THE KHOROS SOFTWARE DEVELOPMENT ENVIRONMENT
FOR
IMAGE AND SIGNAL PROCESSING

Konstantinos Konstantinides and John R. Rasure T

ABSTRACT

Data flow visual language systems allow users to graphically create a block diagram of their
applications and interactively control input, output, and system variables. Khoros is an inte-
grated software development environment for information processing and visualization. It is
particularly attractive for image processing because of its rich collection of tools for image
and digital signal processing. This paper presents a general overview of Khoros with empha-
sis on its image processing and DSP tools. Various examples are presented and the future di-
rection of Khoros is discussed.

T K. Konstantinides is with Hewlett-Packard Laboratories, J. Rasure is with the Dept. of Electrical Engr., Univ. of New Mexico

Albuquerque.

1. Introduction

The repetition of a simulation process with different parameters until a satisfactory solution is

found, known as iterative processing, is a key element of the scientific process. For example,
in image processing of noisy satellite data, one may iterate through the use of various image
filtering kernels before the received images can be considered noise-free and can be pro-
cessed with other imaging technigues, such as image enhancement or pattern recognition

MAP
— ™ SIMULATE RENDER [—®7 INTERPRET
(TRANSFORM)

<— TERMINAL MODE — ‘ % GRAPHICS MODE

a)
™ SIMULATE L MAP > RENDER [—®™
(TRANSFORM) INTERPRET
<— GRAPHICS MODE e

b)

Fig. 1: Iterative scientific processing. a) Traditional approach, b) Using an application builder.

algorithms. Fig. 1a shows a block diagram of a traditional iterative scientific processing. It
consists of four main steps: (@mputer simulationwhich may also include data input and
data processing, (bhapping where the simulation data are transformed into a displayable
form, (for example, data may be mapped to a color palettegr{dering where the data are
plotted or displayed on a computer screen, andnfdypretation. In a traditional setting,
simulation and mapping are executed in "batch" mode on a main-frame or super-computer
using a terminal interface and only the rendering step is performed interactively on a graphics
terminal or workstation. Data renderers, such as PlPand the Personal Visualiz&

provide great flexibility in viewing data, but have no control on the simulation and mapping
process.

Advances in workstations, graphics, and visual languages now allow for the complete scien-
tific cycle to be executed interactively in "graphics" mode (Fig. 1b). The user can visually
program and control both the data viewing parameters and the system variables. Such visual
programming environments are usually called Application Builders. In general, an applica-
tion builder is a visual environment that allows a user to: (a) create a block diagram of his
application by graphically connecting system "blocks," (b) graphically control input, output
and simulation variables, and (c) visualize the data. Examples of application builders include
apE B! 4 and AvSDP! for the processing of volumetric data (for example, data generated
from simulations in fluid dynamics), HP VEE for instrument control and data procédsing

and Gabriel”! for data communication and signal processing.

In this paper we present a general overview of Khoros, a visual environment developed at the
University of New Mexico, with special emphasis on its tools for image and signal process-
ing. Khoros was originally developed for research in image processing, but now it is being
used as a research and development tool in a variety of scientific applications, including geo-
graphical imaging systems (GIS), medical imaging, and distributed processing. Because of
its rich collection of signal and image processing routines, Khoros is particularly attractive as
a prototyping tool in research in image processing.

Section two presents an overview of Khoros and its tools for image processing and analysis.
The Khoros tools for digital signal processing are discussed in section three. Other tools in
the Khoros environment are presented in section four. We conclude with a short discussion
on the future features of Khoros and a summary.

2. Khoros Overview

Khoros is an integrated software development environment for information processing and
visualization. Khoros has been under development at the Department of Electrical and Com-
puter Engineering at the University of New Mexico since 1987. It includes a visual program-
ming languagedantatg [®!, code generators for extending the visual language and adding
new application packages to the system, an interactive user interface editor, interactive image
display programs, surface visualization, an extensive library (over 260 routines) of image
processing, numerical analysis, and signal processing routines, and 2D/3D plotting packages.
Besides its use in research in image processing, pattern recognition, GIS, and other related
fields, Khoros may also be a valuable tool for teaching image and signal processing.

2.1 Cantata

Fig. 2 shows a snapshot @dntatg the visual programming environment for the Khoros sys-
tem. Cantata is a general purpose programming language based on the data flow paradigm.
It includes support for conditionals, iteration, and subprocedures. Fig. 2 shows a block dia-
gram of a simple image processing application and output results at various stages of execu-
tion. Each element of the block diagram is calleglyph Glyphs are placed on the cantata

Ll CIEARICS JEHIH 2 YIeem) 1vzrses v Lo-droe-ens 120 obs G0E o Scksw

i

| |=‘PJI= HU"Z_ITLE: | I ([S K I I COHLSRZ IR I | ZTIKE REZZIHG | |E:W. “PIIIEES-IH:I

-1 I I o H:z U I | SHk: THL-:IY |

Tein TetiA - Awheoan

[db a 113 = . FIUNE]

————— w otk e o OH LY -

12T &9

Fig. 2: Block diagram of an image processing application in Khoros.

canvasby selecting the appropriate routines either from the top menus (INPUT SOURCES,

OUTPUT, IMAGE PROCESSING, etc.), or from a list of all available routines from the
ROUTINES menu at the left of thmnvas. Glyphs are connected together by clicking at the
appropriate input/output glyph arrows.

In this example on edge detection, input (fribtRI_inpud is a multiband MRI image, where

each band represents a slice of the MRI scan of a human head. vB&yptsptlselects one

of the MRI slices. That image is subsampled usingv#figinkroutine and is displayed with
theput_updatelyph. (Subsampling is not necessary in edge-detection, but it is done here so
that all output images can fit nicely on the screen.) After differentiatiiff)(and threshold-

ing (vthresh), the edges of the input slice are displayed again ysinigupdate Glyph
vmskelcomputes the skeleton of its input so that a refined set of edges can be obtained. The
FFT glyph computes the logarithm of the norm of the 2-D FFT of the subsampled scanned
image. The original multi-band image is also input toahemateglyph. Theanimaterou-

tine can be used to either browse through the various bands of the input image or to animate
them. Glyphs communicate via temporary files or shared memory, depending on the system
architecture and the user’'s preference. The entire workspace, the data flow, and intermediate
results can be saved and restored for later use.

From Fig. 2, on top of each glyph there are three iconic buttons. A click drothkicon
removes the glyph from the cantata canvas. A click orotheff switch, turns on/off that
application, and a click on the middle (text) icon opens a window that displays information
and control options for that glyph. The tree-like icon, in the middle of a glyph, appears only
if distributed processing is enabled. A click on that icon allows the user to specify the
machine that will execute that glyph. For example, in Fig. 2, mdekTewill be executed

on host hpkronos.hpl.hp.com. The rest of the glyphs will be executed on the local host.

2.2 Glyph Control

A major difference and advantage of Khoros from other application builders such as apE and
AVS is that a single workspace is used for both data flow and module control. This feature is
particularly attractive in cases were many similar modules are used. When a separate
workspace is used for control, it is often difficult to remember the correspondence among
control and execution modules. In Khoros, the control panel (or graphical user interface
(GUI)) for each glyph is enabled by clicking on the middle "text" icon. For example, Fig. 3
shows the control panels of the threshold glytitresh The threshold routine is part of the
segmentatiorset of image processing routines. A list of all available routines in this set is
shown in Fig. 3. For the threshold operation, one can control the lower and upper threshold
levels (set here at 128 and 255 respectively), and can define the value of the non-zero Pixel
level. On-line help is provided via the "HELP" buttons.

ik il w s o] Feoarztmlv s br-spectont For bhe oHbLS e

= 1 !iI I 11 | | (L, ol -H e H | | Hl W | I nr: 1 n III-I

il | | F ol oG

LT T PYR L FON T

Ll
(SIS

FE-

Samccaa By T oy el oy Tl dms

st e Ll F e BT el T ER - AT T - EA
B RN I AR TFAL SR I TS N |

we dhemabe Al [2
s Ihceabe o el |J-, |<;|
o Ten Tt W T | &3

Fig. 3: Graphical user interface for the threshold glyph.

2.3 Data Types

Khoros uses a unified data format for all its modife@/ol. I, Chapter 1). A single format
facilitates data interchange among the Khoros routines and the development of new modules.
The Khoros format (VIFF) includes information for an application to properly interpret the
data and perform basic error checking. The VIFF data structure is used for both 1-D and 2-D
data processing and the visualization of 3-D data. It has a 1024 byte header, followed by
(optional) map and location data, and the image data. The header provides information on
data storage and interpretation, data location (implicit or explicit), and the color space. The
VIFF header is extensible for future applications such as multi-dimensional data processing
and 3-D data rendering. Because of the wide range of existing image data formats (i.e, GIF,
TIFF, raster, PBM, etc.) Khoros includes many data conversion routines for easier processing
of existing data.

2.4 Program Hierarchy

Cantata allows an hierarchy of workspaces so that the visual complexity of large data flow
graphs can be reduced. Multiple glyphs can be combined into another cantata workspace.
Then that workspace can be used as a regular cantata glyph. Fig. 4 shows the structure of the
MRI_inputglyph used in Fig. 2. It consists of twoput modules and theount_loopand
vbandcombmodules. The purpose of this sub-procedure is to combine a set of MRI scanned
images into a single "multiband” image, where each band represents an MRI slice. This

This figure is not currently available!
Fig. 4: Block diagram of the MRI_input subprocedure.

example also shows the use of global variables and loop control within cantata. Module
vbandcomlzombines two (or more) input images into a single image. The output image has
as many image bands as the sum of bands in its inputs. Denote hyihga@:0, 1, 2, ...,
N), the i-th slice of the MRI scan. The flow diagram in Fig. 4 evaluates the following loop:
vbandcomb -il1 head.0.img -i2 head.1.img -0 head.out.img
fori=2 to N do
vbandcomb -i1 head.i.img -i2 head.out.img -0 head.out.img
done
In Fig. 4, one of the input glyphs (the inputctmunt_loop points to head.0.img and the other
to head.img. The final output is available either from the outpuwtzindcomior from the
top right output otount_loop

2.5 Execution Scheduling

A visual language process is analogous to an operating system process. It is a running visual
program with a state and data. The functionality and the execution of the operators, and the
characteristics of the data that an operator works on vary dramatically from one visual lan-
guage system to the next. The differences can be attributed to the fact that each system is try-
ing to optimize the visual language process for a specific application domain or computing
architecture.

In cantata, there are three separate phases of the process that are re-evaluated continuously:
translation, scheduling, and dispatching. The translation step is an interpretation of the visi-
ble network of connections and glyphs into a recursive netlist. The netlist contains such
information as whether a glyph is a source or a sink, whether valid data is available at the
input of a glyph, and whether the parameters have been modified. The netlist information is
used as input into the scheduler. The scheduler can be run in a data driven or demand driven
(responsive) mode. In either case, glyphs are scheduled if either their parameters have been
modified or data at their inputs is invalid. All glyphs that are scheduled are then dispatched
as local or remote Unix Processes t. The dispatcher uses input from the visual language to
determine both the location of execution and the method of data transport (file, socket, shared
memory).

2.6 Tools for Image Processing

Khoros provides library routines or executables for a large range of image processing appli-
cations, including basic pixel-arithmetic, low-level image processing, and image analysis.
Routines are available either as "stand-alone" programs that can be used from a terminal or in
cantata, or as library calls that can be linked by the user during the development of new code.
Table 1 shows a partial list of the routines available now for image processing. These rou-
tines are divided into three main classes: Arithmetic, Image Processing, and Image Analysis.
The Arithmetic class includes all the pixel-level arithmetic and logical operations. The core
of image processing routines (filtering, geometric manipulation, and transforms) is in the
Image Processing class. Finally, the Image Analysis class includes various routines in seg
mentation, feature extraction and classification.

3. Tools for Digital Signal Processing

Although Khoros was originally developed as an image processing environment, it has a rich
selection of tools for digital signal processing. Hence, it can also be used as a powerful pro-
totyping tool for DSP applications. Fig. 5 shows a cantata environment with a simple filter-
ing application. A sinusoid signal (generatedlgsin) and white Gaussian noise (generated

in dggaus} are added together wradd The noisy signal is passed through a low pass filter
(dfilter) designed indfiltlp. Finally, the noisy and filtered signals are displayed in both the
time and frequency domains usirgrism2 The frequency response of the signals are evalu-
ated in the compositeEFt-norm modules. EachHFT-norm module consists of thdfftld

glyph, which computes a 1-D complex FFT, followed bydhgpglyph which evaluates the
logarithm of the norm of its input data.

The displayed plots show the outputs of this flow graph for a low-pass Butterworth filter with
cutoff frequency at 0.1 Hz and rejection frequency at 0.4 Hz. The left plot shows the noisy

T Unixis aregistered trademark of AT&T.

Table 1
Khoros Routines for Image Processing

ARITHMETIC

Unary Arithmetic Scale, Normalize, Invert, Clip, etc.

Binary arithmetic Add, Subtract, Multiply, Blend, etc.

Logical Operations And, Or, Xor, Shift.

IMAGE PROCESSING

Spatial Filters Sobel, Median, 2-D convolution,
Edge Extraction, etc.

Morphology Erosion, Dilation, Skeletonization, etc

Transforms FFT, Hadamard.

Frequency Filters LPF, BPF, HPF, Band-Reject,

Inverse, Wiener Restoration, etc.
Geometric Manipulation| Shrink, Rotate, Transpose,
Interactive image warping, etc.

Subregion Extract, Insert, Pad, etc.

IMAGE ANALYSIS

Segmentation Threshold, Medial Axis Transf., etc.

Feature Extraction Shape analysis, Region Matching,
Fractal Analysis, Texture Extraction, efc.

Classification K-means, Labeling, LRF-classifier, etc.

(dotted line) and filtered data (solid line) in the time domain, and the right plot shows the cor-
responding data in the frequency domain. The Z-transform of the low-pass filter is computed
by the filter-design glypMdfiltlp. In designing the filter, the user needs to provide the type of

the filter (Butterworth, Chebychev I or Il), the sampling frequency, the cutoff and rejection
frequencies, and the passband and stopband gains. Similar glyphs also exist for band-pass
and high-pass filters. Table 2 shows a partial list of the available Khoros routines for DSP.
The list includes data input generation routines, transforms, filter design tools, DSP opera-
tions, and matrix operations.

3.1 Interaction

The major advantage of application builders is the ability to easily view data and interact at
different stages of the data flow graph, and the ability to selectively add, delete, and control
modules. Thus, one can experiment with any part of the iterative process. For example, in
the flow graph of Fig. 5 one can change the filter design typdfiltiip) from Butterworth to
Chebychev with a click of the mouse, and then see the updated plots. Designs could even be
compared side by side. Similarly, one could change the input signal or noise parameters and

cawlw LoArcent or kv . HLL uiskEe

FLITEI) (5

W

|=P:|'l'= HI™I IT'=§.| AT AR I | [FL R =) | IF °F =50F==1H, Alre | F='I’FF='I|'.|

=T

ey e

]

| Il SITE=ETIC | RE ALl FEFE T OCIS |

==

E¥==LE "I0=C

Ao

Hee o (o b Aor trzas

w o IH|

Fig. 5: Block diagram of a DSP application in Khoros.

evaluate the performance of a specific filter design.

10

Table 2
Khoros Routines for DSP

INPUT Sinusoid, Pulse,

Noise (Gaussian, Rayleigh)
MODIFY SEQUENCE Normalize, Subsample, Scale,
Window, Extract, Insert, etc.

TRANSFORMS FFT/IFFT, Hartley, Hadamard.

FILTERS LMS Transversal, LMS Lattice,
Butterworth, Chebychev | or Il, etc.

DSP OPERATIONS Autocorrelation, Cross-Correlatign,

Spectral Estimation, etc.
MATRIX OPERATIONS | SVD, LU
Eigenvalues/Eigenvectors, etc.

4. Companion Utilities

In addition to the programs for image and digital signal processing, Khoros provides many
other interactive toolsEditimageis an interactive image editor, and can be used to extract
information on an image, edit it, change its colormap, or annotate it with text and graphics.
With Viewimageone can combine imagery data with elevation data to create a 3-D image of a
terrain. This module is particularly useful in GIS applications.

In many applications, such as the evaluation of medical images by doctors located at different
sites, it is important that the users of a visualization system can share and interact on the
same data simultaneously. Khoros allows that capability thrQagitert All Khoros inter-

active applications inherit the ability to broadcast and receive user events. Concert is the pro-
gram that coordinates multiple copies of the Khoros application. For example, the command
concert -command editimage -d2 remote_machine.company:0 will start

two copies okditimage one locally and one remote. However, both the local and the remote
users will have equal control of each others screens. Using concert, the X events that corre-
spond to a user event, such as a button click or the motion of a scroll bar, are broadcast to all
the other copies of the application that concert started. The result is that the local copy of the
application can receive events from both the local and the remote user.

The same X event broadcasting technique can be used to create journal files of a user session.
Instead of broadcasting to another application, the events are sent to a file. This file can then
be used as the source of user events for an automatic playback of the recorded session.

As mentioned before, Khoros is not just a visual programming and data visualization envi-
ronment, but a complete development system. Regardless of the number of available

11

modules in any visualization system, users always want to incorporate their own versions of
existing modules or new ones. Khoros provides support for both the generation of code and
the user interface for new moduleSomposers an interactive editor of User Interface Spec-
ification (UIS). It allows the user to interactively customize the user interface of an applica-
tion 1%, Finally, Ghostwriteris a program development toolkit that allows the user to inte-
grate the user interface created by Composer, new code and documentation, and code from
the Khoros libraries, into a new module and into the Khoros environment.

5. Future Directions of Khoros

There is much excitement about the capabilities of Visual Development Environments both
for PC’s and Workstation8, 121, However, the popular view of visual development is
really only a small and incomplete component of the overall software development process.
One main focus of the Khoros project is to merge two currently separate visual programming
paradigms: the direct manipulation of the graphical user interface development and the data
flow visual programming (cantata). This merger will create a more complete visual program-
ming environment and in some cases will allow an end-user to write complete programs
without using any textual (i.e. C) code. This visual programming environment will be aug-
mented by visual CASE tools for program maintenance and installation and will be inte-
grated into existing software development products such as those offered by CenterLine and
Hewlett-Packard.

Another emphasis of Khoros is distributed computing. The applications that are built using
Khoros tools should run as a network application, utilizing resources as appropriate. The
concert program and the distributed computing capability in cantata are examples of this. In
general, the intention is to broaden the applicability of Khoros as a software environment for
data processing and visualization.

6. Summary and Conclusions

This paper presented a general overview of Khoros, with emphasis on its tools for image and
DSP processing. Khoros is a very powerful prototyping tool for a variety of applications. It
is being provided free to the public, as an Open System, via anonymous ftp, and it is being
supported on a large array of hardware platforms, from workstations to super-computers. Its
tools allow visual data-flow programming, data visualization, and the easy integration of new
modules. The current version (1.5) lacks the 3-D rendering capabilities of other application
builders (i.e. apE, AVS), but compensates with its excellent support for a large number of
image processing functions. Present workstations have excellent graphics capabilities, but
they may lack the processing power required for compute-intensive applications. The Khoros
capability for distributed processing allows users to interface to a computer network of (prob-
ably) heterogenious machines under a single visual environment.

12

7. Acknowledgments

We would like to acknowledge that Khoros is the outcome of an on going team effort by the
Khoros development group at the University of New Mexico.

REFERENCES

. State of the Art in Data Visualization, ACM SIGGRAPH '89 Course notes.
. The Personal Visualizer User’s Guiddewlett-Packard, 1990.
. D. S. Dyer, "A dataflow toolkit for visualization," IEEE Comp. Graphics and Applications, Vol. 10, No.

4, pp. 60-69, July 1990.

. M. V. Wettering, "apE 2.0," Pixel, pp. 30-35, Nov./Dec. 1990, Pixel Communications, Inc.

5. C. Upson et al., "The Application Visualization System: A Computational Environment for Scientific Vi-

11.

12.

sualization," IEEE Computer Graphics and Applications, pp. 30-42, July 1989.

. HP VEE-Engine and HP VEE-Test Refererttewlett-Packard, P.N. E2100-9003, Apr. 91.
. E. A. Lee, W-H. Ho, E. E. Goei, J. C. Bier, and S. Bhattacharyya, "Gabriel: A design environment for

DSP," IEEE Trans. on ASSP, Vol. 37, No. 11, pp. 1751-1762, Nov. 1989.

. J. Rasure and C. Williams, "An integrated data flow visual language and software environment," Journal

of Visual Languages and Computing, Vol. 2, No. 3, Sept. 91, Academic Press.

. Khoros Programmer’s ManuaUniv. of New Mexico, 1992.
10.

D. Argiro and J. Rasure, "An X windows based application programming system," Xhibition 92: A win-
dow on distributed computing, San Jose, 1992.

Charles Petzold, "The Visual Development Environment: More than a pretty face?", PC Magazine, pp.
195-236, June 16, 1992.

Steven Mikes, "Visual Programming Tools for X," X Journal, Vol. 1, No. 5, pp. 50-62, 1992.

13

14

