed to
every archive. A query q that arrives at a specific node can then
be forwarded to all other nodes for exhaustive processing, irrespec-
tive of the selectivity of q. We call this naive method exhaustive
query routing (EQR). Even though EQR is inefficient, it is useful
as a baseline mechanism to compare our more sophisticated models
against.

The metric that we use to compare the different techniques is
the total number of messages created in the system to execute a
1A more dynamic environment would generally be expected for
peer-to-peer systems.

query q and collect the results. A lower number of messages re-
duces network traffic and indicates better scalability of the system.
The number of messages generated by queries with EQR can be
represented as shown in Equation 1.

M = 2 × Q × (N − 1) (1)

The overall number of messages M is the product of the total
number of queries Q and the number of nodes N in the system.
The total is doubled because an equal number of result messages
are generated.

2.2 Query Routing with Spatial Indexing
The naive flooding method of EQR generates a lot of message

traffic and scalability is poor. However, many established access
methods exist that reduce the query space. The core idea of most
access methods is to recursively partition the key space into a set
of equivalence classes. An index is then constructed as a hierarchy
of the class representatives at successive levels. The hierarchical
index allows filtering out (i.e., dismiss without inspection) the ir-
relevant classes while the query is directed from the root of the
hierarchy toward the similarity class of the query tree.

For spatial (and multi-dimensional) data indexing, the R-tree [4]
and Quadtree algorithms [2, 12] are well established. Both generate
tree-structure indices that partition the overall space into succes-
sively smaller areas at lower levels of the index hierarchy. R-trees
and Quadtrees are very successfully used in the core engines of
spatial database systems. We propose to use them in a novel way
as index structures across multiple spatial databases to decrease
the query forwarding traffic. Specifically, we insert the minimum
bounding rectangle (MBR) of the data set of each archive into a
global R-tree or Quadtree. Because we prefer to avoid a central-
ized index server we further distribute copies of this global index
structure to each archive. As a result, an archive can intersect each
query rectangle with the archive MBRs stored in the global index.
The query is then only forwarded to archives whose MBR over-
laps with query rectangle, immediately reducing inter-node mes-
sage traffic significantly.

Very sparse and widely distributed data sets may be enclosed
with large MBRs that result in intersections with query rectangles
that produce zero matched and retrieved data objects (false posi-
tives). In this scenario, a physical archive can be decomposed into
several clustered, logical data sets and hence mapped to a number
of smaller, logical MBRs. Any query window which falls into the
original MBR but does not intersect with any logical MBRs can be
dismissed.

An additional cost is incurred with the above design because it
requires the global index structures to be synchronized. Further-
more, the complexity of keeping a distributed data structure consis-
tent is added. However, one characteristic of this technique greatly
reduces the overhead and makes it an attractive solution. Because
the global index structures manage bounding rectangles, changes
to the data set of any individual archive only result in index updates
if the MBR changes – and this is very infrequent. Consider the
following example. An archive manages 1,000 two-dimensional
spatial data objects. The MBR is defined by at most four of them2.
Any insertion or deletion of data objects confined within the MBR
do not affect the global index; only changes that either stretch or
shrink the MBR need to be propagated. Equation 2 shows the esti-
mation function of the number of messages when a global index is
used.

2More than four points may define a rectangle if some of them have
the exact same x- or y-coordinate values.
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Figure 1: The proposed distributed spatial database infrastructure with middleware utilizing replicated spatial index structures
(either R-trees or Quadtrees).

Symbol Description

Q Number of queries
U Number of global index updates
N Number of nodes
M Number of messages
MT Total number of messages
MQ Number of messages generated by queries
MU Number of messages generated by updates
SQ Selectivity of queries
SU Selectivity of global index updates

Table 1: Parameters used to describe the query message traffic
models.

MT = [2 × Q × (N − 1) × SQ] + [U × (N − 1) × SU ] (2)

The query traffic is reduced by a factor equal to the selectivity of
the query, 0 ≤ SQ ≤ 1. Similarly, the update message traffic U
is diminished by the factor 0 ≤ SU ≤ 1 that describes how many
of the data updates (including insertions and deletions) actually re-
sult in global index changes. Consequently, the total number of
messages is dependent on the frequency of data updates in the sys-
tem. Table 2 shows an example of SU values ranging from 0.001
to 0.058 with one of our experiments. Recall that the exhaustive
query routing technique has no such dependency. As we will show
in Section 3, global indexing generally results in a significant re-
duction of message traffic with the benefits being highest when few
updates must be propagated. Next we will describe our R-tree and
Quadtree global indexing techniques.

2.2.1 Common Design Assumptions
Every archive in the distributed environment hosts a database en-

gine capable of storing, retrieving and querying spatial data. Fur-
thermore, every archive holds a directory, termed the server list,
with entries denoting the network location (e.g., IP address) and
the minimum bounding rectangle (MBR) of every known spatial
database member in the system. From the directory information,

each server computes the corresponding R-tree (or Quadtree) global
index data structure. If any MBR update messages are received,
the local data structure is updated accordingly. Any local MBR
changes due to data insertions or deletions initiate update messages
to all the other database servers. In the R-tree based design, the
upper bound and lower bound of the number of entries that will fit
in one internal tree node are prespecified (e.g., M is the maximum
number of entries that will fit in one node and m ≤ M/2 is the
parameter specifying the minimum number of entries in a node).

2.2.2 The R-Tree Based Design

Index Initialization and Topology Maintenance. A new
server A joins the spatial database collective by sending its infor-
mation (IP address and MBR) as an update message to one of the
existing servers, say B. Archive B updates its local R-tree index and
replies with the current system information (i.e., all known server
hostnames and MBRs). With this information A constructs its own
R-tree index. In a final step, A broadcasts an update message with
its hostname and MBR to all the other servers (except B), which in
turn update their local R-tree indices according to the R-tree update
algorithm [4].

In the event of an archive departure, it broadcasts an update mes-
sage to announce that it is removing itself from the topology. Corre-
spondingly, the other servers delete the leaving server’s MBR from
their R-tree. If an archive fails, the node that first detects the un-
responsive system broadcasts a removal message to everyone. In
the outlined protocol short term inconsistencies among the R-tree
data structures on different servers can arise. In the described ap-
plication this is tolerable. However, if stronger update semantics
are desired, then existing algorithms to perform distributed updates
can be used.

Query Routing. Clients do not need to contact all the servers
in a distributed spatial database environment to obtain comprehen-
sive query results. Queries sent to a server will automatically be
forwarded and yield accurate spatial results from the complete data



Number of R-tree Based Design Quadtree Based Design
Servers Updates MBR Index Structure SU Updates MBR Index Structure SU

Changes Changes Changes Changes

10 1000 50 50 0.05 1000 50 5 0.005
100 1000 55 55 0.055 1000 55 4 0.004
200 1000 52 52 0.052 1000 52 5 0.005
300 1000 58 58 0.058 1000 58 2 0.002
400 1000 43 43 0.043 1000 43 4 0.004
500 1000 55 55 0.055 1000 55 1 0.001
600 1000 42 42 0.042 1000 42 2 0.002
700 1000 58 58 0.058 1000 58 1 0.001
800 1000 54 54 0.054 1000 54 2 0.002
900 1000 50 50 0.050 1000 50 3 0.003

1000 1000 52 52 0.052 1000 52 1 0.001

Table 2: The relationship between data updates, MBR updates, and index updates.

Number of R-tree Based Design Quadtree Based Design
Servers Updates MBR Index Structure SU Updates MBR Index Structure SU

Changes Changes Changes Changes

10 1000 45 45 0.045 1000 45 3 0.003
100 10000 398 398 0.0398 1000 398 20 0.002
200 20000 806 806 0.0403 1000 806 54 0.0027
300 30000 1207 1207 0.0402 1000 1207 65 0.0022
400 40000 1582 1582 0.0396 1000 1582 91 0.0023
500 50000 2008 2008 0.0402 1000 2008 101 0.0020
600 60000 2457 2457 0.0410 1000 2457 143 0.0024
700 70000 2788 2788 0.0398 1000 2788 162 0.0023
800 80000 3359 3359 0.0420 1000 3359 186 0.0023
900 90000 3644 3644 0.0405 1000 3644 169 0.0019

1000 100000 4083 4083 0.0408 1000 4083 207 0.0021

Table 3: The relationship between data updates, MBR updates, and index updates with a linear increase of the server and update
numbers.

set. The queried server determines through its local R-tree whether
any of the other archives in the collective potentially have relevant
data (i.e., the query rectangle and the archives’ MBR intersect).
Forwarded queries are flagged to show that they originated from a
server rather than a client to avoid query loops. The results of for-
warded queries are returned to the initially contacted server which
aggregates them and returns the set to the client.

R-Tree Index Update. Each spatial database server must also
process data object update requests from local users. We categorize
update requests into (1) data insertions and (2) data deletions. If an
object insertion or deletion does not change the server MBR, then
the local R-tree index remains structurally unchanged. On the other
hand, if the insertion or deletion results in a variation of the MBR
boundary, then the local R-tree is updated [4]. Subsequently the
new MBR is broadcast to all the other servers in the system for tree
index synchronization.

2.2.3 The Quadtree Based Design

Quadtree Index Update. The operation of the Quadtree based
design is very similar to the R-tree based design. However, some
slight differences for tree index updates arise as follows. If an ob-
ject insertion or deletion results in changes to the MBR boundary,
the Quadtree model checks whether the MBR variation affects the
Quadtree structure. If the structure is changed, then the update is
propagated to all the other servers as usual for tree index synchro-
nization.

However, if the Quadtree structure is unchanged, then the MBR

update is not broadcast. The reason is that the Quadtree structure
determines the routing of queries and in this case the correct re-
sults are still achieved. Table 2 illustrates this effect. In our sim-
ulation environment approximately 4.2% to 5.8% of all insert or
delete operations result in an MBR change. For the R-tree based
design, every MBR change translates to an index structure update.
However, in the Quadtree design the index structure updates are
reduced by an order of magnitude. Hence we can conclude that
the update message traffic to synchronize distributed Quadtrees is
much lower than for R-trees. Table 3 shows the experimental re-
sults obtained when increasing both the server and update numbers
linearly. This illustrates the case where the activity per server is rel-
atively constant. Again, most updates do not generate any changes
to the archive MBRs and therefore the selectivity SU of the global
index remains a fixed fraction of the number of updates. Based on
these results, we expect our techniques to scale well.

2.2.4 Nearest Neighbor Queries
In geotechnical data applications, nearest neighbor (NN) queries

are very important. NN queries with spatial data have been investi-
gated in previous research [15, 8, 14]. The most relevant work that
applies to our system is a branch-and-bound R-tree traversal algo-
rithm that efficiently answers both NN and k-NN queries [10]. We
slightly modified the R-tree traversal algorithm to adapt it to our
distributed spatial database environment.

In the branch-and-bound R-tree traversal algorithm two metrics,
the minimum distance (MINDIST) and the minimum of the max-
imum possible distance (MINMAXDIST), are proposed for order-
ing the NN search. The MINDIST describes the minimum Eu-
clidean distance between the query point and the nearest edge of



an MBR; it is the optimistic choice (see Figure 2). The MIN-
MAXDIST value defines the minimum of all the maximum dis-
tances between the query point and points on each of the axes of
an MBR and it is the pessimistic option (Figure 2). Because of
the characteristics of MBRs, the MINDIST metric cannot always
provide the optimum tree traversals, and therefore MINMAXDIST
is indispensable. The NN search algorithm implements an ordered
depth first traversal based on the values of MINDIST and MIN-
MAXDIST. It begins from the R-tree root node and proceeds down
the tree hierarchy. At a leaf node, a distance computation function
is invoked to decide the actual distance between the query point
and the candidate DB objects. The algorithm iterates with three
search-pruning strategies until it finds the NN object.

In the distributed design, every server maintains a local R-tree
and the NN search algorithm is executed on this local R-tree to
compute both the MINDIST and MINMAXDIST values. To ac-
cess these distance values across multiple archives, we have created
a Web service interface at each node to remotely obtain the distance
between the search point and a candidate nearest data point. To an-
swer a NN query, a server needs to send several distance query mes-
sages to other servers in the system during the branch-and-bound
process. With the three search pruning strategies proposed in [10]
and a slightly modified search algorithm, NN queries can be effi-
ciently executed.

MBR

MINDIST = 0

MBR

MBR

MINDIST

MBR

MINDIST Query Point

Figure 2: The MINMAXDIST and MINDIST distances in two
dimensional space.

3. EXPERIMENTAL VALIDATION
We implemented our tree-based design in a simulator to evaluate

the performance of our approach. For the index structures, we used
the R-tree and MX-CIF Quadtree algorithms [6, 13]. Hence the
index tree search complexity is the same as with these algorithms.
In a distributed environment, the search complexity is dominated
by the communication overhead between servers. Therefore, the
focus of our simulation is on quantifying the query routing traffic
generated by processing a sequence of spatial range queries and
updates. We performed our experiments with both synthetic and
real-world spatial data sets.

3.1 Simulator Implementation
We implemented our middleware in the simulator with plug-in

modules for both the R-tree and the Quadtree algorithms. Either
structure was used to index all the MBRs of the servers present

in the distributed system. The leaf nodes represent specific server
MBRs and contain forwarding pointers (i.e., the host names and
IP addresses) to the remote servers. The leaf node of the MBR of
the local data set directly points to the local database. If a query
window intersects with several server MBRs, then the query is for-
warded to each. The simulator counts all the messages that are
generated through the query forwarding mechanism and also ac-
counts for all the return messages containing result data sets. Ad-
ditionally, tree update information must be broadcast to all servers.
Recall that the tree index update frequency of the Quadtree based
design is much lower as compared with the R-tree implementation
(as discussed in Section 2).

3.1.1 Event Generation.
The simulator was designed to process two types of user events:

(1) queries and (2) updates. Both types were generated according to
a Poisson distribution, with the inter-arrival rate λQ and λU being
specified independently. For example, one might specify five query
requests and one update request per minute. Data updates could
either be insertion or deletion requests. The total simulated time
for all our experiments was ten hours (for parameters see Table 4).
To enable direct performance comparisons, all techniques (EQR,
R-tree and Quadtree) were executed with the exact same sequence
of events for a specific experiment.

3.1.2 Query Parameter Generation.
Each query was dynamically created based on the mean query

window size (QWS-µ) and its deviation QWS-σ (see Table 4). The
QWS-µ parameter defined the mean percentage of the global ge-
ographical area that was used for the query window based on a
normal distribution. In addition, QWS-σ provided a variation range
bound by one QWS-σ deviation such that the query window area
was different for each query event. With these parameters, the sim-
ulator first chose the query window size. It then randomly selected
a point (x1, y1) as one corner coordinate and a value x2 inside the
global boundary as the x-value of the other coordinate across the
diagonal of the query window. Based on the window size, the value
of y2 was calculated and hence the final position of the query win-
dow determined.

3.1.3 Synthetic Data Generation.
Each borehole data item has a spatial location attribute with lon-

gitude and latitude, which map it to a point in a two dimensional
space. We created a synthetic data set by randomly generating N
data center points, C0, C1, ..., CN−1, where each Ci = (xi, yi)
is the geographical center of all the borehole data managed by an
individual spatial database server. All the data centers were lo-
cated inside a global boundary, which encloses the geotechnical
data stored in the system. For each data center location Ci, B
associated boreholes pj are generated according to a normal dis-
tribution. Consequently, the borehole points are more dense in the
vicinity of the center point and become more and more sparse as
the distance to the center point increases. The generator limited the
maximal distance of a borehole from its center to the value of two
standard deviations. After all the borehole points were created, the
MBR of each database server was computed. Figure 3 illustrates
the boreholes managed by ten servers and their respective MBRs.

3.2 Experiments
The simulator executed each event as it was generated. For each

query event, a server was randomly choosen as the injection point
to receive the query from a client. Update events were randomly de-
cided to be either insertions or deletions. For an insertion event, the



Parameter Value Description

N 1,000 The number of database servers in the system
B 200 The number of boreholes managed by each server
σ 2 The maximum distance from a data center to it’s borehole points

λQ 5 The number of queries per ten minutes
λU 2 The number of updates per ten minutes

Texec 10 hours The length of a simulation run
QWS-µ 10% Query window size: the percentage of the whole system area, which is occupied

by a query window
QWS-σ 2 The standard deviation for generating the query window size range

Table 4: Parameters for the simulation environment.
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Figure 3: The synthetic server data centers, their MBRs, and
the individual borehole data sets.

simulator randomly chose a server which received the new borehole
point. The position of the new borehole was generated as described
in the ‘Synthetic Data Generation’ paragraph, but its distance from
the server center was bound by four standard deviations instead
of two. Therefore, the MBR of each server could expand. For a
deletion event, the simulator simply deleted a randomly selected
borehole point from a randomly chosen server. If the deletion re-
sulted in a tree index change (i.e., the MBR shrinks), the simulator
counted its related update synchronization traffic cost.

We also created a simulation module to analyze the message traf-
fic generated by the exhaustive query routing (EQR) mechanism
with the same event sequence. Consequently, we were able to mea-
sure the performance differences between the two approaches.

3.2.1 Synthetic Data Experiment
We performed simulations with the R-tree, Quadtree and exhaus-

tive query routing designs based on our synthetic data sets. The
same event sequence was executed over a simulation period of ten
hours with the parameter set shown in Table 4. Figure 4 shows the
accumulated traffic of queries and updates of the tree-based designs
and the exhaustive query routing mechanism.

3.2.2 Kobe Data Experiment
To verify the efficiency of our design with real-world data, we

ran our simulation with geotechnical data provided by Kobe Uni-
versity, Japan. The data set includes four thousand boreholes of
Kobe county, and we will refer to it as the Kobe data set.

We used the popular K-means algorithm [7] to cluster the Kobe
data points in Euclidean space and assign them to database servers.
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We divided the Kobe data set into ten clusters (illustrated in Fig-
ure 5). MBRs were generated based on all the borehole coordinates
in each cluster.

We experimented with both the R-tree and Quadtree index struc-
tures with different query window sizes (ranging from 1% to 50%).
For comparison purposes, we also generated a synthetic data set
with the same parameters (10 servers, 400 boreholes per server)
and the simulation results are shown in Figure 6. We discuss the
performance results next.

3.3 Discussion of Results
Figures 4 and 6 illustrates that our design improves the query

routing performance significantly with both synthetic and real-world
data sets. The tree-based designs result in a decrease of approxi-
mately 60% to 70% of inter-server message traffic compared with
exhaustive query routing (with query window sizes of 10% to 20%).
Since the EQR scheme represents the worst case message routing
traffic we also defined the optimum query routing (OQR) traffic
representing the best case. With OQR, a query that arrives at a
specific server is forwarded to precisely the set of servers which
maintain relevant data. Therefore, OQR is the optimal baseline
against which we can compare the performance of our designs.
Figure 7 illustrates the relationship between EQR (upper bound),
the two tree-based designs, and OQR (lower bound) with different
query window sizes. We divided the accumulated message count
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Figure 5: The borehole clusters of Kobe county, Japan (this
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of EQR and the tree-based designs by the message count of OQR
to normalize the y-scale. Hence a value of one indicates optimal
performance. Remarkably, the traffic generated by our tree-based
design is very close to this optimum.

Symbol Description

NPIR Network performance improvement rate
TEQR Total of accumulated messages for EQR
Ttree Total of accumulated messages for the tree based designs

Table 5: Parameters used to describe the network performance
improvement rate.

Next we defined a comparison metric termed the network perfor-
mance improvement rate (NPIR) shown in Equation 3.

NPIR =
TEQR − Ttree

TEQR

(3)

Figure 8 illustrates the results of our scalability experiments where
we increased the number of servers from ten to one thousand while
keeping the other parameters constant. As illustrated, the NPIR
stays remarkably constant over the full spectrum of configurations
and we conclude that the tree based designs scale well to large dis-
tributed systems.

The query window size affects the performance of our design
since with large window sizes the query must be forwarded to al-
most all servers and less traffic pruning can be achieved. Fig-
ure 9 shows how the NPIR declines when the query window
size increases from 1% to 50%. Additionally, the overall data
arrangement influences to the performance of systems with tree-
based query routing. The best condition exists when there is no
overlap between any server MBRs and conversely the worst sce-
nario consists of significant MBR overlap. Under good conditions
the tree-based designs can reduce inter-server traffic by up to 90%.
In the worst case, the performance decreases to the same level or
slighly worse (because of the update costs) than ERQ. Therefore, a
system designer needs to consider the charactristics of the data set
before opting for the tree-based query routing algorithms.

4. RELATED WORK
Recently, considerable attention has focused on an emerging class

of large scale distributed data management systems classified as
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Figure 6: Performance comparison between the tree-based de-
sign and exhaustive query routing with the synthetic and Kobe
data sets.
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Figure 8: The performance of the tree-based designs remains
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thousand.
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Figure 9: The network performance improvement rate (NPIR)
as a function of the query window size.

peer-to-peer (P2P) systems. Some of the key characteristics of
P2P systems are their very dynamic topology, their heterogeneity,
and their self-organization. The query processing and routing ap-
proaches of some of the initial P2P systems focused on either a cen-
tralized index server (e.g., Napster) or a flooding mechanism (e.g.,
Gnutella). These techniques are considered either not very scalable
or inefficient. More recently, distributed hash tables (DHT) have
been proposed to achieve massive scalability and efficient query
forwarding. The most prominent representatives are Pasty [11],
Chord [16], and CAN [9]. DHTs provide a mechanism to perform
object location within a potentially very large overlay network of
nodes connected to the Internet. The distributed hash mechanisms
work by transforming a key value into a number that is then mapped
to a node whose identifier is numerically closest to the key. Key lo-
cation is very efficient and the expected number of routing steps is
O(log N), where N is the number of nodes in the system. An im-
portant property of a good hash function (e.g., SHA-1) is a close to
uniformly random distribution of keys to numeric values. Hence,
key values that are close to each other (or otherwise related) can
be arbitrarily far apart in the generated index space. This property
makes standard DHTs unsuitable for range queries.

A number of techniques have been proposed to adapt DHT mech-
anisms for range queries. Harwood and Tanin [5] introduce a method
to hash spatial content over P2P networks. Space is divided in a
Quadtree-like manner and the central points of each square, de-
noted control points, are hashed to a Chord ring. Spatial objects
and queries are resolved to spatial regions whose control points are
then hashed onto the DHT ring. Galanis et al. [3] propose a dis-
tributed catalog service that can efficiently locate XML path data.
Range queries are supported via wildcards in XML strings (i.e.,
“*”), however, they may require a scan of some of the data.

5. CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

We have presented an architecture to efficiently route and ex-
ecute spatial queries based either one of two globally distributed
and replicated index structures, namely R-trees and Quadtrees. We
have performed extensive simulations with both synthetic and real
data sets and several major results could be observed. First, the
update message traffic to keep the replicated indices synchronized
is negligible. This reduces the probability of temporarily inconsis-
tent index structures and greatly increases scalability. Second, the

overall query message traffic is significantly reduced to a level only
slightly higher than what an optimal distribution algorithm with
global knowledge could achieve.

We plan to extend our work as follows. The current performance
metric – the number of messages – does not capture the parallelism
that is achieved within the system. Hence we intend to measure the
response time and the query throughput. For this purpose, we plan
to integrate the tree-based design into our current GIME architec-
ture and perform experiments with this real system.
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