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Abstract

Real-time graphics hardware is becoming programmable, but this
programmable hardware is complex and difficult to use given cur-
rent APIs. Higher-level abstractions would both increase program-
mer productivity and make programs more portable. However, it is
challenging to raise the abstraction level while still providing high
performance. We have developed a real-time procedural shading
language system designed to achieve this goal.

Our system is organized around multiple computation frequen-
cies. For example, computations may be associated with vertices
or with fragments/pixels. Our system’s shading language provides
a unified interface that allows a single procedure to include opera-
tions from more than one computation frequency.

Internally, our system virtualizes limited hardware resources to
allow for arbitrarily-complex computations. We map operations
to graphics hardware if possible, or to the host CPU as a last
resort. This mapping is performed by compiler back-end modules
associated with each computation frequency. Our system can
map vertex operations to either programmable vertex hardware
or to the host CPU, and can map fragment operations to either
programmable fragment hardware or to multipass OpenGL. By
carefully designing all the components of the system, we are able
to generate highly-optimized code. We demonstrate our system
running in real-time on a variety of hardware.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration; I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—Color, shading, shadowing, and texture; D.3.2 [Pro-
gramming Languages]: Language Classifications—Specialized
application languages; I.3.1 [Computer Graphics]: Hardware
Architectures—Graphics processors

Keywords: graphics hardware, graphics systems, shading lan-
guages, rendering

1 Introduction

Mainstream graphics hardware is rapidly moving toward pro-
grammability. An important first step was the addition of new
features such as multitexturing, configurable texture blending units,
and per-fragment dot products. The latest generation of hardware,
as described in [10, 14, 16], directly supports programmable vertex
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and fragment computations. This hardware enables a large number
of interesting new special effects for games and other interactive
applications.

While the latest hardware features are very flexible, the same
hardware features are difficult to use. This is true for two reasons.
First, current hardware interfaces are low-level. Programmability is
exposed through the graphics library, either through an assembly-
language-like interface to functional units or through an explicit
pipeline-configuration model. Second, since hardware and exten-
sions vary across vendors and product generations, writing efficient
portable software is challenging, and often requires customizing
applications to each supported platform. These two problems
decrease programmer productivity and make it harder for vendors
to convince users to adopt new features.

To fix the ease-of-use problem, new programming models
and higher-level hardware abstractions are needed. Higher-level
abstractions can provide standard programmable interfaces that
both simplify underlying complexities and hide differences across
implementations. Shading languages have evolved to solve the
abstraction problem for software rendering systems, and we believe
that shading languages are appropriate for abstracting graphics
hardware.

In this paper, we describe our procedural shading system. We
make three contributions. First, we develop and describe a new
programmable pipeline abstraction that combines and extends el-
ements from previous work. Second, we describe a new shading
language with features appropriate to our abstraction and to current
and future hardware. Third, we describe a retargetable compiler
back end that maps our abstraction to a variety of different graphics
accelerators, including those with vertex and fragment programma-
bility, using a set of interchangeable compiler modules.

The resulting system makes hardware much easier to program
by efficiently mapping a shading language to the wide variety of
hardware available today. We show vertex and fragment back
ends that target programmable graphics hardware efficiently, and
we demonstrate several complex scenes with programmed shaders
running in real-time on PC graphics hardware.

2 Background

Shading languages developed from the work of Cook, who de-
scribed how shade trees could provide a flexible, programmable
framework for shading computations [3], and the work of Perlin,
who described a how a language could be used for processing pixel
streams [20]. The most common shading language in use today
is the RenderMan Shading Language [1, 5, 23], which provides for
movie production-quality procedural shading effects for software
batch-rendering systems.

More recently, several systems have demonstrated shading lan-
guages targeted to real-time rendering and graphics hardware.

Olano and Lastra [18] describe pfman, a RenderMan-like lan-
guage for the PixelFlow system [15] that is compiled to Pix-
elFlow’s SIMD processing arrays. While PixelFlow is well-suited
to programmable shading, for many reasons, today’s mainstream
hardware bears little resemblance to it.
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id Software’s Quake III Arena includes a pass-based scripting
language that allows multiple layers of textures and colors to be
animated and composited using basic hardware blending [7]. The
graphics engine maps passes in the language to actual hardware
passes, using multitexture to compress passes when possible. The
language also contains mechanisms for generating and manipulat-
ing texture coordinates.

Peercy et al. describe an approach to implementing shading
languages using multipass rendering [19]. They showed that the
RenderMan Shading Language could be compiled using multipass
rendering given OpenGL 1.2 with the imaging subset plus two
hardware extensions: support for extended range and precision
(e.g. their 16-bit floating-point representation) and dependent tex-
turing. For hardware without these extensions, they developed a
simpler language, called ISL, that exposes functionality available
in OpenGL 1.2 and provides a convenient way to describe basic
computations involving colors, textures, and the output of the
configurable OpenGL vertex-based lighting model.

The key insight behind the Peercy et al. approach is to abstract
the graphics pipeline as a SIMD processor. Each configuration of
the OpenGL graphics pipeline corresponds to a different SIMD
instruction. One pass then represents the execution of one such
instruction. The SIMD nature of the processor arises because each
rendering pass performs the same operation across many fragments.
The SIMD processor model provides a framework for abstracting
multipass rendering, which in turn allows the model to express
arbitrarily-complex fragment computations.

Recent hardware exposes a different kind of hardware ab-
straction, namely the programmable vertex/fragment-processing
model of DirectX 8 [14] and NVIDIA’s NV vertex program and
NV register combiner [16] OpenGL extensions. This model re-
places portions of the traditional non-programmable rendering
pipeline with programmable register-machine-based processing
units. Rather than exposing programmability as multiple rendering
passes, this hardware model places programmability entirely within
a single rendering pass. As a result, the programmable model treats
a pass as a series of many simple instructions, unlike the SIMD
processor model which treats a pass as a single complex instruction.
For vertex processing, DirectX 8 and NVIDIA both provide a set
of floating-point operations sufficient for implementing standard
transform and lighting calculations. For fragment processing,
DirectX 8 supports a set of standard texture combining operations
as instructions, with a limit of eight instructions per pass, while
NVIDIA’s register combiners expose similar functionality, except
the combining operations are more powerful and more complex.

There are two major differences between the programmable
vertex/fragment-processing model and the fragment-centric SIMD
processor model.

The first difference is availability of programmable vertex pro-
cessing. In the near-term, support for programmable vertex pro-
cessing provides two advantages:
� Vertex-processing hardware provides many useful operations

not present in current fragment-processing hardware, such as
division and square root.

� Vertex-processing hardware provides floating-point arith-
metic, while current fragment-processing hardware is lim-
ited to 8- or 9-bit signed arithmetic for most operations.
Low-precision fixed-point arithmetic is insufficient for many
computations and motivated Peercy’s proposal for extended-
precision support [19].

While we expect fragment hardware to eventually catch up to vertex
hardware, vertex programmability allows users to implement many
computations not possible using today’s fragment hardware.

More fundamentally though,
� Vertex programmability provides a natural and efficient way

to perform position, texture coordinate, and lighting compu-

tations because these quantities often vary slowly across a
surface. Furthermore, the ability to perform computations for
each vertex maps well to programmers’ conceptual model of
the graphics pipeline.

A second difference between the programmable processing
model and the SIMD processor model lies in how well the two
models abstract hardware that can perform many operations per
pass:

� In high-performance graphics systems, bandwidth between
the graphics chip and framebuffer is scarce, as is bandwidth
between the graphics chip and host. Each rendering pass con-
sumes bandwidth, so it is important to minimize the number
of rendering passes. Moreover, because of VLSI technology
trends, the ratio of graphics chip compute performance to
external memory bandwidth will continue to increase. This
trend favors designs where more operations are done per pass.

� As more operations are performed in each pass, the SIMD
processor model of a pass as a single complex instruction
breaks down. Although instructions could be designed to
contain more operations, there is little agreement on which
combinations of operations are needed. On the other hand,
a programmable processing model that provides for many
simpler instructions in a single pass naturally and effectively
abstracts increasing numbers of operations per pass.

We believe these two differences make the programmable pro-
cessing model a better abstraction for future hardware. Therefore,
we base our system on that model. However, we extend the
approach taken by Microsoft and NVIDIA in three important ways:

� We generalize vertex/fragment processing using the concept
of multiple computation frequencies to allow for operations
at rates other than simply per-vertex or per-fragment.

� We provide a single unified framework, called the pro-
grammable pipeline, that combines all computation frequen-
cies into a single abstraction to simplify the process of speci-
fying shading computations.

� We virtualize the existing hardware-centric pipelines to re-
move resource constraints. Programmers need not be aware
of physical resource limits such as the number of internal
registers and the number of instructions. One method of
virtualization is to apply multipass methods similar to those
used by the SIMD processor model.

McCool [13] recently proposed the SMASH API. SMASH ad-
vocates programming hardware using a stack-machine-based API
for specifying operations, and shows examples of several different
metaprogramming techniques for exposing this functionality to
application developers. In contrast, we focus on the shading
language as the primary interface. Despite this difference, the
underlying capabilities exposed by SMASH are similar to those
of our programmable pipeline. Another difference between the
SMASH processing model and ours is that SMASH assumes ver-
tex programmability is post-transform (to alleviate the need for
common-case transform code) and post-backface-cull (to eliminate
vertex computations for culled vertices). These assumptions imply
that position computations are not programmable. Our system
allows position computations to be programmed, although our
language does not yet provide direct access to this feature. A
final difference is we do not focus on the details of the hardware
interface. Instead, we examine specific language features and
associated compiler analysis and optimization techniques, and we
develop a variety of retargetable compiler back ends that target a
number of different platforms.

Olano [17] describes a programmable pipeline for graphics
hardware. His programmable pipeline contains programmable
stages corresponding to transformation, rasterization, interpolation,
shading, lighting, etc. Programmability is implemented using
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Figure 1: System block diagram. In our system, surface and light shaders are
compiled into three-part pipeline programs split by computation frequency. For each
computation frequency, we apply a back-end module to generate shader object code
that is executed during rendering. We implement seven modules; most notably, we
implement a pair of modules to target vertex programs and register combiners.

PixelFlow’s SIMD processing arrays, and shading and lighting are
always computed per-fragment. Because his stages are organized
by function as opposed to computation frequency, his notion of a
programmable pipeline is different from ours.

3 System Overview

A block diagram of our system is shown in Figure 1. The principal
components of our system are:
� Shading language and compiler front end. Shaders in our

shading language are used to describe shading computations.
A compiler front end maps the shading language to an inter-
mediate pipeline program representation.

� Programmable pipeline abstraction. An intermediate ab-
straction layer provides a generic interface to hardware pro-
grammability to hide hardware details and to simplify com-
piler front ends. It consists of a computational model (the
programmable pipeline) and a means for specifying computa-
tions (pipeline programs). Pipeline programs are divided into
pieces by computation frequency.

� Retargetable compiler back end. A modular, retargetable
compiler back end maps pipeline programs to shader object
code. There are back-end modules for different stages and for
different hardware.

� Shader object code. Compiled shaders are used to configure
hardware during rendering. Shader object code separates the
compile-time and render-time halves of our system.

� Shader execution engine. A shader execution engine con-
trols the rendering of geometric primitives using the shader
object code. The application may attach shader parameters
to groups of primitives and to vertices. These parameters are
processed to compute surface positions and surface colors.

� Graphics hardware. Shader execution modules rely on
graphics hardware for most shading computations, although
the host CPU may be used for some computations.
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Figure 2: Programmable pipeline abstraction. The programmable pipeline is an
abstraction layer consisting of three programmable stages, one for each of three
computation frequencies. Stages execute a pipeline program (not shown) to process
geometric primitives with associated shader parameters. The results of each stage are
passed to subsequent stages. Between programmable stages are fixed-function stages
that convert values between computation frequencies.

constant primitive group vertex fragment
Figure 3: Computation frequencies. Our system supports four computation frequen-
cies. In the illustrations above, individual elements at each computation frequency are
depicted by color.

Our system runs on top of OpenGL. Like OpenGL, our system
renders objects sequentially. After specifying and compiling a
number of shaders, the user repeatedly alternates between binding
shaders and specifying objects for rendering. Objects are drawn
immediately after they are specified.

Our prototype provides both immediate-mode and vertex array
interfaces. These interfaces rely on buffered data to automatically
handle multiple rendering passes. While geometry specified using
the vertex array interface is inherently buffered, geometry specified
using the immediate-mode interface is buffered into vertex arrays
on the fly. Vertex arrays are then passed to the shader execution
engine.

4 Programmable Pipeline Abstraction

The programmable pipeline abstraction is the central element of our
shading system. It provides an abstraction that simplifies mapping
our shading language to hardware. It provides a computation model
that describes what and how different values are computed. It also
defines how computations are expressed and which operators may
be used to perform computations. In this section, we describe the
key elements of the programmable pipeline abstraction.

4.1 Pipeline operation

Our programmable pipeline abstraction is illustrated in Figure 2.
The programmable pipeline renders objects by computing positions
and colors. Computed positions are used to control rasterization
and depth buffering, while computed colors are blended into the
framebuffer. The abstraction contains two kinds of stages: pro-
grammable stages and fixed-function stages.

Programmable stages are associated with different computation
frequencies. We support four computation frequencies: constant,
per-primitive-group, per-vertex, and per-fragment. We illustrate
these computation frequencies in Figure 3. Constant expressions
are evaluated once at compile time and are not evaluated by
the programmable pipeline. Primitive groups are defined as the
geometry within an OpenGL Begin/End pair; vertices are defined
by the OpenGL Vertex command; and fragments are defined by
the screen-space sampling grid. (In this context, a primitive is a
single point, line, or polygon; in general, a Begin/End pair can



specify a group of such primitives.) On today’s hardware, multiple
computation frequencies enable a tradeoff between complex high-
precision floating-point computations at a coarse level of detail and
many simple low-precision fixed-point computations at a fine level
of detail.

Programmable stages are ordered by frequency, least-frequent
first. Each stage processes a stream of independent objects (e.g.
individual vertices or fragments). Stages compute an output stream
given an input stream composed of application-specified parame-
ters and outputs from previous pipeline stages.

Between consecutive programmable stages are fixed-function
stages that implement the parts of the graphics pipeline that cannot
be programmed. In particular, between the programmable vertex
and fragment stages are stages that assemble vertices into primitives
and rasterize primitives to fragments. The rasterization stage also
interpolates vertex values such as texture coordinates and colors to
obtain fragment values.

Programmable stages are driven by a pipeline program consist-
ing of operators arranged into directed acyclic graphs (DAGs). The
DAGs are partitioned by pipeline stage, and specify how to compute
stage outputs from stage inputs.

Pipeline programs virtualize the hardware. There are no program
size limits and no limits to the number of inputs, outputs, and
parameters allowed. Conceptually the programmable pipeline per-
forms all computations in a single pass. In practice, however, large
computations may be split into multiple passes. Our abstraction
hides this splitting process.

4.2 Data types

Stages in our system operate on ten data types. There are scalars,
3-vectors, and 4-vectors, each of which may be composed of
either floats or [0,1]-clamped floats. The remaining four types are
3�3 floating-point matrices, 4�4 floating-point matrices, booleans,
and a special texture reference type that allows access to textures
through the OpenGL texture naming mechanism.

All of our data types are abstract types: each type has a
well-defined semantics but not necessarily a well-defined storage
representation. For example, the floating-point type need not
be represented as IEEE floating-point numbers. This allows us
to easily map types to a wide variety of hardware, and follows
principles established in the OpenGL specification [21].

The [0,1]-clamped float type is included to represent fixed point
numbers, particularly fragment color values, as well as clamped
floating-point values at vertices (normally vertex colors). Recent
fragment-processing hardware supports larger fixed-point ranges
(especially [–1,1]), but for reasons discussed in Section 6.5, we do
not provide a [–1,1]-clamped data type at this time.

Although current fragment hardware does not support pro-
grammable floating-point computations, we provide a fragment
floating-point type abstraction. This allows users to easily write sur-
face shaders that can be used with either vertex or fragment lights.
We implement the fragment float type using the best-available
fragment data type. Since current fragment-processing hardware
is implemented using fixed-point and therefore has limited range,
overflows and clamping are possible. We expect this problem
to go away in the future once fragment hardware supports a true
floating-point type.

Our use of a clamped float type differs slightly from the works
of Olano and McCool. Olano’s language allows for well-defined
fixed-point types specified with a given size and exponent (e.g.
fixed<16,16>) [17]. This capability matches PixelFlow hardware,
but not the graphics hardware we target. McCool provides a hinting
mechanism for storage representations [13].

4.3 Operators

The operators we implement were chosen to support standard
transform, lighting, and texturing operations. We purposely omit
operations that cannot be implemented today.

We include support for: basic arithmetic; scalar, vector, and
matrix manipulation; type casting; exponentiation, square roots, dot
and cross products, trigonometric functions, and vector normaliza-
tion; transformation matrix generation; comparisons; selection of
one of two values based on third boolean value; min, max, and
clamp operators; access to parameters and constants.

Several operations support texture lookups, including support for
2D textures, 3D textures, and cubical environment maps. All of the
texture operations use textures specified outside our shading system
through the OpenGL texture naming mechanism.

Certain complex operations can be difficult or impossible to
express efficiently across a variety of hardware in terms of the other
operators that are available. To make these operations efficient,
we support a few high-level operators called canned functions.
In particular, we include two canned functions (bumpspec and
bumpdiff) to make bump mapping more efficient for one of our
fragment back ends. These functions implement bump mapping as
described by Kilgard [8].

Non-orthogonal operators. Ideally, every hardware platform
would support every operator at every computation frequency; how-
ever, current hardware platforms are far from ideal. There are two
kinds of operator non-orthogonalities: non-orthogonalities across
computation frequencies and non-orthogonalities across hardware
platforms. Examples of operators that are not orthogonal across
computation frequencies include: divide and square root, which
are not supported per-fragment; matrix generation functions, which
are too expensive to implement more frequently than per-primitive-
group; and texturing, which is fragment-only. Texturing is also
limited because per-fragment texture coordinate computations are
not fully supported. Examples of operators that are not orthogonal
across platforms include cubemaps, bumpmaps, and 3D textures.

To guarantee that operators can be successfully mapped to hard-
ware, we restrict the available set of operators to those the targeted
hardware can actually implement. In recognition of the variety of
hardware currently available and in anticipation of improved future
hardware, we implemented a table-driven restriction mechanism.
By storing restrictions in tables, we are able to specialize restric-
tions to the peculiarities of each hardware platform. The use of
tables also simplifies the process of extending our system with
new operators as they become available. The tables themselves
indicate which operators are available and which computation
frequencies they are available at. The tables also associate a range
of computation frequencies with the inputs to each operator to allow
us to e.g. restrict texture coordinates to vertex values on hardware
that does not support dependent texturing.

Our shading language compiler can determine at run-time
which operators are available. It uses this information to provide
conditional-compilation directives to allow multiple code versions
to be written.

Unsupported operations. We do not support meta-operations
representing control structures, such as labels and branches. Al-
though these kinds of operations are useful, they are not supported
by current hardware pipelines. Also, aside from read-only texturing
operations, we do not support generic random-access memory
operations, such as pointer dereferencing. The reason for these
restrictions is based on hardware design principles. Allowing
branches and random memory accesses would significantly slow
down highly pipelined, data-parallel graphics hardware.

The lack of label, branch, and random-access memory operations
helps to simplify the analysis of pipeline programs. From a
compilation standpoint, a pipeline program has one basic block and
no pointer aliasing.



#include “lightmodels.h”
surface shader float4 bowling pin (texref base, texref bruns, texref circle,

texref coated, texref marks, float4 uv)
f

// Compute per-vertex texture coordinates
float4 uv wrap = fuv[0], 10 * Pobj[1], 0, 1 g;
float4 uv label = f10 * Pobj[0], 10 * Pobj[1], 0, 1g;
// Compute constant texture transformation matrices
matrix4 m base = invert(translate(0, -7.5, 0) * scale(0.667, 15, 1));
matrix4 m bruns = invert(translate(-2.6, -2.8, 0) * scale(5.2, 5.2, 1));
matrix4 m circle = invert(translate(-0.8, -1.15, 0) * scale(1.4, 1.4, 1));
matrix4 m coated = invert(translate(2.6, -2.8, 0) * scale(-5.2, 5.2, 1));
matrix4 m marks = invert(translate(2.0, 7.5, 0) * scale (4, -15, 1));
// Compute per-vertex mask value to isolate front half of pin
float front = select(Pobj[2] >= 0, 1, 0);
// Transform texture coordinates, perform texture lookups, and apply mask
float4 Base = texture(base, m base * uv wrap);
float4 Bruns = front * texture(bruns, m bruns * uv label);
float4 Circle = front * texture(circle, m circle * uv label);
float4 Coated = (1 - front) * texture(coated, m coated * uv label);
float4 Marks = texture(marks, m marks * uv wrap);
// Invoke lighting models from lightmodels.h
float4 Cd = lightmodel diffuse(f0.4, 0.4, 0.4, 1g, f0.5, 0.5, 0.5, 1g);
float4 Cs = lightmodel specular(f0.35, 0.35, 0.35, 1g, f0, 0, 0, 0g, 20);
// Composite textures, apply lighting, and return final color
return (Circle over (Bruns over (Coated over Base))) * Marks * Cd + Cs;

g

Figure 4: Example surface shader. This shader is adapted from the RenderMan
bowling pin shader [23]. Our version relies on texture maps in many places where the
original version used procedural texturing. The bowling pin shader computes texture
coordinates given uv (the 2D surface parameterization), and the built-in variable
Pobj (the object-space position). After being transformed by a set of transformation
matrices, the texture coordinates are used to index texture maps specified by texrefs,
which correspond to numeric OpenGL texture names. An alpha mask computed at
the vertices is used to isolate some of the textures to either the front or back half of
the bowling pin. Lighting is computed by two functions defined in an include file,
one of which is described further in Section 5.3. Finally, we compute the final color by
compositing the textures and applying the lighting. We rely on a feature in our language
(described in Section 5.4) that allows us to control the computation frequencies of
values and operations without specifying them explicitly. Note that this version of the
bowling shader omits bump mapping and is therefore different from the versions of the
shader used in the results section and video tape.

5 Shading Language

5.1 Language overview

The language we implemented is based to a loose degree on
RenderMan. Several differences are noteworthy.

First, we decided to omit features not currently supported by
mainstream graphics hardware. In particular, we omit support
for data-dependent loops and conditionals. Adding support for
this feature would require substantial changes to our language and
compiler. While we omit support for data-dependent loops and
conditionals, we designed our language and compiler to make sup-
port for new and less-restricted operators easy to add. Operations
such as vertex textures and dependent texture lookups are already
supported in our language; support for these operations has been
disabled pending the necessary hardware support.

Second, we omit a number of features we felt were not essential
to exploring the compilation and architectural issues we wanted
to research. Features in this second category include atmosphere,
imaging, and transformation shaders and a complete library of
built-in functions (we provide only basic built-in functions). Over
time we expect to enhance the language by adding some of these
features.

Third, we deviated from RenderMan’s syntax to reflect terms and
techniques used by real-time graphics APIs such as OpenGL and to
some extent Direct3D. Examples of syntactical changes that made
it easier to develop shaders in the OpenGL environment include:

(a) (b) (c) (d) (e) (f) (g)
Figure 5: Constructing the bowling pin. We show the seven compositing steps use to
compute the final color of the bowling pin shader in Figure 4. The images depict (a)
Base texture; (b) after applying Coated (back half of pin shown), (c) Bruns, (d) Circle,
and (e) Marks; (f) after multiplying by Cd; (g) after adding Cs. The images do not
correspond to rendering passes, since more than one of these steps may be performed
in a single pass.

� Types that reflect OpenGL vertex types, including RGBA
colors and positions encoded in 4-vectors. RenderMan has
only a single number representation, a float, but we introduced
clamped floats to allow for numbers to be represented using
fixed-point.

� Predefined vertex parameters that correspond to positions,
normals, and other standard OpenGL parameters, plus support
for tangent and binormal vectors. We also include a number of
primitive-group parameters for the modelview and projection
matrices and the light position and orientation.

� Textures denoted by texture references, or texrefs, rather
than by strings. Texture formats reflect formats available in
OpenGL, and these differ from the RenderMan formats.

To illustrate our shading language, we show an example surface
shader in Figure 4.

Three more differences are important. First, we paid particular
attention to the semantics of the language in order to support a high
degree of optimization. Second, light shaders, light variables, and
the combining of surfaces and lights are all handled differently from
RenderMan. Finally, we split RenderMan’s varying type into two
separate types: vertex and fragment. We discuss these differences
in the following sections.

5.2 Language analysis

An important property of our language that distinguishes it from
the previous work is that our language is easily analyzed and
optimized by a compiler. Analysis is important because it allows
us to infer several kinds of information that users would otherwise
have to specify explicitly. Optimization is particularly important in
a real-time context for making shaders run as fast as possible.

Four aspects of the language help make it easy to analyze and
optimize:

� Function inlining. We explicitly inline all functions and
delay the analysis and optimization of each inlined function
until after the function has been inlined. This allows the
compiler to specialize each function to its calling context.

� Combined compilation of surfaces and lights. We compile
surfaces and lights together, and we delay analysis and opti-
mization until after surfaces and lights have been combined.
This allows us to perform analysis and optimization across
surface and light shaders.

� No data-dependent loops and branches. The lack of support
for data-dependent loops and branches in hardware means
we do not support these features in our language. This
considerably simplifies the analyses we must perform.

� No random access to memory. The lack of hardware support
for random read/write access to memory likewise allows us to
eliminate that feature from our language. In particular, this



removes the possibility of pointer aliasing, again simplifying
the analyses we must perform.

Together, these properties of the language allow us to reduce
shading calculations to a single DAG representing a complete
pipeline program. Once in this format, analysis and optimization
are very straightforward.

5.3 Surface and light shaders

We support two shader types: surfaces and lights. Surface shaders
return a 4-component RGBA color to be composited with the
framebuffer, while light shaders return a 4-component RGBA light
color to be used by surface shaders.

Compared to RenderMan, we use a slightly different syntax
to combine lights with surfaces. We introduce a special linear
integrate operator, which evaluates a “per-light” expression once
for each light and sums the results. A simple integrate example:

// A lighting model for combined ambient and diffuse illumination
surface float4 lightmodel diffuse (float4 ka, float4 kd) f

perlight float NdotL = max(0, dot(N,L));
return ka * Ca + integrate(kd * NdotL * Cl);

g

Note the per-light variable NdotL in the example. Our system
defines three per-light values: the light color (Cl), the light vector
(L), and the half-angle vector (H). If a surface shader uses one of
these values, then dependent values must be computed once per-
light. Our compiler infers which expressions in a surface shader
are per-light by performing type analysis on expressions; however,
to make code more readable, we require variables that hold per-light
values to be declared with the perlight type modifier.

The integrate operator is converted into a sum at compile time.
The compiler expands integrated expressions by replicating them
for all the active lights, then summing the results. In the example
above, the special per-light global Cl is replaced by the corre-
sponding light shader’s return value. When we build the integrate
expression, we sort terms by computation frequency, grouping
lights that return vertex values together. This allows multiple
per-vertex light values to be added together in the vertex stage so
that only a single per-vertex value is interpolated and added to the
remaining light values in the fragment stage.

The integrate operator is linear in the sense that integrate(ka * a
+ kb * b) is equivalent to ka * integrate(a) + kb * integrate(b) if
neither ka nor kb is per-light. The linearity of the integrate operator
guarantees that certain optimizations can be made.

It is interesting to note that, for practical purposes, the pro-
grammable portions of the OpenGL and Direct3D APIs have
lost the notion of separate surfaces and lights even though their
non-programmable counterparts support the feature. Our shading
language returns this feature to users of programmable hardware.

5.4 Support for computation frequencies

In Section 4, we introduced the concept of multiple computation
frequencies. In our language, we represent multiple computa-
tion frequencies using four type modifiers: constant, primitive
group, vertex, and fragment. We originally considered using
RenderMan’s uniform and varying type system, but chose not to
once we realized that uniform and varying could not adequately
represent the four computation frequencies we had identified. We
introduce the new type modifier terminology to generalize the
concept inspired by RenderMan’s type system.

While our language contains type modifiers for computation
frequencies, the user may choose to specify values with or without
the modifiers. If a value is specified with a computation frequency,
then it will be forced to have the computation frequency that was
specified. If a value is specified without a computation frequency,

our compiler applies a set of rules to infer the appropriate computa-
tion frequency. These inference rules allow users to manage com-
putation frequencies without the hassle of explicit specification.

Initially, we considered designing our language to require ex-
plicit specification of all computation frequencies; however, we
soon realized this would be very inconvenient for the user. Aside
from being tedious, explicit specification of computation frequen-
cies makes it difficult to write a surface shader that efficiently
handles both vertex and fragment lights. With computation fre-
quencies explicitly specified, a surface shader written to accom-
modate fragment lights will not perform efficiently if only vertex
lights are used. The inference mechanism allows the user to
leave the computation frequencies of surface shader computations
unspecified so that those computations may be optimized in a way
that accounts for the computation frequencies of the active lights.
This in turn results in significant computational savings.

Two rules are used to infer computation frequencies. The first
deals with the default computation frequencies of shader parame-
ters, while the second deals with the propagation of computation
frequencies across operators. Given these two rules, the compiler
can always infer the computation frequency of a given value
or operator by propagating computation frequencies from shader
parameters forward.

All shader parameters have a default computation frequency.
The default computation frequency depends on the parameter’s type
and the class of the corresponding shader (surface or light). For
example, floating-point scalars and vectors default to vertex for
surface shaders and to primitive group for light shaders; matrices
default to primitive group for both kinds of shaders:

surface shader float4 surf1 (float f) f ... g // f is vertex
light shader float4 light1 (float f) f ... g // f is primitive group

Default computation frequencies may be overridden if the user
specifies the computation frequency of a parameter explicitly:

light shader float4 light2 (vertex float f) f ... g // f is vertex

The computation frequencies of computed values are determined
by applying a second rule that propagates computation frequencies
across operators. In general, the second rule attempts to minimize
total computation by performing computations at the least-frequent
computation frequency possible. Because it is impossible to de-
mote a value from a more-frequent computation frequency to a
less-frequent one, when combining values of different computation
frequencies, the result varies as often as the most-frequent input
operand. For example, adding a vertex value to a fragment value
results in a fragment value. The second rule also obeys a number of
additional computation frequency constraints for special operations
(such as texturing) to satisfy the limitations of those operations.

While the computation frequencies of computed values are
inferred using the rules just described, they may be controlled
by type-casting values to specific computation frequencies. For
example, if two vertex values N and L are to be used to compute
dot(N,L), the result of the dot product will normally be per-vertex.
However, a per-fragment dot product can be achieved by first
casting N or L (or both) to a fragment value, e.g.:

dot((fragment float3)N, (fragment float3)L) // dot is fragment

Note that the rules for inferring computation frequencies do
not provide compilers any flexibility with respect to selecting
computation frequencies. Users can always predict the computation
frequencies that will be inferred, and therefore users always have
full control over computation frequencies.

The process of propagating computation frequencies to operators
and values labels each operator with a computation frequency. Our
compiler uses this computation frequency information to assign
operations to particular stages of the programmable pipeline.



6 Retargetable Compiler Back End

In this section we describe our retargetable compiler back end,
which implements the programmable pipeline abstraction by map-
ping pipeline programs to shader object code. We designed our
back end with two goals in mind: to support a wide variety of
hardware and to support arbitrarily-complex computations.

To support a wide variety of hardware, we implement a modular
compiler. New hardware can be targeted simply by adding new
modules. We provide for separate modules for each computation
frequency to allow modules to be interchanged and to allow for
sharing of certain common modules.

Each module implements a single stage of the programmable
pipeline and has two parts: a compile-time part and a render-time
part. The compile-time part is necessary to target computations
to specific hardware, while the render-time part is necessary to
configure and utilize that hardware during rendering.

In all, we implement seven back-end modules. We imple-
ment two primitive group back ends (cc-pg and x86-pg), both of
which target host processors. We also implement three vertex
back ends, two for the host processor (cc-v and x86-v) and one
for programmable vertex-processing hardware (vprog). We also
implement two fragment back ends, one for the standard OpenGL
pipeline plus a number of optional extensions (lburg), and one for
programmable fragment-processing hardware (regcomb).

We use two techniques to support arbitrarily-complex computa-
tions. First, we use multipass methods if a single hardware pass is
unable to execute the entire fragment portion of a pipeline program.
Second, we fall back to host processing for vertex computations if
the available vertex-processing resources are insufficient.

6.1 Module interactions

In the following sections, we describe individual modules in detail.
However, one of the major complexities in the system is that
modules are not completely independent. We now discuss three
important kinds of interactions and some of our implementation
strategies for dealing with them:

Data flow interactions. Data values must flow from the user
application into the shading system and through the stages of the
programmable pipeline. For modules to interact properly, we must
define the format of the data that is passed between stages. All
values computed or specified on the host are stored in a fixed format
that is the same for all back ends. Values that are computed on a
vertex or fragment processor use a format specific to that processor,
since they must be communicated to the following stage.

As an example, consider passing vertex values from the host
CPU to the graphics processor. With non-programmable vertex-
processing hardware, we use the host to perform the necessary
vertex computations, and we pass computed vertex values to the
hardware. With programmable vertex-processing hardware, we
pass user-specified vertex parameters directly to hardware. To
facilitate the efficient passing of both kinds of vertex values, we
format all vertex data using vertex arrays.

Pass-related interactions. The fragment back ends may rely on
multiple passes to implement arbitrarily-complex fragment com-
putations. A complication occurs when using multiple passes
with programmable vertex-processing hardware: we must partition
vertex computations according to which values are needed by each
pass. To handle this case, fragment back ends compile their code
first, then provide lists of values to vertex back ends to indicate
which values are needed for each rendering pass.

Resource constraint interactions. When using the pro-
grammable vertex-processing hardware back end, it is possible for
a fragment back end to request a set of values for a particular
pass that cannot be computed given the available vertex-processing

resources, such as registers and instructions. To allow our system
to handle this case, we rely on the modularity of our system and fall
back to one of the host-side vertex back ends. More sophisticated
solutions are possible, such as negotiating simpler passes with the
fragment back end, but we do not attempt any of them.

6.2 Host-side back ends

We implement four host-side back ends, two of which support
primitive-group computations and two of which support vertex
computations. We initially implemented these back ends because
they offered us a convenient way to explore primitive-group and
vertex programmability. However, we continue to use all four back
ends and consider them to be an important part of the system.
The primitive-group back ends are useful because current hardware
does not support the primitive-group functionality we require. The
vertex back ends are useful because they allow for vertex pro-
grammability when programmable vertex hardware is unavailable.

All four host-side back ends generate code by traversing the
internal representation and emitting code templates. Two of the
back ends use a common set of routines to emit C code, generate a
dynamically-linked library using an external C compiler, and load
the compiled shader code. Likewise, the other two back ends use
a common set of routines to emit x86 assembly and generate x86
object code internally. We found the C compiler approach to be
very portable, and we note this approach generates better code than
the internal x86 code-generation approach; however, we prefer the
internal x86 code-generation approach because it generates code
quickly and without the hassle of a properly-configured external
compiler.

6.3 Vertex program back end
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// Output surface position in clip-space
DP4 o[HPOS].x, v[OPOS], c[0];
DP4 o[HPOS].y, v[OPOS], c[1];
DP4 o[HPOS].z, v[OPOS], c[2];
DP4 o[HPOS].w, v[OPOS], c[3];
// Transform normal to eye-space
DP3 R0.x, v[NRML], c[4];
DP3 R0.y, v[NRML], c[5];
DP3 R0.z, v[NRML], c[6];
// Normalize eye-space normal
DP3 R0.w, R0, R0;
RSQ R0.w, R0.w;
MUL R0, R0, R0.w;
// Compute N � L and clamp using LIT
DP3 R0.x, R0, c[7];
LIT R0, R0;
// Multiply by diffuse color and output
MUL o[COL0].xyz, R0.y, c[8];

Figure 6: Vertex program architecture. The vertex program architecture processes a
single vertex at a time and computes a set of output attributes given a number of input
attributes, constants, and variables (i.e. temporary registers). To give an impression
of the architecture’s programming model, a sample program that computes a diffuse
lighting term given an infinite light is shown. In the example, c[0..3] are the rows of
the composite matrix, c[4..6] are the rows of the inverse modelview matrix, c[7] is the
light direction, and c[8] is the diffuse color.

NVIDIA and Microsoft have recently proposed a vertex program
architecture, shown in Figure 6. The architecture defines a register
machine that conceptually operates on one vertex at a time. A
processing unit with a capacity for 128 instructions computes up
to 15 output vertex attributes given 16 read-only input attributes, 96
read-only constants (shared across all vertices), and 12 read-write
variables (i.e. temporary registers). The machine is optimized to



process 4-vectors, and therefore most data paths are 4 wide. The
instruction set contains 15 instructions including a number of basic
but flexible instructions plus two specialized instructions, LIT and
DST, which are used to accelerate lighting and attenuation compu-
tations. The architecture contains swizzle-on-read, negate-on-read,
and write-masking features to facilitate the efficient processing of
scalar and vector values. The architecture also has limited support
for primitive-group computations, but we do not make use of this
functionality because it is not flexible enough for our needs. Further
information about the architecture can be found in [10, 16].

The vertex program back end maps computations to the pro-
grammable vertex-processing architecture just described. As with
the host-side back ends, we generate instructions by traversing
the internal representation and emitting code templates; however,
unlike the host-side back ends, we perform this operation once
per pass. For each pass, we generate code to compute the vertex
values needed by the pass. (Note that some computations, position
computations in particular, are needed by multiple passes and are
therefore repeated across passes as necessary.) Instructions in
code templates reference an infinitely-sized set of scalar and vector
registers. After all instructions for a pass have been emitted, we
perform register allocation to map this infinite register set to actual
hardware registers.

We apply two general kinds of techniques to optimize instruc-
tion usage: code transformations, which occur before instruction
selection, and peephole optimizations, which occur after instruction
selection. Both help to reduce the number of instructions to help us
stay within the 128 instruction limit. Some of the optimizations we
implement include:

� collapse MUL and ADD to MAD (multiply-and-add)
� perform copy propagation of various sorts
� replace simple negations with negated source operands
� group parallel scalar operations into a single vector operation

with output write-masking if necessary
� transform certain patterns of conditionals, clamps, and power

operations to use the LIT instruction
� transform certain patterns which compute attenuation factors

to use the DST instruction

Intermediate values are stored in variable registers. To opti-
mize variable register usage, we order instructions according to a
depth-first traversal, then apply a standard greedy graph-coloring
register-allocation algorithm. While the depth-first traversal is
not optimal, it helps to reduce the number of registers needed to
store intermediate results. When graph coloring, we treat scalars
as if they occupy a full vector register. We found that because
we almost always have an adequate number of variable registers,
this approximation works reasonably well. Note also that graph
coloring is simplified because we cannot spill registers.

Constant and primitive-group values used by the vertex stage
are stored in constant registers. Each primitive-group value is
assigned its own constant register. Constant values, which are
known at compile-time, are packed together, using the architec-
ture’s swizzle-on-read and negate-on-read functionality to extract
actual constant values. For example, the scalars 0, 1, and -0.5,
plus the vectors f.707, 0, .707, .5g and f0, –.707, –.707, -1g
can all be packed into a single 4-component constant register as
f.707, 0, .5, 1g. The constant packing algorithm first sorts constants
in descending rank order, where the rank of a constant is the
number of unique components it has. (For example, the rank of
the vector f.707, 0, .707, .5g is three.) The algorithm then assigns
each constant to a register, trying to minimize the impact of each
constant by searching for matches with registers that have already
been filled. Constant packing is important because a single program
can access a large number of constants that share common values
(this is especially true for matrices) and because it allows constants

from consecutive passes to be packed together (although we do not
perform this second optimization).

6.4 Generic lburg-based fragment back end

Our first of two fragment back ends compiles fragment computa-
tions to the OpenGL pipeline using multipass rendering techniques
described by Peercy et al. We treat the OpenGL pipeline as imple-
menting two basic kinds of passes: a render pass which computes a
value into the framebuffer and a save pass which copies framebuffer
memory to texture memory. Two equations summarize the two
kinds of passes:

FB = fC; T; C � Tg[� T ][� FB ] (render)
T = FB (save)

C is a constant or interpolated color, T is the result of a texture
lookup, FB is the framebuffer, and each � is one of add, subtract,
multiply, or blend. We use f...g to indicate “one of ...” and [...]
to indicate that “...” is optional, so valid render passes include C,
T � FB , and C � T � T � FB among others. Render passes
may also contain canned functions for bump mapping (described in
Section 4.3), but for simplicity we omit these variations from the
equations above.

We map DAGs of fragment computations to render and save
passes using a bottom-up tree-matching technique similar to that
used by Peercy et al. Specifically, we decompose the input DAG
into trees, then we use a tree-matcher generated by lburg [4] to
select a minimal-cost set of passes. Tree-matching is based on a set
of rules derived directly from the render and save equations above.

We assign a cost of one to each render pass and a cost of
five to each save pass. The difference in costs tends to eliminate
unnecessary save passes, which are almost always slower than
render passes. Also, because each render pass has the same cost,
more operations tend to get packed into fewer passes.

We implement save passes by copying the entire framebuffer
to texture. This is in contrast Peercy et al. who only copied
the bounding box of the objects being rendered. Bounding box
information is not readily available to us, so we do not use it. Given
render-to-texture functionality, we could have eliminated the copies
altogether, but this functionality is not yet available in OpenGL.

Peercy et al. proposed the use of tree-matching algorithms to
target OpenGL extensions such as multitexture. We provide support
for multitexture, including a few of the simpler texture combining
extensions. We handle extensions by using the lburg cost mech-
anism to dynamically enable and disable rules that depend on the
availability of certain extensions. A very large cost, set at run time
when an extension is found to be missing, effectively disables a
rule.

We found the tree-matching technique just described to be
effective when passes are simple; however, when we attempted
to extend the technique to more-complex, programmable fragment
hardware, we encountered a number of difficulties:

� Resource management. An important aspect of targeting
programmable hardware is allocating and managing resources
such as instructions, registers, constants, interpolants, and
textures, all of which are available in limited amounts within a
single pass. The tree-matching technique has no way to track
these resources. In addition, recent combiner architectures
support independent RGB and ALPHA operations, and tree-
matching has difficulty managing functional units that can be
separated in this manner.

� Handling of DAGs. The tree-matching algorithm matches
trees, not DAGs. Our lburg back end handles values that are
referenced more than once either by splitting them off into a
separate tree or by duplicating them and recomputing them



once for every use. Values that are split off are saved to
texture memory. Since this operation is expensive, we prefer
to duplicate rather than to split; however, we only duplicate
values that match a set of patterns we know fit into a single
pass.
Decomposing DAGs into trees for tree-matching adds render-
ing overhead. If a single rendering pass is simple enough
that it can only evaluate a tree of operations, then the over-
head is minimal, since any pass-selection algorithm will
ultimately generate a similar decomposition. However, if a
single rendering pass can evaluate a DAG of operations, as
is typically the case with programmable fragment hardware,
then decomposition may not be necessary and overhead costs
may be realized.

� Tree permutations. Our tree-matching algorithm uses a
hierarchical set of rules to define tree patterns to be matched.
Through the use of registers, programmable hardware is able
to express a very large number of tree patterns. Assuming
instructions with two inputs, the number of rules needed
to express all possible patterns grows as the square of the
number of instructions available, which quickly becomes
unmanageable. The situation is much worse if instructions
have more than two inputs.

These difficulties convinced us to abandon our attempts to use pass-
based tree-matching techniques to target programmable fragment
hardware.

6.5 Programmable fragment hardware back end

To address the problems of the tree-matching technique, we devel-
oped a second fragment back end specifically designed to target
programmable fragment hardware. This back end currently targets
the NV register combiners OpenGL extension, but could be easily
modified to target the DirectX 8 pixel-shader instruction set, which
exposes similar hardware functionality.

The register combiner architecture, like the vertex program
architecture, is register-based. Conceptually, it operates on one
fragment at a time. A processing unit called a register combiner
operates on a set of registers and constants to compute new values,
which are then written back into registers. Registers are initially
loaded with interpolated vertex colors and the results of texture
lookups. The architecture allows the number of registers and
textures to vary with degree of multitexture supported. The number
of register combiner units is also allowed to vary.
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Figure 7: RGB register combiner architecture. An RGB register combiner processes
four inputs to compute three outputs. The combiner computes two product terms and
a sum/mux term. It can apply an input mapping to each input, and can scale and bias
its outputs given a single shared scale/bias factor.

A register combiner consists of two parts: an RGB portion and
an ALPHA portion. The RGB portion of a register combiner is

depicted in Figure 7. It consists of four 3-component inputs and
three 3-component outputs. Each input comes from either the RGB
portion of a register or the ALPHA portion of a register replicated
across all three components. One of eight mappings may be applied
to each input to scale, negate, and/or bias the input. Three values
are then computed from the four mapped inputs. Two of the
values are computed as either the product or the dot product of
an associated pair of inputs. The third value is either the sum or
a mux of the first two values, with the restriction that if either of
the first two operations was a dot product, the third value must be
discarded. Before being written to registers, all three values are
scaled and biased by a single shared scale/bias factor. The ALPHA
combiner is similar to the RGB combiner except that the ALPHA
combiner has scalar inputs and outputs, where each input comes
from either the ALPHA or the BLUE portion of a register. Because
the ALPHA combiner operates on scalar values, it does not perform
dot products.

The register combiner architecture also specifies a final combiner
designed to perform a fog computation but capable of performing
other computations also. Details can be found in [16].

We target the register combiner architecture using a compilation
algorithm that treats the architecture as if it were a VLIW processor,
with register combiners corresponding to VLIW instructions. The
complete details of our compilation algorithm are beyond the scope
of this paper and are described in a separate publication [11]. We
outline our basic approach here.

The core of our algorithm maps a DAG of operations to a single
rendering pass in five steps:

1. Rewrite input DAG. We first preprocess the input DAG to
split RGB and ALPHA computations, to expand certain index
operations using dot products, and to expand select operations
to use the architecture’s less-than-half muxing scheme.

2. Determine input and output scale/bias mapping opera-
tions. We scan the input DAG for sequences of operations that
correspond to mapping operations and replace each sequence
with a single mapping operation. We perform range analysis
to find situations where mappings intended for [0,1] numbers
can be applied to numbers that are [–1,1] by type but [0,1]
after analysis.

3. Select instructions. We perform a greedy, top-down DAG
traversal to map the input DAG to register combiners. We
assign operations to half combiners (product only) and whole
combiners (sum of products) and we select RGB and AL-
PHA combiners as appropriate to the computations being
performed. We currently only use the final combiner in a
limited fashion. The output of this step is a DAG of register
combiner instructions.

4. Allocate pass inputs. We use a greedy algorithm to map pass
inputs to their initial registers. We are especially careful to
allow as many paths as possible for values of various types
(constant/interpolated scalar/vector color values plus textures)
to be allocated to registers.

5. Schedule instructions and allocate registers. We sort the
instructions in the instruction DAG by decreasing node depth,
then greedily schedule instructions to the first appropriate
slot available. As we schedule instructions, we also reserve
register space for results; we free register space on the last use
of a result. We make a special effort to properly manage the
alpha component of the SPARE0 register, which has exclusive
control over the MUX operation.

Our implementation does not yet decompose DAGs larger than
a single pass into pass-sized pieces for scheduling by our core
single-pass algorithm. While it is clear to us that it would be
straightforward to generate a correct decomposition of any input
DAG, it remains to be seen how efficient we can make these
decompositions.



The most difficult aspect of compiling to register combiners
is dealing with idiosyncrasies in the architecture. In particular,
many aspects of the architecture are not orthogonal. For example,
the sharing of a single output scale/bias factor by all three com-
biner outputs complicates both instruction selection and instruction
scheduling, and the requirement that the MUX operation’s control
input come from the alpha component of the SPARE0 register
complicates both instruction scheduling and register allocation.

A more fundamental problem with the register-combiner archi-
tecture is the wide variety of fixed-point data types it uses. Values
stored in registers have a range of [–1,1], but intermediate results
within a single combiner can have other ranges, such as [–2,2] and
[0,4]. Ideally, a shading language has well-defined range semantics
for its data types, but because register combiner operations and
data types are not orthogonal, register combiners do not cleanly
support this ideal. A [–1,1] type with proper semantics can be
implemented, but only with a performance penalty. We forgo the
ideal, implicitly exposing the hardware’s range semantics in the
language. When needed, the user may explicitly request [–1,1]
clamping. Ultimately, we hope this problem will be fixed in
hardware with the addition of consistent and orthogonal support for
a small set of well-defined data types.

We anticipate that future hardware will support more registers,
more textures, and more combiners than current hardware. To
accommodate such changes, we designed our programmable frag-
ment back end to compile to a parameterized model of hardware.
We also designed our system to facilitate the addition of support for
NV texture shader texture-addressing operations [16].

7 Results

Several of the results in the following sections are shown in our
video on the SIGGRAPH 2001 Conference Proceedings video tape.

7.1 Shading language

Vertex vs. fragment tradeoff. Our language allows us to eas-
ily express many computations using either vertex or fragment
processing. To demonstrate this, we coded up two versions of
the Banks anisotropic reflection model [2], one version based on
Heidrich’s algorithm [6], with the lighting model stored in a texture
and texture coordinates computed at vertices, and a second version
with the entire lighting model computed at each vertex.

The tradeoffs are evident as the surface dicing and number of
lights are changed. For a simple spherical surface, the vertex-based
algorithm requires a dicing factor around 3 to 4 times higher in
each dimension for quality equivalent to that of the textured version,
while the textured version requires an additional texture lookup per
light. Using our lburg back end, the textured version requires one
additional pass per light. No additional passes are needed for the
vertex-based algorithm.

Combined compilation of surface and light shaders. In our
language, we compile surface and light shaders together and delay
the optimization of the surface shader until after the shaders have
been combined. This significantly enhances the ability of our
compiler to optimize computations.

Combined compilation allows us to specialize surface shader
code to match the computation frequencies of the active lights.
Without combined compilation, we would have to compile surface
shaders assuming the worst case: that all lights are fragment lights.
This would in turn cause vertex lights to be handled inefficiently.
We can illustrate the savings by examining a simple surface shader
that computes integrate(fr * Cl), the sum of products of per-vertex
reflection factors fr and light colors Cl. If all lights are vertex
lights, combined compilation allows us to recognize that the sum
of products may be performed per-vertex. In this case, the example

would run in one pass regardless of the number of lights. However,
without combined compilation, the sum of products would have to
be performed per-fragment, requiring one fragment multiply for the
first light plus one fragment multiply and one fragment add for each
additional light. With our lburg back end, the example would then
require two render passes for the first light plus two render passes
and one save for each additional light.

Combined compilation also allows us to sort lights by com-
putation frequency to minimize the portion of the light sum that
must be performed per-fragment. Given the previous example
surface, two simple vertex lights, and one simple fragment light,
the sorting optimization allows our lburg back end to compile the
shaders to three render passes. Without the sorting optimization,
the worst-case ordering of lights would cause our lburg back end to
generate six render passes and two save passes.

7.2 Vertex-program back end

To assess the efficiency of our compiler’s vertex-program back
end, we compared the output of our compiler with a hand-written
vertex-program that performs the same computation. For the
comparison, we used a surface/light shader pair that computes a
per-vertex color using a variant of the OpenGL shading model. A
specular/diffuse/ambient reflection is computed using a local light
with a quadratic distance attenuation factor. We use a local eye
point.

Our compiler-generated vertex program uses 44 instructions. We
created the corresponding hand-written vertex program by selecting
and optimizing pieces from an NVIDIA template [9]. The hand-
written program uses 38 instructions. The six extra instructions
of the compiler-generated program fall into two categories. Four
instructions result from sub-optimal code generation. The other two
are required to support both local and infinite lights, because our
system doesn’t currently provide any means to specify at compile
time whether a light shader will be used with local lights (Lw 6= 0),
or directional lights (Lw = 0).

This example, and our broader experience with the system,
demonstrate that the performance of vertex computations expressed
in a high-level language can approach the performance of hand-
written assembly code.

7.3 Fragment back ends

To evaluate the efficiency of our register-combiner back end, we
implemented a per-fragment shading model that uses a variant of
Kilgard’s hardware-friendly bump-mapping algorithm [8]. The
shading model includes specular, diffuse, and ambient terms and
is expressed in our shading language directly, i.e. without using the
canned bump-mapping functions. Textures are used to store nor-
mals and spatially-varying diffuse/specular reflection coefficients.
The shading model uses 14 three-vector operations and 12 scalar
operations, including the operations required by the bump-mapping
algorithm. Broken down by operation type, the shading model uses
14 multiplies, 6 adds, 3 clamps, 2 dot products, and 1 select. It also
uses four texture lookups.

Our register-combiner back end compiles this shading computa-
tion to a single pass on an NVIDIA GeForce3, using four texture
units and seven register combiners. Using the compiler output as a
guide, we were able to tune the source code to reduce the combiner
count to five. We were unable to do any better by hand coding
the shader, although hand coding did allow the “final” register
combiner to be used in place of one of the “standard” combiners,
which might improve performance on some hardware.

In contrast, our lburg back end requires six rendering passes plus
a framebuffer-to-texture copy for the same shading model. In order
to achieve this performance, we had to replace the bump-mapping



code with the built-in canned functions that invoke hand-written
register-combiner code for the diffuse and specular bump-map
computations.

The following is a summary of our initial experiences with our
register-combiner compiler:
� We have yet to find a shader which runs out of fragment

registers before other resources, even though our compiler’s
instruction-scheduling algorithm is actually biased towards
heavy register usage.

� When compiling to a GeForce2 (which has two combiners and
two texture units), we found that we usually run out of either
textures or instructions first, depending on the type of shader.

� When compiling to a GeForce3 (which has eight combiners
and four texture units), we usually run out of textures or
interpolators before we run out of instructions, although some
shaders run out of instructions first.

� Scalar computations are surprisingly frequent. The compiler
can place scalar computations in RGB combiners, and this
optimization has proved to be important for scalar-heavy
shaders.

7.4 System Demonstration

To demonstrate the full capabilities of our system, we constructed
two example scenes. We ran both scenes at a resolution of
640x512 on an 866 MHz Pentium III system with an NVIDIA
GeForce3, which supports the NV vertex program and 8-combiner
NV register combiners extensions.

Textbook strike. We implemented a version of the textbook
strike scene from the cover of [23] using animation data provided
by UNC. Our version has ten bump-mapped bowling pins and their
bump-mapped reflections, plus a bowling ball and a textured floor.
The scene contains a total of four surface shaders and one light
shader. We optimized the bowling-pin shader to compile to one
pass with our register-combiner back end by pre-compositing the
three projective decal textures into a single projective decal texture.
We are able to run this animation at 55 frames/sec. A single frame
of our animation is shown in Figure 8.

Figure 8: Textbook strike. This scene contains ten bump-mapped bowling pins and
their bump-mapped reflections, plus a bowling ball and a textured floor. It runs at 55
frames/sec on a GeForce3.

Fish. We also implemented a swimming fish scene using
animated fish data originally from [22]. The scene contains a
fish with a bump-mapped body, transparent bump-mapped fins, a
textured ground plane, a fragment light casting a caustic texture on

all objects, and a ground-plane shadow for the fish. In total, there
are five surface shaders and one light shader. For this scene, we use
our lburg back end to compile all of the shaders, and we also use
our immediate-mode interface to specify all geometry. We are able
to run this animation interactively at 22 frames/sec. A single frame
of animation is shown in Figure 9.

Both of these scenes run on a wide range of hardware from
different vendors. When necessary, shaders use conditional compi-
lation to provide fallback paths when hardware bump mapping isn’t
available. The scenes run on a wide variety of hardware, including
basic OpenGL hardware from SGI, multitexturing hardware from
3dfx and ATI, and programmable hardware from NVIDIA. In
addition, our system adapts the scenes to different generations of
hardware from the same vendor, taking advantage of features in
each chipset.

Figure 9: Fish. This scene contains a fish with a bump-mapped body and transparent,
bump-mapped fins plus a fragment light that casts a caustic texture on all objects. It
runs at 22 frames/sec on a GeForce3.

8 Discussion and Future Work

In this paper, we described the implementation of a real-time
procedural shading system designed for programmable graphics
hardware. We introduced a programmable pipeline abstraction to
unify the notion of multiple computation frequencies and to support
pipeline virtualization. We described a shading language tailored
to graphics hardware and introduced new schemes for optimizing
computations, combining surfaces and lights, and managing com-
putation frequencies. We also described our retargetable imple-
mentation of the programmable pipeline using modules that target
current graphics hardware, including support for programmable
vertex and fragment hardware. Finally, we demonstrated our
system running in real-time on today’s graphics hardware.

It is much easier to program in our language than it is to write
custom multipass OpenGL programs. Furthermore, shaders written
in our language are portable, since the compiler handles the details
of mapping shaders to graphics architectures with different features.
The language itself is simpler and less ambitious than RenderMan.
Although we could wait until the graphics hardware is fast enough
to completely implement the RenderMan shading language, we
think—given the current capabilities and rapid advances in graphics
hardware—that a better strategy is to demonstrate its feasibility
now, then allow our system to evolve over time. It should be noted
that in order for developers of real-time rendering applications such
as games to adopt shading languages, it is most important that the



languages be compiled to the hardware near optimally. Having lots
of features is less critical.

A number of hardware improvements would help with the
implementation of our programmable pipeline abstraction. The
first is support for orthogonality of operations and data types
across computation frequencies, including vertex textures as well
as fragment floating-point and full support for dependent texturing
as described by Peercy. It is difficult to compile to fragment
register combiners given their current restrictions and special cases.
Second, virtualizing the hardware using multiple passes requires
the ability to spill intermediate fragment values to the framebuffer.
Currently, high precision intermediate results cannot be stored in
the framebuffer, making it difficult to split a computation into
multiple passes. Third, support for rendering transparent geometry
currently requires us to separately render potentially-overlapping
transparent objects. This remains a big limitation of multipass
rendering and could be fixed with changes to hardware [12].

Currently, our programmable pipeline abstraction is just an in-
ternal interface for communicating shading computations between
our system’s front and back ends. We have demonstrated that
the intermediate format may be mapped to a variety of different
hardware architectures by our compiler. In a similar way, we
would like to follow Peercy et al.’s suggestion and develop several
domain-specific languages [19] and implement them as different
front ends. A language intended for artists (as opposed to graphics
programmers) might be particularly relevant to potential users of
our system.

So far, our experiences with real-time procedural shading on
graphics hardware have been very encouraging. In the micro-
processor world, the instruction sets of microprocessors changed
radically as appropriate compiler technology was developed. This
in turn allowed innovative hardware designs that might not have
been possible otherwise. In a similar way, we think it is possible to
develop future graphics hardware optimized to run a programmable
graphics pipeline.
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