Unsupervised Learning of Image Manifolds
by Semidefinite Programming

Kilian Q. Weinberger and Lawrence K. Saul
Department of Computer and
Information Science
University of Pennsylvania
Email: {kilianw, Isaul}@cis.upenn.edu

_Abstract—Can we detect low dimensional structure in high Isomap [10], locally linear embedding (LLE) [11], [12], hes-
d!mens!onal_ data set_s of Images and_ video? The pr_oblem of sian LLE [13], Laplacian eigenmaps [14], and others [15]—
dimensionality reduction arises often in computer vision and ¢4 reveal low dimensional manifolds that are not detected by

pattern recognition. In this paper, we propose a new solution to - . L .
this problem based on semidefinite programming. Our algorithm classical linear methods, such as principal component analysis

can be used to analyze high dimensional data that lies on or near (PCA) [16].

a low dimensional manifold. It overcomes certain limitations of Our main contribution in this paper is a new algorithm for
previous work in manifold learning, such as Isomap and locally manifold learning based on semidefinite programming. Like
linear embedding. It also bridges two recent developments in  ooman and LLE, it relies on efficient and tractable optimiza-
machine learning: semidefinite programming for learning kernel - .

matrices and spectral methods for nonlinear dimensionality re- tiONS that are not plagued by spurious local minima. Interest-
duction. We illustrate the algorithm on easily visualized examples ingly, though, our algorithm is based on a completely different
of curves and surfaces, as well as on actual images of facesgeometric intuition (and optimization), and it overcomes cer-
handwritten digits, and solid objects. tain well-known limitations of previous work. Our algorithm
also reveals an interesting and unexpected connection to recent
work on kernel methods in pattern recognition [17].

Many data sets of images and video are characterized by
far fewer degrees of freedom than the actual number of pixels
per image. The problem of dimensionality reduction is to
understand and analyze these images in terms of their basic
modes of variability—for example, the pose and expression
of a human face, or the rotation and scaling of a solid object.
Ultimately, this is a problem that must be solved by robust
systems for computer vision and pattern recognition [1], [2],
[3]. Itis also of great interest to researchers in biological vision
and computational neuroscience [4].

Mathematically, we can view an image as a point in a high
dimensional vector space whose dimensionality is equal to
the number of pixels in the image [5], [6]. If the images in
a data set are effectively parameterized by a small number
of continuous variables, then they will lie on or near a lowig 1. The problem of manifold learning, as illustrated for=800 data
dimensional manifold in this high dimensional space [7].points sampled from a “Swiss roll”. (1). A discretized manifold is revealed

; i ; forming the graph that pairwise connects each data point arid =%
Thoth one can imagine other types of hidden structure ﬁéarest neighbors (2). An unsupervised algorithm must learn the faithful two

ensembles of images (such as C|U5_ter5 [8] or parts [9])’_ in _t!alﬁlensional embedding that unfolds the Swiss roll while preserving the local
paper, we shall focus solely on continuous modes of variabiliggometry of nearby data points (3).

and the unsupervised learning of image manifolds.

Beyond its applications in computer vision, manifold learn- The organization of this paper is as follows. In section I, we
ing is best described as a problem at the intersection of statisview classical methods for linear dimensionality reduction,
tics, geometry, and computation. The problem is illustratétlen introduce the particular class of nonlinear transformations
in Fig. 1. Given high dimensional data sampled from a lothat we consider for unsupervised learning of image manifolds.
dimensional manifold, how can we efficiently compute a faithn section Ill, we show how to formulate manifold learning
ful (nonlinear) embedding? In the last few years, researchas a highly tractable problem in semidefinite programming;
have uncovered a large family of algorithms for computinthis leads to a simple algorithm, callesdmidefinite embedding
such embeddings from the top or bottom eigenvectors of &DE), for analyzing high dimensional data that lies on or
appropriately constructed matrix. These algorithms—includingear a low dimensional manifold. In section IV, we present

I. INTRODUCTION




results of the algorithm on several data sets, including easggnerally succeed, however, in the case that the inputs lie on
visualized examples of curves and surfaces, as well as imagdsw dimensional manifold.
of faces, handwritten digits, and solid objects. In section V, we _
contrast our algorithm with previous approaches in manifold: From Subspaces to Manifolds
learning and nonlinear dimensionality reduction. Finally, in We will refer to any method that computes a low dimen-
section VI, we conclude by describing several directions faional embedding from the eigenvectors of an appropriately
future work. constructed matrix as a methodspectral embeddindf PCA
and MDS are linear methods in spectral embedding, what are
Il. DIMENSIONALITY REDUCTION their nonlinear counterparts? In fact, there are several, most of
We study dimensionality reduction as a problem in unsf]he.m differi_ng in the geomet_ric intuit.ion they take as _starting
pervised learning. GivenV high dimensional inputs‘fieRD points and in the _generallzatlonS of linear transformations that
they attempt to discover.

(Wherei = 1,2,..., N), the problem is to compute outputs Th ! thod in thi is based

Y; € R? in one-to-one correspondence with the inputs th?t de nortl |Ir|1ear n}ﬁ ° t\_/ve rggposet n F 'S t[;]aper ILS z?se

provide a faithful embedding ini < D dimensions. By undamentafly on the notion oSoOmetry (For € saKe o
gxposition, we defer a discussion of competing nonlinear

“faithful”, we mean that nearby points remain nearby an . . .
that distant points remain distant; we shall make this intuitiorﬁ'etho.dS basgd on |sqmetr|es [10]’. [13]t0 sgctlon \./.).FormaII.y,
o Riemannian manifolds are said to be isometric if there is

more precise in what follows. Ideally, an unsupervised learni ‘8 . ) .
algorithm should also estimate the intrinsic dimensionatity a dlff_eomorphlsm such that the metric on one pulls back to the
metric on the other. Informally, an isometry is a smooth invert-

f th ifold led by the inpuf§;. ; ) ) ) ;
of The manito’d sampied by e INPLES; ble mapping that looks locally like a rotation plus translation,

m(grl:(; dilggrnt(;]imeﬁwosriowg?tgorls dlIJecE':irg;n%lvguttsre?c?redtif ;i':alhus preserving distances along the manifold. Intuitively, for
) q o dimensional surfaces, the class of isometries includes

briefly reviewing the linear methods of principal Cor“ponenwhatever hysical transformations one can perform on a sheet
analysis (PCA) [16] and metric multidimensional scalin% phy P

(MDS) [18]. The generalization from subspaces to manifol f paper without introducing holes, tears, or self-intersections.
is then made by introducing the idea of local isometry. any interesting image manifolds are isometric to connected

subsets of Euclidean space [19].
A. Linear Methods Isometry is a relation between manifolds, but we can extend

the notion in a natural way to data sets. Consider two data

PCA and MDS are based on simple geometric intuitiongets X = {X;}¥ | andY = {Y;}~, that are in one-to-one
In PCA, the inputs are projected into the lower dimensiongbrrespondence. Let th& x N binary matrixn indicate a
subspace that maximizes the projected variance; the bagisghborhood relation oX andY, such that we regard?j
vectors of this subspace are given by the top eigenvectorsgaf 3 neighbor ofX; if and only if ni; = 1 (and similarly,
the Dx D covariance matrix('= 5 57, X; X[ (Here and in for ¥, and ;). We will say thatthe data setsX and Y
what follows, we assume without loss of generality that thgre |gcally isometric under the neighborhood relatigrif for
inputs are centered on the origiy;; X; =0.) every pointX;, there exists a rotation and translation that

In MDS with classical scaling, the inputs are projecteghapsX; and its neighbors precisely onig and its neighbors.
into the subspace that best preserves their pairwise squareqse can translate the above definition into various sets of
distances|X; —X;[* or, more precisely, their dot productsequality constraints of¥ andY". To begin, note that the local
X;-X;. The outputs of MDS are computed from the topnapping between neighborhoods will exist if and only if the
eigenvectors of theéV x N’ Gram matrix of dot products, with distances and angles between points and their neighbors are
elementgij :X,LX] Note that a set of vectors is determine%reserved_ Thus, whenever bOﬂE} and Xk are neighbors of

up to rotation by its Gram matrix of dot products. ¥, (that is, ;7 = 1), for local isometry we must have that:
Though based on somewhat different geometric intuitions,

PCA and MDS vyield the same results—essentially a rotation (}71—}7]) : (ﬁ—?k> = ()?,»—)@) : ()?i—)?k) @

of the inputs followed by a projection into the subspace with

the highest variance. The correlation matrix of PCA and tifed- (1) is sufficient for local isometry because the triangle
Gram matrix of MDS have the same rank and eigenvalues f@med by any point and its neighbors is determined up to
to a constant factor. Both matrices are semipositive definif®tation and translation by specifying the lengths of two sides
and gaps in their eigenvalue spectra indicate that the highd the angle between them. In fact, such a triangle is similarly
dimensional inputsX; e R? lie to a good approximation in determined by specifying the lengths of all its sides. Thus,
a lower dimensional subspace of dimensionatitywhered We can also say thak’ and Y are locally isometric under

is the number of appreciably positive eigenvalues. Thegdf wheneverX; and X; are themselves neighbors (that is,
linear methods for dimensionality reduction generate faithftii; =1) or are common neighbors of another point in the data
embeddings when the inputs are mainly confined to a Ic¥t (that is[n"n];; >0), we have:

dimensional subspace; in this case, their eigenvalues also 2
reveal the correct underlying dimensionality. They do not
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This is an equivalent characterization of local isometry as this new graph (see Fig. 2), we preserve both the distances
eqg. (1), but expressed only in terms of pairwise distanced.edges and the angles between edges in the original graph—
Finally, we can express these constraints purely in terms lwfcause if all sides of a triangle are preserved, so are its angles.
dot products. LeG;; = X,-X; and K,; = Y;-Y; denote the

Gram matrices of the inputs and outputs, respectively. We can

. e
rewrite eq. (2) as: Qo Q9
ool
o ;G
Kl'i‘i’ij*Kij*Kji = Gii+ij*G¢j*Gji. (3) OOOEj%O
.. . . O
Eq. (3) expresses the conditions for local isometry purely in S
terms of Gram matrices; it is in fact this formulation that will
form the basis of our algorithm for manifold learning. Fig. 2. In the left graph, each node is connected to its nearest neighbors; in
the right graph, direct connections are also added between the neighbors. (The
11l. SEMIDEEINITE EMBEDDING original and added edges involving just the middle node are shown in bold.)

) ~ Preserving the distances of edges in the right graph is equivalent to preserving
We can now formulate the problem of manifold learninghe distances of edges and the angles between edges in the left graph.

more precisely, taking as a starting point the notion of local
isometry. In particular, givenV inputs X; € R” and a In addition to imposing the constraints represented by the
prescription for identifying “neighboring” inputs, can we find‘neighborhood graph”, we also constrain the outpyitso be
N outputsﬁ- € R4, whered < D, such that the inputs andcentered on the origin:
outputs are locally isometric, or at least approximately so? S
Alternatively, we can state the problem in terms of Gram ZYi =0.
matrices: can we find a Gram matriX;; that satisfies the ¢
constraints in eq. (3), and for which the vectdrs (which EQ. (4) simply removes a translational degree of freedom from
are determined up to a rotation by the elements of the Grdh¢ final solution. The centering constraint can be expressed
matrix) lie in a subspace of dimensionalify< D, or at least in terms of the Gram matrix(;; as follows:
approximately lie in such a subspace? In this section, we show 2 oo

=3 Y-V => K. ©)

) )

how this can be done by a constrained optimization over the 0= ‘Zlyz
cone of semidefinite matrices.

Like PCA and MDS, the algorithm we propose for manifoldNote that eq. (5) is a linear equality constraint on the elements
learning is based on a simple geometric intuition. Imagiraf the output Gram matrix, just like eq. (3).
each input)?i as a steel ball that is connected to/tsiearest  Because the geometric constraints on the outp?ware so
neighbors by rigid rods. The effect of the rigid rods is to fixaturally expressed in terms of the Gram matfi; (and
the distances and angles between nearest neighbors, no matieause the outputs are determined up to rotation by their
what other forces are applied to the inputs. Now imagine th@am matrix), we may view manifold learning as an opti-
the inputs are pulled apart, maximizing their total varianamization over Gram matrice&;; rather than vectory;. Not
subject to the constraints imposed by the rigid rods. Fig.all matrices, however, can be interpreted as Gram matrices:
shows the unraveling effect of this transformation on inputsnly symmetric matrices with nonnegative eigenvalues can be
sampled from the Swiss roll. The goal of this section is tmterpreted in this way. Thus, we must further constrain the
formalize the steps of this transformation—in particular, theptimization to the cone of semidefinite matrices [20].
constraints that must be satisfied by the final solution, and theln sum, there are three types of constraints on the Gram ma-
nature of the optimization that must be performed. trix K;;, arising from local isometry, centering, and semidef-
initeness. The first two involve linear equality constraints;
the last one is not linear, but importantly it onvex We

The constraints that we need to impose for local isometiyill exploit this property in what follows. Note that there are
are naturally represented by a graph withnodes, one for O(Nk?) constraints orO(N?) matrix elements, and that the
each input. Consider the graph formed by connecting eagbnstraints are not incompatible, since at the very least they are
input to its k nearest neighbors, whefeis a free parameter satisfied by the input Gram matri%;; (assuming, as before,
of the algorithm. For simplicity, we assume that the grapfhat the inputs??,» are centered on the origin).
formed in this way is connected; if not, then each connected o
component should be analyzed separately. The constraintsBerOptimization
local isometry under this neighborhood relation are simply to What function of the Gram matrix can we optimize to
preserve the lengths of the edges in this graph, as well “asfold” a manifold, as in Fig. (1)? As motivation, consider the
the angles between edges at the same node. In practice, #rids of a piece of string, or the corners of a flag. Any slack in
easier to deal only with constraints on distances, as opposedh® string serves to decrease the (Euclidean) distance between
angles. To this end, let us further connect the graph by addiitgtwo ends; likewise, any furling of the flag serves to bring its
edges between the neighbors of each node (if they do motners closer together. More generally, we observe that any
already exist). Now by preserving the distances of all edg#sld” between two points on a manifold serves to decrease

(4)

A. Constraints



the Euclidean distance between the points. This suggestsasso emphasize that in eq. (12), we are maximizing the trace,
optimization that we can perform to compute the outglits not minimizing it. While a standard relaxation to minimizing
that unfold a manifold sampled by inpulé. In particular, we the rank [21] of a semidefinite matrix is to minimize its trace,
propose to maximize the sum of pairwise squared distandhe intuition here is just the opposite: we will obtain a low
between outputs: dimensional embedding by maximizing the trace of the Gram

1 L L2 matrix.
T(Y) = ﬁz Y - Y. (6)  Let us now collect the costs and constraints of this
ij optimization. The problem is to maximize the variance of

By maximizing eq. (6), we pull the outputs as far apart d8€ outputs{Y;}}L, subject to the constraints that they are
possible subject to the constraints in the previous section centered on the origin and locally isometric to the inputs
Before expressing this objective function in terms of théXi}iL,- In terms of the input Gram matri/;; = X; - X;,

Gram matrix K;;, let us verify that it is indeed bounded,the output Gram matrix;; = Y; - Y; and the adjacency
meaning that we cannot pull the outputs infinitely far apaatrix 7;; indicating nearest neighbors, the optimization can
Intuitively, the constraints to preserve local distances (af§ Written as:

the assumption that the graph is connected) prevent such
divergence. More formally, let);; =1 if X; is one of the Maximize Tr(K) subject to K = 0, 3, Kij =0,
k nearest neighbors oX;, and zero otherwise, and letbe
the maximal distance between any two such neighbors:

2
| ™
. h hi d th he | This problem is an instance of semidefinite programming

Assuming the graph is connected, then the longest palihpy 1o0): the domain is the cone of semidefinite matrices
]Ehrohugh the grr]aph has a d|stan§e of st rg@'st we o?sErve intersected with hyperplanes (represented by equality con-
urthermore that given two nodes, the distance 0 ¢ e.paéﬂaints), and the objective function is linear in the matrix
through the graph provides an upper bound on their Euclidegf yants. The optimization is bounded above by eq. (8); it is
dLstange. Thus, for' all OPtp“tYi apd Y;, we must have also convex, thus eliminating the possibility of spurious local
|Yi — ¥;| < N7. Using this to provide an upper bound oravima There exists a large literature on efficiently solving

and Vij such thatn;; =1 or [n7n];; =1,
Kii+Kjj—Kij—Kji = Giit+Gjj—Gij—Gji.

— —

X, - X;

T = Inax (7;;
ij

the objective function in eq. (6), we obtain: SDPs, as well as a number of general-purpose toolboxes.
1 ) N372 The results in this paper were obtained using the SeDuMi
T(Y) < 55> (N7 = ——. ) toolbox [22] in MATLAB.
ij

Thus, the objective function cannot increase without bound SPectral Embedding

we enforce the constraints to preserve local distances. From the Gram matrix learned by semidefinite program-
We can express the objective function in eq. (6) directly iming, we can recover the outpul§ by matrix diagonaliza-

terms of the the Gram matrii;; of the outputs;. Expanding tion. Let V,; denote thei*® element of then'" eigenvector,

the terms on the right hand side, and enforcing the constraiith eigenvalue)\,. Then the Gram matrix can be written as:

that the outputs are centered on the origin, we obtain: N

1 K?ﬂj = Z )\av(xivaj~ (13)
) = 2 =
ij 9 An N-dimensional embedding that is locally isometric to the
= Z Yi| (10) inputs X; is obtained by identifying the'" element of the
) outputY; as:

= ZK“, (11) Yoi = V Aa Vi (14)

- Ty(K) (12) The eigenvalues oK are guaranteed to be nonnegative. Thus,

' from eq. (14), a large gap in the eigenvalue spectrum between
Thus, we can interpret the objective function for the outputs the 4 and (d + 1)'" eigenvalues indicates that the inputs lie
several ways: as a sum over pairwise distances in eq. (6), amaor near a manifold of dimensionality In this case, a low
measure of variance in eq. (10), or as the trace of their Gralimensional embedding thatagproximatehiocally isometric
matrix in eq. (12). The second interpretation is reminisceig given by truncating the elements of. This amounts to
of PCA, but whereas in PCA we compute the linear projeprojecting the outputs into the subspace of maximal variance,
tion that maximizes variance, here we compute the localassuming the eigenvalues are sorted from largest to smallest.
isometric embedding. Put another way, the objective functidme quality of the approximation is determined by the size
for maximizing variance remains the same; we have meraly the truncated eigenvalues; there is no approximation error
changed the allowed form of the dimensionality reduction. Wer zero eigenvalues. The situation is analogous to PCA and
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MDS, but here the eigenvalue spectrum reflects the underlyidge to the cycle, it can only be represented in Euclidean space
dimensionality of a manifold, as opposed to merely a subspabg. a circle. The eigenvalue spectrum in Fig. (8) reveals two
The three steps of the algorithm, which we call Semidefinilominant eigenvalues; the rest are essentially zero, indicating
Embedding (SDE), are summarized in Table I. In its simple8te underlying (global) dimensionalityl &2) of the circle.
formulation, the only free parameter of the algorithm is the
number of nearest neighbors in the first step (though one
can imagine more elaborate schemes). The second step of tb-
algorithm, involving semidefinite programming, is the mo
computationally intensive. The first and third steps of SO
resemble those of other algorithms for manifold learni
discussed in section V; SDE has rather different properti
however, due to the particular nature of its second step.

) Compute thek nearest neighbors of each input. Form the
Nearest graph that connects each input to its neighbors, as wellpig. 3. Left: N = 539 inputs sampled along a trefoil knot i = 3
Neighbors | as each neighbor to other neighbors of the same input. gimensjons. Rightd = 2 embedding computed by SDE usirg = 4
nearest neighbors. The color coding shows that the embedding preserves
()} Compute the Gram matrix of the maximum variance local neighborhoods.
Semidefinite | embedding that is centered on the origin and preserves
Programming the distances of all edges in the neighborhood graph

Fig. 4 shows the results of SDE applied to color images

(1 Extract a low dimensional embedding from the dominant Of @ three dimensional solid object. The images were created
Spectral eigenvectors of the Gram matrix learned by semidefinite by viewing a teapot from different angles in the plane. The
Embedding | programming. images haver6 x 101 pixels, with three byte color depth,

giving rise to inputs ofD = 23028 dimensions. Though very
high dimensional, the images in this data set are effectively pa-
rameterized by one degree of freedom—the angle of rotation.
SDE was applied taV = 400 images spanning 360 degrees
of rotation, with k = 4 nearest neighbors used to generate a
IV. RESULTS connected graph. The two dimensional embedding discovered

We used several data sets of curves, surfaces, and ima@é§DE represents the rotating object as a circle—an intuitive
to evaluate the algorithm in Table | for low dimensionafesu“ analogous to the embedding discovered for the trefoil

embedding of high dimensional inputs. knot_. Th'e.eigenvalue spect.rum of thg Gram rrllatrix Iearne(_d by
Fig. 1 showsV =800 inputs sampled off a “Swiss roll” [10]. sem@eflnltel programming 1S ”shown n ':j'_g' (8)’ a:: but t:e If'r_St
The inputs to the algorithm haB) =8 dimensions, consisting two eigenvalues are practically zero, indicating the underlying

of the three dimensions shown in the figure, plus five ext‘meal) dimensionality =2) of the circle.
dimensions filled with low variance Gaussian noise. The bot-
tom plot of the figure shows the unfolded Swiss roll extracted @ .........

from the Gram matrix learned by semidefinite programming. m L i
The top three eigenvectors are plotted, but the variance in the ’

third dimension (shown to scale) is negligible. The eigenvalue
spectrum in Fig. (8) reveals two dominant eigenvalues—a
major eigenvalue, representing the unwrapped length of the
Swiss roll, and a minor eigenvalue, representing its width.
(The unwrapped Swiss roll is much longer than it is wide.)
The other eigenvalues are nearly zero, indicating that SDE
has discovered the correct underlying dimensionality=)

of these inputs.

Fig. 3 shows another easily visualized example. The left plot
shows N =539 inputs sampled from a trefoil knot i =3
dimensions; the right plot shows thile=2 embedding discov-
ered by SDE using =4 nearest neighbors. The color codingsig. 4. Two dimensional embedding &f =400 images of a rotating teapot,
reveals that local neighborhoods have been preserved. In d#igined by SDE using=4 nearest neighbors. For this experiment, the teapot

case. the underlying manifold is a one-dimensional curve. BYAS rotated 360 degrees; the low dimensional embedding is a full circle. A
! ' “réepresentative sample of images are superimposed on top of the embedding.

TABLE |
THE THREE STEPS OFSEMIDEFINITE EMBEDDING (SDE).

1For K =6 nearest neighbors, the noise in extra dimensions helps to preventF. 5 ted f h d t of i .
the manifold from “locking up” when it is unfolded subject to the equality Ig9. 5 was generated irom the same data set of Images;

constraints in egs. (1-3). however, for this experiment, onlW = 200 images were



used, sampled over 180 degrees of rotation. In this case, the <¢-I".

W i

eigenvalue spectrum from SDE detects that the images lie on ) o
a one dimensional curve (see Fig. 8), anddkel embedding !ﬂ El '_F--'__I ‘ E g E
Fig. 6 shows the results of SDE on a data sefVof 1000 H ﬂ ! | @_E_', a
images of faces. The images contain different views and (P] m E1 g
grayscale pixels, giving rise to inputs with = 560 dimen-
sions. The plot in Fig. 6 shows the first two dimensions of the
Interestingly, the eigenvalue spectrum in Fig. 8 indicates that H ﬁ ﬂ ?! m !! @_--li] =a
most of the variance of the spectral embedding is contained —
Fig. 7. Results of SDE using=4 nearest neighbors aN =953 images of

in Fig. 5 orders the images by their angle of rotation.

expressions of the same face. The images h&e< 20 P—:’I mm ] CE]E Qb'_. “ B 5

embedding discovered by SDE, usikhg-4 nearest neighbors. <P

in the first three dimensions. f‘l £] !I ’_! E
handwrittenTwos. Representative images are shown next to circled points.

Teapot 180
Swiss Roll
Teapot 360
Trefoil Knot
Faces

Twos

0.00 0.20 0.40 0.60 0.80 1.00

Fig. 8. Eigenvalue spectra from SDE on the data sets in this paper. The
eigenvalues are shown as a percentage of the trace of the Gram matrix
learned by semidefinite programming. SDE unambiguously identifies the
correct underlying dimensionality of the Swiss roll, trefoil knot, and teapot
data sets. The images of faces and handwritten digits give rise to many fewer
0.00 0.20 0.40 0.60 0.80 1.00 non-zero eigenvalues than the actual number of pixels.

Fig. 6. Top: two dimensional embedding oV = 1000 images of faces,
obtained by SDE using = 4 nearest neighbors. Representative faces are
shown next to circled point8ottom: eigenvalues of SDE and PCA on this . . .
data set, indicating their estimates of the underlying dimensionality. The QUr Work bridges two recent developments in machine
eigenvalues are shown as a percentage of the trace of the output Gram még&rning: spectral methods for nonlinear dimensionality re-
for SDE and the trace of the input Gram matrix for PCA. The eigenvalug,ction and semidefinite programming for learning kernel
spectra show that most of the variance of the nonlinear embedding is confined

to many fewer dimensions than the variance of the linear embedding. matrices. We discuss each in turn.

V. RELATED WORK

A. Manifold Learning

Fig. 7 shows the results of SDE applied to another dataThe last few years have witnessed a number of develop-
set of images. In this experiment, the images were a subsents in spectral methods for manifold learning. Recently
of N =953 handwrittenTwos from the USPS data set of proposed algorithms include Isomap [10], locally linear em-
handwritten digits [23]. The images haué x 16 grayscale bedding (LLE) [11], [12], hessian LLE (hLLE) [13], and
pixels, giving rise to inputs withD = 256 dimensions. Laplacian eigenmaps [14]; there are also related algorithms
Intuitively, one would expect these images to lie on a lofor clustering [24], [25]. All these algorithms share the same
dimensional manifold parameterized by such features as sikasic structure as SDE, consisting of three steps: (i) computing
slant, and line thickness. Fig. 7 shows the first two dimensiongighborhoods in the input space, (ii) constructing a square
of the embedding obtained from SDE, with= 4 nearest matrix with as many rows as inputs, and (iii) spectral embed-
neighbors. The eigenvalue spectrum in Fig. 8 indicates a lateliig via the top or bottom eigenvectors of this matrix. SDE is
dimensionality significantly larger than two, but still muctbased on a rather different geometric intuition, however, and
smaller than the actual number of pixels. as a result, it has different properties.



Fig. 5. One dimensional embedding &f= 200 images of a rotating teapot, obtained by SDE udirg4 nearest neighbors. For this experiment, the teapot
was only rotated 180 degrees. Representative images are shown ordered by their location in the embedding.

Table Il compares these algorithms. Each algorithm attem agese——1 E’.“-”—A;: e -
to estimate and preserve a different geometric signature of 1‘.,'6 »_S,\.'.,
manifold sampled by the inputs. Isomap estimates geode} & b ° X ;’ ~
distances between inputs; LLE estimates the coefficients - g,ﬁv’ﬁ s:"s e
local linear reconstructions; hLLE and Laplacian eigenmas; %; § N ﬁ,é%‘?
estimate the Hessian and Laplacian on the manifold, resyis3s® ,’z"i"c éﬁﬁ%
tively; SDE estimates local angles and distances. Of thi3 i ;-
algorithms, only Isomap, hLLE, and SDE attempt to lea -:,5: in 17
isometric embeddings; they are therefore the easiest to ¢
pare (since they seek the same solution, up to rotation . SDE |
scaling). The results on the data set in Fig. 9 reveal so ISOMAP |
salient differences between these algorithms. While SDE 0.00 0.20 0.40 0.60 0.80 1.00

hLLE reproduce the original inputs up to isometry, Isomc..
Talls In 'thIS example because th.e SampIEd mam_fOI.d IS n% 9. Top: embedding of a non-convex two dimensional data 3&+(500)
'Somemq to aconvexsubset of EU_C“dean Space. (This is a Kely different algorithms for manifold learning. Isomap, LLE, and hLLE were
assumption of Isomap, one that is not satisfied by many image with £ = 10 nearest neighbors; SDE, with = 5 nearest neighbors.
manifolds [19].) Moreover, comparing the eigenvalue spectf! hLLE and SDE reproduce the original inputs up to isomeigtiom:

. . nly SDE has an eigenvalue spectrum that indicates the correct underlying
of the algorithms, only SDE detects the correct underlying (ﬁ,-mensionamy a=2).

mensionality of the inputs; Isomap is foiled by non-convexity,

while the eigenvalue spectra of LLE and hLLE do not revegt—zigorithm Maitrix Mapping Signature
this type of information [12], [13]. Isomap dense isometric geodesic distance$
Overall, the different algorithms for manifold learning i SDE dense isometric local distances
LLE sparse conformal local angles

Table II should be viewed as complementary; each has fts— ¢

- | sparse isometric Hessian
own advantages and disadvantages. LLE, hLLE, and Laplacfarm pjacian proximity discrete
eigenmaps construct sparse matrices, and as a result, thegigenmaps || SP2€|  preserving Laplacian

are easier to scale to large data sets. On the other hand, TABLE Il

their eigenvalue SpeCtra do not reliably reveal the underllyin%OMPARISON OF MANIFOLD LEARNING ALGORITHMS IN TERMS OF THE
dimensionality of sampled manfolds, as do Isomap and SDE
There exist rigorous proofs of asymptotic convergence for
Isomap [19], [26] and hLLE [13], but not for the other
algorithms. On the other hand, SDE by its very nature provides
finite-size guarantees that its constraints will lead to locally

isometric embeddings. We are not aware of any finite-Siz&ion specifies the dot product between the feature vectors
guarantees provided by the other algorithms, and indeed, Hifeq in this way from the original inputs. The “kernel
Hessian estimation in hLLE relies on numerical differencingy;,» is to replace the dot product¥ - X’ that appear in
which can be problematic for small sample sizes. Finally,o 4g0rithms for pattern recognition by the kernel function
while the dn‘fer_ent .algorlthms have dlf_'ferent computatlonak()g’)z,)' Support vector machines [27] for classification and
bottlenecks, it is fair to say that SDE is the most computgene| pCA [28] for nonlinear dimensionality reduction are
tlonglly demgndlng. Scaling SDE to .Iar_ger data sets W|I_I I'k?%xamples of algorithms that were conceived in this way, with
require spgmal-pgrp.ose splvers for 't§ |ns.tance of semidefing o el matrix that stores the pairwise dot products between
programming. This is an important direction for future workin, s in feature space. In most kernel machines, the kernel

function is simply specified a priori; the most popular choices

B. Kernel Methods involve polynomial and Gaussian kernels. Recent work in
Along with the growing interest in manifold learning, thesupervised learning, however, has investigated the possibility

last few years have also witnessed an explosion of interestofhlearning kernel matrices by semidefinite programming [29].

kernel methods for pattern recognition [17]. Kernel methods The Gram matrixK;; learned by SDE can be viewed as a
rely on an implicit mapping of inputs to a higher (andernel matrix between inputs. While there have been attempts
potentially infinite) dimensional feature space. The kern&b interpret the matrices constructed by Isomap and LLE as

"MATRICES THEY COMPUTE THE MAPPINGS THEY LEARN AND THE
GEOMETRIC SIGNATURES THEY EXPLOIT



kernels [17], [30], [31], the interpretation for SDE is arguably[4] H. S. Seung and D. D. Lee, “The manifold ways of percepti@gience
the most straightforward. The kernel matrix learned by SDE
is interesting in several respects. First, it is based on variané

maximization, as opposed to margin maximization [17], [29]{6] D. Beymer and T. Poggio, “image representation for visual learning.”
the former applies to unsupervised learning, whereas the latter Sciencevol. 272, p. 1905, 1996.

requires (at least some) labeled examples. Second, wherdés

most kernel functions are chosen to map the inputs into a
higher dimensional feature space, the kernel matrix learned by vol. 3307. Bellingham, WA: SPIE, 1998, pp. 52-63.

SDE does just the opposite, typically mapping the inputs int@®] S. Gordon, J. Goldberger, and H. Greenspan, “Applying the information
a lower dimensional space. Finally, SDE may be viewed as a
special version of kernel PCA [28]—ideally suited for mani-
fold discovery—in which the kernel matrix itself is learned (in[9] D. D. Lee and H. S. Seung, “Learning the parts of objects with
a completely unsupervised manner) from unlabeled examplﬁ%]

VI. DISCUSSION

vol. 290, pp. 2268-2269, 2000.
M. Turk and A. Pentland, “Eigenfaces for recognitionJournal of
Cognitive Neurosciencevol. 3(1), pp. 71-86, 1991.

H. Lu, Y. Fainman, and R. Hecht-Nielsen, “Image manifolds,” in
Applications of Artificial Neural Networks in Image Processing I,
Proceedings of SPIEN. M. Nasrabadi and A. K. Katsaggelos, Eds.,

bottleneck principle to unsupervised clustering of discrete and contin-
uous image representations,” Rroceedings of the Ninth International
Conference on Computer Vision (ICCV 2003D03, pp. 370-377.

nonnegative matrix factorizationNature vol. 401, pp. 788-791, 1999.

J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reductior§tience vol. 290,

pp. 2319-2323, 2000.

Our initial results for SDE seem promising. SDE hagi] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
different properties than algorithms such as Isomap and LLE,

and many of these properties can be construed as advanta@é%

locally linear embedding,Sciencevol. 290, pp. 2323-2326, 2000.
L. K. Saul and S. T. Roweis, “Think globally, fit locally: unsupervised

learning of low dimensional manifoldsJournal of Machine Learning

Like Isomap (and unlike LLE), its eigenvalue spectrum reveals Researchvol. 4, pp. 119-155, 2003.
the underlying dimensionality of sampled manifolds; unlikél3] D. L. Donoho and C. E. Grimes, “Hessian eigenmaps: locally linear

Isomap, however, it does not assume that the inputs are isomet-

ric to a convex subset of Euclidean space. To our knowledgg,]
SDE is also the first algorithm for manifold learning based on
semidefinite programming.

There are many important directions for future work. pekdl
haps the most urgent is the investigation of faster methods for
solving the semidefinite program in SDE. This study used[%s]
generic solver that did not exploit the special structure of the
constraints. A specialized solver should allow us to scale S[BJI':Z]
up to larger data sets and larger neighborhood sizes. Also, we
can relax the constraints in egs. (1-3) without altering tH&sl
basic structure of the semidefinite program. Introducing sla

variables to relax these constraints may improve the robustness

of the algorithm on noisy data sets.
As has been done for Isomap [10], [19], [26] and hLLE [13]2°]

it would be desirable to formulate SDE in the continuum Iimiﬁ21

and to construct rigorous proofs of asymptotic convergence.

Such theoretical results would almost certainly provide add
tional insight into the behavior of the algorithm.

i-
(22]

Other directions for future work include the use of SDE
kernels in support vector machines [27], the investigatiges]
of image manifolds with different topologies [32] (such as
those isometric to low dimensional spheres or torii), and t
extrapolation of SDE kernels to out-of-sample inputs [30].
Indeed, to the extent that SDE provides a new connection
between work in manifold learning and kernel methods, wel
hope it will lead to further advances in both areas.
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