
Reprinted from September 1975 Journal of Dynamic Systems, Measurement, and Control

J. S. ALBUS
Project Manager.

Office of Developmental
Automation and Control Technology,

National Bureau of Standards,
Washington, D.C.

I A New Approach to Manipulator Control: The
I Cerebellar Model Articulation ControllerI (CMAC)’

CJI A C i s an udaptive system by which control .functims JOT many degrees offreedom
operating sirnulfaneously can be compuied by referTing lo a table ra[her than by mathe-
matical solution of sirnultaneous equations. CJf AC combines input commands and
feedback variables into an input vector which i s used to address a memory where the
appropriate output variables are stored. Each address consists of a set of physical
nhemory locations, (he arithmetic sum of whose contents i s (he value of the stored
variable. The CM AC memory addressing algorithm takes advantage of the continuous
nature of the control junction in a way which promises to make i t possible to store the
necessary data in a physical memory of practical size.

Introduction
Simply stated, the control problem for a manipulator i s that

of finding what, each joint actuat,or should do at every point in
time and under every set of conditions. In order to carry out
any movement, it i s necessary to drive the various joints through
a sequence of positions as a function of time. The drive signal
to each joint actuator is, in generd, a function not only of time,
but of many other variables as well. These include position,
velocity, and acceleration loading in most, or all, of the joint,s;
force and touch signals from various points on the manipulator;
visual or other feedback data concerning the position of the end
point; plus measurements of bending, twisting or backlash in
various structural components. The drive ,signals depend on
higher level input rariables which identify the particular task
which i s being performed or end point movement which i s being
executed. I f the manipulator i s interacting with a dynamic
environment, the forces in the various joints must also be func -
tions of positions, velocities, and accelerations of external ob-
jects as well as forces imposed by external sources. Thus, al-
though the manipulator control problem may be stated in rather
simple terms, i t s solution i s very complicated indeed.

I n ordcr t,o deal with a problem of this comp1exit.y wit,hout

either sidestepping the computational difficulties, as in direct
human control systems [l,2],2 or ignoring most of the relevant
variables, as in point-to-point industrial robot control [3], it i s
necessary t.o partition the control problem into manageable sub-
problems [4]. For example, in order for a person to pick up an
object, such as a glass, it, is f i rs t necessary to decide that “pick-
up-glass” i s a (,ask to b e accomplished, as opposed to “brush-
teeth,” “comb-hair,’’ or any number of other potential tasks.
Thus, the task name “pick-up-glass” i s the first variable relevant
to the manipulator control computation. It i s also necessary to
measure t h e position of the hand relative to the glass and com-
pute what direction vector i s required to move the hand into
contact with the glass. This vector constitutes anotHer input
variable relevant, to the manipulator control problem. In the
human motor system, these f i r s t two variables are at the conscious
level. Most of the suhsequent comput,ations are entirely snb-
conscious. No one thinks about what their elbow or shoulder
joints are doing during the “pick-up-glass” task, or how hard
each individual muscle i s pulling. They simply think in terms
of what direction their hand should move. In the human manipu-
lator control problem, the detailed computations of what each
muscle m u s t do in order to coordinate with other rr.uscles so as
t o produce the desired movement are le f t up to lower level,

__ subsconscious computing centers.
’Conlnbution of the National Bureau of Standards. N o t subject to copy-

right.

Contnhuted by the Autuumattc Control Division for publication in the
JOURNAL OF h N A r a l C SYIITEMR. ~ ~ ~ h 0 ~ ~ M ~ N T ,AND CONTROL. Manuscnpt __
received at AYME Hdqusrters, Juno tl, 1875. ’Numbers in brackets designate References at end of paper.

220 1 S E P T E M B E R 1 9 7 5 Transactions of the ASME

l ior controlling mechanical manipulator systems, the compuh -
tiona required t o coordinate individual joint rates so its to produce
a particular motion of the end-effector are usually solved by
comput,ations bnscd on trigonometric relationships bet,wecn
structural members of the manipulator itself. The resolved
motion rate control system [5, 61 is illustrative of this technique.
In the resolved motion rate cont.rol system, end-effector motion
i s expressed as a function of all t,he individual jo int motions. A
set of equations i s written in the form

ic = J(8)0 (1 1
where 8 are velocities of individual joinl angles and it arc com-
ponents of the end-point velocity insome other coordinate system
such as Cartesian. Jce) i s t>heJpcobian matrix. I f .Ii s inverted,
it is then possible to solve for 8 in terms of it

e = J- L (t l) i r (21
Thus, given a desired endpoint rate i,it is possible to use a

!mall computer to solve for the required joint velocities 8. Thesc
tl are then converted to voltages and used to drive the joint,
actuators.

The type of computations performed by the rcsolved mot ion
rate control system, and other similar systems, are typically
based on more or less idealized mathemat,ical formulations. Such
syst,ems usually take into account only joint. angles and rates.
With some diflicult,y other factnrs such as gravit,y loading and
inertial forces can be included [4, 71. However, as more and more
real-world variables and nonlinearities arc introduced into the
problem, the trigonometric formalisms of syst,ems of this type
become less and less tractable. I t is simply not possible to deal
with many degrees of flexing and twisting or a very broad range
of force, touch, and acceleration input,s by systems of simul-
taneous equations which can be solved by computer programs of
practical speed and size.

When one examines the type of manipulation tasks routinely
performed by biological organisms such as squirrels jumping from
tree to tree, birds flying through the woods, and humans playing
tennis or football, one is l e f t with the distinct impression that
the solution of trigonometric equations i s a totally inadequate
method for producing truly sophisticatcd motor behavior. I t
seems clear that the present mathematical formalisms for
manipulator control are in deep trouble when addressing the
t,ype of mechanical control problcms which arc obviously trivial
for the brain of the tiniest bird or rodent.. I f the fundamental
principles of computation used by biological organisms were
understood, it seems quite likely that an entirely new generation
of manipulation control systems would be developed which
would exhibit sensitivity and dexterity far beyond what is pos-
sible with present mathematical techniques. This is not to sug-
gest; that, the proper course for research in the manipulator con-
t,rol field should be to attempt to model the structural properties
of the biological brain. Early attempts along these lines were
notoriously unsnccessful in producing any significant results and
the subsequent disillusionment has strongly prejudiced the in-
tellectual community against seeking any guidance from the
numerous existence theorems provided by nature. There is
good reason to believe, however, that it may be possible to du-
plicate the functional properties of the brain’s manipulator con-
trol system without necessarily modeling the slruclural charac -
teristics of the neuronal substrate.

Onc part of t,he brain that seems to be intimately involvcd in
motor control processes i s the cerebellum. Recent anatomical
and neurophysical data has led to a detailed theory concerning
the functional operations carricd out by the cerebellum 18, 91.
Input, to the cerebellum arrives in the form of sensory and
proprioceptive feedback from the muscles, joints, and skin
togethcr with rommands from higher level motor ccntcrs con-
cerning what movement is to b e performed. According to the
theory, this input constitutes an address, the contents of which

Journal of Dynamic Systems, Measurement, and Control

are the appropriate muscle actuator signals required to carry out
t,he desired movement. A t each point in t,inle the input addresses
an output which drives t,he muscle control circuits. The resulting
motion produces a new input and the process i s repeated. The
result i s a trajectory of the limb through space. A t each point
on the trajectory the s h t e of the limb is sent to the cerebellum
as input., and the cerebellar memory responds with actuator
signals which drive the limb t o the next point on the trajectory.

A neurophysiological theory of how the cerebellum accom-
plishes these tasks has been published elsewhere [lo, 11). This
paper describes the mathematical concepts of how the cerebellum
structures input data, how it computes the addresses of where
control signals are stored, how the memory is organized, and how
the output control signals arc generated. These basic principles
have been organized int,o a manipulator control system called
CMAC (Cerebellar Model Articulatiw Controller).

The Cerebellum and the Perceptron
Certain features of the neurophysiological and anatomical

structure of the cerebellum has led t o the theory [9] that the
cerebellum i s analogous in many respects to a Perceptron [12].
The Perceptron i s a member of a whole family of trainable pat-
tern-classifying machines, or machines which distinguish between
patterns on the basis of linear discriminate functions [13].
Physically, a Perceptron is structured as shown in Fig. 1. Be-
cause the Perceptron was originally inspired by attempts to
model the brain, it embodies numerous neurophysiological terms.
Input vectors are spoken of as sensory cell firing patterns. The
input vectors (or sensory cell patterns) S may be either binary
vectors or R-ary vectors. The appearance of an input vector S
on the sensory cells produces an association cell vector A which
also may be either binary or R-ary. In this paper, A will be a
binary vector. This association cell vector multiplied by the
weight matrix W produces a response vector P.

Mathematically the Perceptron may be represented by a pair
of mappings

.f: S + A

9: A - t P

SENSORY ASSOCIATION ADJUSTABLE RESPONSE
CELLS CELLS WEIGHTS CELLS

Fig. 1 Classical Perceptron. Each sensory cell receives stimulus
either +1 or 0. This excitation i s passed on to the association Cells
witheithera +lor -1multiplying factor. If theinputtoanassociation
cell exceeds 0, the cell fires and outputs a1; if not, it outputs 0. This
association cell layer output is passed on to response cells through
weights Wi,], which can take any value, positive or negative. Each
response cell sums i ts total input and if it exceeds a threshold, the
response cell R j fires, outputting a1; if not, it outputso. Sensory input
patterns are in class 1for response cell R j if they cause the response
cell to fire, in class 0 if they do not. By suitable adjustment of the
welghts Wt,j, various classifications can be made on a set of input
patterns.

S E P T E M B E R 1 9 7 5 1221

ASSOCIATION
CELL WEIGHT

VECTOR VECTOR

SET OF ALL
POSSIBLE
INPUT VECTORS

ASSOCIATION
CELL WEIGHT

VECTOR VECTOR

Fig. 2 A Perceptron in which an input vector 5 Is mapped onto an Fig. 3 The Perceptron’s ability to generalize derives from the over-
arsociatlon cell vector A. A * Is the set of non-zero elements in A. lap, or intersection A*l A AD

2. I f the intersection A 5 A A % Is null, the
The response cell sums ai l weights attached to association cells in response of the Perceptron to the two Input vectors will be indepen -
A’. dent and generalization will not occur. I f the Intersection A’, A A*r

i s not null, the response cell will be affected in the same way for both
input patterns SIand S2 by al l wolghts connected to association cells
in A*, A A%.

s = (sensory input vector:)

A = {association cell vectors)

P = {response output vectors)

The function .f i s generally fixed, but the function y depends on
the values of weights which may be modified during the data
storage (or training) process.

When an input vector S = (SI, st, . ., SN) is presented to the
sensory cells, it i s mapped into an association cell vector A.
Define A * to be the set of active or nonzero elements of A as
shown in Fig. 2. The response cell sums the values of the weights
attached to active association cells to produce the output
vector P. Only the non-zero elements comprising A* affect this
hum. The input vect,or S can be considered an address, and the
response vector P the contents of that address. I f for any input
S, it is desired t o change the contents P, then one merely adjnsts
the weights attached t o association cells in A*.

Since a Perceptron does not have sufficient association cells so
that a unique cell or group of cells can be reserved for every
possible input pattern, individual association cells will typically
be activated by many different input patterns. This leads t o
overlap, or cross-talk, between input patterns which in some
cases is beneficial and in other cases leads to serious problems.

Consider, for example, the two input patterns SI and SZ which
activate two overlapping sets of association cells A*! and A*z
as shown in Fig. 3. I f i t is desired that the output of the response
cell for SI be the same as for SZ, then the overlap has decidedly
beneficial properties. For example, if the proper response has
been stored for SI, then SZ will elicit very nearly the same response
(differing only by the difference between w11 and wl?) without
any weight adjustment ever having been made for Sa. This
property is called generalization, because it is similar t o the
capacity of a biological organism to generalize from one learning
experience to another.

However, i f it is desired that the input vector S2 produce a
markedly different response from SI, then the overlap A*I A A*%
creates difficulty. Adjustment of all the weights attached to
cells in A*2 so as to produce the proper response for S2 will upset
most of the weights which contribute to the output for SI.
This is called learning interference, and i s similar to retroactive
inhibition experienced by biological organisms when presented

with highly similar stimuli for which different responses are re-
quired.

Learning interference can be overcome by repeated iteration
of the data storage algorithm for SI and S2. Repeated iteration
eventually leads to sufficiently large weights being attached to
the few association cells that are in A*I or A*t but not in the
overlap A*l A A*, so that a highly dissimilar output can be ob-
tained for SZ as opposed to SI.

I n summary, the Perceptron’s ability to generalize derives
from the overlap, or intersection A*1 A A**. I f the intersection
A*I A A*, is null, the response of the Perceptron to the two
input, patterns will be independent, and generalization will not
occur. I f the intersection A*1 A A** i s not null, the response cell
will be affected in the same way for both input patterns SI and
Sz by all weights connected to association cells in A*I A A*?.
Thus, the tendency will be for the response cell to produce a
similar output for both SI and Sz. The degree to which this
tendency affects the response i s the degree to which the Per-
ceptron generalizes.

The Perceptron’s ability to dichotomize, or produce dissimilar
outputs for different input patterns, is derived from the dif-
ference between A*1 and A *t. I n general, the smaller the inter-
section A*1 A A*%,the easier it is to find a set of weights which
will produce a dissimilar output for SI as opposed to SZ.

The cont,rol function for a manipulator i s typically a rather
smooth continuous function. This means that for every point in
input-space which requires a certain response, there is a small
neighborhood of input-space points around that point for which
very nearly the same response is required. Within that neighbor -
hood, the control system should produce approximately the same
response. However, what a part,icular joint of a manipulator
should do at one of two widely separated points in input-space
cannot be predicted.from information associated with the other
point. Thus, the control function for widely separated input-
space points should be independent. This implies that a Per-
ceptron -like controller which generalizes only over a small
neighborhood of input-space, and which has good dichotomizing
properties for points well separated in input-space would be B

good controller for a manipulator.
In more precise terms, iftwo input vectors Si and S, have a

small input-space distance, then the intersection A*< A A* j

222 1 S E P T E M B E R 1 9 7 5 Transactions of the ASME

Table 1 Table 2

S m*

1 1 1 1 1 0 0 0 0 0 0 0 0
2 0 1 1 1 1 0 0 0 0 0 0 0
3 0 0 1 1 1 1 0 0 0 0 0 0
4 0 0 0 1 1 1 1 0 0 0 0 0
6 0 0 0 0 1 1 1 1 0 0 0 0
6 0 0 0 0 0 1 1 1 1 0 0 0
7 0 0 0 0 0 0 1 1 1 1 0 0
8 0 0 0 0 0 0 0 1 1 1 1 0
9 0 0 0 0 0 0 0 0 1 1 1 1

An example of a s + m mapping from the decimal variable s
to the binary variable m.

should be large. Conversely if Si and S j have large input-space
distance, A * i A A * j should be small. Input -space distance i s
the R-ary equivalent of Hamming distance between binary
vectors, and wil l be defined as

N

Hij = IS;) - ~ j k l

t-I

where Sik are the components of the input vector Si and N is the
dimensionality of SI:

I f HI^ is small, A * i A A * j should be large. As Hij grows larger,
A*I A A* j should get smaller until, at some value of Hij, A* i A
A * j should be null.

This characteristic cannot be achieved in the classical Per-
ceptron where for any input S the number of elements in A* i s
usually a large percentage of the total number of association
cells. I n the classical Perceptron A*< A A*, i s large and gen-
eralization is good for almost every pair of input patterns Si and Si.
In order to achieve the situation where A* i A A* j i s null for almost
all Si and Sj except those with n small input-space distance, it is
necessary t o make the number of association cells much larger
than /A*] . /A* / is defined as the number of elements in A*.
I n the cerebellum it i s believed that for any input vector S, [A * /
i s less than one percent of the total number of association cells
[9]. lApl i s the number of association cells physically implemented
by CMAC. jApl is typically chosen as at least 100 times /A*l .

This raises the question of whether it i s possible to have a
unique mapping S -+A where /Ap/ = 100 IA*/. I f each variable
in S can take on R different values, then there are RN possible
input patterns. If]Ap[= 100]A*], then the number of possible
ways to select lA*l active cells out of lAp! potentially active cells
i s thenumber of combinationsof [Ap/things taken]A*[at a time,

or (y) where U = IA*I and V = lA*l-
IA’I

(VU)! ,(VU - U)U(y) =U!(VU - U)! U!

Therefore, so long as RN < 99 i t is theoretically possible
t o find a unique S + A mapping where /A e/ = 100 /A*\.

The CMAC System
Having established what kind of characteristics the mapping

S + A should have, and having determined under what circum-

stances the mapping is possible, the question is then to devise
an algorithm which will actually produce the desired results.

The CMAC Mapping Algorithm. The CMAC algorithm func-
tions by breaking the S + A mapping into two sequential
mappings

S- tM (7)

and then

M + A

Each R-ary variable si in the input vector S = (si, st, . . . SN) is
first converted into a binary variable mi according to the follow-
ing rule:

1 Each digit of the binary variable mi must have a value of
“1” over one and only one interval within the range of s i and
must be “0” elsewhere. For example, in Table 1, the digit p,
i s “1” over the interval 3 5 s 5 6 and zero elsewhere.

2 There are always]A* / “1”s in the binary variable mi for
every value of the variable si. I n other words, (m*(= IA*l
where m* is the set of binary digits in m which are in the “1”
state. In the mapping shown in Table 1, /m*(= 4.

3 The names of the subscripts of the binary digits in mc are
then tabulated against the values of the variables s. The order
of the subscripts i s arbitrary except that a subscript must never
change i ts position in the order. This is illustrated in Table 2.

For the one-dimensional case shown in Table 2, the relationship
between input-space distance HI^, and the number of element
in the intersection A*i A A *j can be described by the formula

[A*{/ - [A*; A A*jl = Hij for Hij 5 (A*I] (9

For example, ifSI = (1) and SS = (31,
then A*I A A*, = (c, d).
Now since]A*ll = 4
and I {c, d) I = 2, then

IA*1(- IA*IA A*z/ = 2 = HIZ

Multidimensional Mappings. The complete mapping S + M
consists of N individual mappings s i --$ m*i for all the variables
in the input vector S = (SI, 82,, SN).

Journal of Dynamic Systems, Measurement, and Control

Consider for example a two-dimensional input vector S =
(SI, SZ). Assume 1 5 SI 5 5 and1 5 sz 7. Again we willchoose

First, make two mappings
(A*/ = 4.

SI -+m*1 and SI-.) m*t

S E P T E M B E R 1 9 7 5 f 223

i--
An example of a pair of mappings SI -+ me

1 atld 82 -+ m*2 fol
a two-dimensional input vector S = (sl, st)

as shown in Table 3.
In the case where S has two or more dimensions, A * i s derived

by concatenation of the corresponding elements in each of the
m*<as shown in Table 4. For example, ifSI = 2 and sz = 4, A *
i s formed by concatenation of corresponding elements in m*l =
{E,B, C, D) and m*2 = (e, j,g, d). Thus A * = (Ee l Bf, Cy,
Dd) for S = (2, 4). A complete representation of A* for all
values of S is shown in Table 4. Note that in the two-dimensional
mat,rix, approximately t.he same relat,ionship exists between
input-space distance Hij, and t

j

he number of elements in (A * (-
IA*I A A * z ~as in the one-dimensional case. For example, be-
tween SI = (3, 5) and Sz = (8, 2), the input,-space distance
HIZ = 3. The intersection A*I A A * z has one element (Ee),
and !A* ! = 4. Thus

\ A * / - /A*IA A*21 = 3 = HI2

However, examination of the matrix in Table 4 reveals that
diagonally adjacent A *'s sometimes differ by two elements and
sometimes only one, whereas input-space distance for diagonally
adjacent vectors always computes as two. For example, in
Table 4 where SI = (4, 3) and SZ = (3, 4), the input-space dis-
tanceis2, whereas]A* /- IA*1 AA*21 = 1. Similrtrly, thevectors
SI = (1, 1) and St = (4, 4) hare an input-space distance of 6,
whereas they are only 3 positions distant along the diagonal, and
/A* l - /A* l A A**] = 3. On the other hand, along some di-
agonals, such as SI = (3, 3), St, = (4, 2), the input-space distance
and / A * / - /A*1 A A*21 are the same. It,should be noted, h o w
ever, that]A* / - /A* I A never decreases as the input -
space distance from Sl t o St increases. This implies that the
number of elements in the intersection A* 1 A A*2 decreases
monotonically as the similarity between SI and St decreases.
This is precisely the behavior which is desirable for thef:S -+ A
mapping in a manipulator control system because it produces
conditions conducive to generalization between input-space
vectors which are in the same neighborhood, and allows good

s2

7 0 0

6 1 1

1 1 2

4 2 3

, 3 4

2 2 3

I 2 2

1 2

'1

Table 5

0

0

1

2

3

8

2

3

0

0

1

1

1

1

0

5 s1

A diagram of the amount of overlap IA*I A A*!1 between the
vector Sl = (2, 3) and all other vectors SZ = (2 , ~) wlthin the
range of the input variables. This overlap diagram corresponds
to the particular j :S + A mapping defined in Table 4.

dichotomizing between input -space vectors which are not in
the same neighborhood.

Th is j:S + A transformation can be executed on input vectors
of any dimension S = (SI, SZ, . . . SS). Each input variable si
i s first transformed into a set of subscript names m*;. Then a
set, of active associate cells A * is formed by concatenation of the
corresponding elements in all of the m*%.The result i s that the,
number of elements in the intersection A*l A A** i s roughly
proportional t o the closeness in input-space of two input vectors
SI and SI regardless of the dimensionality of the input.

Shaping Input-Space Neighborhoods. We can define two input
vectors SI and S2 to be in the same neighborhood i f A*1 A A*t
i s not null. For example, in Table 2, the size of a, neighborhood
in input-space i s 3; Le., m*1 A m*2 is no t null for any two values
of s1 and SZ such that Is1 - st1 5 3. In more than one dimension,
the boundaries of a neighborhood become more complicated.
For example, Table 5 is a diagram of the amount of overlap
lA*l A A*21 between the vector SI = (2, 3) and S 2 = (i,j),i.e.,
any other vector within the range of the input variables. The
neighborhood of SI = (2, 3) i s composed of all points where

The size of a neighborhood obviously depends on the number
of elements in the set A*. It also depends on the resolution with
which each st -+ ml mapping is carried out. The resolution .of
each st -+ m, mapping is entirely at the discretion of the control
system designer. For example, the size of a neighborhood in the
one-dimensional mapping in Table 6 i s 1.5. (Compare Table 6
to Table 2.)

In multidimensional input-space, the neighborhood about any

/A*, A A*21 # 0.

Table 4

7 Ai, Bj, Cg, Dh Ea, Bj, Cg, Dh Ei, Fj, Cg, Dh Ei, Fj, Cg, Uh Ei, Fj, Gg, Hh

6 Ai, Bj, Cg, Dh Ei, Bj, Cg, Dh Ea, Fj, Cy, Dh Ei, Fj, Gg, Dh Ei, Fj, Gg, Hh

5 Ae, Bj, Cg, Dh Ee, Bj, Cg, Dh Ee, Fj, Cg, Dh Eel Fj, Gg, Dh Ee, Fj, Gg, Hh

4 Ae, Bj, Cg, Dd Ee, Bj, Cg, Dd Eel Fj, Cg, Dd Ee, Fj, Gg, Dd Ee, Fj, Gg, Hd

3 Ae, Bj, Cc, Dd Re, Bj, Cc, Dd Eel Ff, Cc, Dd Ee, Ff, Gc, Dd Eel Fj, Gc, Hd

2 Ae, Bb, Cc, Dd Eel Bb, Cc, Dd Ee, Fb, Cc, Dd Ee, Fb, Gc, Dd Ee, Fb, Gel Hd

1 Aa, Bb, Cc, Dd Ea, Rb, Cc, Dd Ea, Fb, Cc, Dd Ea, Fb, Gc, Dd Ea, Fb, Gc, Hd

1 2 3 4 5

A, B, c, D E, B, c, D E, F, c, D E, F, G, D E, F, G, H
SI

The set A * formed by concatenation of the corresponding elements of m*l and m*t from the two dimensional input vector S = (SI,
a) defined in Table 3. A t each point in the two-dimensional input-space, the four element set A * has a unique composition.

224 / S E P T E M B E R 1 9 7 5 Transactions of the ASME

INPUT COMMAND
FROM HIGHER
CENTERS>)-
SENSORY FEEDBACK
FROM ALL JOINTS

DESIRED
ADJUSTABLE

WEIGHTS

COMPUTED

SIGNAL pi
\
\

U
Fig. 4 A block diagram of the CMAC system for a single joint. The
vector S is presented as input to al l joints. Each joint separately
computes an S -. A* mapping and a joint actuator signal pi. The
adjustable weights for a l l joints may reside in the same physical
memory.

input vector S may be elongated or shortened along different
coordinate axes by using different reqolution si -+ m * ~mappings.
If, for example, ,sr + m*, is a high resolution mapping, and
s y -+ m*y i s a low resolution mapping, then the input-space
neighborhood about, S will be elongated along the y dimension
and shortened along the z dimension. A high resolution mapping
s i -+ m*i makes the composition of the set A * strongly dependent
on the input variable si (i.e., only a small change in s i i s required
i o produce a change in one or more of the elements in A*). A
low resolution mapping s j + 7n*i makes the composition of
the A * set weakly dependent on the variable s j (Le., a large
change in s i is required t o produce a change in any of the ele-
ments of A*). I f the resolution of the s j + m,; mapping i s made
low enough, the composition of the set A * will be independent
of the value of s j (Le., no amount of change in s j will affect A*).
In tJhe case where A * is independent>of si, it can be said that the
inprlt -space neighborhood i s infinite in extent along the j axis.

I t i s possible to construct s i + m*i mappings which are non-
uniform (i.e., high resolution over some portlions of the range
along the ith axis, and low resolution over other portions of t.he
same axis). By this means, neighborhoods can be made dif-
ferent sizes and different shape in various regions of the input-
space. This feature has useful practical applications which will
be discussed later.

Mapping into a Memory of Practical Size. Thus far, we have
described a means of performing the mapping j : S + A in a
manner which i s well suited t o producing generalization where
generalization i s desired, and dichotomization where that i s
desired. We have not, however, explained how this transforma -
tion can b e accomplished with a reasonable number of associa -
t ion cells. The concatenation of subscript names m*; produces
a potentially enormous number of association cell names. I f
each variable in S = (s,, ss, SN) has R distinguishable
values, then there are R” distinguishable points in input-space.
After the s i + m*i mappings, concatenation of the m*i sets to
obtain A * yields a potential number of association cel l names
on the same order of magnitude as RN. For any practical ma-
nipulator control problem, the number of input variables iV i s
likely t o exceed 10, and the number of distinguishable values R
of each variable will probably be 30 or more. The number 3010
is clearly an impossibly large number of association cells for any

If, however, it is not required for input vectors outside of the
same neighborhood t o have zero overlap, brlt merely a vanishing -
ly small probability of significant overlap, then it is no longer

practical control device. ,/

Table 6

S m*

1. O a, b, c, d
1.5 e,b,c,d
2.0 e, j,c, c
2.5 e, f, 9, d
3.0 e, f, 9, h
3.5 {,f,g,h
4.0 2131 g, h
4.5 i,j,k, h
5.0 i,j,8, 1

A mapping s + m* where the resolution on the input variable
s is 0.5 units

necessary to have RN association cells. Assume that an ad-
ditional mapping A + A, i s performed such that the RN as-
sociation rel ls in the very large set A are mapped onto a much
smaller, physically realizable set A,. One way in which this can
be done is by hash-coding [14].

Hash-coding i s a commonly used romputer technique for re-
ducing the amount of memory required to store sparse matrices
and other data sets where a relatively small amount of data is
scattered oyer a large number of memory locations. Hash-
coding operates by taking the address of where a piece of datum
is t o be stored in the larger memory and using it as an argument
in a routine which computes an address in the smaller memory.
For example, any address in the larger memory might be used
as an argument in a pseudorandom number generator whose
output i s restricted t o the range of integers represented by the
addresses in the small memory. The result is a many-into-few
mapping of locations in the larger memory onto locations in the
smaller. Any association cell name (address) in A can be used
as the argument in a hash-coding routine to find i t s counterpart
in AI,. The number of association cells in A, can be chosen
arbitrarily equal t o the size of the physically available memory.
I n practice A, may be orders-of-magnitude smaller than A.
Thus, the A + A, mapping is a many-into-few mapping.

For example in Table 4, at each point in input-space A* i s
romposed of four elements each of which could be represented
by two BCD characters of six bits each. Thus, each element in
A * can be represented as a 12 bit number. Assume that the
amount of memory available for A, i s only 16 locations. One
method of hash-coding would then be to use these 12 bit numbers
to address a table of 4096 four bit random numbers corresponding
to addresses in A,. The result would be an A + A, mapping
of the elements in Table 4 such that A, contains only 16 loca-
tions.

The many-into-few property of the hash-coding procedure
leads t o “collision” problems when the mapping routine com-
putes the same addrws in the smaller memory for two different
pieces of data from the larger memory. Collisions can be mini-
mized i f the mapping routine is pseudorandom in nature so that
the computed addresses are as widely scattered m possible.
Nevertheless, collisions are eventually bound to occur, and a
great deal of hash-coding theory is dedicated to the optimization
of schemes to deal with them

CMAC, however, can simply ignore the problem of hashing
collisions because the effect i s essentially identical to the already
existing problem of cross-talk, or learning interference, which i s
handled by iterative data storage.

Assume, for example, that the actual number of memory loca-
tions available is 2000, i.e., lAPl = 2000. Each association cell
name in A* i s then mapped into one of the 2000 available ad-
dresses in A, by a deterministic, but pseudorandom hash-
coding routine. Each cell in A * has equal probability of being
mapped into any one of the 2000 cells in A,. This, of course,
makes it possible for two or more different cells in A* to be
mapped in to the same cell in AI,, I f , for example, IA,(= 2000

Journal of Dyanmic Systems, Measurement, and Control S E P T E M B E R 1 9 7 5 I 2 2 5

and /A*] = 20, then the probability of two or more cells in A *
being mapped into the same cell in A, is approximately

2 3 I 91 +-- +- +...+-2000 2000 2000 2000
-

or about 0.1. In practice this is not a serious problem so long as
the probability i s rather low, since it. merely means that any
weight corresponding to a cell in A*, which i s selected twice
wil l be summed twice by the response cell. The loss is merely
Lhat of available resolution in the value of the output.

A somewhat more serious problem in the A --f A, mapping
is that it raises the possibility that two input vectors SI and S2

which are oulside of the same neighborhood in input-space might
have overlapping sets of association cells in A,. Th is introduces
interference in the form of unwanted generalization between
input vectors which lie completely outside the same input-space
neighborhood. The effect, however, i s no t significant so long as
the overlap i s not large compared t,o t,he total number of cells
in A*. In other words, spurious overlap is not a practical prob-
lem as long as ~A*,I A A*,, I < < IA*(when A*1 A A*? = 6.
If,for example, we choose IA*l = 20 and /A,/ = 2000, then for
two input vectors chosen at random such that A X

1 A A* 2 = 6,
the probability of various amounts of overlap A*,, A A*,, can
be computed from the binomial expansion (p + q)", where

20
2000

p = 1 - q and q =- . The probability that

/A A A*,21 = 0 i s 0.818

IA*,I A A*,,zI = 1 i s 0.165

IA A A*,*/ = 2 is 0.016

(A*,I A A*,2l 2 3 is 0.001

For practical purposes, two input vectors can be considered
to be outside the same neighborhood if they have no more t,han
one active association cell in common. Thus, in practice 100
(A * / association cells will perform nearly as well as R" associa -
tion cells. I f (A,[is made equal t o 1000 /A*(,the overlap problem
virtually disappears entirely. For example, i f (A* l = 20 and
lAnl = 20,000, the probability of two or more cells in A * being
mapped into the same cell in A, is only 0.01, and the probability
of overlap between random input vectors is as follows: T h e
probability that

10

4

0:l-.----I

0 1 2 3 4 5 6 7 8 9

Fig. 5 A on.-dimensional function h(s)

A A*,21 = 0 i s 0.9802

IA*,, A = 1 i s 0.0196

IA*,1 A A *,2) 2 2 is 0.0002

I t i s desirable t>okeep /A*] as small as possible in order to
minimize the amount of computation required. I t is also de-

sirable t.o make the ratio- as small as possible so that the

probability of overlap between widely separated S patterns i s
minimized. IApl, of course, i s limit,ed by the physical size of the
available memory. However, /A*(must be large enough so t.hat
generalization i s good between neighborhood points in input-
space. This requires that no individual association cell con-
tribute more than a small fraction of the total output. I f /A* (
2 20, each associat,ion cell contributes on the average .i percent
or less of the output,.

IA*l
IAPI

Computing the Output. The [A*] addresses comput,ed by the
A + A,, hash coding procedure point to variable weights which
are summed by the response cells. The linear sum of these
weights (perhaps multiplied by an appropriate scaling factor) i s
then an output driving signal pi used to power the ith joint
actuator of the manipulator. The functional relationship

P = h(S) (11)

i s the overall transfer function of the CMAC controller. The in-
dividual components of P = (pl, p2, p3, p ~)are the output
drive signals t,o each individual joint. In general, each p; i s a
different function of the input vector S

p, = k (S) i = 1,I,where L i s the number of jo int
actuators (12)

Fig. 4 shows a block diagram of the CMAC system for a single
joint. The components in this diagram (except for the adjusb
able weights) are duplicated for each joint of the manipulator
which needs to be controlled. Typically the S -+ A* mapping i s
different for each joint in order to take into account the dif-
ferent degrees of dependence of each pi on the various input pa-
rameters si. For example, the elbow control signal i s more
strongly dependent on position and rate information from the
elbow than from the wrist, and vice versa.

The values of the weights attached to the association cells
determine the values of the transfer functions at each point in
input-space. Consider, for example, the one-dimensional func-
tion shown in Fig. 5. I f t.he mappingf:S -+ A is carried out as
shown in Table 7, and the weights connected t o the association
cells have the values shown in Table 8, t.henh(s) is the function
in Fig. .?. A function of two variables can be represented in a
similar way. Consider Table 4. Each square in the matrix cor-
responds to a location containing a value of the function h(sl,
st). I f , for example, h(3, 4) = 7, this would be satisfied whenever

Table 7

s = (s) A * P = h(S)

. . .

A S -+ A * mapping for the one-dimensional input vector
S = (8) and a table reference representation of the function
h(s) from Fig. 6

226 / S E P T E M B E R 1 9 7 5 Transactions of the ASME

Table 8

Association cell Weight
~-

_____ _
A 3
n 3
C 2
D 2
E 2
F 1
G 0
H 1
I 2
J 2
K 1
L 2

A set of weights attached tJo association cells A through L
which produce the function h(s) of Fig. 5, given the S -+ A *
mapping shown in Table 7

the association cells Ee, Ff, Cg, Dd have attached to them weights
summing to 7. For any function hi(s1, SZ,, SN) the problem
then i s to find a suitable set of weight,s which will represeut the
fr1nct)ion over the range of the arguments.

Inputs From Higher Levels. Commands from higher centers
are treated by CMAC in exactly the same way as input variables
from any other source. The highcr level command signals appear
as one or more variables in the input vector S. They are mapped
with an si ---f m*i mapping and concatenated like any other
variable affecting the selection of A*,. The result i s that input
signals from higher levels, l ike all other input variables, affect
the out,put and thus can be used to control the transfer function
P = h(S). I f , for example, a higher level command signal 2

changes value from 2, to z1, the set 7n*=, wil l change to m*l..r. I f
the change in r i s large enough (or the T ---f rn*= mapping i s high
enough resolution) that m*z, A m*,, = @,then the concatenation
process will make A*,, A A*,, = @.

Thus, hv rhanging the signal x, the higher level control signal
can effectively change the CMAC t,ransfer function. This con-
t,rol can eit,her be discrete (Le., x takes only discrete values z i
surh t~batm*,i A m*rj = @ for alli# j),or continuously variable
(Le., z can vary smoothly over i t s entire range). An example of
t,he types of discrete commands which can be conveyed to the
CMAC by higher level input variables are “reach,” “pull back,”
“lift,” “slap” (as in swatting a mosquito), “twist,?’’ ‘‘scan along
a surface,” etc. Experimental results of CMAC operating with
a “slap” command are reported in reference [ll].

An example of the types of continuously variable commands
which might be conveyed to the CMAC are velocity vectors
describing t,he motion component,s desired of the manipulator
end-effector. Three higher level input variables might be 5, G,
2, representing the commanded velocity components of a manip-
ulator end-effector in a coordinate system defined by some work
space. I f 5, y, and z are all zero, the transfer function for each
joint act,uator should be whatever necessary to hold the manip-
ulator stationary. I f the higher center were to sendi = 10,

= 0, z = - 3, then the transfer function for each joint should
be such that the joints would be driven in a manner so as to
produce an end-effector velocity component of 10 in the x di-
rection, 0 in the y direction, and -3 in the z direction.

The CMAC processor for each joint i s thus a servo control
system. The S -P A*, mapping, together with adjustment of the

weights, define the effect of the various input and feedback
variables on the control system transfer function. Inputs from
higher centers call for specific movements of the end point.
The CMAC weights are then adjusted so as to carry out those
movements under feedback control.

Summary
CMAC computes control functions by referring to a table

rather than by solution of analytic equations or by conventional
analog servo techniques.

Functional values arc stored in a distributed fashion such that,
the value of the function at any pomt in input-space i s derived
by summing the contents over a number of memory locations.

The unique feature of CMAC i s the mnpping algorithm which
converts distance between input vectors into the degree of over-
lap between sets of addresses where the functional values are
stored. CMAC is thus a memory management technique which
causes similar inputs t o tend to generalize so as to produce
similar outputs; yet dissimilar inputs result in outputs which
are independent.

There, of course, remains much work to be done in determining
adequate memory size, computation cycle time, training re-
quirements, and accuracy for practical applications. These pa-
rameters are all situation dependent and it remains to be seen
which situations will be most suitable to the CMAC approach.

References
1 Johnsen, E. G., and Corliss, W. It.,Teleoperators and

2 Corliss, W. R., and Johnsen, E. G., Telwperetor Controls,

3 Ashley, J. R., and Pugh, A., “Logical Design of Control
S ,stems for Sequential Mechanisms,” International Journal of
Production Research (I.P.E.), Vol. VI, Xovember 4, 1968.

4 Paul, R., “Modeling, Trajectory Calculation and Servoing
of A Computer Controlled Arm,” PhD thesis, Stanford Uni-

Human Augmentation, NASA SP-5047, 1967.

NASA SP-5070, 1968.

versity, Aug. 1972.
5 Whitney, D. E., “Resolved Motion Rate of Manipulators

and Human Prost,heses,” IEEE Transactions o n Man-Machine
Systems, Vol. MMS-10, No. 2, June 1969, pp. 47-53.

G First Annual Report for the Development of Multi-
Moded Remote Manipulator Systems, Charles Stark Draper
Laboratory (Division of Massachusetts Institute of Technology),
Report (3-3790.

7 Kahn, M. E., and Roth, B., “The Near Minimum-Time
Control of Open Loop Articulated Kinematic Chains,” JOURNAL
OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL, TRANS.
ASME, Series G, Vol. XCIII, No. 3, Sept. 1971, pp. 164-172.

8 Grossman, S. P., “The Motor System and Mechanics of
Basic Sensory -Motor Integration, JJ Z’eztbook of Physiologirnl
Psychology, Wiley, New York, 1967, Chapter 4.

9 Albus, J. S., “A Theory of Cerebellar Function,” Mathe-
matical Biosciences, Vol. X, 1971, pp. 25-61.

10 Albus, J. S., “A Robot Conditioned Reflex System
Modeled After the Cerebellum,” Proceedings Fall Joint Computer
Conference, Vol. XLI, 1972, pp. 1095-1104.

11 Albus, J. S., “Theoretical and Experimental Aspects of a
Cerebellar Model,” PhD thesis, University of Maryland, Dec.
1972.

12 Rosenblatt, F., Principles of Neurodynamics: Perceptrons
and the Theory of BrainMechanisms, Spartan Books, Washington,
D.C., 1961.

13 Nilsson, N. J., Learning Machines, NcGraw -Hill, New,
York, 1965.

14 Knuth, D., “Sorting and Searching,” The Art o Computer
Programming, Vol. 3, Addison Wesley, Menlo Park, &dif,, 1973
p. 506.

Journal of Dynamic Systems, Measurement, and Controt S E P T E M B E R 1 9 7 5 I 2 2 7

