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Abstract.
The combinatorial auction problem can be modeled as a weighted set packing problem.

Similarly the reverse combinatorial auction can be modeled as a weighted set covering prob-
lem. We use the set packing and set covering formulations to suggest novel iterative Dutch
auction algorithms for combinatorial auction problems. We use generalized Vickrey auctions
(GVA) with reserve prices in each iteration. We derive worst case bounds for these algorithms.
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1. Introduction

Combinatorial auctions are auctions where bidders are allowed to submit
bid on combinations of items. These are also called combinational or bun-
dle auctions. Combinatorial auctions can be used for economically efficient
allocations of goods, services, tasks, resources, etc. when the agents’ valu-
ations for bundles of items are not additive. The sub-additivity and super-
additivity arises because some items may be substitutes, and others may be
complementary. Combinatorial auctions have been suggested for many auc-
tion scenarios such as spectrum licenses, pollution permits, airport landing
slots, computational resources, online procurement, and others (de Vries and
Vohra, 2003; Narahari and Dayama, 2003).

Combinatorial auctions have major economic advantages but they are
computationally complex. There has been a recent surge of interest in devel-
oping combinatorial auction algorithms (Rothkopf et al., 1998; Wurman and
Wellman, 2000; Parkes, 2001; Lehmann et al., 2001; Kalagnanam and Parkes,
2003). Implementation of combinatorial auctions faces many challenges like
succinctly representating various bids, efficient algorithms for solving the
resulting NP-hard problems, and game theoretic issues of bidders’ strategies
and equilibria (Lehmann et al., 2001; Nisan, 2000). It has been shown that
unless the underlying allocation problems are solved optimally the combina-
torial auctions do not yield economically efficient solutions. This has led to
a new field of research termed by some authors as algorithmic mechanism
design. This field deals with interplay of algorithmic and game theoretic con-
siderations (Papadimitriou, 2001; Nisan, 1999). The combinatorial auctions
can be modeled as a weighted set packing problem (Bikhchandani and Ostroy,
2001).

In many market scenarios, e.g. in procurement, there is a buyer who
wants to obtain some goods at the lowest possible cost, and a set of sellers
who wish to sell different goods. A buyer can conduct a reverse auction
(Sandholm et al., 2001; Gallien and Wein, 2000) to procure the bundle of
goods. The pricing of bundles in reverse auctions can be sub-additive because
the sellers may give volume discounts for bundles. As in the case of forward
auction there are two common approaches to reverse auction:

1. Buyers post how much they are willing to pay for an item or a bundle and
sellers respond with a bid.

2. Buyers identify the items or bundles that they are interested in purchasing
without any indication of price. The interested sellers then submit their
bids for various bundles.

We show that the reverse auction for procurement can be formulated as a
weighted set covering problem.
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Generalized Vickrey auction (GVA) or the Vickrey-Clarke-Groves (VCG)
mechanism (Clarke, 1971; Groves, 1973) applied to combinatorial auctions
generalizes the second price auction proposed by Vickrey (Vickrey, 1961)
for single item auctions. This is a truthful or an incentive compatible mech-
anism for combinatorial auctions. However there are two problems with this
scheme.

1. GVA is not budget balanced i.e. may yield low revenue for the seller.

2. GVA requires optimal solution of the allocation problem which is NP-
hard.

Classical Dutch auctions (Wolfstetter, 1999) which are decreasing price auc-
tions have been proposed for both single item and multi-unit homogeneous
items. We suggest iterative Dutch auction schemes to reduce the complexity
of these two problems of GVA. In our schemes:

� We know GVA is not budget balanced. And setting the reserve prices
for the items is difficult because the agents bid for bundles instead of
individual items. In our iterative dutch mechanisms the reserve prices
for items are a natural outcome in each iteration.

� The second problem (i.e. GVA is NP-hard) depends on the size of the
input. Therefore dividing the one shot GVA into smaller GVAs in each
iteration significantly reduces the time to solve the problem. But the
overall solution obtained may not be optimal. We show that the solutions
obtained using these iterative schemes lie within provable worst case
bounds. We conduct numerical experiments to show that in general the
solutions are much better than the theoretical bounds and the alloca-
tions are very close to a Pareto efficient allocation is realized in these
algorithms.

1.1. CONTRIBUTIONS AND PAPER OUTLINE

Our contributions in this paper are:

� We use the set covering and packing formulations to devise novel itera-
tive Dutch auction schemes for combinatorial auctions.

� We also prove worst case bounds for these iterative auction algorithms.

In Section 2, we review the relevant literature. We present the integer pro-
gramming formulation of forward and reverse combinatorial auctions. We
discuss the greedy algorithms for these problems which give the best known
bounds. We also discuss various aspects of generalized Vickrey auctions (GVA).
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In Section 3, we present our iterative Dutch auction algorithms. We
prove the bounds for these algorithms in Section 4. We also discuss the results
of the numerical experiments that we carried out in Section 4. In Section 5
we conclude and discuss the scope of future work.

2. Review of Relevant Work

2.1. INTEGER PROGRAMMING FORMULATION OF COMBINATORIAL

AUCTION PROBLEM

The general case of a combinatorial auction problem (Bikhchandani and Os-
troy, 2001; de Vries and Vohra, 2003) can be stated as follows.

� An auctioneer (or a seller) wants to sell a set M of distinct objects.

� There are N bidders (or buyers) who are interested in buying the entire
set or some subsets of M.

� The auctioneer or the seller wants to maximize the revenue earned.

� We assume XOR bidding language (Nisan, 1999) is used i.e. each bidder
receives only one subset.

The seller wants to sell as much as possible while trying to maximize the
revenue. This is a weighted set packing problem and can be formulated as an
optimization problem.

� For every subset S � M, let v j
�
S � be the value agent j � N assigns to

consuming S.

� Let

y
�
S � j ���

��	� 1 if the bundle S � M is allocated
to agent j

�
N

0 otherwise

The optimization problem, denoted by (IP) is

V
� � max ∑

j 
 N
∑

S � M

v j
�
S � y � S � j �

s � t � ∑
S  i

∑
j 
 N

y
�
S � j ��� 1 � i � M

∑
S � M

y
�
S � j ��� 1 � j

�
N

y
�
S � j ��� 0 � 1 � S � M ��� j � N
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The first constraint ensures that overlapping sets of goods are never assigned.
The second constraint ensures that no bidder receives more than one subset.

2.2. INTEGER PROGRAMMING FORMULATION FOR REVERSE

COMBINATORIAL AUCTION

In this problem we have a single buyer and multiple sellers. The buyer tries to
procure from the sellers who quote the least prices. The buyer has to procure
at least the required set while minimizing the procurement cost. Therefore
the procurement problem becomes a weighted set covering problem. This
is different from the forward combinatorial auction (i.e. packing problem)
where we were trying to sell as much as possible.

The general case of a reverse combinatorial auction problem can be
stated as follows.

� A buyer wants to buy a set M of distinct objects.

� There are N bidders who are interested in selling the entire set or some
subsets of M.

� The auctioneer or the buyer wants to minimize the procurement cost.

� We assume XOR bidding language (Nisan, 1999) is used i.e. the buyer
buys at most one subset from any bidder.

The problem can be formulated as

V
� � min ∑

j 
 N
∑

S � M

v j
�
S � y � S � j �

s � t � ∑
S  i

∑
j 
 N

y
�
S � j ��� 1 � i � M

∑
S � M

y
�
S � j ��� 1 � j � N

y
�
S � j ��� 0 � 1 � S � M ��� j � N

where

� v j
�
S � is the valuation of the set S to seller j i.e. the seller j is willing to

sell the set S for v j
�
S � .

�

y
�
S � j ���

�� � 1 if the bundle S � M is allocated
to agent j

�
N

0 otherwise
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The first constraint ensures that at least the required set of goods is procured.
The second constraint ensures that the buyer buys no more than one subset
from any seller. And the objective is to minimize the total cost.

2.3. MINIMUM WEIGHT SET COVERING PROBLEM

We discussed in the Subsection 2.2 that the reverse combinatorial auction
can be modeled as a minimum weight set covering problem. The minimum
weight set cover problem in its general form can be stated as

Instance: A set system
�
U � S � with � S 
 S � U , weights c : S � IR � .

Task: Find a minimum weight set cover of
�
U � S � , i.e. a sub-family

R � S such that � R 
 R � U .

Chvátal (Chvátal, 1979) gave a greedy algorithm for this problem. This algo-
rithm motivates our iterative reverse Dutch auction described in Section 3.1.
The greedy algorithm of Chvátal can be stated as follows.

A Greedy Algorithm (Chvátal, 1979):

1. Set R : � φ and W : � φ.

2. While W �� U do:

Choose a set R � S � R for which c � R ��
R � W � is minimum.

Set R : � R 	 R and W : � W 	 R.

Theorem 1 (Chvátal, 1979) For any instance
�
U � S � c � of the minimum weight

set cover problem, the greedy algorithm for set cover finds a set cover whose
weight is at most H

�
r � OPT

�
U � S � c � � where r : � maxS 
 S 
 S 
 and H

�
r � � 1 �

1
2 �������� 1

r .

This is the best known bound for the weighted set packing problem. There are
some negative results which suggest that this may be the best possible bound.
Raz and Safra (Raz and Safra, 1997) have shown that there exists a constant
c � 0 such that, unless P � NP, no approximation ratio of c log 
U 
 (where

U 
 = size of the set U ) can be achieved. Also Feige (Feige, 1998) proved that
approximation ratio of c log 
U 
 cannot be achieved for any c � 1 unless each
problem in NP can be solved in O

�
nO � loglog � n ��� � time.

2.4. MAXIMUM WEIGHT SET PACKING PROBLEM

In Subsection 2.1 we discussed that the forward combinatorial auction can be
modeled as a maximum weight set packing problem. The maximum weight
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set packing problem in its general form can be stated as

Instance: A set system
�
U � S � with � S 
 S � U , weights c : S � IR � .

Task: Find a maximum weight set packing of
�
U � S � , i.e. find a

maximum weight sub-family R � S whose elements are

pairwise disjoint.

A greedy algorithm for this problem was given by (Lehmann et al., 2001).
Our iterative forward Dutch auction described in Section 3.2 is motivated by
this algorithm.
A Greedy Algorithm (Lehmann et al., 2001):
The algorithm is executed in two phases.

1. In the first phase, the bids are sorted by some criterion i.e. a norm is
defined and the bids are sorted in decreasing order following this norm.

2. In the second phase, a greedy algorithm generates an allocation. Let L be
the list of sorted bids obtained in the first phase. The first bid of L, say
� S � V �

S � � is granted, i.e. the set S is allocated at price V
�
S � and then

the algorithm examines each bid of L, in order, and grants it if it does not
conflict with any of the bids previously granted. If it does, it denies, i.e.
does not grant, the bid.

Theorem 2: (Lehmann et al., 2001): The greedy allocation scheme with
norm V � S ��

S
� approximates the optimal allocation within a factor of 
M 
 , where

M is the set of goods to be allocated.

There are better known bounds. In fact (Lehmann et al., 2001) have shown
that the best known bound for the packing problem is a factor of

�

M 
 which

can be achieved by a greedy allocation scheme with norm V � S �� �
S
� .

2.5. GENERALIZED VICKREY AUCTION

Generalized Vickrey auction (GVA) or the Vickrey-Clarke-Groves (VCG)
mechanism (Clarke, 1971; Groves, 1973) applied to combinatorial auctions
generalizes the second price auction proposed by Vickrey (Vickrey, 1961).
GVA maximizes the sum of the declared utilities which are the true valuations
of the bidders (incentive compatibility). Therefore the allocation maximizes
the social welfare. In a quasi-linear setting this is equivalent to Pareto opti-
mality. In other words, GVA assigns goods efficiently i.e. puts the goods in
the hands of the bidder who values it most.

GVA can be described for a auction as follows (MacKie-Mason and
Varian, 1995; Varian, 2000):
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1. Each agent a reports a utility function ra
� � � .

2. The planner computes

x
� � argmax∑

a
ra
�
x �

subject to
Feasibility Constraints

and assigns action x
�

a to agent a � 1 � � � � � A. Then compute

W� a
�
x

� � � ∑
b
�� a

rb
�
x

� �
which is the total valuation of all agents other than a according to their
reported utility functions.

3. Agent a receives payoff

ua
�
x

� � ���Ga
�
r � a � � W� a

�
x

�

a ���
where

Ga
�
r � a � � max

x ∑
b
�� a

rb
�
x � a �

subject to
Feasibility Constraints

GVA is a truthful or an incentive compatible mechanism for combina-
torial auctions. It is a dominant strategy for each agent to report his or her
true utility function. To see this, note first that a necessary condition for the
maximization in item (2) is that x

�

maximizes ra
�
x � � W� a

�
xa � . Agent a’s

true payoff is given in item (3). It follows that agent a will maximize his or
her payoff by setting ra

�
x ��� ua

�
x � . The set of actions taken will then be the

actions that maximize the sum of the true utility functions.
This is the "second-price" analogue to the original Vickrey auction. Each

agent is charged the total social surplus that would be possible if that agent
did not participate in the auction at all. The result, then, is that the net payoff
received by agent a is the net increment in total surplus that his participation
creates. i i

However there are two problems with this scheme.

1. GVA may not be budget balanced i.e. may yield low revenue for the seller
in forward auction or very high price for the buyer in the reverse auction.
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2. GVA requires optimal solution of N+1 allocation problems (where N is
the number of agents) which are NP-hard.

We know GVA is not budget balanced. The first problem (i.e. GVA is
not budget balanced) can be mitigated by introducing reserve prices. Ausubel
and Cramton (Ausubel and Cramton, 1999) prove that truthful bidding is a
dominant strategy in case of private value auctions and an ex post equilib-
rium in case of interdependent values auctions. They also show that truth
telling remains an ex post equilibrium in auction-plus-resale game, as long
as resale game satisfies individual rationality. But setting the reserve prices
for the items in combinatorial auctions is difficult because the agents bid for
bundles instead of individual items.

The second problem has led to many approximate solution schemes and
interesting auction algorithms (Wurman and Wellman, 2000; Parkes, 2001).
Since the allocation problem is NP-hard it can be solved only approximately.
And GVA may not be Pareto efficient if the allocation problem is not solved
optimally (Lehmann et al., 2001).

2.6. DUTCH AUCTIONS

A Dutch auction is characterized by its decreasing price mechanism. The
auction starts at a relatively high price and repeatedly decreases the price
until a price announced by the auctioneer is accepted by one of the auction
participants. The auction is then terminated and the bidder wins the auction.
The Dutch auction got its name from the Dutch flower auction, where flowers
are sold to traders. Dutch auction has been used traditionally for selling single
objects such as works of art or single lots of a good such as cut flowers,
fish, etc. This type of auction is also characterized by its speed. Usually the
auctions are very short so that a lot of merchandise can be sold.

Dutch Auction is strategically equivalent to first price auction. Hansen
(Hansen, 1988) showed that first-price auctions lead to a higher expected
price in price dependent demands for multi-unit auctions, so that revenue
equivalence breaks down in this case. Multi unit generalizations of Dutch and
English auctions have been studied by McCabe et al (McCabe et al., 1980).
But there has been no studies of dutch auctions for combinatorial auctions.

2.7. OUR WORK

We suggest iterative Dutch auction schemes in Section 3 to reduce the com-
plexity of these two problems of GVA. In our schemes:

� We know GVA is not budget balanced. And setting the reserve prices
for the items is difficult because the agents bid for bundles instead of
individual items. In our iterative dutch mechanisms the reserve prices
for items are a natural outcome in each iteration.
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� The second problem (i.e. GVA is NP-hard) depends on the size of the
input. Therefore dividing the one shot GVA into smaller GVAs in each
iteration significantly reduces the time to solve the problem. But the
overall solution obtained may not be optimal. We show that the solutions
obtained using these iterative schemes lie within provable worst case
bounds.

3. Iterative Dutch Auction Schemes

3.1. ITERATIVE REVERSE DUTCH AUCTION (IRDA)

Classical (forward) Dutch auctions are decreasing auctions which have been
conducted for both single item and multi-unit homogeneous items. In the sin-
gle unit Dutch auction the auctioneer begins at a high price and incrementally
lowers it until some bidder signals acceptance. Similarly in the multi-unit
case the price is incrementally reduced till all the items are sold or the seller’s
reserve price is reached.

In the reverse auction for procurement the buyer tries to procure a bundle
of items. The buyer starts with a low initial willingness to pay (say equal
to zero ) and keeps on incrementally increasing the willingness to pay until
the total bundle is procured or the budget limit is reached. The buyer has
a procurement budget. But this total budget cannot be divided linearly into
budget for each item because of the complementarities involved. The buyer
may value the entire bundle at a certain price but the value of a partial bundle
may be much less.

Our iterative mechanism consists of multiple bidding rounds denoted
by t

�
ZZ � ( t � 0 is the initial round). The buyer sets W

�
Bt � , maximum

willingness to pay for the remaining bundle Bt to be procured in round t.
The pricing of items is not linear, therefore the cost of the allocated bundles
cannot be divided into price of individual items. Therefore we calculate pt ,
the average willingness of the buyer to pay for each item in round t

pt � W
�
Bt �


Bt 
 � where Bt �� φ

.
Let the payment made by the buyer for the subset St in iteration t be V

� �
St � .

The average price paid by the buyer for each item procured is

vt � V
� �

St �

 St 


. We neglect the iterations in which no items are procured. The average price
paid by the buyer for each item in iteration t � 1 is vt � 1. We set the the reserve
price R

�
St � of the seller for any bundle St in iteration t to 
 St 
 vt � 1.
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We use GVA with reserve prices in each iteration. Therefore we have the
following two cases for the payment V

� �
St � made by the buyer for the subset

St in iteration t:

1. If R
�
St � � Vickrey Price f or the set St � W

�
Bt � , then

V
� �

St � � Vickrey Price f or the set St

2. If Vickrey Price f or the set St � W
�
Bt � , then we have the budget imbal-

ance case. Therefore we set

V
� �

St � � R
�
St �

Since we use GVA with reserve prices in each iteration, we shall have to
solve NP-hard allocation problems in each iteration. But the problem size in
each iteration is much smaller than the complete problem. The time taken to
solve the smaller GVAs in each iteration is much less than the time taken to
solve the complete problem, since the solution time grows exponentially with
size of the problem.
Notation

t = Iteration number

Bt = Bundle remaining to be procured in iteration t

St = Set procured in iteration t

V
� �

St � = Actual buying price of the set St in iteration t

vt = Average buying price of each item bought in iteration t

pt = Average Price of each item set by the auctioneer in

iteration t

W
�
Bt � = Maximum procurement price set by the auctioneer for the

bundle Bt in iteration t

R
�
St � = Reserve price of sellers for any bundle St in iteration t

ε = Price decrement per item in every iteration
Therefore the integer programming formulation of the GVA problem with
reserve prices in iteration t becomes

V
� �

St � � min ∑
j 
 N

∑
S � M

v j
�
S � y � S � j �

s � t � ∑
S  i

∑
j 
 N

y
�
S � j � � 1 � i � M

∑
S � M

y
�
S � j � � 1 � j

�
N

v j
�
S � y � S � j � � 
 S 
 vt � 1 � S � M ��� j � N
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∑
j 
 N

∑
S � M

v j
�
S � y � S � j � � W

�
Bt � � S � M

y
�
S � j � � 0 � 1 � S � M ��� j

�
N (1)

3.1.1. IRDA Algorithm
The IRDA algorithm can be described as follows:

1. Suppose the buyer’s initial willingness to pay for the entire bundle B0 is
zero i.e. W � B0 � � 0. Therefore the willingness to pay for each item is also
zero i.e. p0 � 0. Since no sellers are likely to be interested to bid at this
price, therefore

V
� �

S0 � � v0 � 0

2. Increment the average willingness to pay for each item by ε to p1 � v0 � ε.
This actually means that the buyer’s willingness to pay for the bundle B1

is changed to W
�
B1 � � 
B1 
�� p1. We assume that the increment ε in every

iteration is constant. The reserve price of any bundle St for the sellers
becomes 
 St 
 v0.

3. Solve the allocation problem if there are any bids i.e. for iteration t � 1
solve the Eq. 1 and calculate v1. This is again a combinatorial optimiza-
tion problem. But this is much smaller than the complete problem.

4. Allocate the subsets to the winners. Remove the allocated items from the
set to be procured and increment the average willingness to pay for each
item to p2 � v1 � ε, i.e. the maximum willingness of the buyer to pay for
the remaining bundle B2 is W

�
B2 � � 
B2 
�� p2. The new reserve price of

any bundle St of items for the sellers is 
 St 
 v1.

5. Go to step 3 and repeat until the buyer can procure the entire bundle or the
upper limit i.e. the total procurement budget is reached . In any iteration
t the following condition should be satisfied:

total procurement budget � W
�
Bt � � t � 1

∑
i � 0

V
� �

Si �
3.2. ITERATIVE FORWARD DUTCH AUCTION (IFDA)

In our combinatorial version of iterative forward Dutch auction the seller
starts with a high initial price and keeps on decreasing the price until the total
bundle is sold. As in the reverse mechanism, in the iterative forward Dutch
auction the bidding rounds are denoted by t � ZZ � ( t � 0 is the initial round).
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The sellers provides W
�
Bt � , total ask for the remaining bundle Bt to be sold

in round t. We cannot divide the ask price of the bundle into ask prices of
individual items because of non linear pricing. The average ask price of each
item in round t is pt . Therefore we calculate pt , the average ask price of the
seller for each item in round t.

pt � W
�
Bt �


Bt 
 � where Bt �� φ

Let the payment earned by the seller for the subset St in iteration t be V
� �

St � .
The average selling price for each item sold is

vt � V
� �

St �

 St 


. We neglect the iterations in which no items are procured. The average selling
price each item in iteration t � 1 is therefore vt � 1. The reserve price of the
seller in iteration t for the remaining bundle Bt is W

�
Bt � . Also set the the

maximum willingness of buyers M
�
St � to pay for any bundle St in iteration t

to 
 St 
 vt � 1.
We use GVA with reserve prices in each iteration. Therefore we have

the following two cases for the actual selling price V
� �

St � for the subset St in
iteration t:

1. If Vickrey Price f or the set St � 0, then

V
� �

St � � Vickrey Price f or the set St

2. If Vickrey Price f or the set St � 0, then we have the budget imbalance
case. Therefore we set

V
� �

St � � M
�
St �

Notation
t = Iteration number

Bt = Bundle remaining to be sold in iteration t�
St � = Set sold in iteration t

V
� �

St � = Actual selling price of the set St in iteration t

vt = Average selling price of each item bought in iteration t

pt = Average price of each item set by the auctioneer in

iteration t

W
�
Bt � = Minimum ask price set by the auctioneer for the

bundle Bt in iteration t

M
�
St � = Maximum willingness of buyers to pay for any bundle St

in iteration t

ε = Price increment per item in every iteration
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Therefore the integer formulation of the GVA problem with reserve prices in
iteration t becomes

V
� �

St � � max ∑
j 
 N

∑
S � M

v j
�
S � y � S � j �

s � t � ∑
S  i

∑
j 
 N

y
�
S � j ��� 1 � i � M

∑
S � M

y
�
S � j � � 1 � j

�
N

∑
j 
 N

∑
S � M

v j
�
S � y � S � j � � W

�
Bt � � S � M

v j
�
S � y � S � j � � 
 S 
 vt � 1 � S � M ��� j

�
N

y
�
S � j � � 0 � 1 � S � M ��� j � N (2)

3.2.1. IFDA Algorithm
We can now describe the IFDA algorithm as follows:

1. Let the seller’s initial ask price for each item be p0 � P, where P is a very
large integer i.e. the seller’s initial ask price for the bundle B0 is 
 S0 
 �
P. At this very high price no bids are likely to be submitted. Therefore
V

� �
S0 � � 0 and v0 � p0. If there are any bids then we solve for V

� �
S0 �

2. Decrease the ask price for each item by ε to p1 � v0
� ε. Therefore the

seller’s ask price for the bundle B1 is W
�
B1 � � p1 � 
B1 
 . The maximum

willingness of buyers to pay for any bundle St become 
 St 
 � v0.

3. If there are some bids then solve the allocation problem for iteration t � 1
given in Eq. 2. This is again a combinatorial optimization problem. But
this is much smaller than the original overall problem.

4. Allocate the subsets to the winners. Update the set to be procured and
the decrease the seller’s ask prices to p2 � v1

� ε i.e. W
�
B2 ��� p2 � 
B2 
 .

The maximum willingness of buyers to pay for any bundle St become

 St 
 � v1.

5. Go to step 3 and repeat until we can sell the entire bundle or we reach the
lower limit i.e. seller’s actual reserve price for the entire bundle. In any
iteration t the following condition should be satisfied

Reserve Price for the entire bundle � 
 St 
 pt �
t � 1

∑
i � 0

V
� �

Si �
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4. Bounds for the Iterative Dutch Auction Algorithms

4.1. CONVERGENCE OF THE ALGORITHMS

Lemma (Termination of the Algorithm):Both algorithms (IRDA and IFDA)
terminate in finite number of steps.
Proof: The proof is quite straightforward. We know every monotonic increas-
ing (or decreasing) sequence which is bounded above (or below) converges.
We have two cases here:

1. IRDA: We have the sequence

p0 � p1 � p2 � � � �
p0 � v0 � p1 � v0 � ε � p2 � v1 � ε � � � �

where:

ε � 0 �
v0 � v1 � v2 � ����� � and

vt � Total Procurement Budget � ∑t � 1
i � 0 V

� �
S1 �


Bt 

Therefore this sequence is monotonic increasing and bounded above.
Hence it converges.

2. IFDA: We have the sequence

p0 � p1 � p2 � � � �
p0 � v0 � p1 � v0

� ε � p2 � v1
� ε � � � �

where:

ε � 0 �
v0 � v1 � v2 � ����� � and

pt �
Reserve price f or the entire bundle � ∑t � 1

i � 0 V
� �

S1 �

Bt 


Therefore this sequence is monotonic decreasing and bounded below.
Hence it converges.
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Thus both the algorithms terminate in finite number of stages.
Theorem 3 (Upper Bound for the Reverse Dutch Auction): The upper bound
for the IRDA is�

1 � 1
2
� � � ��� 1

r
� V � � where

V
� � Optimal Solution of the overall problem � and

r � maxS 
 M 
 S 

Proof:
Let the subsets allocated in each iterations be S1 � S2 � � � � � � � SK , where there are
K iterations. We can ignore the iterations in which there was no allocation
without any loss of generality.
We have defined the reserve prices in iteration t as


 St 
 � vt � 1 � V
� �

St � � vt � 
 St 


� vt � 1 � V
� �

St �

 St 
 � vt

� V
� �

St � 1 �

 St � 1 
 � vt � 1 � V

� �
St �


 St 
 � vt

� V
� �

St � 1 �

 St � 1 
 � V

� �
St �


 St 


� V
� �

S1 �

 S1 
 � V

� �
S2 �


 S2 
 � � � � V � �
Sk �


 Sk 

In other words this is the same as the greedy algorithm of Chvátal (Section
2.3) when all the bids are given at once. This is true under the assumption
that bidding is truthful for both one shot GVA and IRDA. We know GVA is
incentive compatible. Also we use GVA with reserve prices in each iteration
of IRDA. Thus the upper bound for the reverse Dutch algorithm is

�
1 � 1

2
� � � ��� 1

r
� V � � where r � maxS 
 M 
 S 
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4.2. LOWER BOUND FOR THE FORWARD DUTCH AUCTION

Theorem 4 (Lower Bound for the Forward Dutch Auction): The lower bound
for the IFDA is

1


M 
 V
� � where

V
� � Optimal solution of the overall problem � and


M 
 � total number items to be sold �
Proof: The proof is similar to the proof of theorem 3. We get the following
inequalities in this case
We know

W
�
Bt � � W

�
Bt � 1 � � ε

and
W

�
Bt � 1 � � W

�
Bt � � ε

Also

 St � 1 
 vt � V

� �
St � 1 � � 
 St � 1 
 vt � 1

� vt � 1 � vt

� V
� �

St � 1 �

 St � 1 
 � V

� �
St �


 St 


� V
� �

S1 �

 S1 
 � V

� �
S2 �


 S2 
 � � � � V � �
Sk �


 Sk 

This is same as the greedy algorithm of (Lehmann et al., 2001) (Section 2.4)
with norm V � S ��

S
� .

Therefore we get the lower bound as

1


M 
 V
�

4.3. NUMERICAL EXPERIMENTS

We have shown the worst case (lower or upper) bounds for these iterative
Dutch auction algorithms. We have run our algorithms on some of the test
cases suggested by various authors (Sandholm, 1999; Boutilier et al., 1999;
de Vries and Vohra, 2003; Kevin Leyton-Brown, 2000). We have used CPLEXTM

8.0 to solve the various instances of GVA with reserve prices. The prelimi-
nary results suggest that the average case performance of these approximate
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schemes are much better than the proven lower or upper bounds. Our sim-
ulation results indicate that the proposed algorithms perform as well as the
GVA in terms of the social surplus and the seller’s revenue or buyer’s pro-
curement cost. Our algorithms cannot guarantee to obtain a Pareto efficient
allocation. But the simulation results suggest that allocations obtained by
these algorithms are very close to a Pareto efficient allocations. Also in our
algorithms, the required computational costs for an auctioneer is much lower
than the cost of performing the GVA. More experiments are needed to study
the performance of our iterative schemes on various distribution of bids.

5. Conclusions and Future Work

The forward combinatorial auction problem is a set packing problem as shown
by various authors (Bikhchandani and Ostroy, 2001). We have shown that the
problem of reverse combinatorial auction for procurement can be modeled
as a weighted set covering problem. We use these set packing and covering
formulations to devise iterative Dutch auction mechanisms. These iterative
mechanisms use GVA with reserve prices in each iteration. We have shown
the worst case (lower or upper) bounds for these iterative Dutch auction algo-
rithms. The average case performance of these approximate schemes seems
to be better than these bounds. More experiments are needed to study the
performance of our iterative schemes.

We have shown that our algorithms converge. But the rate of conver-
gence of the algorithms depend on ε i.e. the bid increment in each iteration. If
ε is large, the algorithm will converge very fast but the iterative problem will
become almost the same as one shot GVA. On the other hand, if ε is very small
we will have lots of iterations and the quality of solution may not be very
good. Therefore we need to calculate the rate of convergence in terms of ε.
We also need to extend our algorithms to the case of variable bid increments.
We can use learning algorithms in case of the variable increments.
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