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Abstract— The idea of formulating the detection of a lattice-
type modulation transmitted over a linear channel as the so-called
universal lattice decoding problem dates back to at least the early
1990s. The principle of universal lattice decoding can trace its
roots back to the theory developed for solving the shortest/closest
lattice vector problem. In this paper, such a principle and its
applications in communications are reviewed. In addition, it will
be shown that with some lattice preprocessing steps, impressive
performance improvement and/or complexity reduction of some well-
known detectors (e.g. ZF, DFE, and VBLAST) can be achieved.

I. Introduction

The idea of formulating the detection of a lattice-type
modulation transmitted over a linear channel as the so-called
universal lattice decoding problem dates back to at least the
early 1990s [1]. The resultant universal lattice decoder is very
attractive for bandwidth efficent modulations, such as M-PAM
and M-QAM, due to its desirable properties [1], [2], such as:

• its decoding complexity is independent of the modulation
alphabet size M;

• its performance is nearly optimal, especially for large M;
• its average complexity is quadratic, as the signal-to-noise

ratio tends to infinity.

The applications of such decoders have proliferated due to
the growing importance of many linear channel models, such as
intersymbol interference channels [1], [2], fading channels [3],
uncoded and space-time block coded multiple-antenna channels
[4], multiuser CDMA channels [5], dispersive multiple-antenna
channels [6] and their combinations.

The principle of universal lattice decoding can trace its roots
back to the theory and algorithms developed for solving the
shortest/closest lattice vector problem for integer programming
and cryptoanalysis applications. The closest (lattice) vector
problem (CVP) is a class of nearest neighbor searches or closest-
point queries, in which the solution set to be searched consists
of all the points in a lattice. A general solution for the CVP
was proposed by Kannan [7]. Although his algorithm does not
lead to an efficient practical solution, the underlying ideas are
simple and powerful, consisting of two steps:

Step 1: For the given lattice, find a “short” and fairly
“orthogonal” basis, called the reduced basis.

Step 2: Enumerate all lattice points falling inside a certain
sphere centered at the query point so as to identify
the closest lattice point.

The procedure that transforms a lattice basis into a reduced
one is called the basis reduction algorithm, while the one
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achieving the second step is called the enumeration algorithm.
In cryptoanalysis, it is well-known that choosing a good lattice
basis is important to finding a good nearby lattice point, which
can in turn greatly speed up the closest lattice point search.

The rest of the paper is organized as follows. After intro-
ducing the notation and preliminaries on lattices in Section 2,
the main result on lattice basis reduction will be described in
Section 3. Two algorithms for finding a nearby lattice point
and their relationships with some well-known detectors will
be discussed in Section 4. Extension of conventional lattice
algorithms for complex lattices is described in Section 5.
Section 6 introduces enumeration algorithms that find the
closest lattice point and their efficient implementations. Section
7 compares the simulated performance and complexities of
various presented lattice algoirhtms in a typical communication
application. Finally, Section 8 contains the conclusion.

II. Notation and Preliminaries on Lattices

Let m and n be two positive integers with n ≤ m. A subset L
of Rm is called a lattice of dimension n if there exist n linearly
independent m-dimensional vectors b1, · · · , bn ∈ Rm such that

L = L(B) = {η1b1 + · · · + ηnbn : ηi ∈ Z},
where B = [b1, · · · , bn] is a m × n matrix. The set of column
vectors b1, · · · , bn and the matrix B are said to be the basis
and the basis matrix of L, respectively.

Let us consider the Gram-Schmidt orthogonalization of
a given lattice basis. The m-dimensional orthogonalization
vectors b∗1, · · · , b∗n and the real numbers µij , for 1 ≤ j < i ≤ n,
are defined recursively by

b∗i = bi −
∑i−1

j=1
µijb

∗
j , (1)

µij = (b∗j )
T bi/‖b∗j‖2, (2)

where (·)T denotes the matrix transpose of (·). The orthogonal
vectors b∗1, · · · , b∗n obtained in this way depend on the ordering
of b1, · · · , bn. Note that, for 1 ≤ i ≤ n, b∗1, · · · , b∗i and b1, · · · , bi

span the same vector subspace. By defining µii = 1, we have

bi =
∑i

j=1
µijb

∗
j , (3)

for 1 ≤ i ≤ n. Expressing (3) in matrix notation,

B = B∗[µij ]
T , (4)

where B∗ = [b∗1 , · · · , b∗n] and [µij ] is a n × n lower triangular
matrix with all diagonal elements equal to 1.

By letting ui = b∗i /‖b∗i ‖ and bi(j) = µij‖b∗j‖, for 1 ≤ j ≤ i ≤
n, we also have

bi =
∑i

j=1
bi(j)uj . (5)
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Clearly, bi(i) = ‖b∗i ‖ for all i. Expressing (5) in matrix notation,

B = U [bi(j)]
T (6)

is in fact the QR factorization of B, where U = [u1, · · · , un]
gives an orthonormal basis for the column space of B. We
note that the upper triangular matrix [bi(j)]

T is actually the
Cholesky factor of BT B satisfying

BT B = [bi(j)][bi(j)]
T . (7)

The latter also follows immediately from (6).

III. Lattice Basis Reduction

Lattice basis reduction is naturally associated with the
problem of finding the shortest non-zero lattice vector — the
shortest vector problem (SVP). The L∞-norm SVP is known
to be NP-hard, although whether the Euclidean norm SVP is
NP-hard or not is still open. In 1982, Lenstra, Lenstra and
Lovász [8] (LLL) achieved a breakthrough by constructing the
celebrated LLL reduction algorithm, which can produce the
so-called LLL-reduced basis from any given lattice basis in
polynomial time and thereby approximating the shortest (non-
zero) lattice vector up to a factor of 2(n−1)/2. Based on their
algorithm, more efficient algorithms for solving the SVP and
the CVP have been developed. In fact, their algorithm has given
rise to efficient solutions to a variety of research problems,
including attacks on knapsack-based crypto-systems [9], and
the disproof of Mertens’ century-old conjecture in number
theory. All these applications were made possible by the LLL-
reduction algorithm. References [8] and [10] have described
the LLL-reduction algorithm with proof of its correctess and
polynomial complexity. In the following, we shall rederive the
reduction algorithm based on our own interpretation.

A. Size Reduction

Consider the lower triangular representation [bi(j)] of a given
basis b1, · · · , bn. If, for j < i, the j-th coordinate of bi is greater

in magnitude than half of the length of b∗j (i.e. |bi(j)| >
bj (j)

2
),

we can always reduce the length of bi by projecting it onto
the subspace spanned by b∗1, · · · , b∗j and then lifting it. The
resultant vector b̄i = bi − ηbj , for some integer η, must satisfy

the condition that |̄bi(j)| ≤ bj(j)

2
. The process can be repeated

(n−1)(n−2)
2

times for all 1 < j < i ≤ n. The resultant basis
consisting of shorter basis vectors is said to be size-reduced.
In summary, a basis b1, · · · , bn is size-reduced if |µij | ≤ 1

2
for

1 < j < i ≤ n. Recall that µii = 1 and µij = 0 for j > i. Finally,
we remark that b∗1, · · · , b∗n obtained from the orthogonalization
process of the new basis is the same as before.

B. LLL Reduction

Given a basis and a specific orthogonalization b∗1, · · · , b∗n, we
can always size-reduce it into a “better” basis. One may then
ask how to find a “better” orthogonalization of a given basis.

For any orthogonalization of a given lattice, the product of
the lengths of b∗i ’s must be a constant. Intuitively, it is desirable
that the lengths of b∗i ’s are distributed as even as possible so
that the basis, after size reduction, appears to be “shorter”.
Lovász [10] observed that typically the shorter vectors among
b∗1, · · · , b∗n are at the end of the sequence. So it is desirable to
make the orthogonalization sequence b1(1) = ‖b∗1‖, · · · , bn(n) =
‖b∗n‖ lexicographically as small as possible.

For 1 ≤ j ≤ i ≤ n, define b(i, j) as the projection of bi

onto the orthogonal complement of the subspace spanned by
u1, · · · , uj−1, or mathematically, b(i, j) =

∑i

k=j
bi(k)uk. For

some i < n, consider the lengths of the projections of bi and
bi+1 onto ui, · · · , un, i.e., b(i, i) = bi(i)ui and b(i + 1, i) =
bi+1(i)ui + bi+1(i + 1)ui+1. If b(i, i) is longer than b(i + 1, i)
(i.e., bi(i) > ‖b(i + 1, i)‖), we can always swap bi and bi+1

to get a lexicographically smaller orthogonalization sequence
b1(1), · · · , bi−1(i − 1), ‖b(i + 1, i)‖, · · · , bn(n). Hence a better
orthogonalization is resulted.

After swapping some basis vectors, we can further size reduce
the basis without changing the orthogonalization sequence. The
two processes, namely, finding a better basis via size reduction
for a given orthogonalization sequence and finding a better
orthogonalization sequence via swapping basis vectors for a
given basis, can be iterated until no further improvement is
achievable. This is in essence the LLL-reduction algorithm in
its most preliminary form.

Algorithm LLL Reduction(b1, · · · , bn)

Step 1: Size-reduce the given basis.
Step 2: Check if there exists any i such that δ · ‖b(i, i)‖2 >

‖b(i + 1, i)‖2. If found, swap bi and bi+1, update
the orthogonalization sequence, and go to step 1.
Otherwise, stop.

Here δ ≤ 1 is set to achieve faster convergence.

IV. Finding a Nearby Lattice Point

Babai [11] proved that given a LLL-reduced basis, a nearby
lattice point that is closest, within a factor exponential in n,
to the query point can be found by two simple polynomial-
time algoirhtms, called Procedure Rounding Off and Procedure
Nearest Plane, respectively.

Denote the query vector q = Bϑ = ϑ1b1 + · · ·+ ϑnbn ∈ Rm,
where ϑ ∈ Rn is a n-dimensional column vector. Procedure
Rounding Off simply finds a nearby lattice point by rounding
ϑi’s to their nearest integers, i.e.,

B · round(ϑ) = round(ϑ1)b1 + · · · + round(ϑn)bn.

We observe that the procedure is in fact algorithmically equiv-
alent to the well-known zero-forcing (ZF) detector, which takes
the received output vector q and detects the transmitted input
vector as round(B†q) = round(ϑ), where B† = (BT B)−1BT is
the pseudo-inverse of B with m ≥ n such that B†B = In.

We also note that Babai’s Procedure Nearest Plane [11] is
equivalent to a specific type of decision feedback equalization
(DFE) algorithms, called the nulling and cancellation detector.
By adopting a detection order (i.e., ηn, · · · , η1, in our notation)
corresponding to the descending order of signal-to-noise ratios
(SNR) of different elements in a received vector, the latter
becomes the well-known VBLAST detector [12].

Denote the m × n basis matrix of the lattice L′ by
[b′1, · · · , b′n] = (B†)T , where L′ = L((B†)T ) is called the dual
lattice of L(B). The VBLAST detection order is achieved by
ordering (or re-indexing) the basis vectors such that ‖b′n‖ ≤
· · · ≤ ‖b′1‖. In other words, the detection order ensures that the
transmitted vector element corresponding to the shortest dual
basis vector is to be detected first, and so on. It is interesting to
note that the VBLAST detection ordering as a preprocessing
step for finding a nearby lattice point actually coincides with
a preprocessing step proposed by Fincke and Pohst [13] for
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finding the closest lattice point. In fact, Fincke and Pohst also
suggested that the dual lattice should be reduced first.

V. Extension to Complex Lattices

If the modulation scheme involves both in-phase and
quadrature-phase components (such as QPSK and QAM), the
resultant (complex) lattice is a complex integer linear combi-
nation of some complex-valued basis vectors. Mathematically,
a n-dimensional complex lattice L ⊂ Cm is defined as

L = {η1b1 + · · · + ηnbn : ηi ∈ Z + Z
√−1},

where b1, · · · , bn ∈ Cm are n linearly independent m-
dimensional complex basis vectors.

Yao and Wornell [14] extended the famous Gauss reduction
algorithm for 2-dimensional complex lattices and demonstrated
that the Gauss reduction step can significantly improves the
performance of ZF and VBLAST detectors for a 2-transmit 2-
receive antenna system with QAM. Note that Gauss redution
is identical to the 2-D LLL reduction with δ = 1.

Since the complex number field is well known to be an
extension of the real number field, one may wonder how easy it
is, if possible at all, to extend the general theory on lattices from
the real to the complex case. In fact, the part of the theory
reviewed up to here has already been extended in a careful
manner in Sections II, III and IV. In particular, the results
presented therein are valid, as long as the operations involved
are replaced by their complex arithmetics counterparts. When
interpreting the aforementioned results for complex lattices,
there are a few points deserve special attention:

• (·)T becomes the complex conjugate transpose operator.
• | · | gives the magnitude of the possibly complex-valued

argument, and | · |2 should not be confused with (·)2.
• The real and imaginary parts returned by round(·) are

the integers nearest to the real and imaginary parts of the
possibly complex-valued argument respectively.

• In (2), the role of bj∗ and bi are not exchangeable in the
complex case, unlike the real case.

Since an n-dimensional complex lattice is isomorphic to a
2n-dimensional real lattice, every decoding problem with a
complex lattice formulation can be re-formulated as a real
lattice decoding problem. This approach was suggested in
e.g. [1], [4] and has now become a standard approach. However,
working directly on the complex lattice can result in decoding
algorithms with lower complexity, because the exploitation of
complex lattice structure allows the lattice dimension involved
to be half of that of the equivalent real lattice. The complexity
reduction is great especially for high-dimensional complex
lattices. In general, conventional lattice algorithms and their
complex counterparts are algorithmically inequivalent, even
when applied to equivalent real and complex lattices.

VI. Finding the Closest Lattice Point

A straightforward method to find the closest lattice point is
to enumerate all lattice points falling inside a sphere centered at
the query point so as to identify the closest lattice point in the
Euclidean metric. To avoid enumerating an unnecessarily large
number of points, it is important to determine a reasonably
small radius of the sphere.

A. Choice of Initial Radius

To avoid enumerating an unnecessarily large number of
points, it is useful to determine a sufficiently small radius of
the sphere which is sufficiently large to contain at least one
lattice point. One suggestion from [5] is to use the Rogers upper
bound on covering radius, which requires the knowledge about
the dimension and determinant of the lattice. An alternative
upper bound on the covering radius is 1

2

(∑n

k=1
‖b∗k‖2

)1/2
,

which follows from proposition 4.2 in [7]. Although the values
of ‖b∗k‖’s are required for calculating the bound, they are
typically required by other lattice algorithms and do not induce
additional complexity. In fact, the nearby lattice point returned
by Babai’s Procedure Nearest Plane, called the Babai point in
[16], always satisfies this bound. A better choice of the initial
radius is ‖b − q‖, where q and b denote the query point and
the Babai point respectively.

B. Enumerating Lattice Points in a Sphere

Let q = ϑ1b1+· · ·+ϑnbn ∈ Rm be the query point. If a lattice
point a = η1b1+· · ·+ηnbn ∈ L(B) is inside the sphere of radius
r centered at q, it satisfies the sphere constraint ‖a−q‖ ≤ r. The
enumeration problem is to determine all valid combinations of
η1, · · · , ηn under the sphere constraint, which can be expressed
in terms of b∗1, · · · , b∗n as

∑n

i=1
(
∑n

k=i
(ηk −ϑk)µk,i)

2‖b∗i ‖2 ≤ r2.
This suggests a recursive enumeration algorithm based on the
following relationships:

rn = r, (8)

|ηn − ϑn| ≤ rn/‖b∗n‖, (9)

and for i = n − 1, n − 2, · · · , 1,
ri = (r2

i+1 − |∑n

i+1
(ηk − ϑk)µk,i+1|2‖b∗i ‖2)1/2, (10)

|ηi + (
∑n

k=i+1
(ηk − ϑi)µk,i)| ≤ ri/‖b∗i ‖. (11)

The algorithm recursively divides an i-dimensional enumera-
tion problem with radius ri into (� 2ri

‖b∗
i
‖	+1) (i−1)-dimensional

similar problems with radii ri−1’s. Eventually, the actual enu-
meration process occurs in many one-dimensional lattices. In
the communications literature, the Pohst-Fincke enumeration
algorithm without the LLL-reduction preprocessing is often
called the sphere decoding algorithm.

C. Some Improvements

An improvement on the Pohst-Fincke enumeration algorithm
can be obtained by updating the values of r1, · · · , rn with r′

replacing r whenever a lattice point b with r′ = ‖b − q‖ < r
is enumerated. As suggested by Mow in [1], to avoid an
unnecessarily large amount of updating operations, we can
enumerate the values of ηi from its mid-value to its upper
bound and then from its mid-value to its lower bound, instead
of from the lower bound to the upper bound. In this way,
the short vectors are likely to be enumerated first. Based on
a similar observation, Schnorr and Euchner [15] suggested an
even better enumeration order, which enumerates the value
of ηi in the order of increasing distance from the mid-value.
As pointed out by Agrell et al. [16], the first lattice point
enumerated using the Schnorr-Euchner ordering is the Babai
point. Thus the choice of the initial radius is naturally set
according to the Babai point, as suggested in Section VI-A, but
without an explicit execution of the nearest plane algorithm
and the associated complexity.
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In [1] and [2], Mow suggested that the average complexity
can be reduced by adding a simple stopping test for detecting
early if the closest lattice point has been found. Let γ = γ(L)
denote the packing radius of the lattice L (i.e., half the length
of the shortest lattice vector). If an enumerated lattice point
is found to be at a distance less than γ from the query point
(i.e., the packing radius stopping test is satisfied), it is clearly
a nearest lattice point and thus the enumeration process can
be terminated right away. In lattice decoding applications, the
query point is a noisy version of a lattice point. At a sufficiently
large SNR, most of the query points are located very close to
the original lattice point. Therefore, a nearby lattice point,
such as the Babai point, is likely to be the nearest point as
well. It was suggested in [2] that the Babai point is first found
by applying the nearest plane algorithm and if it passes the
packing radius test, the whole enumeration process is skipped.
As the computational cost of running the stopping test is very
low, we apply the test whenever a new lattice point known to
be currently the nearest is found.

Mow [2] argued that as the SNR tends to infinity, the average
decoding complexity becomes quadratic for m = n (or in
general, O(nm)), namely, the complexity of the nearest plane
algorithm with preprocessing. This result on the asymptotic
average complexity of a universal lattice decoder is apparently
consistent with the recent theoretical analysis of Hassibi and
Vikalo [17] (see Figure 2 therein). The result remains valid for
our implementation of the enumeration algorithm here, because
the complexity of the Pohst-Fincke enumeration algorithm
with the Schnorr-Euchner ordering up to the first enumerated
lattice point (i.e., the Babai point) is also O(nm), ignoring the
preprocessing complexity.

Although the enumeration algorithm can always find a
closest lattice point, it may sometimes return an invalid
transmitted vector. As all practical modulation schemes have a
finite symbol alphabet, the set of valid transmitted vectors are
located inside a certain finite region of the infinite lattice. If the
closest lattice point is outside the finite region, the so-called
boundary error is resulted. As pointed out by Viterbo and
Boutros [3], for important cubic-shaped modulation schemes
(such as PAM and QAM), it is easy to incorporate the alphabet
constraint by restricting the range of every vector component
(i.e., ηi in our notation). This simple modification totally
eliminates the occurrence of boundary errors leading to an
exact MLD algorithm. The modified enumeration region is in
general not spherical, and might be empty even if the initial
radius is chosen according to the Babai point. In the latter
case, it is necessary to restart the enumeration process with
a larger initial radius chosen according to some heuristics. In
addition, to enable the cubic-shaped alphabet constraint to be
easily incorporated into the enumeration algorithm, the original
lattice basis must be used. It means that the MLD modification
is incompatible with the complexity reduction technique of
applying the LLL reduction in the preprocessing phase.

VII. Simulation Experiments

In this section, the performance and complexity of various
lattice decoding algorithms introduced in Sections IV to VI are
evaluated and compared by computer simulation. The elements
in the m× n basis matrix B are assumed to be independently
and identically distributed complex Gaussian random variables
with mean 0 and variance 1. It corresponds to the channel
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Fig. 1. Performance of the zero-forcing detector, the Babai nearest
plane algorithm, and the VBLAST detector, with and without the
real or complex LLL reduction preprocessing, as well as the MLD
in a 4-transmit 4-receive antenna system with 64-QAM.

gain matrix in a typical multiple antenna communication
system with n-transmit and m-receive antennas. We consider
a 4-transmit 4-receive antenna system with 64-QAM whose
alphabet is defined as Z8 +Z8

√−1, without loss of generality.
The system gives rise to a 4-dimensional complex lattice. As
discussed in Section V, we may perform the complex LLL
reduction (abbreviated as CLLL) directly on the complex
lattice, or the conventional LLL reduction to an equivalent
8-dimensional lattice. The i-th element ηi of the transmitted
input vector η represents a 64-QAM symbol to be transmitted
by the i-th antenna. The query point (corresponding to the
received output vector) is the transmitted input vector trans-
formed by the channel matrix and corrupted by an additive
noise vector w, or in symbols, q = Bη+w. The elements of the
noise vector w are independently and identically distributed
white complex Gaussian random variables with mean 0 and
variance 1, independent of the channel gain coefficients Bij ’s.

Figure 1 shows the BER performance of the ZF detector, the
Babai nearest plane algorithm and the VBLAST detector with
and without applying LLL reduction of B as a preprocessing
step, as well as the 3 complex lattice based detectors (i.e.,
CLLL-ZF, CLLL-Babai and CLLL-VBLAST). The MLD per-
formance is also shown therein. For the ease of comparison, we
shall take the performance of the Babai nearest plane algorithm
at a BER of 10−3 as the reference point. The ZF detector
performs only a fraction of a dB worse. The VBLAST detector
is in fact the nearest plane algorithm with the basis ordering
preprocessing (c.f. Section IV). It can be observed that the basis
ordering can provide almost 5dB gain. With the LLL reduction
preprocessing, the three detectors (i.e., LLL-ZF, LLL-Babai
and LLL-VBLAST) have similar performance that offers about
12dB gain. It implies that the LLL reduction can provide
an additional 7dB gain over the VBLAST basis ordering as
a preprocessing step. Note that the LLL-VBLAST does not
perform better than the LLL-Babai, in spite of its higher
complexity. The performance gap between the LLL-Babai and
LLL-ZF is about 1dB. It is interesting to note that the complex
LLL reduction can provide the same performance gain as the
traditional LLL reduction, in spite of its lower complexity. Also,
the CLLL-Babai (as well as LLL-Babai, CLLL-VBLAST and
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Fig. 2. Time complexity of the Pohst-Fincke enumeration algorithm
with the original Pohst or the Schnorr-Euchner ordering, with or
without the packing radius test, as a function of the SNR.

LLL-VBLAST) is only about 2.5dB from the MLD performance
and can achieve the optimal diversity order. The CLLL-Babai
is thus a very attractive low-complexity suboptimal detector.

The time complexities of different implementations of the
optimal lattice decoder applied to the same 4-transmit 4-
receive antenna 64-QAM system are compared in Figure 2. For
simplicity, no LLL reduction preprocessing has been performed.
Figure 2 shows the average CPU time per symbol of the Pohst-
Fincke enumeration algorithm and its Schnorr-Euchner variant,
with and without the packing radius stopping test as described
in Section VI. The initial radius is set according to the Babai
point, explicitly for the Pohst-Fincke algorithm and implicitly
for the Schnorr-Euchner variant.

Figure 2 shows that the Schnorr-Euchner ordering can speed
up the Pohst-Fincke algorithm by about 3 times at 35dB.
However, the speedup factor becomes less than 2 as the SNR
increases to 50dB. This can be explained by the fact that as
the SNR increases, the enumeration sphere contains only a
few lattice points and hence the order of enumerating them
become less significant. It can also be seen from the figure that
the use of the packing radius test can greatly speed up the
Pohst-Fincke algorithm with both the Pohst and the Schnorr-
Euchner orderings, but at different SNRs. In particular, the
speedup factor for the former increases from 6% at 35dB to
over 60% at 50dB, while that for the latter decreases from
36% at 35dB to only 2% at 50dB. Following the discussion
in Section VI-C, with the packing radius test, the complexity
of both the Pohst-Fincke algorithm and its Schnorr-Euchner
variant should converge to that of the Babai nearest plane
algorithm, as the SNR tends to infinity. It can be concluded
from Figure 2 that the convergence has already occurred at
50dB. However, at practical values of SNR (i.e., ≤ 40dB), the
speedup factor due to the packing radius test is significant only
when combined with the Schnorr-Euchner ordering. Finally, we
note that the Pohst-Fincke algorithm with both the Schnorr-
Euchner ordering and the packing radius test appears to be the
most efficient implementation of the optimal lattice decoder
known, especially at moderate SNRs.

VIII. Conclusion

Several important lattice algorithms for performing the
lattice basis reduction and for finding a nearby or the closest

lattice point were reviewed. Specifically, the LLL reduction
algorithm and the Pohst-Fincke enumeration algorithm with
the Schnorr-Euchner ordering were discussed. The use of LLL
reduction can provide impressive performance gain for the ZF,
DFE and VBLAST detectors at the expense of affordable
preprocessing complexity. To attain the MLD performance
at low complexity, it is promising to apply the Pohst-Fincke
enumeration algorithm with the Schnorr-Euchner ordering and
the packing radius stopping test.

Our general treatment allows the LLL reduction algorithm
to be extended for complex lattices with unnecessarily square
basis matrices. This generalization is important for designing
low-complexity universal lattice decoders for typical communi-
cations applications, in which the passband quadrature phase
modulation schemes (such as QPSK and QAM) are used.
Our simulation result verified the the complex LLL reduction
algorithm, if applicable, can further reduce complexity without
degrading performance.
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