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Abstract— Can we detect low dimensional structure in high
dimensional data sets of images and video? The problem of
dimensionality reduction arises often in computer vision and
pattern recognition. In this paper, we propose a new solution to
this problem based on semidefinite programming. Our algorithm
can be used to analyze high dimensional data that lies on or near
a low dimensional manifold. It overcomes certain limitations of
previous work in manifold learning, such as Isomap and locally
linear embedding. It also bridges two recent developments in
machine learning: semidefinite programming for learning kernel
matrices and spectral methods for nonlinear dimensionality re-
duction. We illustrate the algorithm on easily visualized examples
of curves and surfaces, as well as on actual images of faces,
handwritten digits, and solid objects.

I. I NTRODUCTION

Many data sets of images and video are characterized by
far fewer degrees of freedom than the actual number of pixels
per image. The problem of dimensionality reduction is to
understand and analyze these images in terms of their basic
modes of variability—for example, the pose and expression
of a human face, or the rotation and scaling of a solid object.
Ultimately, this is a problem that must be solved by robust
systems for computer vision and pattern recognition [1], [2],
[3]. It is also of great interest to researchers in biological vision
and computational neuroscience [4].

Mathematically, we can view an image as a point in a high
dimensional vector space whose dimensionality is equal to
the number of pixels in the image [5], [6]. If the images in
a data set are effectively parameterized by a small number
of continuous variables, then they will lie on or near a low
dimensional manifold in this high dimensional space [7].
Though one can imagine other types of hidden structure in
ensembles of images (such as clusters [8] or parts [9]), in this
paper, we shall focus solely on continuous modes of variability
and the unsupervised learning of image manifolds.

Beyond its applications in computer vision, manifold learn-
ing is best described as a problem at the intersection of statis-
tics, geometry, and computation. The problem is illustrated
in Fig. 1. Given high dimensional data sampled from a low
dimensional manifold, how can we efficiently compute a faith-
ful (nonlinear) embedding? In the last few years, researchers
have uncovered a large family of algorithms for computing
such embeddings from the top or bottom eigenvectors of an
appropriately constructed matrix. These algorithms—including

Isomap [10], locally linear embedding (LLE) [11], [12], hes-
sian LLE [13], Laplacian eigenmaps [14], and others [15]—
can reveal low dimensional manifolds that are not detected by
classical linear methods, such as principal component analysis
(PCA) [16].

Our main contribution in this paper is a new algorithm for
manifold learning based on semidefinite programming. Like
Isomap and LLE, it relies on efficient and tractable optimiza-
tions that are not plagued by spurious local minima. Interest-
ingly, though, our algorithm is based on a completely different
geometric intuition (and optimization), and it overcomes cer-
tain well-known limitations of previous work. Our algorithm
also reveals an interesting and unexpected connection to recent
work on kernel methods in pattern recognition [17].

Fig. 1. The problem of manifold learning, as illustrated forN =800 data
points sampled from a “Swiss roll”. (1). A discretized manifold is revealed
by forming the graph that pairwise connects each data point and itsk = 6
nearest neighbors (2). An unsupervised algorithm must learn the faithful two
dimensional embedding that unfolds the Swiss roll while preserving the local
geometry of nearby data points (3).

The organization of this paper is as follows. In section II, we
review classical methods for linear dimensionality reduction,
then introduce the particular class of nonlinear transformations
that we consider for unsupervised learning of image manifolds.
In section III, we show how to formulate manifold learning
as a highly tractable problem in semidefinite programming;
this leads to a simple algorithm, calledsemidefinite embedding
(SDE), for analyzing high dimensional data that lies on or
near a low dimensional manifold. In section IV, we present



results of the algorithm on several data sets, including easily
visualized examples of curves and surfaces, as well as images
of faces, handwritten digits, and solid objects. In section V, we
contrast our algorithm with previous approaches in manifold
learning and nonlinear dimensionality reduction. Finally, in
section VI, we conclude by describing several directions for
future work.

II. D IMENSIONALITY REDUCTION

We study dimensionality reduction as a problem in unsu-
pervised learning. GivenN high dimensional inputs~Xi∈RD

(where i = 1, 2, . . . , N ), the problem is to compute outputs
~Yi ∈ Rd in one-to-one correspondence with the inputs that
provide a faithful embedding ind < D dimensions. By
“faithful”, we mean that nearby points remain nearby and
that distant points remain distant; we shall make this intuition
more precise in what follows. Ideally, an unsupervised learning
algorithm should also estimate the intrinsic dimensionalityd
of the manifold sampled by the inputs~Xi.

Our algorithm for manifold learning builds on classical
methods for dimensionality reduction. We therefore begin by
briefly reviewing the linear methods of principal component
analysis (PCA) [16] and metric multidimensional scaling
(MDS) [18]. The generalization from subspaces to manifolds
is then made by introducing the idea of local isometry.

A. Linear Methods

PCA and MDS are based on simple geometric intuitions.
In PCA, the inputs are projected into the lower dimensional
subspace that maximizes the projected variance; the basis
vectors of this subspace are given by the top eigenvectors of
the D×D covariance matrix,C = 1

N

∑
i

~Xi
~XT

i . (Here and in
what follows, we assume without loss of generality that the
inputs are centered on the origin:

∑
i

~Xi =~0.)
In MDS with classical scaling, the inputs are projected

into the subspace that best preserves their pairwise squared
distances| ~Xi − ~Xj |2 or, more precisely, their dot products
~Xi · ~Xj . The outputs of MDS are computed from the top
eigenvectors of theN×N Gram matrix of dot products, with
elementsGij = ~Xi · ~Xj . Note that a set of vectors is determined
up to rotation by its Gram matrix of dot products.

Though based on somewhat different geometric intuitions,
PCA and MDS yield the same results—essentially a rotation
of the inputs followed by a projection into the subspace with
the highest variance. The correlation matrix of PCA and the
Gram matrix of MDS have the same rank and eigenvalues up
to a constant factor. Both matrices are semipositive definite,
and gaps in their eigenvalue spectra indicate that the high
dimensional inputsXi∈RD lie to a good approximation in
a lower dimensional subspace of dimensionalityd, whered
is the number of appreciably positive eigenvalues. These
linear methods for dimensionality reduction generate faithful
embeddings when the inputs are mainly confined to a low
dimensional subspace; in this case, their eigenvalues also
reveal the correct underlying dimensionality. They do not

generally succeed, however, in the case that the inputs lie on
a low dimensional manifold.

B. From Subspaces to Manifolds

We will refer to any method that computes a low dimen-
sional embedding from the eigenvectors of an appropriately
constructed matrix as a method inspectral embedding. If PCA
and MDS are linear methods in spectral embedding, what are
their nonlinear counterparts? In fact, there are several, most of
them differing in the geometric intuition they take as starting
points and in the generalizations of linear transformations that
they attempt to discover.

The nonlinear method we propose in this paper is based
fundamentally on the notion ofisometry. (For the sake of
exposition, we defer a discussion of competing nonlinear
methods based on isometries [10], [13] to section V.) Formally,
two Riemannian manifolds are said to be isometric if there is
a diffeomorphism such that the metric on one pulls back to the
metric on the other. Informally, an isometry is a smooth invert-
ible mapping that looks locally like a rotation plus translation,
thus preserving distances along the manifold. Intuitively, for
two dimensional surfaces, the class of isometries includes
whatever physical transformations one can perform on a sheet
of paper without introducing holes, tears, or self-intersections.
Many interesting image manifolds are isometric to connected
subsets of Euclidean space [19].

Isometry is a relation between manifolds, but we can extend
the notion in a natural way to data sets. Consider two data
setsX = { ~Xi}N

i=1 and Y = {~Yi}N
i=1 that are in one-to-one

correspondence. Let theN ×N binary matrix η indicate a
neighborhood relation onX and Y , such that we regard~Xj

as a neighbor of~Xi if and only if ηij = 1 (and similarly,
for ~Yj and ~Yi). We will say that the data setsX and Y
are locally isometric under the neighborhood relationη if for
every point ~Xi, there exists a rotation and translation that
maps~Xi and its neighbors precisely onto~Yi and its neighbors.

We can translate the above definition into various sets of
equality constraints onX andY . To begin, note that the local
mapping between neighborhoods will exist if and only if the
distances and angles between points and their neighbors are
preserved. Thus, whenever both~Xj and ~Xk are neighbors of
~Xi (that is,ηijηik =1), for local isometry we must have that:(

~Yi−~Yj

)
·
(

~Yi−~Yk

)
=

(
~Xi− ~Xj

)
·
(

~Xi− ~Xk

)
. (1)

Eq. (1) is sufficient for local isometry because the triangle
formed by any point and its neighbors is determined up to
rotation and translation by specifying the lengths of two sides
and the angle between them. In fact, such a triangle is similarly
determined by specifying the lengths of all its sides. Thus,
we can also say thatX and Y are locally isometric under
η if whenever ~Xi and ~Xj are themselves neighbors (that is,
ηij =1) or are common neighbors of another point in the data
set (that is,[ηT η]ij >0), we have:∣∣∣~Yi−~Yj

∣∣∣2 =
∣∣∣ ~Xi− ~Xj

∣∣∣2 . (2)



This is an equivalent characterization of local isometry as
eq. (1), but expressed only in terms of pairwise distances.
Finally, we can express these constraints purely in terms of
dot products. LetGij = ~Xi · ~Xj and Kij = ~Yi · ~Yj denote the
Gram matrices of the inputs and outputs, respectively. We can
rewrite eq. (2) as:

Kii+Kjj−Kij−Kji = Gii+Gjj−Gij−Gji. (3)

Eq. (3) expresses the conditions for local isometry purely in
terms of Gram matrices; it is in fact this formulation that will
form the basis of our algorithm for manifold learning.

III. SEMIDEFINITE EMBEDDING

We can now formulate the problem of manifold learning
more precisely, taking as a starting point the notion of local
isometry. In particular, givenN inputs ~Xi ∈ RD and a
prescription for identifying “neighboring” inputs, can we find
N outputs ~Yi ∈ Rd, whered < D, such that the inputs and
outputs are locally isometric, or at least approximately so?
Alternatively, we can state the problem in terms of Gram
matrices: can we find a Gram matrixKij that satisfies the
constraints in eq. (3), and for which the vectors~Yi (which
are determined up to a rotation by the elements of the Gram
matrix) lie in a subspace of dimensionalityd<D, or at least
approximately lie in such a subspace? In this section, we show
how this can be done by a constrained optimization over the
cone of semidefinite matrices.

Like PCA and MDS, the algorithm we propose for manifold
learning is based on a simple geometric intuition. Imagine
each input~Xi as a steel ball that is connected to itsk nearest
neighbors by rigid rods. The effect of the rigid rods is to fix
the distances and angles between nearest neighbors, no matter
what other forces are applied to the inputs. Now imagine that
the inputs are pulled apart, maximizing their total variance
subject to the constraints imposed by the rigid rods. Fig. 1
shows the unraveling effect of this transformation on inputs
sampled from the Swiss roll. The goal of this section is to
formalize the steps of this transformation—in particular, the
constraints that must be satisfied by the final solution, and the
nature of the optimization that must be performed.

A. Constraints

The constraints that we need to impose for local isometry
are naturally represented by a graph withN nodes, one for
each input. Consider the graph formed by connecting each
input to its k nearest neighbors, wherek is a free parameter
of the algorithm. For simplicity, we assume that the graph
formed in this way is connected; if not, then each connected
component should be analyzed separately. The constraints for
local isometry under this neighborhood relation are simply to
preserve the lengths of the edges in this graph, as well as
the angles between edges at the same node. In practice, it is
easier to deal only with constraints on distances, as opposed to
angles. To this end, let us further connect the graph by adding
edges between the neighbors of each node (if they do not
already exist). Now by preserving the distances of all edges

in this new graph (see Fig. 2), we preserve both the distances
of edges and the angles between edges in the original graph—
because if all sides of a triangle are preserved, so are its angles.

Fig. 2. In the left graph, each node is connected to its nearest neighbors; in
the right graph, direct connections are also added between the neighbors. (The
original and added edges involving just the middle node are shown in bold.)
Preserving the distances of edges in the right graph is equivalent to preserving
the distances of edges and the angles between edges in the left graph.

In addition to imposing the constraints represented by the
“neighborhood graph”, we also constrain the outputs~Yi to be
centered on the origin:∑

i

~Yi = ~0. (4)

Eq. (4) simply removes a translational degree of freedom from
the final solution. The centering constraint can be expressed
in terms of the Gram matrixKij as follows:

0 =
∣∣∣∑

i
~Yi

∣∣∣2 =
∑
ij

~Yi · ~Yj =
∑
ij

Kij . (5)

Note that eq. (5) is a linear equality constraint on the elements
of the output Gram matrix, just like eq. (3).

Because the geometric constraints on the outputs~Yi are so
naturally expressed in terms of the Gram matrixKij (and
because the outputs are determined up to rotation by their
Gram matrix), we may view manifold learning as an opti-
mization over Gram matricesKij rather than vectors~Yi. Not
all matrices, however, can be interpreted as Gram matrices:
only symmetric matrices with nonnegative eigenvalues can be
interpreted in this way. Thus, we must further constrain the
optimization to the cone of semidefinite matrices [20].

In sum, there are three types of constraints on the Gram ma-
trix Kij , arising from local isometry, centering, and semidef-
initeness. The first two involve linear equality constraints;
the last one is not linear, but importantly it isconvex. We
will exploit this property in what follows. Note that there are
O(Nk2) constraints onO(N2) matrix elements, and that the
constraints are not incompatible, since at the very least they are
satisfied by the input Gram matrixGij (assuming, as before,
that the inputs~Xi are centered on the origin).

B. Optimization

What function of the Gram matrix can we optimize to
“unfold” a manifold, as in Fig. (1)? As motivation, consider the
ends of a piece of string, or the corners of a flag. Any slack in
the string serves to decrease the (Euclidean) distance between
its two ends; likewise, any furling of the flag serves to bring its
corners closer together. More generally, we observe that any
“fold” between two points on a manifold serves to decrease



the Euclidean distance between the points. This suggests an
optimization that we can perform to compute the outputs~Yi

that unfold a manifold sampled by inputs~Xi. In particular, we
propose to maximize the sum of pairwise squared distances
between outputs:

T (Y ) =
1

2N

∑
ij

∣∣∣~Yi − ~Yj

∣∣∣2 . (6)

By maximizing eq. (6), we pull the outputs as far apart as
possible,subject to the constraints in the previous section.

Before expressing this objective function in terms of the
Gram matrix Kij , let us verify that it is indeed bounded,
meaning that we cannot pull the outputs infinitely far apart.
Intuitively, the constraints to preserve local distances (and
the assumption that the graph is connected) prevent such a
divergence. More formally, letηij =1 if ~Xj is one of the
k nearest neighbors of~Xi, and zero otherwise, and letτ be
the maximal distance between any two such neighbors:

τ = max
ij

[
ηij

∣∣∣ ~Xi − ~Xj

∣∣∣2] . (7)

Assuming the graph is connected, then the longest path
through the graph has a distance of at mostNτ . We observe
furthermore that given two nodes, the distance of the path
through the graph provides an upper bound on their Euclidean
distance. Thus, for all outputs~Yi and ~Yj , we must have
|~Yi − ~Yj | < Nτ . Using this to provide an upper bound on
the objective function in eq. (6), we obtain:

T (Y ) ≤ 1
2N

∑
ij

(Nτ)2 =
N3τ2

2
. (8)

Thus, the objective function cannot increase without bound if
we enforce the constraints to preserve local distances.

We can express the objective function in eq. (6) directly in
terms of the the Gram matrixKij of the outputs~Yi. Expanding
the terms on the right hand side, and enforcing the constraint
that the outputs are centered on the origin, we obtain:

T (Y ) =
1

2N

∑
ij

(∣∣∣~Yi

∣∣∣2 +
∣∣∣~Yj

∣∣∣2 + 2~Yi · ~Yj

)
, (9)

=
∑

i

∣∣∣~Yi

∣∣∣2 , (10)

=
∑

i

Kii, (11)

= Tr(K). (12)

Thus, we can interpret the objective function for the outputs in
several ways: as a sum over pairwise distances in eq. (6), as a
measure of variance in eq. (10), or as the trace of their Gram
matrix in eq. (12). The second interpretation is reminiscent
of PCA, but whereas in PCA we compute the linear projec-
tion that maximizes variance, here we compute the locally
isometric embedding. Put another way, the objective function
for maximizing variance remains the same; we have merely
changed the allowed form of the dimensionality reduction. We

also emphasize that in eq. (12), we are maximizing the trace,
not minimizing it. While a standard relaxation to minimizing
the rank [21] of a semidefinite matrix is to minimize its trace,
the intuition here is just the opposite: we will obtain a low
dimensional embedding by maximizing the trace of the Gram
matrix.

Let us now collect the costs and constraints of this
optimization. The problem is to maximize the variance of
the outputs{~Yi}N

i=1 subject to the constraints that they are
centered on the origin and locally isometric to the inputs
{ ~Xi}N

i=1. In terms of the input Gram matrixGij = ~Xi · ~Xj ,
the output Gram matrixKij = ~Yi · ~Yj and the adjacency
matrix ηij indicating nearest neighbors, the optimization can
be written as:

Maximize Tr(K) subject to K � 0,
∑

ij Kij = 0,

and ∀ij such that ηij =1 or [ηT η]ij =1,

Kii+Kjj−Kij−Kji = Gii+Gjj−Gij−Gji.

This problem is an instance of semidefinite programming
(SDP) [20]: the domain is the cone of semidefinite matrices
intersected with hyperplanes (represented by equality con-
straints), and the objective function is linear in the matrix
elements. The optimization is bounded above by eq. (8); it is
also convex, thus eliminating the possibility of spurious local
maxima. There exists a large literature on efficiently solving
SDPs, as well as a number of general-purpose toolboxes.
The results in this paper were obtained using the SeDuMi
toolbox [22] in MATLAB.

C. Spectral Embedding

From the Gram matrix learned by semidefinite program-
ming, we can recover the outputs~Yi by matrix diagonaliza-
tion. Let Vαi denote theith element of theαth eigenvector,
with eigenvalueλα. Then the Gram matrix can be written as:

Kij =
N∑

α=1

λαVαiVαj . (13)

An N -dimensional embedding that is locally isometric to the
inputs ~Xi is obtained by identifying theαth element of the
output ~Yi as:

Yαi =
√

λαVαi. (14)

The eigenvalues ofK are guaranteed to be nonnegative. Thus,
from eq. (14), a large gap in the eigenvalue spectrum between
the dth and(d + 1)th eigenvalues indicates that the inputs lie
on or near a manifold of dimensionalityd. In this case, a low
dimensional embedding that isapproximatelylocally isometric
is given by truncating the elements of~Yi. This amounts to
projecting the outputs into the subspace of maximal variance,
assuming the eigenvalues are sorted from largest to smallest.
The quality of the approximation is determined by the size
of the truncated eigenvalues; there is no approximation error
for zero eigenvalues. The situation is analogous to PCA and



MDS, but here the eigenvalue spectrum reflects the underlying
dimensionality of a manifold, as opposed to merely a subspace.

The three steps of the algorithm, which we call Semidefinite
Embedding (SDE), are summarized in Table I. In its simplest
formulation, the only free parameter of the algorithm is the
number of nearest neighbors in the first step (though one
can imagine more elaborate schemes). The second step of the
algorithm, involving semidefinite programming, is the most
computationally intensive. The first and third steps of SDE
resemble those of other algorithms for manifold learning,
discussed in section V; SDE has rather different properties,
however, due to the particular nature of its second step.

(I)
Nearest

Neighbors

Compute thek nearest neighbors of each input. Form the
graph that connects each input to its neighbors, as well
as each neighbor to other neighbors of the same input.

(II)
Semidefinite
Programming

Compute the Gram matrix of the maximum variance
embedding that is centered on the origin and preserves
the distances of all edges in the neighborhood graph.

(III)
Spectral

Embedding

Extract a low dimensional embedding from the dominant
eigenvectors of the Gram matrix learned by semidefinite
programming.

TABLE I

THE THREE STEPS OFSEMIDEFINITE EMBEDDING (SDE).

IV. RESULTS

We used several data sets of curves, surfaces, and images
to evaluate the algorithm in Table I for low dimensional
embedding of high dimensional inputs.

Fig. 1 showsN =800 inputs sampled off a “Swiss roll” [10].
The inputs to the algorithm hadD=8 dimensions, consisting
of the three dimensions shown in the figure, plus five extra
dimensions1 filled with low variance Gaussian noise. The bot-
tom plot of the figure shows the unfolded Swiss roll extracted
from the Gram matrix learned by semidefinite programming.
The top three eigenvectors are plotted, but the variance in the
third dimension (shown to scale) is negligible. The eigenvalue
spectrum in Fig. (8) reveals two dominant eigenvalues—a
major eigenvalue, representing the unwrapped length of the
Swiss roll, and a minor eigenvalue, representing its width.
(The unwrapped Swiss roll is much longer than it is wide.)
The other eigenvalues are nearly zero, indicating that SDE
has discovered the correct underlying dimensionality (d = 2)
of these inputs.

Fig. 3 shows another easily visualized example. The left plot
showsN = 539 inputs sampled from a trefoil knot inD = 3
dimensions; the right plot shows thed=2 embedding discov-
ered by SDE usingk=4 nearest neighbors. The color coding
reveals that local neighborhoods have been preserved. In this
case, the underlying manifold is a one-dimensional curve, but

1ForK =6 nearest neighbors, the noise in extra dimensions helps to prevent
the manifold from “locking up” when it is unfolded subject to the equality
constraints in eqs. (1–3).

due to the cycle, it can only be represented in Euclidean space
by a circle. The eigenvalue spectrum in Fig. (8) reveals two
dominant eigenvalues; the rest are essentially zero, indicating
the underlying (global) dimensionality (d=2) of the circle.

Fig. 3. Left: N = 539 inputs sampled along a trefoil knot inD = 3
dimensions. Right:d = 2 embedding computed by SDE usingk = 4
nearest neighbors. The color coding shows that the embedding preserves
local neighborhoods.

Fig. 4 shows the results of SDE applied to color images
of a three dimensional solid object. The images were created
by viewing a teapot from different angles in the plane. The
images have76 × 101 pixels, with three byte color depth,
giving rise to inputs ofD =23028 dimensions. Though very
high dimensional, the images in this data set are effectively pa-
rameterized by one degree of freedom—the angle of rotation.
SDE was applied toN = 400 images spanning 360 degrees
of rotation, with k = 4 nearest neighbors used to generate a
connected graph. The two dimensional embedding discovered
by SDE represents the rotating object as a circle—an intuitive
result analogous to the embedding discovered for the trefoil
knot. The eigenvalue spectrum of the Gram matrix learned by
semidefinite programming is shown in Fig. (8); all but the first
two eigenvalues are practically zero, indicating the underlying
(global) dimensionality (d=2) of the circle.

Fig. 4. Two dimensional embedding ofN =400 images of a rotating teapot,
obtained by SDE usingk=4 nearest neighbors. For this experiment, the teapot
was rotated 360 degrees; the low dimensional embedding is a full circle. A
representative sample of images are superimposed on top of the embedding.

Fig. 5 was generated from the same data set of images;
however, for this experiment, onlyN = 200 images were



used, sampled over 180 degrees of rotation. In this case, the
eigenvalue spectrum from SDE detects that the images lie on
a one dimensional curve (see Fig. 8), and thed=1 embedding
in Fig. 5 orders the images by their angle of rotation.

Fig. 6 shows the results of SDE on a data set ofN =1000
images of faces. The images contain different views and
expressions of the same face. The images have28 × 20
grayscale pixels, giving rise to inputs withD = 560 dimen-
sions. The plot in Fig. 6 shows the first two dimensions of the
embedding discovered by SDE, usingk=4 nearest neighbors.
Interestingly, the eigenvalue spectrum in Fig. 8 indicates that
most of the variance of the spectral embedding is contained
in the first three dimensions.

Fig. 6. Top: two dimensional embedding ofN = 1000 images of faces,
obtained by SDE usingk = 4 nearest neighbors. Representative faces are
shown next to circled points.Bottom: eigenvalues of SDE and PCA on this
data set, indicating their estimates of the underlying dimensionality. The
eigenvalues are shown as a percentage of the trace of the output Gram matrix
for SDE and the trace of the input Gram matrix for PCA. The eigenvalue
spectra show that most of the variance of the nonlinear embedding is confined
to many fewer dimensions than the variance of the linear embedding.

Fig. 7 shows the results of SDE applied to another data
set of images. In this experiment, the images were a subset
of N = 953 handwrittenTWOS from the USPS data set of
handwritten digits [23]. The images have16×16 grayscale
pixels, giving rise to inputs withD = 256 dimensions.
Intuitively, one would expect these images to lie on a low
dimensional manifold parameterized by such features as size,
slant, and line thickness. Fig. 7 shows the first two dimensions
of the embedding obtained from SDE, withk = 4 nearest
neighbors. The eigenvalue spectrum in Fig. 8 indicates a latent
dimensionality significantly larger than two, but still much
smaller than the actual number of pixels.

Fig. 7. Results of SDE usingk=4 nearest neighbors onN =953 images of
handwrittenTWOS. Representative images are shown next to circled points.

Fig. 8. Eigenvalue spectra from SDE on the data sets in this paper. The
eigenvalues are shown as a percentage of the trace of the Gram matrix
learned by semidefinite programming. SDE unambiguously identifies the
correct underlying dimensionality of the Swiss roll, trefoil knot, and teapot
data sets. The images of faces and handwritten digits give rise to many fewer
non-zero eigenvalues than the actual number of pixels.

V. RELATED WORK

Our work bridges two recent developments in machine
learning: spectral methods for nonlinear dimensionality re-
duction and semidefinite programming for learning kernel
matrices. We discuss each in turn.

A. Manifold Learning

The last few years have witnessed a number of develop-
ments in spectral methods for manifold learning. Recently
proposed algorithms include Isomap [10], locally linear em-
bedding (LLE) [11], [12], hessian LLE (hLLE) [13], and
Laplacian eigenmaps [14]; there are also related algorithms
for clustering [24], [25]. All these algorithms share the same
basic structure as SDE, consisting of three steps: (i) computing
neighborhoods in the input space, (ii) constructing a square
matrix with as many rows as inputs, and (iii) spectral embed-
ding via the top or bottom eigenvectors of this matrix. SDE is
based on a rather different geometric intuition, however, and
as a result, it has different properties.



Fig. 5. One dimensional embedding ofN =200 images of a rotating teapot, obtained by SDE usingk=4 nearest neighbors. For this experiment, the teapot
was only rotated 180 degrees. Representative images are shown ordered by their location in the embedding.

Table II compares these algorithms. Each algorithm attempts
to estimate and preserve a different geometric signature of the
manifold sampled by the inputs. Isomap estimates geodesic
distances between inputs; LLE estimates the coefficients of
local linear reconstructions; hLLE and Laplacian eigenmaps
estimate the Hessian and Laplacian on the manifold, respec-
tively; SDE estimates local angles and distances. Of these
algorithms, only Isomap, hLLE, and SDE attempt to learn
isometric embeddings; they are therefore the easiest to com-
pare (since they seek the same solution, up to rotation and
scaling). The results on the data set in Fig. 9 reveal some
salient differences between these algorithms. While SDE and
hLLE reproduce the original inputs up to isometry, Isomap
fails in this example because the sampled manifold is not
isometric to aconvexsubset of Euclidean space. (This is a key
assumption of Isomap, one that is not satisfied by many image
manifolds [19].) Moreover, comparing the eigenvalue spectra
of the algorithms, only SDE detects the correct underlying di-
mensionality of the inputs; Isomap is foiled by non-convexity,
while the eigenvalue spectra of LLE and hLLE do not reveal
this type of information [12], [13].

Overall, the different algorithms for manifold learning in
Table II should be viewed as complementary; each has its
own advantages and disadvantages. LLE, hLLE, and Laplacian
eigenmaps construct sparse matrices, and as a result, they
are easier to scale to large data sets. On the other hand,
their eigenvalue spectra do not reliably reveal the underlying
dimensionality of sampled manfolds, as do Isomap and SDE.
There exist rigorous proofs of asymptotic convergence for
Isomap [19], [26] and hLLE [13], but not for the other
algorithms. On the other hand, SDE by its very nature provides
finite-size guarantees that its constraints will lead to locally
isometric embeddings. We are not aware of any finite-size
guarantees provided by the other algorithms, and indeed, the
Hessian estimation in hLLE relies on numerical differencing,
which can be problematic for small sample sizes. Finally,
while the different algorithms have different computational
bottlenecks, it is fair to say that SDE is the most computa-
tionally demanding. Scaling SDE to larger data sets will likely
require special-purpose solvers for its instance of semidefinite
programming. This is an important direction for future work.

B. Kernel Methods

Along with the growing interest in manifold learning, the
last few years have also witnessed an explosion of interest in
kernel methods for pattern recognition [17]. Kernel methods
rely on an implicit mapping of inputs to a higher (and
potentially infinite) dimensional feature space. The kernel

Fig. 9. Top: embedding of a non-convex two dimensional data set (N =500)
by different algorithms for manifold learning. Isomap, LLE, and hLLE were
run with k = 10 nearest neighbors; SDE, withk = 5 nearest neighbors.
Only hLLE and SDE reproduce the original inputs up to isometry.Bottom:
only SDE has an eigenvalue spectrum that indicates the correct underlying
dimensionality (d=2).

Algorithm Matrix Mapping Signature
Isomap dense isometric geodesic distances

SDE dense isometric local distances
LLE sparse conformal local angles

hLLE sparse isometric Hessian
Laplacian
eigenmaps sparse

proximity
preserving

discrete
Laplacian

TABLE II

COMPARISON OF MANIFOLD LEARNING ALGORITHMS IN TERMS OF THE

MATRICES THEY COMPUTE, THE MAPPINGS THEY LEARN, AND THE

GEOMETRIC SIGNATURES THEY EXPLOIT.

function specifies the dot product between the feature vectors
formed in this way from the original inputs. The “kernel
trick” is to replace the dot products~X · ~X ′ that appear in
linear algorithms for pattern recognition by the kernel function
K( ~X, ~X ′). Support vector machines [27] for classification and
kernel PCA [28] for nonlinear dimensionality reduction are
examples of algorithms that were conceived in this way, with
a kernel matrix that stores the pairwise dot products between
inputs in feature space. In most kernel machines, the kernel
function is simply specified a priori; the most popular choices
involve polynomial and Gaussian kernels. Recent work in
supervised learning, however, has investigated the possibility
of learning kernel matrices by semidefinite programming [29].

The Gram matrixKij learned by SDE can be viewed as a
kernel matrix between inputs. While there have been attempts
to interpret the matrices constructed by Isomap and LLE as



kernels [17], [30], [31], the interpretation for SDE is arguably
the most straightforward. The kernel matrix learned by SDE
is interesting in several respects. First, it is based on variance
maximization, as opposed to margin maximization [17], [29];
the former applies to unsupervised learning, whereas the latter
requires (at least some) labeled examples. Second, whereas
most kernel functions are chosen to map the inputs into a
higher dimensional feature space, the kernel matrix learned by
SDE does just the opposite, typically mapping the inputs into
a lower dimensional space. Finally, SDE may be viewed as a
special version of kernel PCA [28]—ideally suited for mani-
fold discovery—in which the kernel matrix itself is learned (in
a completely unsupervised manner) from unlabeled examples.

VI. D ISCUSSION

Our initial results for SDE seem promising. SDE has
different properties than algorithms such as Isomap and LLE,
and many of these properties can be construed as advantages.
Like Isomap (and unlike LLE), its eigenvalue spectrum reveals
the underlying dimensionality of sampled manifolds; unlike
Isomap, however, it does not assume that the inputs are isomet-
ric to a convex subset of Euclidean space. To our knowledge,
SDE is also the first algorithm for manifold learning based on
semidefinite programming.

There are many important directions for future work. Per-
haps the most urgent is the investigation of faster methods for
solving the semidefinite program in SDE. This study used a
generic solver that did not exploit the special structure of the
constraints. A specialized solver should allow us to scale SDE
up to larger data sets and larger neighborhood sizes. Also, we
can relax the constraints in eqs. (1–3) without altering the
basic structure of the semidefinite program. Introducing slack
variables to relax these constraints may improve the robustness
of the algorithm on noisy data sets.

As has been done for Isomap [10], [19], [26] and hLLE [13],
it would be desirable to formulate SDE in the continuum limit
and to construct rigorous proofs of asymptotic convergence.
Such theoretical results would almost certainly provide addi-
tional insight into the behavior of the algorithm.

Other directions for future work include the use of SDE
kernels in support vector machines [27], the investigation
of image manifolds with different topologies [32] (such as
those isometric to low dimensional spheres or torii), and the
extrapolation of SDE kernels to out-of-sample inputs [30].
Indeed, to the extent that SDE provides a new connection
between work in manifold learning and kernel methods, we
hope it will lead to further advances in both areas.
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