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Abstract— This paper investigates the connectivity of wireless
multihop networks with uniformly randomly distributed nodes.
We analyze the required transmission range that creates, for a
given node density, an almost surely k–connected topology. Besides
scenarios in which each node has the same range, we discuss inho-
mogeneous range assignments. Our results are of practical value
for the task of setting parameters in network–level simulations of
ad hoc networks and in the design of wireless sensor networks.

I. INTRODUCTION

WIRELESS multihop networks are formed by a group of
nodes that communicate with each other in a decentral-

ized and self–organizing manner. Each node can act as a router
to forward traffic toward its destination. Examples for such net-
works are mobile ad hoc networks or wireless sensor networks.

This paper investigates a fundamental property of a wireless
multihop network: its connectivity. Whereas in cellular systems,
it is sufficient that each mobile node has a wireless link to at least
one base station, the situation in decentralized wireless multi-
hop networks is more sophisticated. To achieve a connected
network, a wireless multihop path must exist from each node to
each other node. Each single node contributes to the connectiv-
ity of the entire network; if a node fails the connectivity might
be destroyed. The probability for a network to be connected
depends on the density of nodes and their transmission ranges.

Let us assume a typical simulation scenario: a number of n
nodes are placed uniformly at random on a square system area
of size A = a × a. A simple free–space radio link model is
used, in which each node has a given transmission range using
an omnidirectional antenna. Two nodes are able to communicate
directly via a wireless link, if they are within range of each other.
Only bidirectional links are considered.

In this context, we address the following problems. First, we
consider the case in which each of the n nodes has the same
transmission range r0 (homogeneous range assignment). We
ask: for a given node density ρ = n/A, what is the mini-
mum range r0 to achieve with high probability a connected net-
work? In other words, for a given area A, which (r0, n)–tuples
achieve high connectivity? Second, we consider an inhomo-
geneous range assignment (n1 nodes with r1, n2 nodes with
r2, . . .), and we investigate how the probability of being con-
nected changes in this case. In addition to the basic problem

“connected network,” we also consider a network design that is
robust against failures: how can we achieve a multihop network
that is still connected if some nodes fail?

Definitions: The number of neighbors of a node (i.e., its num-
ber of links) is denoted by its degree d. A node with d = 0 is
said to be isolated. The minimum node degree dmin is the small-
est node degree over all nodes in the network.

A network is said to be connected, if for every pair of nodes
there exists a path between them, and otherwise it is discon-
nected. A connected network has always dmin > 0, but the
reverse implication is not necessarily true. A network is said
to be k–connected (k ∈ N) if for each node pair there exist at
least k mutually independent paths connecting them. Equiva-
lently, a network is k–connected if and only if no set of (k − 1)
nodes exists whose removal would disconnect the network. In
the following, the probability that a network is k–connected is
denoted as P (k–con). This paper considers k = 1, 2, and 3.
For P (1–con), we write P (con). We say that a network is al-
most surely (a.s.) k–connected, if P (k–con) ≥ 0.95.

Related Work: Early work on connectivity in multihop radio
networks has been published in [1], [2], and [3]. More recently,
Gupta and Kumar [4], Santi et al. [5], Bettstetter [6], and Dousse
et al. [7] seize this problem again. Each of them takes a quite
different approach to modeling and solving the problem. So
far, only 1–connectivity and homogeneous range assignment has
been considered by other authors.

This paper first deepens our research on k–connectivity with
homogeneous range assignment [6], and, second, investigates
the impact of inhomogeneous range assignment on connectivity.

II. HOMOGENEOUS RANGE ASSIGNMENT

In order to investigate the k–connectivity of a wireless mul-
tihop network by simulation, we generate a number of random
topologies, check the connectivity for each topology, and then
take the average, such that P (k–con) is estimated by the per-
centage of k–connected topologies. Fig. 1 shows the results for
P (k–con) over the range r0 for n = 500 and 1000 nodes on
an area A = a × a = 1000 × 1000 m2. To avoid border ef-
fects [8][9], we use a toroidal distance metric, i.e., nodes at the
border of the area can have wireless links via the borderline to
nodes on the opposite side of the area (also see [6]). Starting at
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Fig. 1. Connectivity for n = 1000 and n = 500 nodes on A = 1000 ×
1000 m2, toroidal distance, 1000 random topologies

r0 = 0 and increasing r0, P (con) remains zero until a certain
critical range is achieved. For example, n = 1000 nodes with
r0 ≤ 45 m yields an a.s. unconnected network. Once r0 is larger
than this critical value, P (con) increases, until an a.s. connected
network is achieved. For example, n = 1000 nodes require
r0 ≥ 57 m to make the network connected with high probability
(95%), and for n = 500 we must set r0 ≥ 78 m. Additional
range increments yield 2 and 3–connected topologies.

We are especially interested in the upper threshold ranges
r0(P (k–con) ≈ 1) needed to achieve an a.s. k–connected net-
work. Let us take an approach to calculate these ranges as a
function of ρ. From [6], we know the following theorem.

Theorem 1 (On the k–connectivity of homogeneous ad hoc
networks): A wireless multihop network with n uniformly dis-
tributed nodes (n � 1, ρ = n/A) with a homogeneous range
assignment r0 (r2

0π � A) achieves

P (k–con) � P (dmin ≥ k) for probabilities close to 1, (1)

if n is high enough. If border effects are not present, we have

P (d = i) = µi

i! e−µ with µ = ρπr2
0 . Since these probabilities

are “almost independent” with the above assumptions, we obtain

P (dmin ≥ k) =

(
1 − e−µ

k−1∑
i=0

µi

i!

)n

(2)

=


1 −

1 + µ + µ2

2 + . . . + µk−1

(k−1)!

eµ




n

. �

For example, n = 500 on A = 106 m2 with r0 = 90 m yields
P (2–con) � (1 − e−µ(1 + µ))n = 98%. In this paper, we say
that probabilities larger than 0.95 are “high probabilities,” and
we denote such probabilities as phi. Furthermore, we say that
n � 1 is fulfilled if n ≥ 1500 r2

0π/A, and r2
0π � A is fulfilled

if r2
0π ≤ 0.08A. With these values, the Poisson distribution

used in (2) is a very good approximation for the binomial distri-
bution. Note that µ denotes the expected number of neighbors
of a node, i.e., the expected node degree E(d). Further note that∑∞

i=0
µi

i! = eµ as k → ∞, and, thus, P (k–con) → 0.
A rearrangement of (2) for k = 1 and 2 gives us ex-

plicit formulas for the threshold ranges r0(P (con) = phi) and
r0(P (2–con) = phi) that are necessary and sufficient to achieve
a connected or 2–connected network with probability phi.

Corollary: If we want to be sure that a homogeneous wire-
less multihop network (n � 1, ρ = n/A) is connected with a

probability of P (con), we can set the range of all nodes to

r0 �

√
ln
(
1 − P (con)1/n

)
−ρπ

, (3)

where P (con) must be close to 1. Choosing r0 above this
threshold range increases P (con). Similarly, we must set

r0 �

√
W−1

(
(P (2–con)1/n − 1) e−1

)
+ 1

−ρπ
, (4)

to achieve a 2–connected network with a probability of
P (2–con). The function W−1(·) denotes the real–valued, non–
principal branch of the Lambert W function1, as defined in [10].
Again, this equation is valid for high P (2–con). �

For illustration and validation of these results, we again con-
sider a 1000×1000m2 system area. Fig. 2a shows the analytical
approximations and simulation results of r0(P (k–con) = 99%)
over n. To achieve with probability 99% a k–connected topol-
ogy, we can choose any (r0, n) pair that lies above the corre-
sponding curve. The analytical values can be used for n ≥ 100,
which is required by the Poisson approximation. As shown on
the y axis, the critical r0 values can be scaled to any a × a area.

This presentation of critical (r0, n) pairs is useful in practice
for the design and simulation of wireless multihop networks.
For example, a large–scale wireless sensor network should be
distributed over a certain area, where the used sensor type can
transmit a range r0 in the given environment. We can now
say how many sensors of this type are needed to obtain, al-
most surely, a k–connected network. Our results can also be
employed in simulations with mobile nodes, if we use a mo-
bility model that achieves a uniform spatial node distribution
(see [11][6] for a discussion on this topic). For example, several
simulation–based performance evaluations of routing protocols
for ad hoc networks assume that the topology is connected dur-
ing most of the simulation time (e.g., [12]). With our results, the
simulation parameters can be set accordingly.

However, as already mentioned, these results are only appli-
cable if border effects are not present or can be ignored in the
regarded system area A. For example, no border effects occur,
if the regarded area A is an inner subarea of a larger area A+
(density ρ) and each borderline of A is at most r0 away from
the borderline of A+. For example, one could be interested in
the performance of a wireless multihop network on a university
campus (area A). Nodes within the campus can use other nodes
outside of the campus as relay nodes, but these outside nodes are
not considered for the performance of the campus network. An-
other method to avoid border effects in simulations is to allow
that nodes close to the border of A may have links to nodes at
the opposite border of A via the borderline (toroidal distance).

If border effects are considered, nodes close to the border
have a higher isolation probability, and therefore the overall con-
nectivity decreases. A higher r0 (or n) is needed to achieve

1The definition of the Lambert W function is that it satisfies W (x) eW (x) =
x. If x is a real number, two real values for W (x) are possible for −e−1 ≤ x ≤
0: the principal branch W0(x) with W0(x) ≥ −1, and a 2nd branch W−1(x)
with W−1(x) ≤ −1. In our problem, W−1(x) yields the desired r0, while
W0(x) would result in a complex value. We used LambertW(·) in Maple.



0

50

100

150

200

250

300

350

400

450

500

10 100 1000

ra
ng

e 
× 

10
00

 / 
a

number of nodes

Analytical Poisson approx P(dmin >= 2) = 0.99
Simulation results P(2-connected) = 0.99

Analytical Poisson approx P(dmin >= 1) = 0.99
Simulation results P(connected) = 0.99

50

100

150

200

250

0 50 100 150 200 250 300 350 400 450 500 550 600

ra
ng

e 
× 

10
00

 / 
a

number of nodes

   almost surely
   3-connected

 almost surely
 unconnected

Simulation results P(3-connected) = 0.99             
= analytical Poisson approx P(dmin >= 3) = 0.99

Simulation results P(2-connected) = 0.99             
= analytical Poisson approx P(dmin >= 2) = 0.99

Simulation results P(connected) = 0.99                
= analytical Poisson approx P(dmin >= 1) = 0.99

Analytical Poisson approx P(dmin >= 1) = 0.95     
Analytical Poisson approx P(dmin = 0) = 0.95     

a. Toroidal distance (avoids border effect)

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

10 100 1000

ra
ng

e 
× 

10
00

 / 
a

number of nodes

 almost surely
 unconnected

   almost surely
   3-connected

Simulation results: P(3-connected)=0.99
P(2-connected)=0.99

P(connected)=0.99
P(connected)=0.95

P(unconnected)=0.95

50

100

150

200

250

0 50 100 150 200 250 300 350 400 450 500 550 600

ra
ng

e 
× 

10
00

 / 
a

number of nodes

 almost surely
 unconnected

 almost surely 3-connected

Simulation results: P(3-connected)=0.99
P(2-connected)=0.99

P(connected)=0.99
P(connected)=0.95

P(unconnected)=0.95

b. Usual Euclidian distance (includes border effect)

Fig. 2. Required (r0, n) pairs to achieve P (k–con) ≈ 1 on an a × a system area. Simulations were made for a = 1000 m.

the same P (k–con). While in the toroidal model the connec-
tivity just depends on the values ρ = n/A and r0, the size and
shape of the area has significant influence on connectivity if we
take border effects into account. In order to obtain the threshold
ranges for a.s. k–connectivity in networks with border effects
on a square area a × a, we performed extensive simulations on
1000 × 1000 m2 for P (k–con) = 99%. Fig. 2b shows the re-
sulting (r0, n) threshold pairs. For example, we need n ≈ 255
nodes instead of n ≈ 130 with r0 = 150 m to make the net-
work connected with probability 99%. Again, we can scale the
results for r0 to any square area. For example, on 800×800 m2,
n = 255 nodes with r0 = 120 m or, equivalently, n ≈ 165
nodes with r0 = 150 m are needed for P (con) = 99%.

In both sets of simulation results (Fig. 2a and b), one point
represents the sample average over 10000 random topologies.
This average achieves the desired percentage of k–connected
topologies (99%) within a tolerance of ±0.5%. To obtain these
results, we implemented a control loop: it first estimates the
required r0 for given n, simulates 1000 random topologies with
these values, and then, based on the resulting estimate P̂ (k–con)
increases or decreases r0 until P̂ (k–con) = 0.99 ± 0.005 is ob-
tained. Finally, 10000 topologies are simulated with this r0, and

it is again checked whether P̂ (k–con) = 0.99 ± 0.005.

III. INHOMOGENEOUS RANGE ASSIGNMENT

Let us now go one step further and consider the question
“which P (con) will be achieved, if the nodes do not have the
same range?” To approach the solution to this problem, we first
consider a scenario with two different ranges, i.e., n1 nodes out
of n nodes have range r1, and the remaining n2 = n−n1 nodes
have r2. For example, two types of sensors are used for environ-
mental monitoring in free space: type 1 is capable of transmit-
ting up to a distance r1, and the other achieves r2.

Let us first investigate the case n1 = n2 = 0.5 n. Again
we place n = 1000 nodes on 1000 × 1000 m2. Fig. 3a shows
P (k–con) for a fixed r1 and varying r2. Border effects are
avoided. Regarding the curve for r1 = 50 m and 1–connectivity,
we make the following observations: For small r2, P (con)
shows a similar behavior as if we assigned r0 = r2 to all
1000 nodes. As in Fig. 1, r2 = r1 = r0 = 50 m yields
P (con) = 0.55. However, beyond this point, the curve lev-
els off and finally achieves a saturation of P (con)sat = 0.81.
Our interpretation is as follows: Increasing r2 from 0 to 50 m
helps both types of nodes to reduce their isolation probability
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Fig. 3. Connectivity for n = 1000 on 10002 m2; r1 fixed, n1 = n2 = 0.5 n

P (d = 0). Increasing r2 further (r2 > r1) only helps the nodes
of type 2 to reduce P (d = 0). The isolation probability for
nodes of type 1 remains constant for r2 ≥ r1, since, as men-
tioned above, we only consider bidirectional links. Finally, us-
ing nodes of type 2 with r2 > 70 m yields almost no gain in
1–connectivity, since all of the n2 = 500 nodes are a.s. non–
isolated already for r2 = 70 m. In the case with r1 = 60 m, it is
possible to achieve an a.s. connected topology, since in this case
both node types can achieve a low isolation probability. The
same qualitative behavior can be observed for k = 2 and 3 and
the case with border effects (Fig. 3b). Fig. 4 shows P (con) for
varying r1 and r2. We continue our conclusions: A necessary
condition to achieve an a.s. connected topology with two node
types of different range is that both ranges must be higher than
a certain critical range. In our example, both r1 and r2 must be
larger than 54 m without border effects, and 63 m with border
effects, to enable P (con) = 95%. We denote this critical range
as the required range. If at least one of the ranges is smaller than
the required range, it is impossible to achieve an a.s. connected
network, even if the other range is very high.

Let us now drop the assumption n1 = n2 and consider
any pair n1 < n and n2 = n − n2. Without loss of gen-
erality, we assume for a moment that r1 ≥ r2. A node of
type 1 is isolated if both of the following conditions are ful-
filled: no other node of type 1 lies within distance r1, and
no other node of type 2 lies within distance r2. If we ig-
nore border effects and ensure n1, n2 � 1, the probability for
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Fig. 4. Connectivity for n = 1000 on A = 10002 m2; n1 = n2 = 0.5 n.

this event is P (node with r1 isolated) = e−ρ1r2
1π · e−ρ2r2

2π =
e− (ρ1r2

1+ρ2r2
2) π, with ρj = nj/A (j = 1, 2). Note that

(ρ1r
2
1 + ρ2r

2
2) π is the expected degree of nodes of type 1. A

node of type 2 is isolated if it has no other node (type 1 or 2)
within distance r2, i.e., P (node with r2 isolated) = e−ρ1r2

2π ·
e−ρ2r2

2π = e−ρr2
2π. Let P (d (j)

min 
= 0) denote the probability
that none of the nj nodes of type j with rj is isolated (j = 1, 2).

We obtain P (d (j)
min 
= 0) = (1 − P (node with rj isolated))nj

and P (dmin 
= 0) = P (d (1)
min 
= 0) · P (d (2)

min 
= 0). As in the
homogeneous case, P (con) � P (dmin 
= 0) can be applied for
probabilities close to one.

Fig. 5 gives an example for n1 = n − n2 = 0.8 n and com-
pares the result with the case n1 = n − n2 = 0.5 n. Again,
a necessary but not sufficient condition for P (con) ≥ phi is
that both node types must outrange a certain critical range. This
so–called required range is in general different for each node
type and depends the density of the node type. Without border
effects, if r1 ≤ 55.5 m or / and r2 ≤ 51 m, the network can
never achieve P (con) ≥ 0.95. If we request P (con) ≥ 0.99,
the necessary condition is that r1 ≥ 60 m and r2 ≥ 56 m
are both fulfilled. If r1 is so large that all nodes of type 1 are
almost surely not isolated, i.e., P (d (1)

min 
= 0) → 1 and thus

P (dmin 
= 0) → P (d (2)
min 
= 0), the critical range of type 2 for

P (con) ≥ phi is also a sufficient range for P (con) ≥ phi (see
Fig. 5). If border effects are present, the required ranges are sig-
nificantly higher. Note that the diagonal line r1 = r2 represents
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Fig. 5. Connectivity for n = 1000 nodes with two different ranges on A = 10002 m2

homogeneous range assignments (compare with Fig. 1). Let us
generalize our results to the case with more than two ranges.

Theorem 2 (On the connectivity of ad hoc networks using
nodes with different ranges): Given is a wireless multihop net-
work with n uniformly distributed nodes. These n nodes consist
of J different node types; i.e., there are nj nodes of type j with
range rj , such that n =

∑J
j=1 nj for j = 1 . . . J . We require

nj � 1 ∀j and define the density ρj = nj/A. If there are no
border effects, we obtain

P (node with rj isolated) = exp
(

−
J∑

m=1

ρm r2
eπ
)

(5)

with the ”effective range” re = min{rj, rm}. Thus,

P (d (j)
min 
= 0) =

(
1 − P (node with rj isolated)

)nj

, (6)

P (dmin 
= 0) =
J∏

j=1

P (d (j)
min 
= 0). (7)

Finally, P (con) � P (dmin 
= 0) for P (dmin 
= 0) close to 1. �
If at least one of the factors P (d (j)

min 
= 0) is smaller than
a value p, it is impossible to obtain P (con) ≥ p. In other

words, P (con) <∼ minj P (d (j)
min 
= 0). Let us express this state-

ment in terms of the required range of node type j, denoted as
r′
j(P (con) = phi). The condition rj ≥ r′

j(P (con) = phi) ∀j is
a necessary but not sufficient condition to achieve a connected
network with probability phi. To compute the required range of
node type j, we set rm → ∞ for all other node types, i.e., for
m ∈ {1, . . . , J} \ {j}. From Equ. (6), we obtain

r′
j �

√
ln
(
1 − P (con)1/nj

)
−ρπ

. (8)

We conclude with an example. Let j− denote the node type
with the lowest and j+ the type with the highest density. We
observe from (8) that type j− has the lowest and j+ the highest
required range. If we assign to each node the required range of

the respective node type, i.e., rj = r′
j(P (con) = phi) ∀j, we

obtain P (d (j−)
min 
= 0) = phi for the node type j−. This non–

isolation probability degrades for higher density nodes. If we
set all ranges to r′

j+ , we obtain P (d (j+)
min 
= 0) = phi for the

node type j+, and, as above, better non–isolation probabilities
for lower density nodes.

IV. CONCLUSIONS

The results of this paper enable us to choose the parameters
transmission range and number of nodes to achieve an a.s. k–
connected wireless multihop network with uniformly distributed
nodes. We considered scenarios with and without border effects
and investigated inhomogeneous range assignments.
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