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Abstract—The attributed relational graph matching (ARG) strategy is a well-known approach to object/
pattern recognition. In the past for the parallel solution of ARG matching problem, an overall objective
function was constructed using linearly weighted information aggregation function and one set of para-
meter values was chosen for all models by trial-and-error for the parameters in the function. In this paper,
the compatibility between every pair of model and scene attributes is interpreted as a fuzzy value and
subsequently the nonlinear fuzzy information aggregation operators are used to fuse the information
captured in the chosen attributes. To learn the parameters in the fuzzy information aggregation operators,
the ‘‘learning from samples’’ strategy is used. The learning of weight parameters is formulated as an
optimisation problem and solved using the gradient projection algorithm based learning procedure. The
learning procedure implicitly evaluates ambiguity, robustness and discriminatory power of the relational
attributes chosen for graph matching and assigns weights appropriately to the chosen attributes. The
learning procedure also enables us to compute a distinct set of optimal parameters for every model to reflect
the characteristics of the model so that the homomorphic ARG matching problem can be optimally
encoded in the energy function for the model. Experimental results are presented to illustrate effectiveness
and necessity of the parameter estimation and learning procedures. ( 1998 Pattern Recognition Society.
Published by Elsevier Science Ltd. All rights reserved
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1. INTRODUCTION

The attributed relational graph matching (ARG)
strategy is a well-known approach to object/pattern
recognition. As ARG matching is an NP-complete
problem, parallel ARG matching approaches° are pre-
ferred to the sequential search methods. In our recent
papers,(1, 2) a novel programming strategy was pro-
posed to generate homomorphic graph matching us-
ing the optimising connectionist models. It was also
emphasised that in the past the parallel graph match-
ing problem had been primarily addressed from the
viewpoint of subgraph isomorphism which implicitly
requires the scene to have at most one occurrence
of any object model. In all parallel ARG matching
approaches, an overall cost/objective function is con-

*Author to whom correspondence should be addressed.
Current address: Department of Computer Science and Electri-
cal Engineering, University of Queensland, QLD 4072, Australia.
E-mail: sugan@elec.uq.edu.au.

° In parallel ARG matching, all scene vertices are simulta-
neously matched with all model vertices and the best match
satisfying syntactic constraints is obtained. In sequential
matching, one scene vertex is chosen and matched with
model vertices one- by- one to determine a possible match.
For more detail, refer to references (1)— (3).

structed and optimised. In order to construct such
an objective function, an information aggregation
formulation and numerical values for a number of
parameters in the formulation have to be chosen to
fuse the information captured in the chosen attributes.
In the past, linearly weighted information aggregation
functions have been used. In general, the weighting
factors and other parameters in the formulation
have been assigned with numerical values by trial-
and-error approach. Further, a single set of para-
meters has been used irrespective of the variations
between different models.

In this paper, the compatibility value between every
pair of model and scene attributes is interpreted as
a fuzzy value and the mapping of the ARG matching
problem is regarded as information fusion. In order to
fuse the information captured in the chosen attributes,
fuzzy information aggregation operators are employed.
The computation of the parameters in the fuzzy aggre-
gation operators is formulated as an optimisation
problem and solved using a gradient projection algo-
rithm based learning scheme. The learning scheme
implicitly evaluates various characteristics of every
attribute such as ambiguity, robustness and discrimi-
natory power and assigns weighting factors accord-
ingly. The parameter estimation and learning schemes
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enable the ARG matching problem to be optimally
encoded in the energy function and subsequently
solved by a parallel ARG matching strategy such as
the Potts MFT networks,(1) the Hopfield network,(2)
relaxation labelling(4) and simulated annealing.(5) In
this paper, the Potts MFT neural network is em-
ployed to perform the recognition. Line and circle
patterns recognition problems are used to illustrate
the effectiveness and necessity of parameter learning
scheme.

The rest of the paper is organised as follows. In
Section 2, the ARG representation scheme, line and
circle pattern models and scenes are introduced. The
Potts MFT neural networks and energy formulation
to generate homomorphic ARG mapping are present-
ed in Section 3. The motivations, fuzzy information
aggregation operators, related work in optimal utilis-
ation of various attributes for efficient recognition and
the parameter estimation and learning schemes are
presented in Section 4. Experimental results and dis-
cussions are presented in Section 5. The paper is con-
cluded in Section 6.

2. ARGs, PATTERN MODELS AND SCENES

2.1. Graph representation and morphisms

Since recognition by ARG matching does not
require a segmentation of the scene feature primitives
as belonging to different instances of object model(s)
prior to recognition and allows geometric and photo-
metric information to be captured in itself, it has been
employed frequently(6—10) in object recognition, scene
labelling and stereo correspondence and motion
correspondence applications. The ARG representa-
tion is defined below.

An attribute is an ordered 2-tuple, (at, av), consisting
of a name or type at and a value, av. An attribute set is a
set of all 2-tuples belonging to a particular entity—
namely a vertex or an edge. A vertex of an ARG has a
unary attribute set associated with it, referred to as
vertex attribute set. The attribute set that belongs to
a vertex x with N

u
attributes can be denoted as

M2 , (at,x
n6

, av,x
n6

), 2N where n
u
"1,2,N

u
.

An attributed edge, e
xy

between vertices v
x

and
v
y

has an associated binary attribute set called edge
attribute set. If a rotation invariant representation is
desired, the ARG edges are undirected, that is e

xy
"

e
yx

, otherwise e
xy
"!e

yx
or e

xy
Oe

yx
. In this paper,

we are concerned with rotation invariant recognition.
An ARG of a scene s is denoted by G

s
"(»s, Es) where

»s is the set of attributed vertices, Mvs
1
, vs

2
, 2 , vs

N
N and

Es is the set of attributed edges, M2, es
xy

, 2N. Like-
wise an ARG of an object model m can be defined.
Object recognition by graph matching is a mapping,
also referred to as a morphism, from a scene rela-
tional graph G

s
to a model graph G

m
. In this paper,

we are interested in homomorphic ARG matching
which is many (scene vertices)-to-one (model vertex)
mapping.

2.2. Models and scenes

In our experiments, synthetic object models and
scenes are used to test the performance of our algo-
rithms. Similar synthetic images have been used
widely(8,9) when the subject under investigation was
exclusively high level vision. Further, these objects
offer an elegant means of controlling the types and
degrees of ambiguities, so that the attractive proper-
ties of our algorithms can be illustrated easily.

2.2.1. ¸ine pattern models and scenes. The syn-
thetic line pattern models consist of random line
patterns. Figures 3(a)—(d) show four synthetic line
pattern models. A scene can be created by choosing
a number of subset of vertices (line segments) from
each model, applying a rigid-body rotation and trans-
lation separately, deviating the end points randomly
to introduce noise and arbitrarily overlapping them.
A few extraneous line segments may also be intro-
duced to the scenes. Two such line pattern scenes are
shown in Figs 3(e) and (f ).

In the ARG of line patterns, vertices represent lines
and edges represent relationships between them. The
line patterns are described using a unary (or vertex)
attribute (r1 below) and four binary (or edge) attri-
butes (r3—r6 below) in the ARG representation. The
attributes are

r1. line segment length,
r3. angle between two line segments,
r4. distance between centre points of two line seg-

ments,
r5. maximum distance between end points of two line

segments, and
r6. minimum distance between end points of two line

segments.

To measure unary and binary compatibilities bet-
ween relations, the following functions are used:(1,2)

f u (b
1
, b

2
, k, t)"!tanh(k ( Db

1
!b

2
D!t)), (1)

f b (b
1
, b

2
, k, t)"1

2
(1!tanh(k ( Db

1
!b

2
D!t))). (2)

where b
1
, b

2
, k and t are model attribute value, scene

attribute value, the steepness and the tolerance para-
meters corresponding to the model attribute, respec-
tively. The functions are shown in Figs 1(a) and (b) for
different values of steepness and the threshold para-
meters. In the figures, the X-axis and ½-axis represent
k(Db

1
!b

2
D!t) and the value of f *( ) ) respectively.

2.2.2. Circle pattern models and scenes. The syn-
thetic circle patterns are shown in Figs 5(a)— (d). Two
scenes were generated as explained in line patterns
application, and are shown in Figs 5(e) and (f ). The
circle patterns are described using one unary (vertex)
attribute (r1 below) and one binary (edge) attribute (r3
below). They are

r1. radius of circle,
r3. distance between centre points of two circles.
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Fig. 1. Two types of compatibility functions: (a) function f u ()) , (b) function f b()).

To measure compatibilities between binary and
unary relations, the functions defined in Section 2.2.1
are used.

3. HOMOMORPHIC ARG MATCHING BY POTTS
MFT NETWORKS

In this paper, the Potts MFT neural network based
homomorphic ARG matching scheme is employed to
perform the recognition. The energy function and the
constraint used in the MFT algorithm are:(11)

E"!1
2

VT TV!ibV, (3)

+
i

»
xi
"1, (4)

where the vectors V and ib are the output potential
and the external bias current, respectively, and T is the
connectivity matrix. The constraint +

i
»
xi
"1 is

appropriate to solve problems such as the travelling
salesman problem (TSP) and graph partitioning
(GP).(11) The update equations are as follows.

u
xi
"!

1

¹

LE

L»
xi

, (5)

»
xi
"

euxi

Z
x

, (6)

where the vector u, Z
x

and ¹ are the input state
potential, the local partition function expressed by
+

j
euxj and the temperature parameter ¹, respectively.

Since the constraint that one scene vertex should be
matched to at most one model vertex, can be enforced
by neuron normalisation, the energy function used to
solve the recognition problem is identical to the actual
cost of the recognition problem. The energy function
for homomorphic ARG matching is:

E"!

1

2
+

x,y, i,j

C
xi,yj

»
xi
»
yj

. (7)

The mapping of the matching problem onto the net-
work is illustrated in Fig. 2. In the above cost function
formulation, the compatibility measure C

xi,yj
("C

yj,xi
) encodes both unary compatibilities between

the model ARG vertex v
x

and the scene ARG vertex
v
i
and the model ARG vertex v

y
and the scene ARG

vertex v
j

and binary compatibilities between the
model edge e

xy
and the scene edge e

ij
collectively. As

the energy function is minimised, the compatibility

Fig. 2. The Potts MFT neural networks used to generate
homomorphic ARG matching.
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C
xi,yj

between two corresponding vertices pairs, i.e.
v
x
Pv

i
and v

y
Pv

j
, should be positive. This positive

compatibility in turn encourages neurons »
xi

and
»
yj

to ‘‘on’’ state. Conversely, negative compatibility
between two non-corresponding vertices pairs, i.e.
v
x
P/ v

i
and v

y
P/ v

j
, encourages neurons »

xi
and »

yj
to

‘‘off ’’ state. In Section 4.1.1, the computation of com-
patibility measure is cast as an information fusion
problem and solved using the fuzzy information
aggregation operators.

The constraint to be enforced strongly to solve the
TSP and GP problems is +

i
»
xi
O1 as in equation (4).

To solve the relational homomorphism, the only con-
straint is +

i
»
xi
41. Therefore, the standard update

equation (6) is modified as follows:

»
xi
"G

%uxi@T
Zx

if Z
x
'1,

euxi@T otherwise.
(8)

Programming the network connections and bias
currents for line and circle patterns recognition, net-
work initialisation and hypothesis interpretation are
explained in detail in references (1) and (2) and
therefore not discussed in this paper.

4. LEARNING COMPATIBILITY FUNCTION PARAMETERS

In this section, procedures are presented to learn
and estimate parameters used in the compatibility
function for optimal encoding of homomorphic en-
ergy. The concept of learning from training samples
has been widely employed. In the back propagation
and the radial basis function networks, hetero-asso-
ciation of input and output pattern pairs are used to
learn an internal representation of the problem. On
the other hand, in CAM models, such as the Hopfield
network, homo-association of input—output pairs are
used to learn weight values. In this application,
homom-association of attributes are used to learn and
estimate parameters in the compatibility measure
equations (11) (for line pattern recognition) and (12)
(for circle pattern recognition). This learning is per-
formed off-line to obtain values for a number of para-
meters. These parameters are then used during the
recognition stage to optimally encode the ARG
matching energy for parallel solution.

4.1. Fuzzy connectives-based optimal mapping

In computer vision, various sensing modalities are
used to acquire data. Generally, the acquired data is
unreliable, ambiguous and uncertain. Therefore, at
various levels of information processing in computer
vision, decisions have to be made by aggregating
unreliable partial evidences captured in various
attributes of the acquired data. Lee(12) studied a
number of uncertainty management frameworks
such as Bayesian probability approach,(13) MYCIN/
EMYCIN calculi,(14,15) Dempster—Shafer belief
theory(16) and fuzzy set theory based methods and

concluded that the fuzzy set theory based approaches
were the most appropriate framework for information
fusion and multi-attribute decision making in com-
puter vision due to its flexibility, completeness and
efficiency. In ARG matching, the compatibility value
between each pair of model and scene attributes can be
regarded as unreliable partial confidence of match be-
tween the corresponding model and scene vertices, and
fuzzy set connectives can be employed to aggregate the
partial evidence captured by every pair of attributes.

The fuzzy connectives have been widely used in
a number of domains to aggregate pieces of partial
evidence in different attributes to obtain an overall
confidence measure. Some examples of their applica-
tions are classification of remote sensing data,(17)
colour image segmentation and recognition(18) and
pattern recognition.(19) In any application, a proper
aggregation operator should be chosen to reflect the
inter-relationships between various attributes used to
obtain the overall confidence measure. Although
a large number of information aggregation operators
are known, the following types of operators have
been commonly used: (a) intersection operator;(20,21)
(b) union operator;(22,21) (c) averaging operator;(23)
(d) generalised mean operator(24) and (e) hybrid
operators.(23,25)

Amongst the operators listed above, the union
operator provides complete compensation, while the
intersection operator provides no compensation at
all.(24) In other words, in the case of ARG matching,
for a pair of vertices to be non-corresponding, all
pairs of attributes must be incompatible if the union
operator is used, while at least one pair of attributes
must be incompatible if the intersection operator is
used. Apparently, these operators do not reflect the
nature of the ARG matching problem. In ARG
matching applications, some attributes may be
ambiguous, while other attributes may be unique.
Likewise, their robustness against sensing noise, fea-
ture extraction noise and occlusion noise also vary
considerably. Therefore, the operator that aggregates
partial evidences to generate the overall evidence,
should also be able to compensate for ambiguity and
noise in some attributes with other informative
and robust attributes. Further, significance of each
attribute should also be weighted to reflect the im-
portance of each attribute with respect to others.
A number of compensatory operators, such as the
generalised mean operator and hybrid operator, have
been proposed with weighting factors. In the following
section, the generalised mean operator is introduced.

4.1.1. Generalised mean operator. The generalised
mean of n-arguments x

1
, x

2
,2, x

n
3[0, 1] is a func-

tion g
m
: [0, 1]nP[0, 1] which is defined as(24)

g
m
(x

1
, x

2
,2, x

n
; w

1
, w

2
,2, w

n
; p)"A

n
+
i/1

w
i
xp
i B

1@p
,

(9)
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where p3R and pO0. The weighting factors should
satisfy the following conditions:

N
+
i/1

w
i
"1 and w

i
50 ∀ i. (10)

The weighting factors may be expressed as a vector
¼"[w

1
, w

2
,2, w

n
]. Further, the generalised mean

operator has the following properties(24) as pP$R,
and bounded within the respective limits:
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n
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n
).

The overall compatibility measure between model
vertices v

i
, v

j
and scene vertices v

x
, v

y
can be computed

using the generalised mean operator for line patterns
matching as follows (by replacing the fuzzy variables
x
i
with appropriate compatibility values f *( ) ) while

retaining weights and parameter p):

C
xi,yj

"g
m
( f u

r1
()), f u

r1
()), f b

r3
()), f b

r4
()), f b

r5
()), f b

r6
()) ;

w
1
, w

2
,2, w

6
; p) (11)

where w
1
"w

2
corresponds to the unary attribute r1

and w
3
,2, w

6
correspond to the binary attributes

r3,2, r6. In the above equation, compatibility func-
tion parameters [see equations (1) and (2)] are not
shown for clarity. In this formulation, it is assumed
that every type of attribute is assigned with a parti-
cular set of values for weighting factor, threshold
parameter and steepness parameter. In line patterns
matching, there are five sets of weighting factors,
threshold parameters and steepness parameters
corresponding to attributes r

1
, r

3
, r

4
, r

5
, r

6
and the

parameter p to be obtained.
Likewise, the overall compatibility measure can be

computed using the generalised mean operator for
circle patterns matching as follows:

C
xi,yj

"g
m
( f u

r1
()), f u

r1
()), f b

r3
()); w

1
, w

2
, w

3
; p) (12)

where w
1
"w

2
and w

3
correspond to the unary and

binary attributes, respectively. In circle patterns
matching, there are two sets of weighting factors,
threshold parameters and steepness parameters cor-
responding to attributes r

1
and r

3
and the parameter

p to be obtained.
In theory, it is possible to assign distinct set of

parameters for every model attributes and learn them
using the learning scheme presented in Section 4.3.
However, the complexity of the learning scheme will
be immensely increased. Let us consider the number
of weighting factors, threshold parameters or steep-
ness parameters needed for a model that has
N vertices of a particular type (Here, type means
either a line segment, circular arc segment, circle or
a corner point with N

u
unary attributes and N

b
binary

attributes.) The total number of weighting factors is
NN

u
#1

2
!(N!1) N

b
. Apparently, as the number of

vertices or attributes is increased, the number of
weighting factors increases quadratically or linearly.
Apparently, it is essential to reduce the number of
parameters to be learned in order to increase the
efficiency of the recognition system. Therefore, in this
study, the simplified compatibility equations (11) and
(12) are used to map the ARG matching problem for
line patterns and circle patterns, respectively. These
simplified equations have distinct weight, threshold
and steepness parameters for every attribute for every
model. For instance, for line patterns, there are five
sets of threshold, steepness and weight parameters for
every model.

4.2. Related work

In the past, research in optimal utilisation of multi-
source—multiattribute, and single-source-multiattri-
bute data was carried out in the context of object
recognition,(26—28) pixel classification of outdoor natu-
ral scenes,(29) pattern recognition,(30) feature selection
for stereo correspondence,(31) learning compatibility
coefficients for relaxation labelling processes(32) and
robotic vision.(33) Therefore, it is appropriate to
review some of the related work prior to presenting
our approach.

A recent work on optimal feature selection from
CAGD model database for range image recognition
was conducted by Hansen and Henderson.(27) The
following criteria were identified to be important for
efficient recognition of objects using an arbitrary
recognition strategy.

(1) Discriminatory power: This is probably the most
important characteristic of a representation
scheme for object discrimination. The features
with higher discriminatory power, in other words
unique or rare features, should be assigned with
higher priority or weight values.

(2) Robustness: This criterion represents how accu-
rately a feature can be sensed and extracted from
the sensed data. This factor collectively accounts
for noise introduced during the sensing as well as
feature extraction processes. Generally, binary
relations are more robust against noise, while
symbolic features such as surface types,(34) col-
our,(35) and angle-related binary relations are
more robust against occlusion.

(3) Completeness: It is expected that the representa-
tion scheme completely describes each object
models so that pose estimation can also be per-
formed. However, it is an understatement in most
cases. Generally, a redundant representation is
preferred over just a complete one because re-
dundancy may provide extra tolerance against
noise and occlusion.

Hansen and Henderson(27) applied so-called feature
filters sequentially to extract features that fulfill the
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above requirements. Although the sequence of
application of feature filters was crucial, they stop-
ped short of providing any guideline on this aspect.
Further, extracted such features were sequentially
ranked which is only suitable for sequential object
matching strategies such as the interpretation tree
search. In their experiments they used only one
polyhedral object. Therefore, their experiments did
not involve discriminating between different objects
models.

Turney et al.(28) studied the recognition of partially
occluded parts from their silhouette templates. They
primarily considered the discriminatory power of the
silhouette segments referred to as subtemplates. The
subtemplates were assigned with weighting factors
that reflected their discriminatory power between
intra-model and inter-model subtemplates. Krishna-
puram and Lee(29) also studied the fusion of in-
formation in computer vision using fuzzyset-based
hierarchical neural networks. They employed gradi-
ent-descent-based learning algorithms to determine
the significance or weight values of unary attributes
and to detect redundancy. However, Turney et al. and
Krishnapuram and Lee did not employ binary and
higher-order relational attributes.

Lew et al.(31) investigated the issue of optimal fea-
ture selection for stereo correspondence. They used
features such as intensity, X-gradient, ½-gradient,
gradient direction, gradient magnitude, Laplacian
and curvature of feature points. The left image was
matched to itself to determine discriminatory power
of features and to assign weights accordingly. They
optimised a class separation distance criterion to ob-
tain weights. Pellio and Refice(32) recently presented
a methodology to learn the compatibility coefficients
used in the relaxation labelling from sample training
scenes. They used the quadratic cost function defined
as the discrepancy between the final labelling and the
labelling provided in the training scenes. The com-
patibility coefficients that minimised the cost were
considered as the optimal values. To obtain the solu-
tion, active-set-based gradient projection algorithm
was used.(36)

Apparently, most of the approaches discussed
above deal with the classification of feature vectors
which does not involve relational attributes. Further,
the learning schemes of Pellio and Refice(32) and Li(26)
did not assign distinct parameter sets for every model,
while the Hansen and Henderson learning scheme is
suitable only for sequential search method. Therefore,
in our opinion, this is the first attempt to estimate/
learn parameters used in the compatibility function
for every model for optimal encoding of homomor-
phic ARG matching energy.

4.3. Learning methodology

As discussed above, the selected features should be
complete if not redundant, possess sufficient discrimi-
natory information and robust. However, we provide

a slightly differing view on the concept of discrimina-
tory property of attributes for parallel graph match-
ing. Although Hansen and Henderson(27) and Turney
et al.(28) identified the inter-model and also to some
extent the intra-model discriminatory power of the
features as the most crucial property in recognising
patterns and objects, we choose to consider only the
intra-model discriminatory power in the computation
of the weighting factors. The following ambiguities
may be recognised to be in existence in models.

(1) Inter-model ambiguities: Inter-model ambiguous
attributes are attributes shared by many object
models. Such features do not possess high in-
formation for discrimination between object mod-
els. Some examples of such ambiguities are geo-
metric subparts and a symbolic feature colour red
when many objects in the model database are red
in colour. Some examples of such ambiguities are
presented in references (1) and (37). In our opinion,
ambiguities caused by subparts or common fea-
tures cannot be resolved by any weighting factors
assignment mechanism. For instance, if only the
common subparts are visible, it will be impossible
to discriminate between object models by any
weighting factor assignment. Hence, we con-
clude that the presence of subparts should be
resolved by some other mechanism as explained in
the hypothesis interpretation section by the
authors.(1)

(2) Intra-model ambiguities : When an object model
has repetitive attributes, intra-model ambiguity is
said to exist. Intra-model ambiguities have the
potential to degrade the performance of a recogni-
tion system. Some examples are equal line seg-
ment lengths and/or parallel line segments in
a line pattern model as in model Fig. 3(d), and
many circles with the same radius as in circle
pattern models Figs 5(c) and (d). This type of
ambiguous attributes should be assigned with
relatively lower weight values. For instance, if line
segment length is assigned with a large weight
value to extract model Fig. 3(d), a scene line seg-
ment may be matched to a wrong model line
segment, as will be illustrated in the experimental
results section. Hence, we conclude that the intra-
model ambiguity should be dealt with care so that
the graph matching problem can be mapped opti-
mally and potential ambiguities in the mapping
can be minimised. In fact, our investigations into
the recognition performance of the optimising
connectionist models have shown a degradation
in performance due to a high degree of intra-
model ambiguity.

The above arguments justify the consideration of
intra-model discriminatory power in the computation
of the weighting factors. Other advantages of con-
sidering only intra-model ambiguities are that the
computation of weighting factors can be performed
independently for each model, and addition of new
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models to the model database and deletion of models
from the model database do not alter the weighting
factors of existing models.

The training scenes have a single model under con-
sideration as the whole. The purpose of using the
training scenes is to discover the robustness of indivi-
dual attributes against the sensing noise and feature
extraction noise. Our approach deals accordingly
with physical meanings of all attributes and does not
require any modelling of any processes. The compati-
bility measures, C

xi,yj
expressed by equations (11) and

(12) are functions of parameters t, k, p and w
i
. First,

compatibility function parameters t and k are esti-
mated from sample scenes so that variations in units
of measurement and noise robustness of individual
attribute are taken into account. Then parameters
w
i
and p are learned in order to obtain the best overall

separation between corresponding and noncorres-
ponding vertices pairs. These two learning schemes in
effect encode various compatibilities optimally in the
energy function for efficient recognition by a parallel
ARG matching procedure.

4.4. Choice of threshold and steepness parameters

In the training scene, there are a number of match-
ed pairs. However, as noise is introduced in the scenes,
they are not identical. Further, in these examples
attributes may become larger or smaller. Since syn-
thetic scenes were generated by rotating, translating,
adding random noise to models and arbitrarily over-
lapping individual instances, the effect of noise is
independent of the magnitude of the attributes. Thus,
it is possible to use fixed threshold values for a par-
ticular type of attribute irrespective of its magnitude
in the model. In this application, threshold para-
meters were set to be larger than the largest deviation
between corresponding attributes. Having estimated
t, a suitable value for k should be assigned. The role of
the parameter k is to compensate for variations in the
scale or units of measurement. In our experiments, k is
chosen such that when scene and model relational
attributes are identical the compatibility measure
function tanh(kt) yields 0.95. If this value is set to
approximately one instead of 0.95, the compatibility
function would become a step-like function and lose
its ability to discriminate between different degrees of
match and mismatch.

4.4.1. Consequences of the choice of threshold and
steepness parameter values. A number of criteria were
identified to be crucial for accurate recognition in the
preceding sections. One of them is robustness against
noise. If a particular relational property is more prone
to be corrupted by noise than others, it will be
assigned with a large t value. As the parameter k is
fixed so as to obtain a constant value of 0.95 when the
scene and model attributes are identical, the compati-
bility function corresponding to noisy attribute has
large transition region. Large transition region means

that the compatibility function f u ()) is more likely to
take values around 0 than extreme values $1 and the
function f b ()) is more likely to take values around 0.5
than extreme values 1 or 0. Hence, the contribution of
noisy attributes to the overall compatibility measure
is not decisive and marginal. The vice versa holds for
robust attributes. This concept is illustrated in Fig. 1.
In these figures, sharper function has smaller thres-
hold value and consequently smaller transition region.

4.5. Learning parameters using gradient projection
algorithm

To learn parameters t and k only corresponding
relational features are considered. To achieve optimal
separation between corresponding and noncorres-
ponding vertex pairs, corresponding as well as non-
corresponding vertex pairs should be considered.
However, there are a large number of noncorres-
ponding vertex pairs. Hence, in order not to bias
the optimal weighting factor computation strongly
towards noncorresponding vertex pairs, the contribu-
tion of corresponding and noncorresponding vertex
pairs should be balanced. By examining equations (11)
and (12), weight constraints expressed by equation (10),
energy function (7) and Fig. 1, it is clear that for
accurate recognition, the compatibility measure C

xi,yj
,

corresponding to matching vertex pairs x, y in the
scene and i, j in the model should be assigned to a#1.
The squared error for the corresponding vertex pairs is

e
CP

(¼, p)" +
∀ *xi,yj+|SCP

(C
xi,yj

!1)2, (13)

where the set S
CP
"M[(v

x
, v

i
), (v

y
, v

j
)] Dv

x
Pv

i
, v

y
Pv

j
,

xOy, iOjN and ¼ and p are as defined in equa-
tions (9) and (10).

The compatibility measure C
xi,yj

corresponding to
noncorresponding pairs should be assigned to !1
when a monomorphic mapping or subgraph isomor-
phic mapping is sought [1, 2]. However, when the
homomorphic mapping is sought, the desired value
should not be set to !1 because the compatibility
function f b ()) used to measure binary compatibility is
constrained between 0 and #1 [see Fig. 1(b)]. There-
fore, the desired value for noncorresponding vertex
pairs d

NP
should be treated as a variable. The squared

error for the noncorresponding vertex pairs is

e
NP

(¼(d
NP

), p (d
NP

))" +
∀ *xi,yj+|SNP

(C
xi,yj

!d
NP

)2,

(14)

where the set S
NP

"M[(v
x
, v

i
), (v

y
, v

j
)]Dv

x
P/ v

i
, v

y
P/ v

j
,

xOy, iOjN. Let us defer the balancing process to
a later stage and consider the overall cost which can
be expressed as follows:

e(¼(d
NP

), p(d
NP

))" +
∀ *xi,yj+| *SCP

&SNP+

(C
xi,yj

!d)2,

(15)
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where d is #1 if l3S
CP

and d is d
NP

otherwise. If
d
NP

can be assumed to be a constant, the overall
objective function in equation (15) can be solved by
the gradient projection algorithm.(36) In this study,
d
NP

is decremented using a step of 0.01 starting from
0 towards !1. At each value for d

NP
, regarding d

NP
as

a constant, the parameters and the cost e (¼(d
NP

),
p(d

NP
)) are computed using the gradient projection

algorithm. The value of d
NP

and the corresponding
weighting factors that minimise the overall cost in
equation (15) will be regarded as solutions.

Since the individual attribute compatibilities are
regarded as confidence measures, they should be
shifted by 1.0 and normalised by 2.0 so that all
compatibility values and desired values fall between
0 and 1.0. Consequently, the desired values d

l
in

equation (15) for corresponding and noncorrespond-
ing (d

NP
) vertex pairs are 1.0 and a variable in the

range 0—0.5, respectively.
Prior to formulating the solution of this cost

function as constrained optimisation problem, it is
appropriate to establish relationship between attri-
butes described in Section 2.2, constraints expressed
by equation (10) and the cost function in equation (15).
The compatibility function defined in equations (1)
and (2) are used to compute individual model and
sample scene attribute’s compatibility. The chosen
attributes are described in Section 2.2.1 for line pat-
tern matching and in Section 2.2.2 for circle pattern
matching. These individual compatibility values are
adjusted and normalised to obtain a fuzzy confidence
measure for every pair of attributes and are sub-
stituted into equations (11) and (12) to combine the
evidence captured in individual compatibilities and to
obtain an overall compatibility measure. These com-
patibility values are used to obtain the error expressed
in equation (15) for learning the weights and para-
meter p. During the matching phase, these compatibi-
lities are used to programme the network connections
to solve the recognition problem.

The solution of weight parameters W and para-
meter p is a constrained optimisation problem. First,
the overall cost in equation (15) and constraints in
equation (10) can be expressed as follows:

minimise e (W, p)

subject to h (W)40. (16)

It is a standard constrained optimisation problem.
The necessary conditions for this problem are(36)

+e(W
opt

, p
opt

)#jT+h(W
opt

)"0,

h(W
opt

)40,

jTh (W
opt

)"0,

j50. (17)

These conditions can be expressed in a simpler form in
terms of the set of active constraints As.(36) The set of

active constraints include all equality constraints and
some inequality constraints which satisfy equality
condition when the objective function and the varia-
bles are optimised. The other constraints which satisfy
the inequality, are regarded nonactive:

+e(W
opt

, p
opt

)# +
i|As

j
i
+h

i
(W

opt
)"0,

h
i
(W

opt
)"0, i3As,

h
i
(W

opt
)'0, i NAs,

j
i
'0, i3As,

j
i
"0, i NAs. (18)

The constraints on weighting factors are that the
summation should be equal to one and all weights
should be nonnegative as expressed by equation (10).
The set of active constraints include the summation
constraint and constraints associated with weights
which have reached the boundary value of zero. In
other words, the active set constraints include
the equality constraint which is always active and
inequality constraints which have reached the in-
equality limit. The other weighting factors which have
positive weight values are regarded as inactive. That
is, those inequality constraints are naturally satisfied
by the present weight values.

Therefore, if the set of active constraints corres-
ponding to the optimal solution were known a priori,
the original problem could be replaced by a problem
having only equality constraints. Generally, the active
constraints are not known a priori. Alternatively, if it
is possible to make a guess for the set of active con-
straints and solve the problem for the particular active
set, the solution will be the optimal solution of the
original problem, provided all Lagrange multipliers
are nonnegative and all inequality constraints are
satisfied. Exploiting this idea, in the active set method,
the parameters are initialised at a feasible point and
moved on the surface of the active constraints so as to
reduce the cost and to satisfy all active constraints.

This algorithm is a straightforward extension of the
basic unconstrained gradient descent or steepest des-
cent algorithm. In the gradient projection algorithm,
at every iterations, a feasible direction is obtained
which satisfies +e(W (k), p (k)) d(k)(0 and A(k)
d(k)"0, where d (k) and A(k) are the constraint direc-
tion of descent and the matrix composed of rows
of active constraints. In other words, the gradient
projection algorithm is used to project the negative
gradient of the cost function onto the surface formed
by the set of active constraints so that at iteration
k the cost is reduced and all active constraints remain
active, respectively. Let us consider the derivation of
constrained direction of descent. The negative gra-
dient can be decomposed into two components: one in
the direction of d(k) and the other perpendicular to
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d(k) as follows:

!+e(W(k), p (k))"d (k)#AT(k) j(k), (19)

where A(k) is the matrix of active constraints at itera-
tion k. Since A(k)d (k)"0

j (k)"!(A(k) AT (k))~1A(k)+e (W(k), p (k)) . (20)

Substituting for j (k) in equation (19) gives

d (k)"![I!AT(k) (A(k)AT(k))~1A(k)]

]+e(W(k), p (k)) . (21)

The constrained direction of descent d (k) can be
expressed in terms of the projection matrix P(k),
defined as follows.

P (k)"[I!AT(k) (A (k) AT(k))~1A (k)], (22)

d (k)"!P (k)+e(W(k), p(k)). (23)

Now the parameters can be updated as follows
provided all w

i
(k#1) are feasible and d(k)O0:

[W; p] (k#1)"[W; p] (k)#a (k) d (k) , (24)

where a(k) is the step-size parameter. As ‘training by
samples’ approach is employed in this application,
a sufficiently small fixed value, a is used for the step-
size parameter. Further, the step-size parameter used
with noncorresponding vertex pairs should be
weighted using the fraction d(S

CP
)/d(S

NP
) to balance

the contribution of corresponding and noncorres-
ponding vertex pairs to the optimisation, where d(X)
and d(S

CP
)/d(S

NP
) are the cardinality of the set

X and the balancing factor, respectively.
If any one of the weighting factors is not feasible

after the up-date, i.e. w
i
(k#1)(0, then the inequality

constraint corresponding to the weight should be
included as equality constraint into the active set and
the new constrained direction of descent should be
computed to up date the parameters.

If d (k)"0, the Lagrange multipliers should be com-
puted using equation (20). If all Lagrange multipliers
are nonnegative, the necessary conditions for optimal
solution in equation (17) are satisfied. If some
Lagrange multipliers are negative, then drop the
equality constraint corresponding to the most nega-
tive Lagrange multiplier, and repeat the procedure
until d(k) becomes 0 again.

Now let us consider the estimation of gradients in
the above equations. The derivative of e(W, p) with
respect to a weighting factor w

i
is

Le (W, p)

Lw
i

"2 +
∀ j| *SCP

&SNP+

(g
m
!d

j
)
Lg

m,j
Lw

i

. (25)

The derivative of the generalised mean operator with
respect to w

i
is

Lg
m

Lw
i

"

(0.5f *
i
())#0.5)p

p
g1~p
m

. (26)

In the above equation, the compatibility value is
normalised to obtain fuzzy measure as follows
(0.5f *

i
())#0.5). By substituting equation (26) into

equation (25), the derivative of e (W, p) with respect to
a weighting factor w

i
can be obtained. Likewise, the

derivative of e with respect to the parameter p at
iteration k is

Le (W, p)

Lw
i

"2 +
∀ j| *SCP

&SNP+

(g
m,j

!d
j
)
Lg

m
Lp

. (27)

The derivative of the generalised mean operator with
respect to p is

Lg
m
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p
ln(0.5f *
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p2
lnA

N
+
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w
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(0.5f *

i
())#0.5)pB g

m
. (28)

By substituting equation (28) into equation (27), the
derivative of e (W, p) with respect to the parameter
p can be obtained. The active-set-based gradient pro-
jection algorithm used to obtain the optimal set of
parameter values is summarised in Table 1.

4.5.1. Consequences of learning parameters. It is
now possible to qualitatively analyse the effects of
parameter learning on the following factors identified
to be important in the preceding sections for the
efficient recognition of objects and patterns.

(1) Intra-class ambiguity: If some attributes are repeti-
tively present in the model, the term f *

*
()) may be

near positive one when noncorresponding but
repetitive attributes are considered. As the desired
value d

NP
for noncorresponding vertex pairs

should be between 0 and 0.5, the weighting factors
associated with such attributes are assigned with
low values. Hence, intra-class ambiguous attri-
butes are assigned with low weight values, as
evidenced by the experimental results.

Table 1. The active-set-based gradient projection algorithm

Input: H, W
ini

, S
CP

, S
NP

and g(W, p)
Output: W

opt
(d

NP
), p

opt
(d

NP
) and e(W

opt
(d

NP
), p

opt
(d

NP
))

Step 1 Obtain the matrix A (k) consisting of active constraints
Step 2 Compute the projection matrix P(k) using equation (22)

and the constrianed direction of descent d(k) using
equation (23)

Step 3 If d(k)O0 and W (k#1) is feasible, set W(k#1)"
W(k)#a

j
d(k), where a

j
"a if j3S

CP
and a

j
"

(d(S
CP

)/d(S
NP

) a if j3S
NP

. If W
k`1

is not feasible,
include the newly active inequality constraint and go
to step 2.

Step 4 Else if d(k)"0, compute the Lagrange multipliers
expressed by equation (20). If all Langrange multi-
pliers are nonnegative, the solution corresponds to
p
opt

and W
opt

. Otherwise, drop the constraint corres-
ponds to the most negative Lagrange multiplier from
the active set and go to step 2.
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(2) Robust features: Attributes that are robust against
noise and occlusion generate higher compatibility
values because the estimation scheme for thre-
shold parameter t assigns low threshold value.
This will result in a sharp compatibility function
which takes extreme values more frequently. Such
attributes will be further emphasised by para-
meters learning scheme as well. Likewise, noisy
attributes that generate compatibility values
which are well distributed over the range of the
compatibility function due to high threshold
value, are further suppressed by these weighting
factors estimation procedures for not being at the
extremes.

(3) Rare and discriminatory features: Although rare
features were not explicitly searched for to be
included in the optimisation process, lower em-
phasis on intra-class ambiguous attributes in turn
amplify the relative weights associated with the
rare and unique attributes in every model.

5. EXPERIMENT RESULTS

Experiments were performed with the models and
scenes defined in Section 2 and shown in Figs 3—5, to
demonstrate the ability of the parameter learning
schemes to discover inherent characteristics of the
models and necessity of the weighting factor computa-
tion scheme to generate the desired mapping. The
final matching results are also presented. Since the
models and scenes are synthetic, the threshold para-
meter did not vary with the magnitude of attributes
and models. Hence, it is sensible to use a fixed set of
threshold values for all models.

5.1. Line patterns matching results

The following values were used for thresholds:
[14, 0.2, 14, 14, 14]. The steepness parameter was
estimated using the following relation: tanh(kt)"0.95.
The learnt parameter values are shown in Table 2 for
the line pattern models in Fig. 3. In model Fig. 3(a),
many lines join smoothly at one point. Hence, the last
binary relation (defined as r6 in Section 2.2.1) is
ambiguous and weighted low. In model 3(b), all line
segments have one of three segment lengths and they
are either parallel or perpendicular to each other.
Hence, the unary relation and the angle related binary
relation (defined as r3 in Section 2.2.1) are assigned

Table 2. Learnt parameter values for fuzzy optimal
mapping of line patterns

Model WT p

Fig. 3(a) [0.0538, 0.2362, 0.2722, 0.2457, 0.1382] 0.4997
Fig. 3(b) [0.0297, 0.0000, 0.3275, 0.3004, 0.3127] 0.3277
Fig. 3(c) [0.0000, 0.0038, 0.3263, 0.3064, 0.3634] 0.4270
Fig. 3(d) [0.0000, 0.0000, 0.3038, 0.3270, 0.3693] 0.4634

with low weight values. Models 3(c) and (d) have line
segments of the same length. Further all lines are
either parallel or perpendicular. Therefore, the unary
relation and the angle related binary relation have
0 or near zero weighting.

The number of iterations needed for convergence
did not vary significantly with the variations in the
weighting factors, but remained in the range of 40—60
iterations. However, the recognition rate was strongly
dependent on the weighting factors. The weighting
factors corresponding to model (a) could not be used
to generate the correct mapping for all other models.
However, the correct mapping can be generated for
model (a) using all four parameter sets, as model (a)
does not have significant ambiguity. Therefore, it is
apparent that if there is intra-model ambiguity, it is
essential to employ the optimal set of parameters for
every model. However, as the degree and the types of
ambiguities may vary between models, it is essential
to learn these weighting factors and map the graph
matching problem optimally. The results reported
below were obtained using the optimal set of weights
for every model.

When the scenes were matched against each model,
the MFT neural networks generated some spurious
matches, in addition to the desired matches. These
spurious matches were eliminated by the pose clus-
tering algorithm.(1) The matched pairs are presented
for the line patterns, after eliminating the spurious
matches. The matched pairs between scene in 3(e) and
model in 3(a) are M(1, 2), (2, 7), (3, 11), (4, 12), (5, 13),
(6, 15)N. The matched lines in model Fig. 3(a) are
overlaid onto the scene Fig. 3(e) and shown in
Fig. 4(a) by solid lines. The original scene is shown by
dotted lines. The matched pairs between scene 3(e)
and model in 3(b) are M(7, 1), (8, 3), (9, 5), (10, 8), (11, 9),
(12, 10), (13, 12), (14, 19)N and shown in Fig. 4(b).
Matching the scene 3(e) with the model in 3(c) did not
detect an occurrence. The matched pairs between
scene in 3(e) and model in Fig. 3(d) are M(15, 3), (16, 4),
(17, 5), (18, 6), (19, 7), (20, 10), (21, 11)N and M(22, 1),
(23, 2), (25, 8), (26, 10), (27, 11), (28, 15)N. These two
occurrences are shown in Fig. 4(c) by solid and
dashed lines. The line segment 24 was not correctly
matched. Line segments 29 and 30 were correctly
classified as extraneous line segments.

The matched pairs between scene 3(f ) and model
3(a) are M(1, 2), (2, 7), (3, 9), (4, 13), (5, 15)N and shown
in Fig. 4(d). Matching the scene Fig. 3(f ) with the
model Fig. 3(b) did not detect an occurrence. The
matching results between scene 3(f ) and model 3(c)
are M(6, 1), (7, 3), (8, 5), (9, 6), (10, 7), (11, 11), (12, 14)N
and M(13, 1), (14, 2), (15, 3), (16, 5), (17, 11), (18, 13)N
which are shown in Fig. 4(e) by solid lines and dashed
lines. When model 3(d) was matched against scene
3(f ) the following occurrence was detected M(19, 2),
(20, 5), (21, 6), (22, 7), (23, 9), (24, 12), (25, 14)N which is
shown in Fig. 4(f ). The line segments 26—29 were
identified to be extraneous and not classified with any
model.
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Fig. 3. Line pattern models and scenes: (a)—(d) four line pattern models, (e) and (f ) two overlapped
scenes.

5.2. Circle patterns matching results

The following value was used for the threshold of
binary attribute: [0.5, 14]. The steepness parameter
was estimated using the following relation:
tanh(kt)"0.95. The learnt parameter values are shown
in Table 3 for the circle pattern models in Fig. 5. The
major ambiguity in circle pattern is radius of circles.
Models Fig. 5(a), (b), (c) and (d) have 1—2 circles,
2 circles, 3—4 circles and 6 circles with the same radius,
respectively. Accordingly, the weight value associated
with the radius decreases from 0.2000 to 0.0222.

As far as the recognition accuracy is concerned,
a similar observation is made for circle patterns recog-
nition too. The weighting factors corresponding to
model (a) could not be used to generate the correct
mapping for all other models. However, the correct
mapping can be generated for model (a) using all four
parameter sets, as model (a) does not have significant
ambiguity. Therefore, it is apparent that if there is
intra-model ambiguity, it is essential to employ the
optimal set of parameters for every model. The results
reported below were obtained using the optimal set of
weights for every model.

Optimal encoding of graph homomorphism energy 633



Fig. 4. Line patterns matching results. Matched lines in the models Figs 3(a)— (d) are overlaid onto the
scenes in Figs 3(e)—(f ).

Table 3. Learnt parameter values for fuzzy optimal
mapping of circle patterns

Model WT p

Fig. 5(a) [0.2000, 0.6000] 0.5000
Fig. 5(b) [0.0612, 0.8770] 0.6229
Fig. 5(c) [0.0361, 0.9277] 0.6284
Fig. 5(d) [0.0222, 0.9556] 0.6051

The matched pairs between scene in 5(e) and model
in 5(a) are M(1, 3), (2, 5), (3, 10), (4, 12), (5, 14), (6, 15),
(7, 16)N. The matched circles in model Fig. 5(a) are

overlaid onto the scene Fig. 5(e) and shown in
Fig. 6(a) by filled circles. The original scene is shown
by blank circles. The matched pairs between scene 5(e)
and model in 5(b) are M(8, 2), (9, 3), (10, 10), (11, 11),
(12, 15), (13, 17)N and shown in Fig. 6(b). Matching
the scene 5(e) with the model in 5(c) did not detect an
occurrence. The matched pairs between scene in 5(e)
and model in Fig. 5(d) are M(14, 1), (15, 3), (16, 4),
(17, 6), (18, 12), (19, 18)N and M(20, 5), (21, 6), (22, 8),
(23, 10), (24, 12)N. These two occurrences are shown
in Fig. 6(c) by different shades. Circles 25—28 were
correctly classified as extraneous circles.
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Fig. 5. Circle pattern models and scenes: (a)—(d) four circle pattern models, (e) and (f ) two overlapped
scenes.

The matched pairs between scene 5(f ) and model
1(a) are M(1, 3), (2, 4), (3, 10), (4, 12), (5, 14), (6, 16)N and
shown in Fig. 6(d). Matching the scene Fig. 5(f ) with
the model Fig. 5(b) did not detect an occurrence. The
matching results between scene 5(f ) and model 5(c)

are M(7, 12), (8, 13), (9, 14), (10, 16), (11, 17), (12, 18)N
which is shown in Fig. 6(e). When model 5(d) was
matched against scene in 5(f ) the following occurrence
was detected M(13, 1), (14, 4), (15, 5), (16, 6)N and
M(17, 1), (18, 2), (19, 5), (20, 6), (21, 8)N which are shown
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Fig. 6. Circle patterns matching results. Matched circles in the models Figs 5(a)— (d) are overlaid onto
the scenes in Figs 3(e) and (f ).

in Fig. 6(f ). The circles 22—24 were identified to be
extraneous and not classified with any model.

5.3. Discussion

Our experiments with the line and circle patterns
showed clearly that the optimal set of parameters

generated more accurate mapping. Further, extensive
experiments performed using various images also
showed clearly and consistently that the optimal set
of parameters always generated more accurate map-
ping than a number of other parameter sets used in
the simulations. The results also confirmed that the
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objective function constructed based on the principal
of maximum separation between corresponding and
noncorresponding vertices is suitable to learn the
parameters for optimal mapping.

6. CONCLUSION

The overall homomorphic ARG matching strategy
described in this paper can be summarised as follows.
Given the models in the learning phase, (a) estimate
threshold and steepness parameters as explained in
Section 4.4, and (b) learn the weighting factors and the
parameter p in the generalised mean compatibility
function using the gradient projection algorithm
(Section 4.5). These estimation and learning are per-
formed off-line and independently for every model.
Hence, addition of new models to database and
deletion of models from database do not alter the
parameters of the other models. During the applica-
tion phase, to match a model ARG with the given test
scene ARG, use the optimal parameter set corres-
ponding to the model to obtain the optimally encoded
energy (Section 3) and employ the Potts MFT neural
networks (Section 3) or any other parallel ARG
matching strategy to generate the homomorphic
ARG mapping.

We have shown the ability of the algorithms to
discover inherent characteristics of the model and
assign parameters to reflect the characteristic of
the model and the application environment so that
the ARG matching problem can be optimally encoded
into the energy function for better quality parallel
solution. The proposed procedures were applied
to solve line and circle patterns recognition problems
and it was shown that the parameter learning schemes
were essential if the models had strong intra-model
ambiguity. Different models may have different
types and degrees of ambiguities. Hence, a particular
set of parameters may not be the best to compute
the overall compatibility for all models. Therefore,
it is essential to obtain the optimal set of para-
meters for every model. In addition, these learning
procedures replace the commonly used trial-and-
error approaches to estimating the compatibility
function parameters and offer a theoretically sound
alternative.

7. SUMMARY

The attributed relational graph matching (ARG)
strategy is a well-known approach to object/pattern
recognition [see Reference (1) for a detailed discus-
sion on recognition strategies]. As ARG matching is
an NP-complete problem, parallel ARG matching
approaches are preferred to the sequential search
methods. In all parallel ARG matching approaches,
an overall cost/objective function is constructed and
optimised. In order to construct such an objective
function, an information aggregation formulation

and numerical values for a number of parameters in
the formulation have to be chosen to fuse the informa-
tion captured in the chosen attributes. In the past,
linearly weighted information aggregation functions
have been used. In general, the weighting factors and
other parameters in the formulation have been as-
signed with numerical values by trial-and-error
methods. Further, a single set of parameters has been
used irrespective of the variations between different
models.

In this paper, the compatibility between every
pair of model and scene attributes is interpreted as a
fuzzy value and subsequently nonlinear information
aggregation functions, namely the fuzzy information
aggregation operators are used to fuse the informa-
tion captured in the chosen attributes. To learn the
parameters used in the fuzzy information aggregation
operators, the ‘‘learning from samples’’ strategy is
used. The computation of weight parameters is for-
mulated as an optimisation problem and solved using
the gradient projection algorithm based learning pro-
cedure. The learning procedure implicitly evaluates
ambiguity, robustness and discriminatory power of
the relational attributes chosen for graph matching
and assigns weighting factors appropriately to them.
Further, the proposed approach enables us to com-
pute a distinct set of optimal parameters for every
model to reflect the characteristics of the model. The
parameter learning procedure enables the homomor-
phic ARG matching problem to be optimally encoded
in the energy function for every model. In order to
illustrate the necessity and effectiveness of the learning
procedure, the Potts mean field theory (MFT) neural
network was employed to perform the parallel ARG
matching. Apparently, any other parallel ARG
matching approach could be employed to generate
such a mapping.

The overall homomorphic ARG matching strategy
described in this paper can be summarised as follows.
Given the models in the learning phase, (a) estimate
threshold and steepness parameters (Section 4.4), and
(b) learn the weighting factors and the parameter
p using the gradient projection algorithm (Section 4.5).
These estimation and learning are performed off-line
and separately for every model. Hence, addition of
new models to database and deletion of models from
database do not alter the parameters of the other
models. During the application phase, to match
a model ARG with the given test scene ARG, use the
optimal parameter set corresponding to the model to
obtain the optimally encoded energy (Section 3) and
employ the Potts MFT neural networks (Section 3)
(or any other parallel ARG matching strategy) to
generate the homomorphic ARG mapping. It could
be now noted that there are two distinct cost func-
tions. One is defined in Section 4.5 used to learn
weights and the parameter p. The other is defined in
Section 3 used to perform the actual recognition.

Experimental results are presented to illustrate that
the parameter learning scheme is essential when the
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models have intra-model ambiguity and the optimal
set of parameters always generates a better mapping.
In addition, an extensive literature on information
fusion for computer vision and pattern recognition
is also presented to highlight the novelty of our
proposed learning strategy.
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