
1

Effectiveness of Dynamic Prefetching in
Multiple-WriterDistributed Virtual Shared Memory Systems

Magnus Karlsson and Per Stenström

Department of Computer Engineering, Chalmers University of Technology
SE-412 96 GÖTEBORG, Sweden

email: {karlsson,pers}@ce.chalmers.se

Abstract

We consider a network of workstations (NOW) organization consisting of bus-
based multiprocessors interconnected by an ATM interconnect on which a shared-
memory programming model is imposed by using a multiple-writer distributed
virtual shared memory system. The latencies associated with bringing data into
the local memory are a severe performance limitation of such systems.

To tolerate the access latencies, we propose a novel prefetch approach and
show how it can be integrated into the software-based coherence layer of a multi-
ple-writer protocol. This approach uses the access history of each page to guide
which pages to prefetch. Based on detailed architectural simulations and seven
scientific applications we find that our prefetch algorithm can remove a vast
majority of the remote operations which improves the performance of all applica-
tions. We also find that the bandwidth provided by ATM switches available today
is sufficient to accommodate prefetching. However, the protocol processing over-
head of available ATM interfaces limits the gain of the prefetching algorithms.

Keywords: Shared-memory multiprocessors, Distributed virtual shared memory, Latency toler-
ance, Software-controlled prefetching, Performance evaluation.

Corresponding Author: Magnus Karlsson

2

1 Introduction

Shared memory multiprocessors like the Stanford DASH [18] and the MIT Alewife [1] offer high
performance, but at the price of a high hardware complexity and production cost. One way to
drastically cut the cost of large configurations is to use commodity computing platforms, such as
bus-based multiprocessors, that are interconnected to form anetwork of workstations (NOW).
Several research groups are currently studying performance and design issues for this style of
building large-scale parallel computing platforms [2,7,8]. In this paper we consider a NOW orga-
nization built from clusters that are interconnected by ATM technology and where each cluster is
a bus-based multiprocessor server.

In order to support a shared-memory programming model on top of the message-passing sub-
strate that a NOW provides, adistributed virtual shared memory (DVSM) system is a particularly
attractive solution in terms of cost-effectiveness. In a DVSM system, a shared-memory program-
ming model is supported by replicating data at the granularity of page-sized chunks and consis-
tency can then be maintained by invalidating remote page copies when a processor modifies its
local copy. Unfortunately, owing to the fact that accesses by processors in different servers are
usually co-located on the same page, efficiency is severely hampered by false sharing. However, if
a relaxed memory consistency model is supported, this false sharing effect can be reduced by
allowing several processors to modify different data on the same page as long as modifications are
propagated at the point of the next synchronization or at some point later when data is requested.
Suchmultiple-writer DVSM systems, exemplified by TreadMarks [16], are the focus of this paper.

While a preliminary performance evaluation of the NOW system above [15] indicated a
decent performance level, the latency associated with the ATM interconnect was found to be one
of the main limiting factors to high performance because it directly affects the penalty associated
with access faults in a DVSM system. One popular way of coping with devastating latency com-
ponents in any NOW system is to adopt a latency tolerating technique. In this paper we propose a
novel prefetching scheme extension to a multiple-writer DVSM system.

To understand how our prefetch approach is different from others it is useful to classify exist-
ing prefetching techniques intostatic anddynamic techniques. Static techniques analyze the code
at compile-time and insert prefetch instructions that bring data closer in the memory hierarchy in
anticipation of a future access miss (fault). Mowry et al. [19] studied the effectiveness of such a
static prefetching technique in the context of uniprocessors to cut replacement and cold cache
misses and demonstrated that it can be very effective to attack misses caused by vector accesses in
loops. Mowry also extended this static technique to multiprocessor computations [20] to also
attack coherence misses by conservatively assuming that all shared data are invalidated after a
synchronization. This can result in a high instruction overhead for shared data. By contrast, the
approach taken by dynamic prefetch approaches is to predict which data to prefetch based on pre-
vious access history for the data at run-time. In stride prefetching [6], for example, when three
accesses separated by the same stride have been detected, prefetching for consecutive accesses
with the same stride is enabled. While the strength of this scheme is the absence of instruction
overhead, it requires some non-trivial modifications to the processor and the caches. Also, the
prefetch heuristic ought to be simple to be tractable.

3

Our proposed prefetch scheme, calledhistory prefetching, is also dynamic in that it utilizes
the access history of data. Instead of requiring hardware support, however, we integrate our
prefetch algorithm in the software layer in a multiple-writer distributed virtual shared memory
system; thus, the prefetch heuristic can be made more sophisticated than in hardware-based
schemes. The algorithm assumes the existence of information regarding which pages that have
been accessed locally between two synchronizations and which of those pages that were invali-
dated by remote clusters in the past. The history prefetching algorithm scans the access history for
different access patterns. Noting that this is a general approach, we focus in this paper on its effec-
tiveness for producer-consumer sharing only. When the algorithm finds a page with such an
access pattern, it prefetches that page to avoid future faults on load accesses for consumers or
store accesses for producers.

Based on detailed architectural simulations we study how history prefetching can increase the
performance of seven application programs picked from the scientific domain. History prefetch-
ing is found to removeall load and store faults, after some initial misses for some applications. By
contrast, for irregular algorithms it is less efficient owing to the fact that previous access patterns
cannot guide which pages to prefetch. This motivates us to also adopt sequential prefetching
[10,23] of consecutive pages that are not present in the local memory. While sequential prefetch-
ing alone is only effective when spatial locality is high, the combination of history and sequential
prefetching improves performance for all applications.

Our simulations assume ATM technology that is available commercially. We find that while
the bandwidth of the switch fabric is sufficient to accommodate the extra traffic caused by
prefetching, the protocol processing taking place in commercially available ATM interfaces limits
the performance gain of prefetching.

As for the rest of the paper, we start in the next section to conceptually describe what features
in a multiple-writer protocol are utilized in order to implement history and sequential prefetching.
Then in Section 3, to exemplify in detail how our prefetching schemes are successfully imple-
mented in a real DVSM system, we focus on their integrations in the TreadMarks system; a state-
of-the-art DVSM system. Section 4 deals with the experimental methodology, while Section 5
presents the experimental results. Related work is discussed in Section 6 and finally the paper is
concluded in the last section.

2 Dynamic Prefetching Schemes in Multiple-Writer DVSM Systems

In order to understand what features are needed to support our proposed prefetching schemes, we
provide in Section 2.1 the main characteristics of multiple-writer distributed virtual shared mem-
ory systems and the basic approach behind dynamic prefetching in this architectural framework.
Then in Sections 2.2, 2.3 and 2.4, we describe the prefetch heuristics of history and sequential
prefetching and their combination, respectively. These heuristics are later simulated in Section 5.

2.1 Multiple-Writer DVSM Systems and Prefetching Approach

We consider systems consisting of a number of clusters interconnected by a network. A DVSM
system implements a shared-memory programming model on top of the message passing sub-

4

strate by replicating pages. To maintain consistency when a processor modifies data in a page, an
exclusive copy is typically obtained by invalidating other copies of the page.

The basic mechanism that triggers coherence actions for a certain page is its two sets of access
attributes (or states) maintained by the MMU:Accessible andInvalid (Inaccessible). For example,
an invalid page that is accessed triggers an access fault that invokes the DVSM system software
which brings a copy of the page from a remote cluster. Conversely, a page changes from accessi-
ble to invalid when an invalidation for the page is received. Clearly, access faults can be long-
latency operations in that they can involve message exchanges across clusters which encounter the
latency of the software system as well as the underlying interconnection network.

Traditional DVSM systems suffer from a high access fault rate because the fairly large pages
are frequently accessed by multiple clusters and cause devastating false sharing effects. To reduce
false sharing effects, multiple-writer protocols have been proposed [5]. Assuming that the pro-
gram executes correctly under a relaxed memory consistency model [14], the main idea is to keep
the page in the accessible state between two synchronization points by not propagating any inval-
idations until a synchronization point is reached. If a page has been modified by several clusters,
invalidations from these clusters are received by the local cluster. If the local cluster subsequently
accesses the page, it has to acquire the modifications from each and every one of the remote clus-
ters that wrote to the page in order for the page to be accessible again. A system that uses this
approach is TreadMarks which will be presented in more detail in Section 3.

Since accesses to invalid pages and invalidations incoming from other clusters are handled by
the software layer implementing the multiple-writer protocol, one could log such events to predict
which pages to prefetch. This log could then be scanned for certain access patterns; in our case we
search for different producer-consumer access patterns that happened in the past and speculate
that the same access patterns will be repeated in the future. An example of this is shown next.

S.O.R, which is one of the applications we evaluate, is an iterative algorithm that in every iter-
ation performs a nearest-neighbor calculation on each element in a grid. The algorithm sweeps
first along the x-axis and when it reaches the end of it, it starts to sweep along the x-axis of the
next y-value. As shown in Figure 1, each cluster uses its own data set plus one row of each of its
neighbor’s data sets. The grid is stored in row-wise order. Only at the borders between the clus-
ter’s sets of elements will an element be read or written by more than one cluster. Every iteration
starts with a barrier synchronization. We define aninterval to be the time between two synchroni-

Written by cluster 2
Read by cluster 1

Written by cluster 1
Read by cluster 2

Written by cluster 1
Read by cluster 2

Figure 1: The partitioning of the data set in the S.O.R. application.

Cluster 1

Cluster 2

Cluster 3
Written by cluster 2
Read by cluster 1

Pages

Written by cluster 2 Written by cluster 2

Written by cluster 1 Written by cluster 1

x

y

5

zations when at least one cluster wrote to the page. Consequently, in this example every iteration
is one interval long.

At the barrier synchronization in the beginning of the second iteration cluster 1 will receive
invalidations for all the pages it read from and that cluster 2 wrote to during iteration number one.
When cluster 1 wants to read one of the invalidated pages, in the end of the second iteration, it has
to send a message to cluster 2. By prefetching into the local memory of cluster 1 all pages modi-
fied by cluster 2 one could avoid the long latency of the subsequent access faults for these pages.

To guide which pages to prefetch, each cluster maintains the access history for all pages,
called page history. This history is a list of entries indicating (1) if a page has been accessed
locally and is logged when an access fault for the page occurs and (2) which clusters that wrote to
a page during a certain interval, deduced from incoming invalidations. The page history is sorted
in descending time order, i.e., the most recent entry appears first in the list. So at the barrier, in the
S.O.R. application, during the start of the second iteration, cluster 1 would put two entries into the
page history of the shaded page in Figure 1. One entry that cluster 2 wrote to the page during the
last interval and one entry stating that cluster 1 read the page during the last interval. At the next
barrier synchronization the same sequence of events is entered into the page history of the shaded
page, because the same accesses occurred during the second iteration too. By looking at the page
history, cluster 1 can detect that two consecutive intervals with the same access pattern have
occurred. Now, cluster 1 can predict that this will be the case during this interval too, thus it sends
out a prefetch for the page. So, when cluster 1 later accesses the page, it can potentially be in the
accessible state already, thus having a potential to improve performance. This is the main princi-
ple on which history prefetching operates.

2.2 History Prefetching Heuristics

The history prefetching algorithm is invoked as a handler on one of the idle processors in a cluster
after each synchronization point. The algorithm looks for different flavors of producer-consumer
sharing and to specify these, we distinguish between theLocal cluster being the cluster that ini-
tiates a prefetch and theRemote cluster being one or more of the other clusters in the system.

There are two types of prefetches,read-prefetches andwrite-prefetches,that are issued as a
result of that the prefetching algorithm predicts that the page will be read (consumed) or written
to (produced) by Local in the future, respectively. A read-prefetch is issued if Local accessed (that
is read or wrote to) a page during the last two intervals, and Remote wrote to the page during
those two intervals and the page is invalid right after a synchronization. This means that Local
acts as a consumer and Remote as a producer. The write from Remote indicates that the page was
invalidated at the start of each interval. On the top of the left column of Figure 2 this access pat-
tern is displayed. Here, R.W means that at least one Remote cluster wrote to the page and R.A
that at least one Remote cluster either read, wrote, or did nothing to the page. L.W stands for
Local write, L.R for Local read and L.A for a Local access, either a read or a write. The dashed
lines are the boundaries between the intervals. The prefetch decision is made in the right-most
interval (intervali) of each column.

The algorithm will also, somewhat more speculatively, read-prefetch when Local read the
page in the first preceding interval and accessed it in the second preceding interval, but Remote

6

wrote to the page only during the first preceding interval. The algorithm only needs to look at the
last two intervals to decide if a page history will trigger a read-prefetch. More technically this is
stated:A read-prefetch will be triggered if the two most recent consecutive intervals in the page
history contain a Local access and a Remote write each, or if the most recent interval contains a
Remote write and a Local read followed by only a Local access in the second interval.

Write-prefetches are issued by Local when the algorithm predicts that it is a producer of a
page. Note that a write-prefetch has got precedence over a read-prefetch, because some of the pat-
terns that trigger a write-prefetch are more specialized versions of read-prefetch patterns. As seen
at the top of the right column of Figure 2, the first pattern that will trigger a write-prefetch is as
follows: Remote either read or wrote to the page and Local wrote during the first preceding inter-
val followed by the same behavior during the interval before that, i.e the access pattern during the
first interval repeated in the next. The second pattern is if Remote and Local wrote to the page
during the first preceding interval followed by a read or write access by Local in the second pre-
ceding interval. The third and final one is if only Remote wrote to the page during the first preced-
ing interval and during the second preceding interval Local wrote but is necessarily not the only
writer.

Regarding the performance improvements provided by history prefetching, we would expect
that it is effective as long as the access patterns are repeated more than one interval. As will be
shown in Section 5, iterative algorithms do extremely well. However, history prefetching can fail
for irregular access patterns that are not repeated over a few intervals. In the next section we will
study a previously proposed hardware-based scheme that we apply to our software-based multi-
ple-writer protocol that turns out to be effective in this case.

Figure 2: Access patterns that will trigger a prefetch. The dashed lines are interval boundaries. R.W
means that at least one remote cluster wrote to the page and R.A that at least one remote cluster either

read or wrote to the page. L.W stands for local write, L.R for local read and L.A for a local access,
either a read or a write. Write-prefetches have precedence over read-prefetches.

Triggers a Write PrefetchTriggers a Read Prefetch

R.W

L.A

R.W

L.A

R.W

L.R
L.A

R.W
L.W

R.W

L.W
L.A

R.A

L.W
T

he decision is m
ade in this interval

T
he decision is m

ade in this interval

R.A

L.W

Entries

i-1i-2

i

i-1i-2 i
Interval number

R.A

7

2.3 Sequential Prefetching Heuristics

Large matrices are typically swept through once in direct methods. For example, consider multi-
plication of two matrices that each consists of several pages. Clearly, one could in this case benefit
from prefetching consecutive pages on an access fault. This simple technique has been proposed
in the context of hardware-based cache prefetch algorithms by Smith [23] and is known as
sequential prefetching. We will simulate a variation of this simple scheme that on the first access
to a page checks if any of the next N pages are invalid, where N is the degree of prefetching. If so,
read-prefetches are sent for those pages.

2.4 Combining History and Sequential Prefetching

While history prefetching (HP) is expected to be effective in removing access faults for regular
applications with producer-consumer sharing, sequential prefetching (SP) is expected to wipe out
access faults in direct methods. Therefore, we have also considered a combination which works as
follows. To successfully combine history prefetching with sequential prefetching (hereafter called
thecombined scheme), we need to introduce another status bit for each page. This bit, called the
prefetch-type-bit, indicates which type of prefetching was used to bring the page to an accessible
state. It is initialized to SP the first time a page is brought into memory. The prefetch-type-bit is
set to HP when a producer-consumer access pattern is found in the page history for that page and
thus the page is prefetched with the history prefetching scheme.

When a processor accesses a page with the prefetch-type-bit set to SP, sequential prefetching
will be applied to the N following pages. This implies that sequential prefetching will be used on
all pages successfully prefetched with sequential prefetching and for all the access faults, i.e.
pages that were not predicted with either algorithm. A processor accessing a page with the
prefetch-type-bit set to HP means that the page was successfully predicted with history prefetch-
ing, so it will not trigger any sequential prefetches as long as it is successfully predicted. This
means that if the history algorithm is good at predicting the accesses, sequential prefetching will
only be used for the first couple of accesses to the page. After that, history prefetching will take
over. When history prefetching fails, i.e. when an access miss is encountered, sequential prefetch-
ing will be used for that page.

3 Implementation and Performance Case Study

We have integrated the prefetching schemes in Section 2 into a simulation model of a network of
workstations that uses TreadMarks to support a shared-memory model. In Section 3.1 we give an
overview of this system; our detailed technological assumptions are later described in Section 4.
Then in Section 3.2, we explain how dynamic prefetching is integrated into TreadMarks.

3.1 Simulated System Environment

In order to understand the implications of integrating the prefetching schemes described in the
previous section in a real system, we have considered the system depicted in Figure 3. It consists
of a number of bus-based multiprocessor servers interconnected by an ATM switch. Each cluster
contains a number of processors and memory modules and an I/O bus that is connected to an
ATM interface. The intra-cluster coherence mechanism is a write-invalidate snooping cache

8

coherence protocol, whereas inter-cluster coherence is maintained by TreadMarks. While the
implementation details of TreadMarks can be found in [16], we will here focus on the general
approach taken by TreadMarks to maintain consistency and in particular the data structures that
TreadMarks maintains that we have used to implement dynamic prefetching.

TreadMarks is a multiple-writer protocol based on lazy release consistency (LRC). Under
LRC, consistency-related information is only communicated by the releaser of a lock to an
acquirer. The key data structure to carry out this task is awrite notice which tells the acquirer
which cluster has written to a certain page during a certain interval. To find out which modifica-
tions that the acquirer has not seen, a vector timestamp (containing one timestamp entry for each
cluster) is associated with each interval. Each cluster maintains its local vector timestamp which
is increased each time it enters a new interval e.g. enters or exits a critical section. By having the
acquiring cluster send its timestamp to the current holder of the lock, the releaser can based on the
difference between the two vector timestamps propagate a list consisting solely of the write-
notices tagged with a timestamp greater than the one that the acquirer provided, i.e. only the write
notices that the acquirer does not already have. A write-notice for a certain page will invalidate
this page locally. It will then be recorded in awrite-notice list associated with each page that is
maintained in each cluster. The write-notice list can theoretically be infinite. Therefore, Tread-
Marks does garbage collection naturally at barrier synchronizations. Lacking a barrier it occasion-
ally does a barrier synchronization to do garbage collection. Let us now consider the actions taken
on access faults.

When an invalidated page is accessed, the local write-notice list for this page is used to make
the page consistent by sending so calleddiff requests to all clusters that have modified the page.
These clusters then return the diffs, i.e., encodings of the modifications to the page, that then are
applied locally to make the page consistent before the state of the page is switched to read-only.

When a store access occurs to a page that is invalid, the page is first made read-only. Then in
order to allow the local cluster to modify the page a copy is made, called atwin. A modification of

P P P P

M ATM Interface

ATM
Switch

P P P P

MATM Interface

P P P P

M ATM Interface

P P P P

MATM Interface

Figure 3: The base system of the study. An ATM switch connecting 4 multiprocessors/servers with 4
compute processors each. All communication from one cluster to another travels through the ATM

interfaces of the communicating clusters.

9

the local page copy creates a write notice as explained above and when another cluster requests a
diff from this cluster, the diff is created by comparing the original page copy with the twin.

The coherence actions taken by TreadMarks of course impose execution overhead on the pro-
cessor that invokes the handlers. These handlers are scheduled on the processors according to a
round-robin algorithm.

3.2 Integrating Dynamic Prefetching into TreadMarks

All prefetching schemes in Section 2 are quite easy to integrate into the TreadMarks system based
on the data structures that already exist. Recalling that a page history for each page is needed,
where an entry is either an invalidation from outside or a local access (load or store) in a certain
interval, we note that the write-notice list managed by TreadMarks maintains this information for
invalidations and local stores. To support history prefetching we simply augment each write
notice with a bit, calledused-bit, that indicates whether the page has been accessed locally in this
interval. This way, Local’s reads are recorded in the page history. To be able to record an access to
a prefetched page, it is read and write protected. This way a page fault will occur when it is
accessed so that the used-bit can be set at that time. If the page is valid due to a prefetch but the
used-bit is not set, i.e the page has not been used by Local, when the history prefetching algorithm
scans this page’s history; this means that the prefetch was not successful and another attempt will
not be made until an access fault is encountered. At this time the used-bit is set to one. This way,
the algorithm can adapt to changes in the sharing pattern of the pages. The history prefetching
algorithm can scan the write-notice list and will detect an interval boundary by comparing the
timestamps associated with two consecutive write notices. However, to avoid scanning the same
set of entries twice, a bit calledalready-scanned associated with each page is set whenever it has
been scanned. When a write-notice arrives for that page the already-scanned bit is reset to zero,
indicating that these entries need to be scanned again. Finally, a write prefetch will trigger a twin-
ning of that page and the garbage collector has to be slightly modified to avoid purging the write-
notice list beyond the second interval down the line.

Sequential prefetching is trivially implemented by just examining the access attributes of the
N pages that follow the page that triggered a load or store access fault. For any of the prefetching
schemes that we try, a read-prefetch triggers requests for diffs just like a load access fault would
do and a write-prefetch, in case of history prefetching, will also create a twin.

In some cases a write-notice will arrive to a page while a prefetch for the same page is pend-
ing. When the prefetch reply message arrives at the cluster, the already-scanned bit is checked for
the page. If the bit is zero it means that another write-notice arrived for that page while the mes-
sage was out in the network, so another message is sent to fetch the newly missing diff. When this
one arrives, the page is set to accessible state, unless yet another write-notice arrived in the mean
time.

4 Experimental Methodology

Herein, the simulation framework used to study the relative performance of the systems is pre-
sented. First in section 4.1 all the architectural parameters of the simulated systems are presented
and in the last section the benchmark programs used are introduced.

10

4.1 Timing Model Parameters

The detailed simulation models are built on top of the CacheMire Test Bench [4]; a program
driven functional simulator that potentially issues a memory reference from each simulated
SPARC processor in each processor cycle. These references are then fed into the architectural
model where they are delayed according to its timing model. This way the same interleaving is
obtained in the simulator as in the real system. Next, we will discuss the assumptions for the tim-
ing model.

We simulate a system according to Figure 3 consisting of 4 clusters containing 4 processors
each for a total of 16 processors. Each processor is a SPARC assumed to be clocked at 300 MHz
with a peak performance of 1 instruction per cycle. In order to isolate the latency-tolerating capa-
bility of prefetching without taking interconnect bandwidth limitations into account, contention is
not modeled in any part of the ATM interconnect by default. In Section 5.4, however, we will con-
centrate on how the bandwidth limitations of ATM affects the effectiveness of the prefetching
algorithms. The minimum time through the ATM switch for a cell is 2.5µs and it can hold a max-
imum of 256 cells. Through the ATM interface a message of one single cell (ATM fixed-size
package) travels in 20µs. It uses the AAL5 protocol for transmitting the ATM cells. A larger mes-
sage takes the minimum time plus 1.25µs for each extra cell generated. These values correspond
to a commercially available 622 Mbit/s ATM interconnect.

Internally, the bus contention in each cluster is not modeled. Contention for the memories of
each cluster is simulated. The caches are 16 Kbytes and direct mapped. The internal cache coher-
ence protocol is a bus-based write invalidate protocol. Throughout the study the cache block size
is set to 32 bytes and the page size is set to 1024 bytes. The default page size chosen is intention-
ally picked small to match the scaled down data sets we use for our applications. For example,
S.O.R. would only generate 2 to 4 coherence actions per scan with a 4Kbyte page size, instead of
8 to 16 with 1Kbyte pages. In Section 5.4 we will look at how sensitive history prefetching is to
variations in these parameters. The memory access time is 100 ns, the bus cycle time is 50 ns, and
finally the cache access time is a single processor clock (pclock).

While we model the execution of the application code in detail, we do not simulate the actual
execution of software handlers. Instead, our approach is to model the time they take by charging
time for the handlers in TreadMarks in our timing model. Contention in the processors due to
software handlers and local computations are simulated in detail. This is essential to factor in the
overhead of the DVSM system that incorporates the prefetching algorithms. We have compiled
the timing assumptions for the software handlers in Table 1. The latency charged to set up the
ATM interface for sending a message is assumed to take 1000 pclocks. Most software coherence
operations have a fixed cost that only depends on the page size. For example, to create a twin
takes 1856 pclocks and the creation of a diff takes 5264 pclocks in the worst case that the whole
page was modified. Creating a twin essentially results in that a consecutive region of memory cor-
responding to the page size is copied from one location to another. In each iteration, the algorithm
loads a word from the source region and stores it into the destination region before a compare and
a conditional branch instruction are executed. Thus, each iteration corresponds to four instruc-
tions. In the worst case scenario, the cache does not contain any date from the source region
which means that every eight loads will miss in cache with our assumption that the block size is

11

eight words. Since the hit rate then is 87.5% and the miss penalty is 26 pclocks, the average exe-
cution time for a load in each iteration is 4.25 pclocks. Each iteration then takes 7.25 pclocks.
Consequently, to create a twin then takes 7.25 x 256 = 1856 pclocks. The other time components
our model assumes are calculated in a similar fashion.

On top of these costs context switch latencies are added and we assume that a page fault/con-
text switch takes 2500 pclocks. So the creation of a twin will actually take 2500 + 1856 + 2500 =
6856 pclocks (a context switch + the twin creation time + another context switch). With our 300
MHz processors this takes 23µs. Most of the other operations in Table 1 have an initial cost in the
interval of 100 to 300 pclocks. On top of these latencies we charge a fixed cost of 40 pclocks for
each incorporation of one write notice into the data structure. For each write notice sent at a bar-
rier or a lock, an extra 20 pclocks are added to account for search and processing time. The
latency parameters are consistent with those given for the TreadMarks system [16,8,11], when
available.

The history prefetching algorithm starts to search for patterns that will trigger a prefetch right
after a synchronization. It starts at the top of the page array and traverses downwards. To go to the
next write notice list and check if this list needs to be examined, i.e., check the already-scanned
bit, takes 30 pclocks. If the write-notice list needs to be examined it takes an extra 50 pclocks. To
send a prefetch takes the same time as the corresponding normal non-prefetch operation, plus the
above extra. Our search algorithm is rather conservative in the way that it looks at the already-
scanned bit of all the pages after every synchronization. A faster implementation, that we do not

Table 1: Software handler operations and their costs in pclocks. #WN stands for number of write notices. The
diff sizes are all in 32-bit words.

Software handler
Operation

Latency
(pclocks)

Software Handler
Operation

Latency
(pclocks)

Context switch / Interrupt 2500 Communication Overhead 1000

Twin Creation 1856 Diff Creation 5264

Receive a Page 1056 Send a Page 1056

To apply a Diff (1) 10 * size of
the diff

Request a Page 100

Incorporation of a Write Notice
(2)

40 Search for a Write Notice (3) 20

Send Lock Acquire 300 Forward Lock Acquire 150

Receive Lock 100 +
#WN*(2)

Release Lock 300 +
#WN*(3)

Request Diffs 200 Send Diffs 150 + size of
the diffs

Receive Diffs 100 + (1) Barrier Entrance 200 +
#WN*(3)

Barrier Release at Home 200 +
#WN*(3)

Barrier Exit 250 +
#WN*(2)

12

consider, would be just to directly look at the entries associated with the pages that we just
received write notices for. This would reduce the history prefetching overhead considerably. As
will be seen, the overhead is small so this optimization does not seem justified.

4.2 Benchmark Programs

We have run seven scientific applications on the simulated system. They are all written in C using
the ANL macros and compiled by gcc (version 2.1) with optimization level -O2. S.O.R.,
S.O.R.high and Shuffling FFT (sFFT) were taken from the CacheMire benchmark suite [12].
Quicksort (Qsort), TSP and a modified version of Water, has been provided to us by Rice Univer-
sity. Finally, LU was obtained from the SPLASH suite [22]. The applications can be characterized
by being iterative algorithms, direct methods or others.

One of the iterative algorithms, S.O.R., makes computations on a grid with 1024 by 1024 ele-
ments. It is the same as the one discussed in Section 2.1. Statistics are gathered after the first iter-
ation to reduce the start-up effects. Water is another iterative algorithm that simulates molecular
dynamics and is originally obtained from the SPLASH suite. A modification was made to the pro-
gram to reduce the number of lock accesses. It simulates 512 molecules for 2 time steps. Among
the direct methods, sFFT Fourier transforms 65536 elements with the shuffling FFT method.
Qsort sorts an array of 128K integers, using bubblesort to sort subarrays of less than 1/2K of ele-
ments. Finally, TSP uses a branch-and-bound algorithm to solve the travelling salesman problem
for a 17-city tour. These applications were written with TreadMarks in mind and do not stress the
system a lot, so we added two more applications that are not that nice. S.O.R.high is another par-
allelization of S.O.R which leads to a significantly higher communication-to-computation ratio.
and, finally, LU decomposes a 500x500 sized dense matrix.

5 Experimental Results

In this section we study the effectiveness of the dynamic prefetching schemes. Section 5.1 consid-
ers history prefetching and Section 5.2 sequential prefetching while Section 5.3 deals with the
performance of their combination. In Section 5.4 we will examine the effects of varying some of
the key parameters in the system.

5.1 History Prefetching

In Figure 4 the execution time for the system with history prefetching (HIS) is shown relative to
the execution time for the system with no prefetching (NO) for each application. To understand
what components of the execution times are affected by prefetching, we have broken down each
execution time bar into six components. The bottommost component is the busy time whereas all
other components are overhead caused by (from bottom to top) locks, barriers, read and write
stalls, and finally ‘remote’ is the fraction of the execution time spent executing the coherence han-
dlers invoked by messages from other clusters that cannot be overlapped by other stall time com-
ponents.

For S.O.R., TSP, Qsort and sFFT the speed-ups for the base system without any kind of
prefetching are adequate. This can be seen from the busy time components. For example, TSP has
a busy time component of almost 55% which means a speed-up of 16 x 0.55 = 8.8 compared to an

13

ideal sequential execution. By contrast for S.O.R.high and LU the speed-ups are low to very low.
By introducing history prefetching into a DVSM system even these challenging applications have
a potential to perform well, thus broadening the suitable application spectrum for DVSM systems.

The three leftmost applications are iterative in nature so history prefetching should be effec-
tive. As expected, the execution time is reduced by between 7% and 32%. By looking at how the
stall time components are affected, we note that the most striking effect is that a major part of the
read stall-time components are wiped out. In order to understand in more detail why history
prefetching is so effective, we show in Figure 5 thecoverage and in Table 2 theefficiency for his-
tory prefetching for each application. Coverage is defined as the percentage of all read and write
requests that are eliminated by prefetching pages in advance. Since an issued prefetch may not
always return the data on time, we also show the fraction of access faults that are eliminated by
prefetching (Access Fault Coverage) meaning those prefetches that returned data before the page
was accessed. Finally, efficiency is the fraction of prefetches that are useful meaning that they
eliminate read and write requests.

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 N
or

m
al

ize
d

Ex
ec

ut
io

n
Ti

m
e S.O.R. S.O.R.high Water TSP

REMOTE

READ

WRITE

LOCK

BARRIER

BUSY

NO HIS
SEQ2
SEQ5
M

IX2
M

IX5

NO HIS
SEQ2
SEQ5
M

IX2
M

IX5

NO HIS
SEQ2
SEQ5
M

IX2
M

IX5

NO HIS
SEQ2
SEQ5
M

IX2
M

IX5

100

93
96 95

93 93

100

68
72

75
71

74

100

87

79
75

78
75

100

70

77

72

67 65

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 N
or

m
al

ize
d

Ex
ec

ut
io

n
Ti

m
e Qsort sFFT LU

REMOTE

READ

WRITE

LOCK

BARRIER

BUSY

NO HIS

SEQ2

SEQ5

M
IX2

M
IX5

NO HIS

SEQ2

SEQ5

M
IX2

M
IX5

NO HIS

SEQ2

SEQ5

M
IX2

M
IX5

100 99

76
78

76

68

100
96

77 76

81
79

100

93

80
77

73

65

Figure 4: Execution times for the system with history prefetching (HIS), sequential prefetching (SEQN where
N is the degree of prefetching) and for the combined prefetching scheme (MIXN) relative to the execution time

for the system with no prefetching.

14

Starting with S.O.R., history prefetching manages to eliminate all read and write requests
although some prefetches do not return the data on time (the access fault coverage is 85%). Inter-
estingly, history prefetching also lowers the barrier stall time. This is an effect of better load bal-
ancing because many of the long-latency operations, that are not uniformly distributed across
clusters, have now been removed. The reason that the busy time is so low for S.O.R. is that two of
the three cache blocks that are used in the computation are mapped to the same block in the cache.
Therefore there will be two replacement misses every time one pixel in the array is calculated.

S.O.R.high does the same computation as S.O.R but with a different parallelization which
results in a higher communication-to-computation ratio. Like S.O.R. history prefetching also
helps this application to cut the read stall time but with a slightly lower coverage of 96% owing to
the fact that some prefetches are predicted after the page is accessed (thus they are not issued at
all). A remarkable observation is that the barrier, write, and remote stall times are increased which
is explained by queueing delays to the software handlers as a result of the larger number of
prefetch messages triggered by this application. We will get back to this effect when we later look
at the traffic statistics.

In Water the global data structures are protected by locks and accesses to these are fairly regu-
lar. Therefore, Water also benefits from history prefetching; the execution time is shortened by
13%. However, the coverage is 38% and the efficiency is 52%. These are lower than S.O.R.’s due
to some irregularities in the access patterns that cause useless prefetches and read and write
requests that are not eliminated.

The last four applications are not iterative in nature and so history prefetching is not expected
to be very effective. Interestingly, as Figure 4 reveals, history prefetching does fairly well for
some of the applications. In TSP the accesses to most of the small global data structures are fairly
regular. So history prefetching fares pretty well; a 30% decrease in execution time. The coverage
and efficiency are fairly high; 67% and 72% respectively. By contrast, Qsort performs poorly. In
Qsort, processors grab a task consisting of sorting an array of numbers of varying length and per-
forms it and when it has completed it grabs another one from a global task queue. Since the
assignments of tasks to processors are unpredictable, history prefetching is not effective. There-
fore, the execution time of the history prefetching system is only decreased by 1% and the cover-
age is low.

Shuffling Fast Fourier Transform (sFFT) is a direct method. It contains only a few synchroni-
zations. The calculation is divided into two stages. After the first one there is very little informa-
tion in the page history. Only some of the pages can be prefetched for the next phase of the
calculation. As can be seen in Figure 4, the execution time is only decreased by 4% due to this
fact. The poor performance can also be seen from the coverage that is a puny 27%.

LU is also a direct method, like sFFT. The main difference is that LU contains significantly
more synchronization operations which provides a longer page history and, as a result, a potential
to more opportunities for history prefetching to make predictions. Unfortunately, the accesses are
fairly irregular so the execution time is only reduced by 7%. The fact that the history prefetching
algorithm cannot predict irregular access patterns can be deduced from the low coverage (31%)
and the high efficiency (84%).

15

While our system uses ATM switches that provide a fairly high bandwidth (622 Mbits/s), it is
nevertheless important to understand how much the traffic increases by prefetching. For the base-
line system (NO) the bandwidth consumed by the applications was highest for S.O.R.high and
never exceeded 45% of the ATM switch bandwidth. Let us now look at how the traffic is affected
by history prefetching.

In Table 2 the network traffic caused by HIS relative to NO is shown for each application. For
S.O.R. HIS generates 30% more network traffic than NO even though the coverage and efficiency
are 100%. This is caused by an increase in write-notice traffic because a page was prefetched
before the cluster that modified it was finished with its modifications. As a result, when a prefetch
has switched a page into read-only mode, the same page will be written to which results in a
write-notice to be sent for this interval as well. This same effect also explains why S.O.R.high
yields 89% higher traffic and an increased write stall time as seen in Figure 4. Fortunately, this
traffic increase seems to be consistent with the bandwidth provided by the ATM switch. Less than
45% of its bandwidth is occupied by S.O.R.high which is the most communication intensive

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 C
ov

er
ag

e
in

 P
er

ce
nt

S.O.R. S.O.R.high Water TSP

SEQUENTIAL

HISTORY

A.F.C. SEQ.

A.F.C. HIS.

HIS

SEQ
2

SEQ
5

M
IX2

M
IX5

HIS

SEQ
2

SEQ
5

M
IX2

M
IX5

HIS

SEQ
2

SEQ
5

M
IX2

M
IX5

HIS

SEQ
2

SEQ
5

M
IX2

M
IX5

100

58
59

100100
96

62
64

97 97

38

92 94 93
96

67

42

53

80
84

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 C
ov

er
ag

e
in

 P
er

ce
nt

Qsort sFFT LU

SEQUENTIAL

HISTORY

A.F.C. SEQ.

A.F.C. HIS.

HIS

SEQ2

SEQ5

M
IX2

M
IX5

HIS

SEQ2

SEQ5

M
IX2

M
IX5

HIS

SEQ2

SEQ5

M
IX2

M
IX5

38

24
28

61

68

27

96 96 97 97

31

43
45

78

87

Figure 5: Coverages and access fault coverages for all prefetching schemes. The bottommost sections (the two
bottommost sections for MIX2 and MIX5) is the fraction of access faults eliminated.

16

application. For Water, TSP, Qsort and LU history prefetching also causes higher traffic because
of lower efficiency. However, these traffic increases are fairly moderate. For sFFT, on the other
hand, the efficiency is fairly low (58%). This stems from the fact that after the second and last
phase of the calculation there is enough information to predict all the future accesses, so
prefetches are sent out for these pages but these prefetches will not be used.

Overall, history prefetching is very effective for regular algorithms with producer-consumer
sharing but also helps three out of the other four applications by eliminating some of the long-
latency operations. Moreover, the extra bandwidth consumed by the prefetches is not very large
compared to the bandwidth provided by ATM.

5.2 Sequential Prefetching

The third and fourth bars in Figure 4 show the execution times for sequential prefetching relative
to the base system. SEQ2 has a degree of prefetching of two and SEQ5 has one of five. Starting
with the two versions of S.O.R., which are iterative algorithms, sequential prefetching does not
perform as well as history prefetching although it manages to cut the execution time in compari-
son with NO. The reason that sequential prefetching fares pretty well in this application is due to
the fact that the effectively shared pages are aligned in a row on the grid boundaries. Figure 5
shows the coverages for the different prefetch schemes and demonstrates that the coverages for
SEQ2 and SEQ5 are fairly high (between 58% and 59%). Also the efficiencies for SEQ2 and

Table 2: The efficiency for each prefetching scheme and application (in percent).

Application HIS SEQ2 SEQ5 MIX2 MIX5

S.O.R. 100 91 82 100 100

S.O.R.high 99 52 32 96 89

Water 52 79 73 48 48

TSP 72 57 56 65 64

Qsort 58 39 27 48 43

sFFT 58 78 76 66 65

LU 84 44 32 61 54

Table 3: Network traffic for each prefetching scheme relative to the system with no prefetching (in percent).

Application HIS SEQ2 SEQ5 MIX2 MIX5

S.O.R. 130 107 117 130 130

S.O.R.high 189 172 275 196 210

Water 142 118 153 133 153

TSP 104 115 121 118 120

Qsort 113 131 159 154 170

sFFT 119 102 106 120 123

LU 109 129 153 132 136

17

SEQ5 under S.O.R are pretty high (between 91% and 82%), but for S.O.R.high the efficiencies
for SEQ2 and SEQ5 are very low compared to HIS (52% and 32% compared to 99%). If we look
at the traffic in Table 2 generated by the prefetch schemes for the two S.O.R. applications, SEQ2
and SEQ5 generate less traffic than HIS for S.O.R but more than NO because of less useless
write-notice messages than under HIS. By contrast, for S.O.R.high the efficiencies for SEQ2 and
SEQ5 are much lower than for HIS and results in a very high traffic level for SEQ5 (175% higher
than under NO) which is expected to cause severe contention problems for ATM switches.

Continuing with Water which is also an iterative application, the pages of the main global data
structure are accessed in a row-by-row manner. This accounts for the success of sequential
prefetching for Water. The execution time drops by between 21% and 25% for sequential
prefetching compared to 13% for history prefetching. In addition, the coverages and the efficien-
cies are much higher as can be seen in Figure 5 and Table 2 because history prefetching produces
a lot of useless prefetches due to some irregularities in the application. The network traffic for
SEQ2 is slightly lower while it is slightly higher for SEQ5. Despite Water, sequential prefetching
is not as robust as history prefetching for regular algorithms.

For TSP sequential prefetching works fine, but it is not as good as history prefetching. The rel-
ative execution time is lowered by 23% and 28%. The global data set in TSP is small, so if a clus-
ter misses once in the beginning of the data set, sequential prefetching pretty much prefetches a
large part of the used global data set (at least for SEQ5). If a page later on is accessed in this inter-
val, a performance improvement is gained. The coverage for SEQ2 and SEQ5 is moderate and
between 42% and 53% while the efficiency is between 57% and 56%. Only 15% and 21% higher
network traffic is produced, but it is higher than for HIS.

In Qsort, we recall history prefetching has a problem because it is difficult to predict what will
be accessed next in Qsort since processors get tasks (sorts or merges) from a global task queue.
However, looking within each individual task, a vector is typically accessed sequentially giving
SEQ2 and SEQ5 a potential to perform well. As expected, the execution time is shortened by
between 24% and 22% for SEQ2 and SEQ5, compared to a 1% decrease for HIS. The cost is an
increase in network traffic; 31% and 59% compared to 13% for HIS.

sFFT, which is a direct method, is expected to run better under sequential prefetching than
under history prefetching. This can be also seen in Figure 4. The performance is improved by
23% and 24% for SEQ2 and SEQ5; a lot compared to 4% for HIS. The coverage is at an impres-
sive level of 96% percent for both of them and an efficiency of 78% and 76%, respectively. The
network traffic is only increased by 2% and 6% as compared to 19% for HIS, although this traffic
should be lower if history prefetching was switched off by the end of the execution.

Finally, LU is also a direct method but with less regularities. Sequential prefetching manages
to squeeze the execution time down under history prefetching. It is decreased by 20% and 23%
compared to 7% for HIS. The bad thing is that the network traffic soars to new heights and
increases by between 29% and 53%. This is mainly due to the poor efficiency of sequential
prefetching which is between 32% and 44%.

18

Overall, while history prefetching is advantageous for applications with access regularities
that are repeated, sequential prefetching does better for direct methods with less regular behavior.
Next, we look at whether a combination of them can yield additive gains.

5.3 Combining History Prefetching with Sequential Prefetching

Figure 4 shows the execution times for all prefetching schemes including the combined history
and sequential prefetching schemes of Section 2.4. MIXN stands for the combined scheme with a
degree of prefetching equal to N. Starting with S.O.R. and S.O.R.high the combination of both
protocols perform as well as HIS. This is because history prefetching takes over after two itera-
tions and switches off sequential prefetching. In S.O.R.high, some of the pages are predicted too
late. These pages will trigger some useless, or mostly useless, sequential prefetches that just
increases the network traffic some, as can be seen from the traffic statistics in Table 2.

For Water, the combined scheme performs somewhat better than both history prefetching and
sequential prefetching on their own. Looking at Figure 4, execution time is shortened by between
22% and 25% compared to NO. Figure 5 shows the coverages of the applications. Each bar is
decomposed into two sections: The ratio of prefetches that were covered fully by history and
sequential prefetching, denoted access fault coverage (A.F.C.), and the ratio of prefetches that
were covered fully or partly by each algorithm, plainly denoted coverage in the figures. Compar-
ing the coverage of HIS with the coverage of MIX2, we see that the coverage for MIX2 is higher
than for HIS. This is due to the fact that the sequential prefetching done in MIX2 produces useful
prefetches that does not take place in HIS.

The successes/failures of these prefetches are also recorded in the page history. This fact gives
the history prefetching in MIX more information to make a prediction. So for some pages where it
was impossible for HIS to make a prediction because there was not enough information can now
be predicted with history prefetching. The higher the degree of prefetching, the higher is the
sequential part of the coverage. For MIX2 the network traffic is 33% higher than for NO, and for
MIX5 it is 53% higher.

For TSP and Qsort we have made the same observation. MIX2 and MIX5 improve perfor-
mance more than history and sequential prefetching do on their own and the network traffic is
somewhere in between HIS and SEQ; sequential prefetching often produces the most traffic. The
coverage increases due to the effects discussed in the previous paragraph and the efficiency lands
somewhere between HIS and SEQ, where history prefetching is always more effective.

sFFT did not have enough accesses and synchronizations for history prefetching to be effec-
tive. Here most of the prefetches are sequential prefetches and the performance is decreased
slightly going from SEQ2 and SEQ5 to MIX2 and MIX5 due to mispredictions from the history
prefetching algorithm.

With LU the combined prefetching scheme dramatically outperforms the other schemes on
their own. The execution time is 35% lower under MIX5 than NO; SEQ5 does not cut the execu-
tion time that much. The coverage is also much higher for the combined protocol (between 78%
and 87%); a good example of fruitful cooperation between sequential and history prefetching.

19

The network traffic is around 34% over that for NO. This is well below the value for SEQ5 but
above the values for history prefetching.

In summary, the combination of history and sequential prefetching always outperforms or
equals the performance of the prefetching schemes on their own. The coverage of the combined
scheme is always higher or equal to the coverage for history prefetching on its own. The traffic of
sequential prefetching is higher than the traffic for the combined scheme for five of the seven
applications. Another desirable property of all prefetching schemes is that they impose very little
overhead as can be seen from Figure 4. The only case where the remote overhead is significant is
for history and the combined scheme under S.O.R.high where it accounts for around 15% of the
execution time; for the other applications, the remote overhead is negligible.

5.4 Variation Analysis

In this section we will briefly examine the effects of varying some of the key parameters of this
architecture, e.g. ATM interconnect contention, page size and bus contention. The one parameter
with the most pronounced effect on prefetching is the interconnect technology used. So we will
start by analyzing the effects of this.

The assumptions for the ATM interconnect in this study is based on off-the-shelf switches and
interfaces. We have shown in the previous sections that the prefetching algorithms are capable of
tolerating a substantial part of the long latencies incurred by the interface and the switch. In addi-
tion, we have also shown that the bandwidth provided by the switch fabric of ATM technology
available today (622 Mbit/s) seems sufficient for the extra bandwidth consumed by the prefetch-
ing algorithms. However, the substantial protocol processing taking place in the ATM interface
itself might severely hamper the effectiveness of the latency-hiding capability of prefetching. To
study such contention effects in detail, we have also modeled the queuing delays in the ATM
interface and the switch fabrics. The simulated switch fabric is a shared-buffer implementation
containing 256 entries.

When we encountered the contention effects of the interface, we found that the gains of the
prefetching algorithms were smaller or reversed by the longer latencies incurred by the queing
delays in the interface. This can be seen by looking at the leftmost two bars (NO and MIX5) for
each application in Figure 6. Interestingly, we found that the switch fabric itself did not experi-
ence any cell losses.

One way to reduce the devastating contention effects in the interface would be to aggregate a
number of coherence messages (spanning a size of between 1 to 22 ATM cells) into one single
message. This way the protocol processing overhead of sending a single coherence message will
be amortized over each aggregated message. In Figure 6 this scheme is denoted AGG and it
aggregates 10 messages at a time. Overall, we see that the execution times of all applications,
except S.O.R.high, are reduced by the combined prefetching algorithm with aggregation (AGG)
although the reduction is not as high as when contention in the ATM interconnect was not encoun-
tered. The AGG scheme performed better than both sequential prefetching for all the applications,
so they are not shown in the figure.

20

For S.O.R.high the execution time is actually increased when prefetching over an ATM inter-
connect is used. As we saw in Section 5.3, S.O.R.high has a very high bandwidth demand and
when this can be satisfied history prefetching is also effective for this application. But the ATM
interfaces cannot accommodate this even though the ATM switches can, and therefore the execu-
tion time is actually increased. Another reason for the poor improvement of S.O.R.high is due to
the fact that all the processors in each cluster have to wait for one of the coherence messages that
is aggregated into the first ATM message in each iteration. There are two ways of alleviating this
problem. First, one could introduce a priority scheme that serves vital messages first, and second,
one could allow only a predefined number of pending prefetches in the system.

Now, let us concentrate on the observations regarding the switch fabric itself. As we would
expect, virtually no cell losses were recorded under any prefetching algorithm except for history
prefetching (HIS) alone. Under HIS, three out of the seven applications experienced cell losses:
S.O.R.high, Water, and sFFT. The fraction of cells that were lost are 6.5%, 0.7%, and 1%, respec-
tively. We tracked these cell losses to the bursts of prefetches after each barrier synchronization.
While the retransmission of messages caused by the cell losses for the latter two applications
results in acceptable execution time overhead, the high cell loss rate for S.O.R.high is not accept-
able. However, this application has been used to stress the system; a more natural parallelization
of this kernel is the S.O.R. which did not result in any cell losses. Overall, except for S.O.R.high,
the ATM switch fabric can accommodate the traffic caused by the prefetching algorithms.

Another important analysis is how history prefetching reacts to different page sizes. We used a
small page size because our data sets were small. To see if that decision affects our conclusions
we scale the data set by 4 and increase the page size to 4 Kbytes. When history prefetching is
turned on it turned out that it decreased the read and write stalls as much as earlier (in percent, see
Table 4), but the overall execution time reduction will be less due to the higher busy time. S.O.R.,
S.O.R.high and Qsort were not included because they yielded exactly the same coherence traffic
as before. LU was not simulated due to simulation constraints and the data set of TSP was not
increased due to the same reason.

||0

|15

|30

|45

|60

|76

|91

|106

|121

|136

|151

 N
or

m
al

ize
d

Ex
ec

ut
io

n
Ti

m
e S.O.R. S.O.R.high Water TSP Qsort sFFT LU

REMOTE

READ

WRITE

LOCK

BARRIER

BUSY

NO M
IX5

AGG

NO M
IX5

AGG

NO M
IX5

AGG

NO M
IX5

AGG

NO M
IX5

AGG

NO M
IX5

AGG

NO M
IX5

AGG

100

117

100 100

151

132

100

110

93

100

77

60

100
104

83

100

124

94
100

91

76

Figure 6: Execution times for the system with ATM contention switched on. The aggregation number is 10 for
AGG.

21

The last factor we are going to analyze is the bus traffic to see if our not to simulate bus con-
tention. The results of these simulations are presented in Table 5. For sFFT, S.O.R. and LU the
increase in bus traffic was less than 7% and therefore negligible. For TSP, Qsort and Water the
increase in bus traffic is 75%, 47% and 13%, respectively. But as the bus traffic is low for all these
applications this extra traffic can easily be accommodated by a modern bus, e.g. the S.G.I Chal-
lenge POWERpath-2 (< 1.2 GBps) [13]. This is not the case for S.O.R.high, where the bus traffic
is increased by 79% to around 745 Mbytes/second which would degrade performance even fur-
ther for this application.

Overall, the interconnect used is a crucial factor if history prefetching should be effective even
for high bandwidth applications. The extra bus traffic generated by history prefetching can easily
be accommodated by a contemporary bus for six out of the seven applications.

6 Discussion and Related Work

Looking back on previous events in the system, as history prefetching does, is not that new. There
are other more sophisticated versions of sequential prefetching that do this, for example hard-
ware-based adaptive sequential prefetching [10] and stride prefetching [6] for tightly coupled sys-
tems. The former adapts the degree of prefetching for each page/block so that a near optimum
number is attained. It still needs a high spatial locality in the application to be effective and it does
not eliminate the initial miss, like history prefetching is able to do. Stride prefetching, on the other
hand, does not rely on a high spatial locality. It detects strides in the accesses and can thus
prefetch every Nth page/block. This works fine as long as the accesses are evenly spaced. Though,
it has been shown that strides are often short and sequential prefetching can exploit this fact effi-
ciently [9]. What we think is new, however, is that the prefetching schemes in this paper are sup-

Table 4: The results of the simulations with a page size of 4 Kbytes.

Application Read Stall Reduction Write Stall Reduction Execution Time Reduc-
tion

Water 32% 0% 8%

TSP 0% 57% 22%

sFFT 10% 0% 1%

Table 5: Bus traffic measurements for the seven applications in Mbytes/second.

Application Bus Traffic (NO) Bus Traffic (HIS) Increase

S.O.R. 560 560 0%

S.O.R.high 416 745 79%

Water 24 27 13%

TSP 5 9 75%

Qsort 12 17 47%

sFFT 220 234 6%

LU 189 202 7%

22

ported in software and can thus be much more sophisticated than the above discussed hardware
schemes.

There are also static software-controlled prefetching schemes with hand-inserted prefetch
instructions [21]. The advantage of these schemes is that they can handle very irregular applica-
tions with success. The main disadvantage is that the programmer has to understand the code to a
higher degree than one would need to without static software prefetching. With history prefetch-
ing no knowledge of the application is necessary. If the programmer would like to put this effort
into the program, static software-controlled prefetching would be a good complement to history
prefetching, taking care of the irregular access patterns that can be found in the source code.

A different approach than ours was tried out by Bianchini et al in [3]. Their approach is also
based on the previous history of TreadMarks, but it is more optimistic than our scheme because as
soon as a page is invalidated (that the node was using) it will fetch that page again. This will prob-
ably create more useless prefetches than our scheme thus degrading performance. Only two out of
six applications benefited from their scheme. A comparison is hard to make because they are
using uniprocessors as nodes while we used SMPs.

7 Conclusions

The high latencies of today’s networks of workstations have motivated us to study the efficiency
of one latency tolerating technique, namely prefetching. The previous dynamic prefetching
schemes have been designed with mainly hardware shared memory machines in mind. In a dis-
tributed virtual shared memory system more advanced schemes can be implemented, due to the
fact that it uses a software layer to support a shared-memory model. We have proposed a new
prefetching algorithm called history prefetching that is specifically designed for DVSM systems.
It records the accesses and synchronizations of the system and uses these to predict future access.
History prefetching is best suited for regular applications.

Through detailed simulations of a system encompassing sixteen processors distributed across
four clusters and driven by seven applications, we have found that history prefetching works
really well for iterative and regular applications. Coverages and efficiencies up to one hundred
percent are reported. For the direct methods and the irregular algorithms sequential prefetching
works better. But by combining the two prefetching approaches a new prefetching scheme is pro-
posed that works better than any of the two schemes on their own. Basically, if an access fault is
encountered sequential prefetching is used and if a page was successfully predicted with history
prefetching it will not trigger any further sequential prefetches. Execution time decreases up to 35
percent are reported. The network traffic was reduced or at a comparable level compared to
sequential prefetching for five of the seven applications. The coverages range from 61 to 100 per-
cent and the efficiencies range from 43 to 100 percent for the combined scheme.

While the prefetching algorithms proposed in this paper can be applied to a wide spectrum of
DVSM systems and hardware platforms, we specifically considered a network of workstation sys-
tem using ATM switches as an interconnect. Based on our simulations we have found that the
bandwidth provided by off-the-shelf ATM switches is sufficient to accommodate the extra band-
width needed by prefetching. However, the protocol processing in the ATM interfaces available

23

today causes severe contention effects that limit the gains of our prefetching algorithms. There-
fore, to make use of similar latency-tolerating techniques calls for more efficient ATM interfaces.

Overall, history prefetching combined with sequential prefetching seems to be a promising
way to hide some of the latencies on a DVSM system at the cost of a slight increase in network
traffic.

Acknowledgments

The authors are indebted to Mats Brorsson of Lund University and Jan Jonsson of Chalmers Uni-
versity of Technology for their suggestions and comments and to Robert Fowler of Rice Univer-
sity that provided us with many of the applications. This research has been funded in part by the
Swedish National Board for Industrial and Technical Development (NUTEK) under project num-
bers P2363-1, P855 and by the Swedish Research Council on Engineering Science (TFR) under
contract number 94-315.

References

[1] Agarwal, A., Chaiken, D., Johnson, K., et al., “The MIT Alewife machine: A large-scale distributed-
memory multiprocessor,” in: Dubois, M. and Thakkar, S.S., eds., Scalable Shared Memory Multi-
processors (Kluwer Academic Publishers, Boston, MA 1990), pp. 240-261.

[2] Anderson, T., Culler, D., Patterson, D., “A Case for NOW (Networks of Workstations),”IEEE Micro.
Vol. 15, No. 1, Feb. 1995, pp. 54-64.

[3] Bianchini, R., Kontothanasis, L. I., Pinto, R., De Maria, M., Abud, M., Amorim, C. L., “Hiding
Communication Latency and Coherence Overhead in Software DSMs,”Proceedings of the Interna-
tional Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), October 1996, pp. 198-209.

[4] Brorsson, M., Dahlgren, F., Nilsson, H. and Stenström P., “The CacheMire Test Bench — A Flexible
and Effective Approach for Simulation of Multiprocessors,”Proceedings of the 26th Annual Simula-
tion Symposium, March 1993, pp. 41-49.

[5] Carter, J. B., Bennett, J. K. and Zwaenepoel, W., “Implementation and Performance of Munin,” Pro-
ceedings of the 13th ACM Symposium on Operating Systems Principles, October 1991, pp. 152-164.

[6] Chen, T. F. and Baer, J. L., “A Performance Study of Software and Hardware Data Prefetching
Schemes,”Proceedings of the 21st International Symposium on Computer Architecture, April 1994,
pp. 223-232.

[7] Chiou, D., Ang, B. S., Arvind, Beckerle, M. J., Boughton, A., Greiner, R., Hicks, J. E. and Hoe, J.
C., “START-NG: Delivering Seamless Parallel Computing”,Proceedings of EURO-PAR’95, Lecture
Notes in Computer Science, No. 966, Springer-Verlag, Berlin, August 1995, pp. 101-116.

[8] Cox, A. L., Dwarkadas, S., Keleher, P., Lu, H., Rajamony, R. and Zwaenepoel, W., “Software Versus
Hardware Shared-Memory Implementation: A Case Study,”Proceedings of the 21st International
Symposium on Computer Architecture, April 1994, pp. 106-117.

[9] Dahlgren, F. and Stenström, P., “Effectiveness of Hardware-Based Stride and Sequential Prefetching
in Shared Memory Multiprocessors,”Proceedings of the First International Symposium on High
Performance Computer Architecture (HPCA), January 1995, pp. 68-77.

24

[10] Dahlgren, F., Dubois, M. and Stenström, P., “Sequential Hardware Prefetching in Shared-Memory
Multiprocessors,”IEEE Transactions on Parallel and Distributed Systems, Vol. 6, No. 7, July 1995,
pp. 733-746.

[11] Dwarkadas, S., Keleher, P., Cox, A. L. and Zwaenepoel, W., “Evaluation of Release Consistent Soft-
ware Distributed Shared Memory on Emerging Network Technology,”Proceedings of the 20th Inter-
national Symposium on Computer Architecture, May 1993, pp. 144-155.

[12] Ekstrand, M., “CaBS — The CacheMire Benchmark Suite,”M.Sc. Thesis, Department of Computer
Engineering, Lund University, March 1993.

[13] Galles, M., Williams, E., “Performance optimizations, Implementaion, and Verification of the SGI
Challenge Multiprocessor,”Proceedings of the 27th Hawaii International Conference on System Sci-
ences, Vol. 1, 1994, pp. 134-143.

[14] Gharachorloo, D., Lenoski, J., Laudon, P., et al, “Memory Consistency and Event Ordering in Scal-
able Shared Memory Multiprocessors,”Proceedings of the 17th International Symposium on Com-
puter Architecture, May 1990, pp. 15-26.

[15] Karlsson, M. and Stenström, P., “Performance Evaluation of a Cluster-Based Multiprocessor Built
from ATM Switches and Bus-Based Multiprocessor Servers,”Proceedings of the Second Interna-
tional Symposium on High Performance Computer Architecture (HPCA2), February 1996, pp. 4-13.

[16] Keleher, P., Cox, A.L., Dwarkadas, S. and Zwaenepoel, W., “TreadMarks: Distributed Shared Mem-
ory on Standard Workstations and Operating Systems,”Proceedings of the 1994 Winter USENIX
Conference, January 1994, pp. 115-132.

[17] Keleher, P., Cox, A.L. and Zwaenepoel, W., “Lazy Release Consistency for Software Distributed
Shared Memory,”Proceedings of the 19th International Symposium on Computer Architecture, May
1992, pp. 13-21.

[18] Lenoski, D., Laudon, J., et al., “The Stanford DASH Multiprocessor,”IEEE Computer, Vol. 25,
No.3, March 1992, pp. 63-79.

[19] Mowry, T., Lam, M. and Gupta, A., “Design and Evaluation of a Compiler Algorithm for Prefetch-
ing,” Proceedings of the 5th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS V), October 1992, pp. 62-73.

[20] Mowry, T., “Tolerating Latency through Software-Controlled Data Prefetching,” Ph.D. Thesis, Stan-
ford University, March 1994.

[21] Mowry, T. and Gupta, A., “Tolerating Latency through Software-Controlled Prefetching in Shared-
Memory Multiprocessors,” Journal of Parallel and Distributed Computing, Vol. 12, No. 2, June
1991, pp. 43-93.

[22] Singh, J. P., Weber, W-D. and Gupta, A., “SPLASH: Stanford Parallel Applications for Shared-
Memory,” Computer Architecture News, Vol. 20, No. 1, March 1992, pp. 5-44.

[23] Smith, A. J., “Sequential Program Prefetching in Memory Hierarchies,”IEEE Computer, Vol. 11,
No. 12, December 1978, pp. 7-21.

