
SPACE DECOMPOSITION TECHNIQUES
FOR FAST LAYER-4 SWITCHING

Milind M. Buddhikot,
Lucent Bell Labs

Subhash Suri,
Washington University in St. Louis

Marcel Waldvogel,
ETH, Zürich

milind@dnrc.bell-labs.com, suri@cs.wustl.edu, mwa@tik.ee.ethz.ch

ABSTRACT

Packet classification is the problem of matching each incoming packet at a
router against a database of filters, which specify forwarding rules for the pack-
ets. The filters are a powerful and uniform way to implement new network
services such as firewalls, Network Address Translation (NAT), Virtual Private
Networks (VPN), and per-flow or class-based Quality of Service (QOS) guaran-
tees [4]. While several schemes have been proposed recently that can perform
packet classification at high speeds, none of them achieves fast worst-case time
for adding or deleting filters from the database [3, 8, 9]. In this paper, we
present a new scheme, based on space decomposition, whose search time is
comparable to the best existing schemes, but which also offers fast worst-case
filter update time. The three key ideas in this algorithm are as follows: (1)
innovative data-structure based on quadtrees for a hierarchical representation
of the recursively decomposed search space, (2) fractional cascading and pre-
computation to improve packet classification time, and (3) prefix partitioning to
improve update time. Depending on the actual requirements of the system this
algorithm is deployed in, a single parameter � can be used to tradeoff search
time for update time. Also, this algorithm is amenable to fast software and
hardware implementation.

1. INTRODUCTION

In recent years the Internet has transformed from a early day low speed
network connecting predominantly educational institutions to a gargantuan fast

growing commercial infrastructure. The diverse users of the Internet now range
from ordinary home users downloading recipes to large corporations conduct-
ing sensitive transactions over the net. The expectations in terms of security,
privacy, performance, and reliability of these diverse users are dramatically
different. Realizing this, Internet Service Providers (ISP) are envisioning new
differentiated network services that can meet demands of the full spectrum of
clients. For example, a corporation that has multiple sites may want to connect
its internal networks using the Internet but request strict bandwidth and delay
guarantees and require that all its packets be encrypted as they flow through
the Internet. To provide this new network service, commonly termed as Vir-
tual Private Networks(VPN), the routers must be able to recognize packets
originating from or destined to corporation sites and process them differently
than other packets. However, IP routers that provide the best-effort Internet
service of today differentiate packets based only on the IP destination address,
the minimum requirement to get the packet closer and closer to its destination.
To realize a service such as VPN requires the router to look at additional net-
work layer information such as the source address, protocol type, and transport
protocol fields such as source, destination ports [8, 9]. This new paradigm for
packet forwarding based on network (ISO/OSI Layer 3) and transport (Layer
4) level information is termed as Layer 4 Forwardingor Layer 4 Switching
and is central to realization of new differentiated network services such as fire-
walls, Network Address Translation, Virtual Private Networks, and per-flow or
class-based Quality of Service (QOS) guarantees. A router supporting Layer 4
Switching maintains a table of rules for classifying packets, commonly called
filters. Each rule also has an action item associated with it. Two important
aspects of Layer 4 packet classification are: (1) filter search— classify/match
every incoming packet to a lowest cost/highest priority filter and performs the
associated action on the packet. (2) filter update— update filter table in the
event of a filter addition or deletion. To be ready for the growing demands of
users and ISPs, a Layer 4 router must be perform the filter matching operation
at Gigabit per second rate. However, it is becoming increasingly evident that in
addition to this, services such as firewalls and NAT require the router to support
insertion and deletion of filters with sub-second latency. Unfortunately, recent
packet classification algorithms reported in the literature only support fast filter
search and require prohibitively large update time that grows at least linearly
with the number of filters in the database or even require a complete rebuild of
the lookup structure [8, 9, 3]. In addition, for a filter database with N entries,
some of these algorithms [3, 9] require O(N2) space which is prohibitively
high.

Contributions

In this paper, we describe a class of algorithms called (PACARS) — PAcket
Classification Algorithms using Recursive Space-decompositions and present
in detail a specific instance called Area-based Quad Tree (AQT). We focus
primarily on 2-dimensional prefix based filters. However, our scheme can be
extended to multi-dimensional filters using well known techniques in [8].

For N two-dimensional filters, our scheme requires O(N) space, O(�W)
worst-case search time, and O(� �

p
N) worst-case update (insert/delete) time.

Using � as a tunable parameter, we can tradeoff lookup time for faster update
time and thus, tune our algorithm to the requirements of dominant services.
For example, with � = 2, we get a search time of O(2W) and update time
of O(2

p
N), which are suitable for applications that require fast searches and

reasonably fast updates. With � = 3, the search time is increased to 3W but
the update time is reduced to O(3 3

p
N).

2. RELATED WORK

The problem of Layer 4 packet classification has received significant at-
tention in the recent past. Existing commercial implementations of firewalls
that use layer-3/4 filters often use linear search and hence do not scale to large
databases. Caching based approaches are not scalable, since each cache miss
requires a linear search of the database, which can be a big bottleneck.

Among other recently proposed schemes, Stiliadis et al. [9] present two al-
gorithms: their first scheme is hardware oriented and requires wide data buses.
It can handle general K-dimensional filters, but requires O(N2) space and ex-
pensive hardware. Their second algorithm is a 2D scheme that is more appro-
priate for software implementation but it does not handle general filters. Also,
the worst case update time of both the schemes is O(N).

In [8], Srinivasan et al. present a fast 2D scheme, called Grid-of-Tries, with
O(N) space requirement and attractive worst case search time of O(W). By
maintaining four such grid-of-tries, they can handle 5-dimensional filters. The
worst-case update time of this scheme is also O(N) and requires complicated
lazy updateschemes to improve average case performance.

Decasper et al. [3] present a packet classification scheme based on finite
state machines. This scheme, though fast for lookups, requires O(N2) memory
and is thus completely impractical for the number of filters that are expected in
the future.

A more recent scheme called Tuple Space Search [6] proposed by Srinivasan-
Suri-Varghese can handle arbitrary general filters, and has fast update time, but

its worst-case bounds on both the search and update time are very poor.
In recent years, a new form of Content-Addressable Memories (CAM) called

ternary CAMs have been proposed for use in packet classification and routing.
However, they suffer from high cost, large power dissipation, and O(N) worst
case update time.

3. PACKET CLASSIFICATION, SPATIAL DECOM-
POSITION, AND QUADTREES

This section presents the basics of the packet classification problem, and
how to approach it using recursive search space decomposition, and the quadtree
data structure.

Overview of Packet Classification Problem

Before we discuss our algorithms, we briefly review the multidimensional
packet classification problem [8]. We assume that the router maintains a filter
database or table that consists of N filters F1; F2; : : : ; FN , each with K fields
corresponding to the packet headers which it should match. In case of IPv4
packets, fields such as IP source address (SA, 32 bits), IP destination address
(DA, 32 bits), protocol identification number (PID, 8 bits), Type-of-Service
(TOS, 8 bits), and transport protocol level source/destination port (SP, DP, 16
bits each) have been considered as relevant fields. Each of the header fields
is assigned one of the four match types: exact match, wildcard match, prefix
match, and range match. For an exact match, the field in the header must com-
pletely match the specified filter field. Wildcard matches allow the database to
contain either a fully specified field or a match-all (wildcard) symbol. In a pre-
fix match, the packet’s field must match the first prefix lengthbits of the filter’s
field, where the prefix length is also specified in the filter. In a range match,
the value of field in the packet header must fall in the range specified in the
filter. Each filter has associated action that is taken when the packet matches
it. Consider an example of a 5-tuple firewall filter (SA, DA, PID, SP, DP) =
(1110�; 101�; TCP, [1110 : : : 6000]; [2000 � � � 4000]) with associated action Al-
low the packet. A packet (1110 : : : ; 10111 � � �, TCP; 2000; 3000) matches this
filter and will be allowed to pass through the router but (1110 : : : ; 10111 : : : ;
TCP, 1009; 3000) does not match the filter and hence will be dropped, unless it
matches another filter.

Our algorithm allows for matching against a database of prefix pairs and
range pairs, respectively. It can be augmented in a straightforward way to also

match against a small number of fields with wildcard matches and a limited
number of ranges. Due to space limitations, in the remaining discussion, we
exclusively focus on 2D prefix based filters. We will first describe the basic
ideas in our algorithm, namely the geometric interpretation of filters and hier-
archical quadtree based representation of decomposed space.

Space Decomposition and Quadtrees

24

R1

R1 = (0011, 00*)

R2 = (100*, *)

R3 = (1101, 0*)

R4 = (101*, 00*)

R4

R3

R2

Figure 1Geometric interpretation of �lters: An example

The geometric interpretation of 2D filters forms the foundation of our scheme.
If W is maximum prefix length, a prefix filter can be viewed as a rectangle in
the 2W � 2W search space. For example, a filter F = (S�;D�), where S is
a i bit prefix and D is a j bit prefix, can be represented by a 2W�i � 2W�j

rectangle. Figure 1 illustrates this using an example of four filters R1, R2, R3,
R4 with a maximum prefix length W = 4. Here the filter R2 = (100�; �),
represents a rectangle of size 21 � 24 in the search space of size 24 � 24. An
incoming packet with a fully specified source and destination address, defines
a point in the space. In the rest of the paper, we will use the terms filter and
rectangle as well as point and packet interchangeably. Note that in a geometric
representation of a general filter database, rectangles (filters) can potentially
overlap and the point (packet) can thus belong to multiple rectangles (filters).

In the fields of image processing, computer graphics, and remote sens-
ing such 2-dimensional point and region data is commonly represented using
quadtrees. A quadtree is a representation of a recursive partitioning of an ad-
dress space where regions are split until there is a constant amount of infor-
mation to be stored in them. Several variants of the basic quadtree that differ

in the type of data they store and the semantics of tree construction and search
have been reported in literature [5]. A basic quadtree is a 4-way branching
tree that represents a recursive binary decomposition of space wherein at each
level we divide a square subspace into four equal size squares – the north-east
(NE), north-west (NW), south-east (SE), and south-west (SW) quadrants. Each
node v in the tree corresponds to a square in the decomposition and its four
children correspond to the four sub-squares obtained by dividing the square of
v. Figure 2 illustrates this decomposition scheme.

000

002

001

003

110

112

111

113

101100

102103

Third decomposition
NW NE

SW SE

0 1

32

First decomposition

SW SE

NW NE

00 01

0302

10 11

1312

30 31

3332

20 21

2322

Second decomposition
NW NE

SW SE

Search Space
X

Figure 2Recursive spatial decomposition

In our basic packet classification scheme, the decomposition is induced by
a set of filters. We continue to divide a square recursively using binary decom-
position until all packets mapped to that square are classified by the same filter
and no more decomposition is required. Since the corresponding quadtree rep-
resents search space, every fixed point in the space has fixed location in this
tree. Therefore, given a point’s coordinate, this data structure will help us
answer questions such as does it belong to a specific area in the space. Specif-
ically, starting at the root of the tree, we can use successive bits of the X and
Y co-ordinates of the point to make branching decisions at the nodes along
the search path terminating at a leaf node and use the information therein to
answer the query. The runtime and number of memory accesses for this search
are proportional to the height h of the quadtree.

However, this naive scheme has the memory explosion problem —N filters
in the worst case can lead to N2 space. In the next section we present a scheme
that requires O(N) space.

4. AREA-BASED QUAD TREES (AQT)

In this section, we will first describe the key insight that leads to the concept
of a crossing filter set(CFS) and then describe the quadtree data structure called
Area-based Quad Tree (AQT) based on this insight.

Crossing Filter Set (CFS)

2k

2k

S
D

F1 F2

Filter F1 = (Si, Dj), I > k, j < k
Filter F2 = (Si, Dj), i < k, j > k

6

F

Filter F = (Si, Dj),
 and i = k, j >k

5

F

F

Filter F = (Si, Dj),
 and i > k, j= k

4

F

Filter F = (Si, Dj),
 and i < k, j < k

2
Filter F = (Si, Dj),
 and i > k, j > k

3

F

Filter F and Square A
 are disjoint

1

Figure 3Filter overlaps

Our key insight is as follows (Refer Figure 3): consider a square A of size
2k � 2k in the quadtree subdivision, and a filter F = (S;D), where S is i bits
long, and D is j bits long. There are several ways in which A and F can be
inter-related: (a) If F and A are disjoint, then F is irrelevant to square A (case
1). (b) If the rectangle F completely contains A, then we don’t need to pass
F down to nodes that correspond to smaller squares. Of all the filters whose
rectangles completely contain A, it suffices to just keep track of the lowest cost
filter. This happens if both i and j are smaller than k (case 2). (c) If F lies
entirely inside A, then of course, we continue to subdivide A and pass F down.
This happens if both i and j are greater than k (case 3). (d) Last, the most inter-
esting case is when F falls in none of the cases considered so far. In this case,
F intersects square A, but neither contains the other completely. Because our
filters are prefix filters, and since each square in the quadtree decomposition
has size 2l � 2l for some l, it follows easily that the rectangle F can intersect
A in only one way — crossing A completely in one dimension. Figure 3 (4,
5, 6) shows various cases of overlaps to illustrate this point. Clearly, if i � k

and j � k, then F crosses A in the D dimension (case 4, 6 (F1)). Cases 5
and 6(F2) are complimentary cases in S dimension. In all these cases, we say
that Fi crossesA. We call the set of all filters that cross a given region A as
its Crossing Filter Set(CFS). We use this basic idea to construct a quadtree
representation of the search space, called Packet Classification using Recur-
sive Space-decomposition, (PACARS), as follows (Figure 4): Given a filter set
FD, start with the root of the tree that corresponds to the entire search space.

2 (SW)

3

0 (NW)
3 (SE)

30 3

3

0

0
3

30
3

V0

V1
V2

V3

CS(v0)
CS(v3)CS(v1)

1(NE)

CS(v2)

V4V2

V0 V1

Figure 4Basic PACARS Data Structure

Compute the CFS of the root and store it in a Crossing Filter Set Data Struc-
ture (CFSDS). Remove these filters from FD and recursively divide the search
space into four children v1; v2; v3; v4. Compute the set F (vi) of filters that are
completely contained in the space associated with vi and then repeat the pro-
cess of computing CFS at vi. Do this recursively at each vi and its children
until the node (region) under consideration has only one or zero filters left. The
method of space decomposition decides the height h of the quadtree and type
of the PACARS algorithm. Now, our basic algorithm in the form of pseudo-code
is as follows:

Algorithm 4.1 Constructing thePACARS quadtree

1 r = InitQuadTreeRoot()
2 A(r) = Square area (2W � 2W) associated with r
3 F(r) = FD; //The set of input filters
4 C(r) = Set of filters in F(r) that cross A(r)
5 BuildCFSDS(C(r); r)); //Build a crossing filter data structure on C(r)
6 F (r) = F (r)� C(r); //Remove C(r) filters from current set
7 v = r;
8 Divide A(v) into four children sub-squares: A(v1); A(v2); A(v3); A(v4);
9 F (vi) = Filters in F(v) that lie entirely in A(vi)

10 for i = 1 to 4 do
11 BuildCFSDS(C(vi); vi));
12 F (vi) = F (vi)� C(vi);
13 if (F (vi) == �)
14 then continue ; // F(vi) is empty, do nothing
15 else //F(vi) has > 1 filter, recursively compute decomposition for vi
16 Recurse from 8
17 fi
18 od

The main novel idea here is the use of crossing filter sets. This idea ensures
that the memory requirement is O(N), because each filter F is stored exactly
once, at the highest node for which F is a crossing filter. Now, we will describe
the crossing filter data structure (CFSDS), and how the query algorithm works.

R1 R4R2 R3

R5

R6

X projection
Y projection

Figure 5Crossing �lter lookup

Consider what a CFS set C(v) must look like (Figure 5). The filters of C(v)
can be divided into two groups, CX(v) and CY(v). The former is the set of
filters that cross the square A(v) perpendicular to the X axis; and the set Y(v)
is the set of filters that cross A(v) perpendicular to the Y axis. In our example,
R5; R6 belong to CY(v), whereas R1, R2, R3, R4 belong to CX(v). We can
exploit this special structure of the CFS to efficiently find the filter match at
each node. Observe that for each CFS, we can project the component filters
along X and Y axis, and since, the filters are specified using prefixes, these
projections are also prefixes. This therefore reduces the problem of filter match
to problem of finding the best matching prefix (BMP) along X and Y axis and
selecting the one corresponding to the high priority (lowest cost) filter. The
problem of finding best-matching-prefix has been widely researched. We look
at three possible ways to solve this problem at each CFS.

Store the prefixes in a binary trie: This approach reported in [7] can find a
BMP in O(W) time with very small constant, where W is the maximum
prefix length.

Binary search based on prefix length: In this approach reported in [10], a
modified binary search is performed among prefixes sorted using the
length of the prefixes. This scheme finds a BMP in O(logW) time.

Binary search on prefix endpoints: Note that each prefix X� covers a range
of numbers [(X0 � � � 0) : : : (X1 � � � 1)]. Therefore, we can store m pre-
fixes as 2m numbers or keys. With each key we store, two prefix ids

— equaland less-than, which are used to decide the matching prefix if
the point/packet under search is equal to or less-than than the key un-
der consideration. This formulation reduces the BMP problem to finding
the successor element which is the smallest entry greater than the search
value. If the key found exactly matches the key under consideration,
the prefix ID stored in the equal field defines the most-specific or the
best matching prefix. On the other hand, if the successor key is greater
than the key under consideration, the less-thanfield defines the match-
ing prefix ID. We can use simple binary search to obtain the matching or
successor key and thus, solve the BMP problem in O(logN).

Now that we have all the parts, we summarize the search procedure: Given
an incoming packet P = (S;D), we form a location code Lp by interleaving
S and D bit strings. The search begins at the root of the quadtree. We initial-
ize a variable – match to remember the least-cost filter along the search path.
Starting at the most significant bit (MSB), we use the successive 2-bit values
of Lp to make the branching decisions at the nodes that the search visits. At
each node, the we search the CFS structure for the best matching (least-cost
or highest priority) filter bestf at that node. If the filter matches ‘better’ than
the filter recorded in match, we replace value of match with bestf and con-
tinue. If we exhaust the bits or reach a quadtree leaf node, indicating end of the
search path, the search is complete and match represents the filter match. This
suggests that in this naı̈ve formulation we can solve filter matching problem in
O(h logW) or O(h logN).

NW NE

SW SE

R1 R4R2 R3

R5

R6

R7

R8

R9R10

R7

R11
R12

R13

2 (SW)

3

{R1, R2 R3 R4, R10}

0 (NW)
3 (SE)

{R6 R5}

{R9}

0

{R7}

30

{R8}

{R12}

33
{R13}

3

0

{R11}

3

3

Figure 6Area-based quadtree (AQT)

In the following, we will combine these ideas, namely binary space decom-
position and crossing filter sets (CFS), with a simple way to form CFS sets and
formulate our complete scheme called Area-based Quad Tree (AQT). Specifi-
cally, the root node of an AQT has an area of 2B � 2B associated with it, where

as each of its 4 children has squares of area 2B�1�2B�1 associated with them.
In general, a node at level i has a square with an area of 2B�i�2B�i associated
with it (the root node is at level 0). We store a rectangle R at a quadtree node, if
the square associated with the node is the smallestsquare that fully contains R.
We can see that every filter passed down to the node at level i has at least one
prefix of length i bits. This observation leads to the following rule for placing
filters in quadtree nodes: A rectangle R represented as (Xw1

�; Yw2
�), where

w1 is the length of the X prefix and w2 is the length of the Y prefix, should
be placed at a node at level i = min(w1; w2). The square SQ = (Xi�; Yi�)
associated with this node, where Xi (Yi) is a prefix of Xw1

(Yw2
), represents

the smallestsquare that fully contains the rectangle R. If W is the maximum
prefix length, we can see that the worst-case height of the area-based quadtree
is W . Since, every filter is stored at only one node, the space complexity of
this quadtree is O(N).

Figure 6 illustrates an example of an AQT with 13 rectangles constructed
using this rule. In this figure, rectangles in the form of vertical strips R1, R2,
R3, R4, and horizontal strips R10 are fully contained in the square of size
2B � 2B and are therefore listed at the root of the quadtree. Similarly, south-
west quadrant of size 2B�1 � 2B�1 contains rectangles R5; R6 and hence, the
two are listed at the node reached by bit string 10(2).

Optimizing the Average Case Search Time

Several optimizations are possible to improve the average case performance
of the naı̈ve search procedure. First optimization that relies on pre-computation
is based on following two simple observations: (1) Note that if a filter with
small area is fully containedin another larger filter, the node at which the
smaller filter is stored will always be at a lower level than the the node at which
the larger filter is stored. (2) Also, if two filters have partial intersectionover-
lap, they are stored either at the same node or different nodes. We use these
observations to pre-computea variable MaxPriID at each node, which records
the ID of the highest priority filter among all filters found in a subtree rooted
at the node. When the search visits a node, before searching its filter list, we
first check if the priority of the filter currently matched by the partial search is
greater than MaxPriID. If it is, then we conclude that no higher priority filters
exist in the subtree rooted at the node that can match the packet under consid-
eration. So we abort the search and report match as the best filter match, else
we continue the search along the path to a leaf node. Clearly, if this compar-
ison fails at each node, the search ends up visiting every node along the path
to the leaf node. Therefore, this optimization does not improve the worst case

performance of our basic search.
However, it is possible that quadtree nodes will be unevenly populated with

filter prefixes i.e. some of the nodes in the quadtree will be empty and constitute
only branching points in the tree, whereas others will contain a large number
of prefixes. In fact study of real routing tables has revealed that prefix lengths
are not uniformly distributed but have peaks at lengths 8, 16, and 24 which
correspond to prefix lengths of the original Class A, B, and C networks [10].
This suggests that we can use k = 8 or more bits instead of just two bits to make
branching decision at each node. This can reduce the worst case complexity
dramatically to O((2W=k) logN) at the cost of increasing space requirement
by 2k . However, it is still not comparable to the search time of the state-of-the-
art search algorithms such as [8, 9].

However, the AQT can take advantage of a well known technique called
Fractional Cascading[2] to reduce the O(W logN) worst case search com-
plexity to O(W+logN), comparable to other algorithms. Also, since logN �
W , the worst case complexity is bounded by O(2W). By combining k-bit trie
and fractional cascading, we can reduce the worst case complexity further to
O(W=k + W). The details of application of fractional cascading to AQT are
not presented here due to space limitations and can be found in [1].

5. EFFICIENT FILTER INSERTION AND
DELETIONS

In this section, we discuss insertion, deletions or changes to a filter database
represented using AQT quadtree. We will first present an overview of changes
to AQT datastructure that are necessary to effect a filter insertion or deletion
and then present our schemes to reduce the overheads in implementing these
changes.

Overview of Implications of Insert/Delete

The insertion of a new filter (X�; Y �) to a filter database represented by a
AQT requires following set of operations:

1. Find a quadtree node to which the filter belongs: We first use the filter
placement rule to find in O(W) time the smallest square that will fully
contain this rectangle. This in turn defines the node in the quadtree to
which this the new filter belongs to. If the node does not exist, a new
quadtree node is initialized and inserted.

2. Insert the prefixes in the projection lists: The endpoints of the X and
Y prefixes of this filter are inserted to the list of prefix keys at the node
using ordinary binary search procedure.

3. Update equal and less-than fields of keys: The insertion of a new prefix
into the X and Y prefix lists at the node can alter the equaland less-than
fields of each key in the prefix endpoint list at the node. So these fields
must be modified consistent to the new prefix overlaps. This problem is
same as inserting a new prefix to a prefix database [10].

4. Update the fractional cascading structure: The addition of new keys
to the prefix endpoint lists alters the augmented lists at the node and
possibly changes the keys that need to be passed to the parents.

Clearly, Step 1 in the procedure above can be accomplished in O(W) time
whereas Step 2 takes at the most log n time if the number of keys in the aug-
mented list is n (n is bounded by N and logN is bounded by W). In the third
step, in the worst case we may have to modify every existing key record and
thus, may require O(N) time. Note that in the last step, passing new keys to
parent lists can alter the Successor-in -original-listinformation for potentially
all keys in the list and thus, in the worst case can take O(N) time. Therefore,
the worst case complexity of inserts in the naı̈ve implementation is O(N).

When a filter is deleted, we follow the complement of the 4-step process de-
scribed above. In the following we will discuss how we can reduce complexity
of steps 3 and 4 above using the prefix partitioningframework.

Prefix Partitions

The scheme introduced below, Recursive Prefix Partitioning, reduces the
cost of prefix updates significantly at a modest cost being paid in search time.
Additionally, it offers a tunable tradeoff between the penalty incurred for up-
dates and searches, which makes it very convenient for a wide range of appli-
cations.

Basic Partitioning

The idea of prefix partitioning is to group N prefixes in a shallow tree of
height � instead of a general binary tree of height log(N). To understand the
concept and implications of partitioning, we start with � = 1 ie a single layer
of partitions. We will use a simple example illustrated in Figure 7 (a): Assume
an address space of 4 bits with addresses ranging from 0 to 15. This space

also contains nine prefixes, labeled a1 to c3. For the fractional cascading to
work, each left endpoint of a range contains the information what is covered
by prefixes in higher layers. This is referred to as the less-than pointer and is
the data that requires update whenever the closest covering prefix is changed.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a1 a2

a3

b1

b3b2

c1

c2

c3

Prefix
Length

Range covered

4

3

2

1

0
new

a b c

(a) Simple partitioning example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a1 a2

a3

b1 b3

b2

c1

c2

c3

Prefix
Length

Range covered

4

3

2

1

0

new

a b c

(b) Partitions with overlaps

Figure 7 Pre�x partitioning explained

Assume the prefix designated new is inserted. Traditional approaches
would require the insert procedure to walk through all the prefixes and correct
their less-than pointer, taking up to N steps. The Prefix Partitioningscheme
groups these prefixes together. Assume we had grouped prefixes a1 to a3 in
group a, prefixes b1 to b3 in b, and c1 to c3 in c. Note that the prefixes in
the group are disjoint and hence, we can store a single overlapping prefix or
less-than pointer information for all of them instead of each of them. Thus, in
this example, we would remember only three such entries — one per group or
partition. This improves the update time from updating each entry to just up-
dating the information common to the group. In our example above (Figure 7
(a)), when adding the new prefix, we see that it entirely covers the partitions a,
b and c. Thus, our basic scheme works well as long as the partition boundaries
can be chosen so that no prefix overlaps them and the new prefix covers entire
groups.

Consider one more example in Figure 7 (b), where partition A contains pre-
fixes a1; a2; a3, partition B contains prefixes b1; b2; b3 and partition C contains
prefixes c1; c2; c3. Clearly, the partition boundaries now overlap. Although in
this example it is possible to find partitioning without overlaps, in a general
case prefixes that cover a large part of the address space would severely limit
the ability to find enough partitions. In other words, in a general case, the
boundaries between the splits are no longer well-defined; there are overlaps.
The key insight that solves this problem is as follow: Instead of introducing a
special case for these overlaps, we observe that only the less-than field of the

key inserted for the left prefix endpoint contains information about the enclos-
ing region. This starting address of the range covered by the prefix is thus the
only relevant part. Therefore, it is not necessary to keep information about the
covered range and the information about the starting point is sufficient. Since
we only deal with individual addresses now, there is no need to treat overlaps
and partitions can split the database at any arbitrary point. For ease of explana-
tion, we nevertheless define a range for the partition, defined by the minimum
and maximum starting address of the covered prefixes.

Continuing our example above (Figure 7 (b)), when adding the new prefix,
we see that it entirely covers the partitions a, b and partially covers c. For all
the fully covered partitions, we update the partitions’ Best Match. Only for the
partially covered partitions, we need to process their individual elements. The
changes for the less-than pointers are outlined in bold in the Table 1. The real
value of the less-than pointer is the entry’s value, if it is set, or the partition’s
value otherwise. If neither the entry nor the entry’s containing partition contain
any information, as is the case for c3, the packet does not match a prefix (filter)
at this level.

Table 1 Updating Less-Than Pointers

Entry
/Group

Old< New<

a1 — —
a2 a1 a1
a3 a2 a2
a — new

Entry
/Group

Old< New<

b1 a3 a3
b2 b1 b1
b3 b2 b2
b — new

Entry
/Group

Old< New<

c1 b2 b2
c2 c1 c1
c3 — —
c — —

Generalizing to p partitions of e entries each, we can see that any prefix will
cover at most p partitions, requiring at most p updates.Thanks to the starting-
address rule, all partitions are now disjoint. Therefore at most two partitions
can be partially covered, one at the start of the new prefix, one at the end. In
a simple-minded implementation, at most e entries need to be updated in each
of the split partitions. If more than e=2 entries require updating, instead of
updating the majority of entries in this partition, it is also possible to relabel
the container and update the minority to store the container’s original value.
This reduces the update to at most e=2 per partially covered prefix, resulting in
a worst-case total of p+ 2e=2 = p+ e updates.

As p � e was chosen to be N , minimizing p + e results in p = e =
p
N .

Thus, the optimal splitting solution is to split the database into
p
N sets of

p
N

entries each. This reduces update time from O(N) to O(
p
N) at the expense of

at most a single additional memory access during search. This memory access
is needed only if the entry does not store its own less-than value and we need
to revert to checking the container’s value.

Extensions of this basic to multiple layers of partitioning and the update
behavior are described in more detail in [10, 1].

6. PERFORMANCE ESTIMATION

Table 2 shows the worst-case update and search times we expect to see for
our algorithm when running on a typical processor used in workstations or
PCs. Our calculations assume that the processor accesses are from 10ns SRAMs
which are cheap and widely used in PCs. Besides that, we assume worst case
conditions: No data cache hits in the processor improve the performance, and
the data structure is laid out in the worst possible case with almost all the en-
tries in a single quadtree node at the bottom of the tree. All these worst-case
assumptions are very unlikely to hold. We therefore expect real-world average
performance to be about an order of magnitude better. Still, our numbers com-
pare well with even the search time results of the other known schemes. Please
note that the worst-case search time is independent of the actual database size.

Table 2 Worst-case search and update times for PACARS

Update (� �

p
N) � = 2 � = 3x � = 4

N = 10; 000 3 : : : 4�s 1:2 : : : 1:8�s :4 : : : :6�s
N = 100; 000 7 : : : 9�s 1:6 : : : 2:6�s :8 : : : 1:3�s
N = 1; 000; 000 20 : : : 30�s 4 : : : 6�s 1:5 : : : 2:4�s

Search (�W) :64�s 1:28�s 1:92�s

7. CONCLUSIONS

A number of results on multi-dimensional packet classification have appeared
in recent years. Some of them have been geared for hardware implementation,
some for software, all of them delivering fast classification, but none of them
has been designed with efficient updates in mind.

In this paper we presented space and time efficient algorithm for fast-packet
filtering that use space decompositionto efficiently represent the search space.
ForN two-dimensional filters specified using prefixes of up toW bits in length,
our Area-based Quadtrees(AQT) data structure requires O(N) space, O(�W)

search time, and O(� �

p
N) update complexity. Both the average and worst-

case search times and memory consumption are comparable or better than other
schemes known in the literature. Our algorithm clearly outperforms them when
it comes to updating the database by inserting or deleting entries. Note that
using well-known approaches such as lazy deletes, and multibit tries, perfor-
mance of our basic schemes can be improved even further.

We have also devised an alternate scheme, called Median-based Quad Tree
(MQT), that supports arbitrary filters and efficient search and update operations.
One of the applications of these algorithms we are focusing on is a dynamically
adapting firewall, which is currently being developed and requires sub-second
update latency.

REFERENCES

[1] Buddhikot, M., Suri, S., and Waldvogel, S., “Space Decomposition Techniques for Fast
Layer-4 Switching,” Bell Labs Technical Memorandum, BL011345-990726-06TM,
Lucent Bell Labs, Holmdel, NJ, 1999.

[2] Chazelle, B., and Guibas, J., L., “Fractional Cascading,” Digital Systems Research Cen-
ter Technical Report, Palo Alto, June 1986.

[3] Decasper, D., Dittia, Z., Parulkar, G., and Plattner, B., “Router Plugins: A Software Archi-
tecture for Next Generation Routers,” Proceedings of ACM SIGCOMM 98, Vancouver,
Canada, pp. 229-240, Sept. 1998.

[4] Kumar, V., P., Lakshman, T., V., and Stiliadis, D., “Beyond Best-Effort: Gigabit Routers
for Tomorrow’s Internet,” IEEE Communications Magazine, pp. 152-164, May 1998.

[5] Samet, H., “Design and Analysis of Spatial Data Structures,” Addison Wesley, ISBN 0-
201-50255-0, 1990.

[6] Srinivasan, V., Suri, S., and Varghese, G., “Tuple Search for Fast Layer-4 Packet Classifi-
cation,” To appear ACM Sigcomm'99, Boston, Sept. 99.

[7] Srinivasan, V., and Varghese, G., “Fast Address Lookups Using Controlled Prefix Expan-
sion,” ACM Transactions on Computer Systems (TOCS), pp. 1-40, Feb. 1999.

[8] Srinivasan, V., Varghese, G., Suri, S., and Waldvogel, M., “Fast and Scalable Layer Four
Switching,” Proceedings of SIGCOMM '98, Vancouver, Canada, pp. 191-202, Sept.
1998.

[9] Stiliadis, D., and Lakshman, T., V., “Multidimensional Range Matching for Fast Packet
Classification,” Proceedings of SIGCOMM '98, Vancouver, Canada, pp. 203-214, Sept.
1998.

[10] Waldvogel, M., “Fast Prefix Matching: Algorithms, Analysis, and Applications,” Ph.D.
Dissertation, Dept. of Electrical Engg., ETH, Zürich, July 1999.

