
1

Algorithm Design

Review

• Polya’s Method -- How to Solve It
1. Understand the problem
2. Devise a plan
3. Carry out the plan
4. Look back

• The plan you make to solve the problem is called an
algorithm

• A computer program is an expression of an algorithm
in a computer language

• Programming enables us to use the computer as a
problem solving tool

Definition: algorithm

• Well-defined computational procedure that takes some
value or set of values as input and produces some value
or set of values as output
– that is, a sequence of computational steps that

transform the input into the output
• Can also view an algorithm as a tool for solving a well-

specified computational problem
– the problem statement specifies in general terms the

desired input/output relationship
– the algorithm describes a specific computational

procedure for achieving that relationship
CLRS, Introduction to Algorithms

Definition: program

• General
– a series of steps to be carried out or goals to be

accomplished
• for example, a program of study

• Computer science
– a sequence of instructions a computer can interpret

and execute that tells the computer how to perform a
specific task or directs its behavior

Stages of program development

1. Problem analysis and specification

2. Data organization and algorithm design

3. Program coding

4. Execution and testing

5. Program maintenance

Problem specification and analysis

• Specification
– description of the problem’s input

• what information is given and which items are
important in solving the problem

– description of the problem’s output
• what information must be produced to solve the

problem
• Analysis

– generalize specification to solve given problem and
related problems of same kind

– divide complex problems into subproblems

2

Data organization

• Data organization
– representation of input, output, intermediate values

• intermediate values hold information derived from
input or other intermediate values that we want to
remember for later on

– assignment of names to values, which may assume
different values or remain constant

• The names we assign to values are called variables
• A variable type describes the values it can take on

– such as integer (int) or boolean (boolean)

Assignment statements

• Variables are assigned values using assignment
statements

• Assign the value of an expression to a variable:

• Variables that appear on the right side of an assignment
statement must have previously defined values

• The value resulting from evaluation of the expression is
assigned to the variable on the left side of the

<variable> = <expression>

Examples

• The equals sign should be interpreted as “is assigned
the value of ” or “is replaced by”

• Variables with previously assigned values can appear on
both sides of the assignment statement

pi=3.14159;
x=15;
y=30;
z=x+y;

a=80;
b=90;
average=(a+b)/2;

sum=0;
sum=sum+1;

Algorithm design and refinement

• Basic description of an algorithm
– get input values
– compute output values for the given input
– return output values

• Algorithm refinement
– adding problem specific details
– computation of output values

• Check correctness of algorithm after steps are designed
– sample data
– mathematical analysis

Control structures

• Determine flow of execution of a program’s instructions
– Sequential execution

• instructions follow one another in a logical
progression

– Selective execution
• provides a choice depending upon whether a

logical expression is true or false
– Repetitive execution

• the same sequence of instructions is to be
repeated a number of times

• We can construct any algorithm using combinations of
control structures

Sequential execution

statement 1

statement 2

statement n

ª

3

Selective execution

• Allows program to take alternate logical paths
• Decisions are based on the value of a logical expression

– logical expressions evaluate to true or false
• Relational operators are used to make comparisons in a

logical expression
== , != , < , <= , > , >=

true3<8

false5!=5

true5==5
ValueExpression

false9==1

true7!=5

false2>=8
ValueExpression

Selective execution: if

• Executes statements when the logical expression is true
• Multiple statements are enclosed in curly braces { }

– otherwise only the first statement following the if is
executed

• If logical expression is false statements are not executed
– computer proceeds to next statement in the program

if(logical-expression)
{

… statements …
}

if(logical-expression)
statement

if selection

true statementsexpression

false

Selective execution: if-else

• Executes one set of
statements when logical
expression is true and
different set of statements
when expression is false

• Used to select between
two cases

• Multiple statements are
enclosed in curly braces

if(logical-expression)
{

… statements1 …
}
else
{

… statements2 …
}

if-else selection

true statements1statements2 expressionfalse

Selective execution: if else-if else

• if else-if else
– distinguish between

three or more cases
– example: convert

numerical grade to A-F
• If a logical expression is

true, the remainder of the
statements are bypassed
– good design - check

likeliest cases first

if(average ≥ 90)
grade = A;

else if(average ≥ 80)
grade = B;

else if(average ≥ 70)
grade = C;

else if(average ≥ 60)
grade = D;

else
grade = F;

4

Repetitive execution: for-loop

• Repetition controlled by a counter
• Statements executed once for each value of a variable in

a specified range
– start and end values are known

• Initial statement: assign start value of counter
• Test: logical expression comparing counter to end value
• Update statement: assign new value to counter

for(initial-statement; test; update-statement)
{

… statements …
}

for-loop repetition

true statementsexpression

false

initial statement

update
statement

Example: for-loop

• If a=3, b=7, and x=10 prior to loop execution, what is
the value of x when the loop terminates?

for(k=a; k<b; k++)
{
x=x+k;

}

k is the counter
variable
a, b, x must have
assigned values
k++ increments k
by one

Repetitive execution: while-loops

• Repetition controlled by a logical expression
– statements executed while the logical expression is
true, loop exits when logical expression is false

– some variable in the logical expression must change
with each repetition

• otherwise, we loop forever!

while(logical-expression)
{

… statements …
}

while loop repetition

true statementsexpression

false

Example: while-loops

• If a=3, b=7, and x=10 prior to loop execution, what is
the value of x when the loop terminates?

k=a;
while(k<b)
{
x=x+k;
k=k+1;

}

5

For-loop or while-loop?

• When to use a for-loop:
– always for counting!
– you know how many times to execute the loop

• When to use a while-loop:
– number of repetitions needed is unknown

for(k=a; k<b; k++)
{
x=x+k;

}

k=a;
while(k<b)
{
x=x+k;
k=k+1;

}

a for loop can
always be written
as a while loop

Shampoo algorithm

• Q: Why did the computer scientist
die in the shower?

• A: He followed the instructions on
the shampoo bottle.

• Problem with shampoo algorithm:
– no terminating condition!

• Shampoo algorithm has what is called an infinite loop
• How to fix?

Detecting infinite loops

• Problem: compute sum of positive integers ≤ n
• Assume n is an input value. Are the following while-loops

correct or incorrect? Why?

sum=0;
while(n>0)
sum=sum+n;

sum=0;
while(n>0)
{
sum=sum+n;
n=n+1;

}

k=1;
sum=0;
while(sum<n)
{
sum=sum+k;
k=k+1;

}

