
Intel® Itanium® 2 Processor
Specification Update

November 2004

Document Number: 251141-028

Notice: The Intel® Itanium® 2 processor may contain design defects or errors known as errata
which may cause the product to deviate from published specifications. Current characterized
errata are documented in this specification update.

2 Intel® Itanium® 2 Processors Specification Update

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://developer.intel.com/design/litcentr.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Copyright © 2004, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Contents
Revision History ...5

Preface...7

Summary Table of Changes...8

Identification Information ..22

Errata (Processor and PAL) ...25

Errata (IA-32 Execution Layer)...54

Itanium® 2 Processor Specification Changes ..58

Itanium® 2 Processor Specification Clarifications ..59

Itanium® 2 Processor Documentation Changes...60

IA-32 Execution Layer Specification Clarifications ...61
Intel® Itanium® 2 Processors Specification Update 3

4 Intel® Itanium® 2 Processors Specification Update

Revision History
Revision History

Version Description Date

-028 Added Intel® Itanium® 2 Processor with 1.60 GHz with up to 9 MB L3 Cache,
Low Voltage Intel® Itanium® 2 Processor with 1.30 GHz with 3 MB L3 Cache
and Intel® Itanium® 2 Processor with 1.50 GHz with 4 MB L3 Cache to
Table 1-1; added S-Spec numbers: SL87H, SL7EB, SL7EC, SL7ED, SL7EF
and SL7SD; added PAL version 1.27; added errata 98-101; added Itanium 2
Processor (up to 3 MB/6 MB L3 cache) Specification Clarification 2.

November 2004

-027 Added IA-32 execution layer version 4.4. September 2004

-026 Added Itanium 2 Processor (up to 3 MB L3 cache) Specification Clarification
2 and Document Change 1; added Itanium 2 Processor (up to 6 MB L3
cache) Specification Clarification 2 and Document Change 1.

August 2004

-025 Added PAL versions 7.77 and 5.69; updated workaround for erratum 61. July 2004

-024 Updated workaround for erratum 61. June 2004

-023 Added errata 94-97; added Intel® Itanium® 2 Processor with 1.60 GHz with
3 MB L3 Cache to Table 1-1; added S-spec number SL7FQ.

May 2004

-022 Added errata 92-93; added IA-32 execution layer erratum 17: Added Intel®
Itanium® 2 Processor with 1.40 GHz with 3 MB L3 Cache to Table 1-1; added
S-spec number SL7FP.

April 2004

-021 Added errata 88-91; added Itanium 2 Processor (up to 3 MB L3 cache) PAL
version 7.73 and Itanium 2 Processor (up to 6 MB L3 cache) PAL version
5.65; added Itanium 2 Processor (up to 3 MB L3 cache) Specification
Clarification 1 and Itanium 2 Processor (up to 6 MB L3 cache) Specification
Clarification 1.

March 2004

-020 Added errata 83-87; added Itanium 2 Processor (up to 3 MB L3 cache) PAL
version 7.71 and Itanium 2 Processor (up to 6 MB L3 cache) PAL version
5.61; updated workaround for erratum 61.
Updated problem and implication for IA-32 execution layer erratum 1; added
IA-32 execution layer errata 2-16; added IA-32 Execution Layer Specification
Clarifications 1-11.

January 2004

-019 Added errata 80-82. December 2003

-018 Added errata 75-79. November 2003

-017 Added errata 71-74. October 2003

-016 Added errata 68-70; added Low Voltage Intel® Itanium® 2 Processor with
1.0 GHz with 1.5 MB L3 Cache and Intel® Itanium® 2 Processor with
1.40 GHz with 1.5 MB L3 Cache to Table 1-1; added S-Spec numbers SL76K
and SL754; added DP Optimized Intel® Itanium® 2 Processor Datasheet to
the list of Affected/Related Documents.

September 2003

-015 Added errata 65-67; updated the Intel® Itanium® Architecture Software
Developer’s Manual Specification Update document number in the list of
Affected/Related Documents.

August 2003

-014 Added errata 61-62. July 2003

-013 Added Intel® Itanium® 2 processor with 6 MB L3 cache information; added
new errata summary tables and Table 1-1; removed Specification
Clarification 1; removed Documentation Changes 1-2; added errata 59,
63-64.

June 2003

-012 Updated Implication for erratum 60. June 2003

-011 Added erratum 60; removed erratum 59. June 2003
Intel® Itanium® 2 Processor Specification Update 5

Revision History
-010 Added errata 55-59. May 2003

-009 Added errata 53-54; added PAL version 7.40. March 2003

-008 Updated workaround for erratum 48; added erratum 52; added PAL
version 7.37.

February 2003

-007 Added errata 49-51; added Documentation Change 2. January 2003

-006 Added errata 47-48. December 2002

-005 Added errata 43-46; added PAL version 7.36. November 2002

-004 Added errata 38-42. October 2002

-003 Added errata 30-37; added PAL version 7.31; added Documentation
Change 1; added Specification Clarification 1.

September 2002

-002 Added errata 20-29. August 2002

-001 Initial release of this document. July 2002

Version Description Date
6 Intel® Itanium® 2 Processor Specification Update

Preface
Preface

This document is an update to the specifications contained in the Affected/Related Documents
table below. This document is a compilation of device and documentation errata, specification
clarifications, and changes. It is intended for hardware system manufacturers and software
developers of applications, operating systems, or tools.

This document may also contain information that was not previously published.

Affected/Related Documents

Nomenclature
S-Spec Number is used to identify products. Products are differentiated by their unique
characteristics, e.g. core speed, L3 cache size, package types, etc. Care should be taken to read all
notes associated with each S-Spec number.

Errata are design defects or errors. These may cause the Itanium® 2 processor’s behavior to
deviate from published specifications. Hardware and software designed to be used with any given
stepping must assume that all errata documented for that stepping are present on all devices.

Specification Changes are modifications to the current published specifications. These changes
will be incorporated in the next release of the specifications.

Specification Clarifications describe a specification in greater detail or further highlight a
specification’s impact to a complex design situation. These clarifications will be incorporated in the
next release of the specification.

Documentation Changes include typos, errors, or omissions from the current published
specifications. These changes will be incorporated in the next release of the specifications.

Note: Errata remain in the specification update throughout the product’s lifecycle, or until a particular
stepping is no longer commercially available. Under these circumstances, errata removed from the
specification update are archived and available upon request. Specification changes, specification
clarifications, and documentation changes are removed from the specification update when the
appropriate changes are made to the appropriate product specification or user documentation
(datasheets, manuals, etc.).

Title Document #

Intel® Itanium® 2 Processor Datasheet 250945

DP Optimized Intel® Itanium® 2 Processor Datasheet 253795

Intel® Itanium® 2 Processor Hardware Developer’s Manual 251109

Intel® Itanium® Architecture Software Developer’s Manual, Volume 1: Application Architecture 245317

Intel® Itanium® Architecture Software Developer’s Manual, Volume 2: System Architecture 245318

Intel® Itanium® Architecture Software Developer’s Manual, Volume 3: Instruction Set Reference 245319

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 248699

Intel® Itanium® 2 Processor Reference Manual for Software Development and Optimization 251110

Intel® Itanium® Processor Family System Abstraction Layer Specification 245359
Intel® Itanium® 2 Processor Specification Update 7

Summary Table of Changes
Summary Table of Changes

The following table indicates the errata, specification changes, specification clarifications, or
documentation changes which apply to the Itanium 2 processors. Intel may fix some of the errata in
a future stepping of the component or in a future release of the Processor Abstraction Layer (PAL),
and account for the other outstanding issues through documentation or specification changes as
noted. This table uses the notations indicated below.

Codes Used in Summary Table

Stepping/Version
X: Errata exists in the indicated stepping, PAL version, or software

extension. Documentation Change, Specification Change or
Clarification that applies to this stepping.

(No mark or Blank box): This erratum is fixed in listed stepping or specification change does not
apply to listed stepping or PAL version.

Page
(Page): Page location of item in this document.

Status
Doc: Document change or update will be implemented.

Plan Fix: This erratum may be fixed in a future stepping of the component, or in a
future release of PAL.

Fixed: This erratum has been previously fixed.

No Fix: There are no plans to fix this erratum.

Row
Change bar to left of table row indicates this erratum is either new or
modified from the previous version of this document.
8 Intel® Itanium® 2 Processor Specification Update

Summary Table of Changes
Table 1-1. Definition Table

Processor Abbreviation

Intel® Itanium® 2 Processor 900 MHz with 1.5 MB L3 Cache
Itanium 2 Processor (up to 3 MB L3 cache)

Intel® Itanium® 2 Processor 1.0 GHz with 3 MB L3 Cache

Low Voltage Intel® Itanium® 2 Processor 1.0 GHz with 1.5 MB L3 Cache

Itanium 2 Processor (up to 6 MB L3 cache)

Intel® Itanium® 2 Processor 1.40 GHz with 1.5 MB L3 Cache

Intel® Itanium® 2 Processor 1.30 GHz with 3 MB L3 Cache

Intel® Itanium® 2 Processor 1.40 GHz with 3 MB L3 Cache

Intel® Itanium® 2 Processor 1.60 GHz with 3 MB L3 Cache

Intel® Itanium® 2 Processor 1.40 GHz with 4 MB L3 Cache

Intel® Itanium® 2 Processor 1.50 GHz with 6 MB L3 Cache

Intel® Itanium® 2 Processor 1.50 GHz with 4 MB L3 Cache

Itanium 2 Processor (up to 9 MB L3 cache)

Intel® Itanium® 2 Processor 1.60 GHz with 6 MB L3 Cache

Intel® Itanium® 2 Processor 1.60 GHz with 9 MB L3 Cache

Low Voltage Intel® Itanium® 2 Processor 1.30 GHz with 3 MB L3 Cache

Intel® Itanium® 2 Processor 1.60 GHz with 3 MB L3 Cache at 400 and 533 MHz
System Bus (DP Optimized)
Intel® Itanium® 2 Processor Specification Update 9

Summary Table of Changes
Itanium® 2 Processor (up to 3 MB L3 Cache) Errata
(Sheet 1 of 4)

No.
Processor
Stepping

PAL
Version Pg. Status ERRATA

B3 7.13 7.31 7.36 7.37 7.40 7.59 7.71 7.73 7.77

1 X 25 No Fix IA64_INST_RETIRED and
IA64_TAGGED_INST_RETIRED does not
count predicated off instructions

2 X 25 No Fix Performance Monitor Interrupt raised when
freeze bit is written to Performance
Monitoring Counter register

3 X 25 No Fix Priority agent requests with unit mask of I/O
not counted

4 X 25 No Fix Incorrect fault reporting on move to/from the
RNAT or BSPSTORE application registers

5 X 26 No Fix Power good deassertion affects boundary
scan testing

6 X 26 No Fix IA-32: CPUID instruction returns incorrect
L3 cache size

7 X 26 No Fix Performance Monitoring Event counters
may be incorrect when using Instruction
Address Range checking in fine mode

8 X 27 No Fix Possible deadlock condition after ptc.g is
issued on two-way system

9 X 27 No Fix EPC, mov ar.pfs and br.ret instructions may
combine to yield incorrect privilege level

10 X 28 No Fix Removal of WAW hazard may lead to
undefined result

11 X 28 No Fix Unexpected data debug, data access or
dirty bit fault taken after rfi instruction

12 X 29 No Fix Incorrect privilege level may be granted if a
failed speculation check precedes a
privilege level change

13 X 29 No Fix Floating-point instructions take a
floating-point trap before Unimplemented
Instruction Address trap

14 X 29 Fixed PAL_MC_ERROR_INFO does not return
an address for certain double bit ECC
memory errors

15 X 29 Fixed PAL_CACHE_READ and
PAL_CACHE_WRITE return incorrect
status for L1I cache access

16 X 30 Fixed Unpredictable behavior if the system is
awakened from low power mode by an
MCA

17 X 30 Fixed The system may lose an interrupt when
SAL_CHECK reads the IVR

18 X 30 Fixed A bus MCA nested within a recoverable or
firmware-corrected bus MCA may not be
handled correctly

19 X 30 Fixed PAL reset sequence performed after a
recovery check may result in incorrect
system behavior

20 X 31 Fixed PAL_HALT_LIGHT_SPECIAL provides
PAL_HALT functionality

21 X 31 Fixed PAL_TEST_PROC may access memory
with the UC attribute
10 Intel® Itanium® 2 Processor Specification Update

Summary Table of Changes
22 X 31 No Fix L2 single bit data error promoted to MCA
continues to flag a CMCI

23 X 31 Fixed PAL_TEST_PROC requires specific tests
be performed for correct operation

24 X 31 Fixed PAL_TEST_INFO may return incorrect data
for invalid test parameters

25 X 32 Fixed PAL_CACHE_INIT may not function
properly if levels of the cache hierarchy are
specified

26 X 32 Fixed PAL_SET_TIMEOUT may have an
unexpected result when time-out = 0

27 X 32 Fixed Concurrent MCAs that signal a BERR may
not set PSP.bc correctly

28 X 32 Fixed PAL_PLATFORM_ADDR may return an
error if bit 63 is set

29 X 32 Fixed PAL_TEST_PROC may overwrite predicate
registers

30 X 32 Fixed Recovery check fails if PAL_B is not found
31 X 33 Fixed PAL procedure calls may have unexpected

results if an incorrect PAL_B version is used
32 X 33 Fixed Late self-test may have unexpected results

during concurrent processor tests
33 X 33 Fixed PAL_TEST_PROC may cause unexpected

system behavior
34 X 33 Fixed PAL halt procedures may overwrite

predicate registers
35 X 34 No Fix Two resets may be necessary to leave TAP

test mode
36 X 34 No Fix IA-32 instruction pointers may be

overwritten under certain boundary
conditions

37 X 34 Fixed Initialization and ETM recovery may
overwrite branch register

38 X 34 Fixed PAL procedures may not save predicate
register 3

39 X X 34 Fixed PAL_CACHE_INFO procedure may return
undefined value

40 X 35 Fixed PAL_HALT_LIGHT procedure may
generate a spurious Performance Monitor
Interrupt

41 X X 35 Fixed Unexpected system behavior after
PAL_CACHE_FLUSH is executed

42 X X 35 Fixed PAL_TEST_PROC may not properly report
self-test status

43 X 35 No Fix PSR.ri may not reflect the correct slot upon
entrance to the unimplemented address
fault handler

44 X 36 No Fix WC and WB memory attribute aliasing
combine with FC and may cause processor
live-lock

Itanium® 2 Processor (up to 3 MB L3 Cache) Errata
(Sheet 2 of 4)

No.
Processor
Stepping

PAL
Version Pg. Status ERRATA

B3 7.13 7.31 7.36 7.37 7.40 7.59 7.71 7.73 7.77
Intel® Itanium® 2 Processor Specification Update 11

Summary Table of Changes
45 X 36 No Fix Improper use of memory attribute aliasing
may lead to out of order instruction
execution

47 X 37 No Fix Executing an rfi instruction that is located at
the end of implemented physical memory
can result in an unexpected unimplemented
address fault

48 X 37 Fixed IA-32: xchg instruction requires release
semantics

49 X X X 37 Fixed PAL MCA handler may not correctly set
PSP.co bit

50 X X X 37 Fixed PAL_MC_ERROR_INFO may return
incorrect PSP information

51 X 38 No Fix FPSWA trap may be missed
52 X 39 Fixed WC evictions and semaphore operations

combine to establish a potential live-lock
condition

53 X 39 Fixed The IA-32 cmpxchg8b instruction may not
correctly set ZF flag

54 X X X X X X X X X 39 No Fix PAL_TEST_PROC status return value
55 X 40 No Fix Fault condition may generate incorrect

address when using short format VHPT
57 X X X X X 40 Fixed Cache snoops disabled on BINIT#
58 X 41 No Fix RFI to UIA using single step mode may

enter ss trap
60 X 41 No Fix Specific instruction combination may disrupt

subsequent operation
61 X 42 No Fix IFS register may be invalidated during MCA

or INIT
62 X 42 Fixed Unimplemented memory access may occur

while handling an INIT or MCA event
66 X X X X X X X X X 43 No Fix PSP.cr is always set to zero (0) at

PALE_INIT hand off to SALE_ENTRY
68 X X X X X X 44 Fixed Performance Monitoring Event counters

may be incorrect after leaving a low-power
state

69 X 44 No Fix Instruction Breakpoint Register update may
generate a false instruction debug fault

70 X 44 No Fix Application fault may be missed on a br.ia
instruction

71 X 45 No Fix Machine check may not bring the system
out of a low-power state

72 X X X X X X 45 Fixed Machine check event received during PAL
execution may have unexpected results

73 X X X X X X 45 Fixed Rendezvous may result in spin loop due to
incorrect rendezvous address passed to
SAL

74 X X X X X X 45 Fixed Possible degradation in system
performance when calling
PAL_CACHE_FLUSH with int = 1 for
certain cache memory types

75 X 46 No Fix Memory read current transaction may fail to
observe a st, ld.bias or lfetch.excl

Itanium® 2 Processor (up to 3 MB L3 Cache) Errata
(Sheet 3 of 4)

No.
Processor
Stepping

PAL
Version Pg. Status ERRATA

B3 7.13 7.31 7.36 7.37 7.40 7.59 7.71 7.73 7.77
12 Intel® Itanium® 2 Processor Specification Update

Summary Table of Changes
76 X 46 No Fix BINIT taken on 2x ECC and hard-fail errors
with BINIT event signaling disabled

77 X 47 No Fix Recoverable L3 cache tag ECC error may
raise overflow error when CMCI are
promoted to MCA

78 X 47 No Fix L2 cache line with poison data results in
unexpected fatal MCA

79 X 47 No Fix XPN time-out with BINIT response disabled
may cause system hang

80 X 47 No Fix BINIT may be taken after a UC single byte
access to ignored/reserved area of the
Processor Interrupt Block

81 X 48 No Fix Recoverable CMCI may combine with an
L3 MCA error to cause fatal overflow error

82 X X X X X X 48 Fixed BERR may be indicated when the PAL
MCA routine invalidates L2 cache lines

83 X X X X X X X 48 Fixed Pending RSE interrupt during the PAL PMI
handler may result in a system hang

84 X X X X X X X X X 48 No Fix An INIT signaled during a PAL PMI flow
may result in a system hang

85 X X X X X X X 49 Fixed PMI serviced during the execution of
PAL_MC_ERROR_INFO procedure may
result in unpredictable processor behavior

86 X X X X X X X X X 49 No Fix Data-poisoning bits not included in
PAL_MC_ERROR_INFO cache_check and
bus_check structures

87 X X X X X X X X 49 Fixed PAL_PREFETCH_VISIBILITY call not
implemented

89 X X X X X X X X 50 Fixed Cache lines with ECC errors may not be
invalidated

90 X X X X X X X X 50 Fixed Interrupts are enabled when exiting from a
halt state

92 X 50 No Fix Corrected ECC error may not generate
CMCI

93 X X X X X X X X 51 Fixed PAL_CACHE_FLUSH procedure may not
flush and invalidate all L2 cache lines

94 X X X X X X X X 51 Fixed Performance counters may include data
from low power states

95 X X X X X X X X 51 Fixed MCA due to an XPN timeout may result in a
spin loop

96 X 52 No Fix BINIT# may not be asserted for exactly two
cycles

97 X 52 No Fix Memory read current transaction may fail to
observe a st or lead to a system hang

98 X X X X X X X X X 52 Plan Fix PAL_VM_TR_READ will return an incorrect
page size for DTR reads

100 X X X X X X X X X 53 Plan Fix Interruption of PAL calls by a PMI

Itanium® 2 Processor (up to 3 MB L3 Cache) Errata
(Sheet 4 of 4)

No.
Processor
Stepping

PAL
Version Pg. Status ERRATA

B3 7.13 7.31 7.36 7.37 7.40 7.59 7.71 7.73 7.77
Intel® Itanium® 2 Processor Specification Update 13

Summary Table of Changes
Itanium® 2 Processor (up to 6 MB L3 Cache) Errata
(Sheet 1 of 2)

No.
Processor
Stepping

PAL
Version Pg. Status ERRATA

B1 5.37 5.61 5.65 5.69

1 X 25 No Fix IA64_INST_RETIRED and IA64_TAGGED_INST_RETIRED
does not count predicated off instructions

2 X 25 No Fix Performance Monitor Interrupt raised when freeze bit is
written to Performance Monitoring Counter register

6 X 26 No Fix IA-32: CPUID instruction returns incorrect L3 cache size
7 X 26 No Fix Performance Monitoring Event counters may be incorrect

when using Instruction Address Range checking in fine mode
8 X 27 No Fix Possible deadlock condition after ptc.g is issued on two-way

system
13 X 29 No Fix Floating-point instructions take a floating-point trap before

Unimplemented Instruction Address trap
22 X 31 No Fix L2 single bit data error promoted to MCA continues to flag a

CMCI
43 X 35 No Fix PSR.ri may not reflect the correct slot upon entrance to the

unimplemented address fault handler
45 X 36 No Fix Improper use of memory attribute aliasing may lead to out of

order instruction execution
47 X 37 No Fix Executing an rfi instruction that is located at the end of

implemented physical memory can result in an unexpected
unimplemented address fault

54 X X X X 39 No Fix PAL_TEST_PROC status return value
55 X 40 No Fix Fault condition may generate incorrect address when using

short format VHPT
58 X 41 No Fix RFI to UIA using single step mode may enter ss trap
59 X 41 No Fix On-Die Termination value does not meet specification
61 X 42 No Fix IFS register may be invalidated during MCA or INIT
62 X 42 Fixed Unimplemented memory access may occur while handling an

INIT or MCA event
63 X 43 No Fix JTAG Sample/Preload or EXTEST instruction usage
64 X 43 Fixed CPU_CYCLES count includes data from halt states
65 X 43 No Fix System bus signals can be driven while RESET# is asserted
66 X X X X 43 No Fix PSP.cr is always set to zero (0) at PALE_INIT hand off to

SALE_ENTRY
67 X 44 No Fix Incorrect Thermal Calibration Offset Byte value in the PIROM
69 X 44 No Fix Instruction Breakpoint Register update may generate a false

instruction debug fault
70 X 44 No Fix Application fault may be missed on a br.ia instruction
71 X 45 No Fix Machine check may not bring the system out of a low-power

state
72 X 45 Fixed Machine check event received during PAL execution may

have unexpected results
73 X 45 Fixed Rendezvous may result in spin loop due to incorrect

rendezvous address passed to SAL
74 X 45 Fixed Possible degradation in system performance when calling

PAL_CACHE_FLUSH with int = 1 for certain cache memory
types

75 X 46 No Fix Memory read current transaction may fail to observe a st,
ld.bias or lfetch.excl

76 X 46 No Fix BINIT taken on 2x ECC and hard-fail errors with BINIT event
signaling disabled
14 Intel® Itanium® 2 Processor Specification Update

Summary Table of Changes
77 X 47 No Fix Recoverable L3 cache tag ECC error may raise overflow
error when CMCI are promoted to MCA

78 X 47 No Fix L2 cache line with poison data results in unexpected fatal
MCA

79 X 47 No Fix XPN time-out with BINIT response disabled may cause
system hang

80 X 47 No Fix BINIT may be taken after a UC single byte access to
ignored/reserved area of the Processor Interrupt Block

81 X 48 No Fix Recoverable CMCI may combine with an L3 MCA error to
cause fatal overflow error

82 X 48 Fixed BERR may be indicated when the PAL MCA routine
invalidates L2 cache lines

83 X X 48 Fixed Pending RSE interrupt during the PAL PMI handler may result
in a system hang

84 X X X X 48 No Fix An INIT signaled during a PAL PMI flow may result in a
system hang

85 X X 49 Fixed PMI serviced during the execution of
PAL_MC_ERROR_INFO procedure may result in
unpredictable processor behavior

86 X X 49 No Fix Data-poisoning bits not included in PAL_MC_ERROR_INFO
cache_check and bus_check structures

87 X 49 Fixed PAL_PREFETCH_VISIBILITY call not implemented
88 X 49 No Fix INIT# signal not recognized properly
89 X X X 50 Fixed Cache lines with ECC errors may not be invalidated
90 X X X 50 Fixed Interrupts are enabled when exiting from a halt state
91 X 50 Fixed PAL_PREFETCH_VISIBILITY call may result in a system

hang
92 X 50 No Fix Corrected ECC error may not generate CMCI
93 X X X 51 Fixed PAL_CACHE_FLUSH procedure may not flush and invalidate

all L2 cache lines
94 X X X 51 Fixed Performance counters may include data from low power

states
95 X X X 51 Fixed MCA due to an XPN timeout may result in a spin loop
96 X 52 No Fix BINIT# may not be asserted for exactly two cycles
97 X 52 No Fix Memory read current transaction may fail to observe a st or

lead to a system hang
98 X X X X 52 Plan Fix PAL_VM_TR_READ will return an incorrect page size for

DTR reads
100 X X X X 53 Plan Fix Interruption of PAL calls by a PMI

Itanium® 2 Processor (up to 6 MB L3 Cache) Errata
(Sheet 2 of 2)

No.
Processor
Stepping

PAL
Version Pg. Status ERRATA

B1 5.37 5.61 5.65 5.69
Intel® Itanium® 2 Processor Specification Update 15

Summary Table of Changes
Itanium® 2 Processor (up to 9 MB L3 Cache) Errata

No.
Processor
Stepping

PAL
Version Pg. Status ERRATA

A1 1.27

1 X 25 No Fix IA64_INST_RETIRED and IA64_TAGGED_INST_RETIRED does not
count predicated off instructions

2 X 25 No Fix Performance Monitor Interrupt raised when freeze bit is written to
Performance Monitoring Counter register

6 X 26 No Fix IA-32: CPUID instruction returns incorrect L3 cache size
7 X 26 No Fix Performance Monitoring Event counters may be incorrect when using

Instruction Address Range checking in fine mode
8 X 27 No Fix Possible deadlock condition after ptc.g is issued on two-way system

13 X 29 No Fix Floating-point instructions take a floating-point trap before
Unimplemented Instruction Address trap

22 X 31 No Fix L2 single bit data error promoted to MCA continues to flag a CMCI
43 X 35 No Fix PSR.ri may not reflect the correct slot upon entrance to the

unimplemented address fault handler
45 X 36 No Fix Improper use of memory attribute aliasing may lead to out of order

instruction execution
47 X 37 No Fix Executing an rfi instruction that is located at the end of implemented

physical memory can result in an unexpected unimplemented
address fault

54 X 39 No Fix PAL_TEST_PROC status return value
55 X 40 No Fix Fault condition may generate incorrect address when using short

format VHPT
58 X 41 No Fix RFI to UIA using single step mode may enter ss trap
63 X 43 No Fix JTAG Sample/Preload or EXTEST instruction usage
66 X 43 No Fix PSP.cr is always set to zero (0) at PALE_INIT hand off to

SALE_ENTRY
67 X 44 No Fix Incorrect Thermal Calibration Offset Byte value in the PIROM
69 X 44 No Fix Instruction Breakpoint Register update may generate a false

instruction debug fault
70 X 44 No Fix Application fault may be missed on a br.ia instruction
71 X 45 No Fix Machine check may not bring the system out of a low-power state
76 X 46 No Fix BINIT taken on 2x ECC and hard-fail errors with BINIT event

signaling disabled
77 X 47 No Fix Recoverable L3 cache tag ECC error may raise overflow error when

CMCI are promoted to MCA
79 X 47 No Fix XPN time-out with BINIT response disabled may cause system hang
80 X 47 No Fix BINIT may be taken after a UC single byte access to

ignored/reserved area of the Processor Interrupt Block
84 X 48 No Fix An INIT signaled during a PAL PMI flow may result in a system hang
86 X 49 No Fix Data-poisoning bits not included in PAL_MC_ERROR_INFO

cache_check and bus_check structures
96 X 52 No Fix BINIT# may not be asserted for exactly two cycles
97 X 52 No Fix Memory read current transaction may fail to observe a st or lead to a

system hang
98 X 52 Plan Fix PAL_VM_TR_READ will return an incorrect page size for DTR reads
99 X 52 Plan Fix Incorrect EID and ID information passed by PAL

100 X 53 Plan Fix Interruption of PAL calls by a PMI
101 X 53 Plan Fix External interrupt polling and PAL_CACHE_FLUSH
16 Intel® Itanium® 2 Processor Specification Update

Summary Table of Changes
FPSWA Errata
No.

FPSWA Version
Pg. Status ERRATA

1.09 1.12 1.18

46 X 36 Fixed FPSWA may not set the Denormal status flag correctly
56 X 40 Fixed FPSWA version 1.12 may overwrite register fr12

IA-32 Execution Layer Errata
No.

IA-32 EL Version
Pg. Status ERRATA

4.3 4.4
1 X X 54 No Fix Ordering of loads and stores
2 X X 54 No Fix Segmentation not supported
3 X X 54 No Fix 16-bit application mode not supported
4 X X 54 No Fix IA-32 floating-point state
5 X X 55 No Fix Floating-point C1 condition code flag support
6 X X 55 No Fix IA-32 floating-point pseudo-denormal, pseudo-NaN, and pseudo-infinity

support
7 X X 55 No Fix Behavior of quiet and signaling NaNs
8 X X 55 No Fix IA-32 floating-point exceptions
9 X X 55 No Fix Partial support for EFLAGS

10 X X 56 No Fix EFLAGS and floating-point exception flag behavior
11 X X 56 No Fix RSM and IRET instructions raise incorrect faults
12 X X 56 No Fix Cross-modifying code
13 X X 56 No Fix Atomicity of lock-prefixed instructions making unaligned memory

references
14 X X 57 No Fix Atomicity of lock-prefixed instructions making uncacheable memory

references
15 X X 57 No Fix Noninterruptability of 32-bit unaligned and 16-byte stores
16 X 57 Fixed IA-32 execution layer install and uninstall failures
17 X X 57 Plan Fix Self-modifying code on unaligned memory may result in an access

violation
Intel® Itanium® 2 Processor Specification Update 17

Summary Table of Changes
Itanium® 2 Processor (up to 3 MB L3 Cache)
Specification Changes

No.
Processor
Stepping

PAL
Version Pg. Status SPECIFICATION CHANGES

B3 7.13 7.31 7.36 7.37 7.40 7.59 7.71 7.73 7.77

None for this revision of the Specification
Update

Itanium® 2 Processor (up to 3 MB L3 Cache)
Specification Clarifications

No.
Processor
Stepping

PAL
Version Pg. Status SPECIFICATION CLARIFICATIONS

B3 7.13 7.31 7.36 7.37 7.40 7.59 7.71 7.73 7.77

1 X 59 Doc Error logging of deferred IPIs
2 X 59 Doc Branch prediction across the 40-bit

boundary

Itanium® 2 Processor (up to 3 MB L3 Cache)
Documentation Changes

No.
Processor
Stepping

PAL
Version Pg. Status DOCUMENTATION CHANGES

B3 7.13 7.31 7.36 7.37 7.40 7.59 7.71 7.73 7.77

None for this revision of the Specification
Update
18 Intel® Itanium® 2 Processor Specification Update

Summary Table of Changes
Itanium® 2 Processor (up to 6 MB L3 Cache)
Specification Changes

No.
Processor
Stepping

PAL
Version Pg. Status SPECIFICATION CHANGES

B1 5.37 5.61 5.65 5.69

None for this revision of the Specification Update

Itanium® 2 Processor (up to 6 MB L3 Cache)
Specification Clarifications

No.
Processor
Stepping

PAL
Version Pg. Status SPECIFICATION CLARIFICATIONS

B1 5.37 5.61 5.65 5.69

1 X 59 Doc Error logging of deferred IPIs
2 X 59 Doc Branch prediction across the 40-bit boundary

Itanium® 2 Processor (up to 6 MB L3 Cache)
Documentation Changes

No.
Processor
Stepping

PAL
Version Pg. Status DOCUMENTATION CHANGES

B1 5.37 5.61 5.65 5.69

None for this revision of the Specification Update
Intel® Itanium® 2 Processor Specification Update 19

Summary Table of Changes
Itanium® 2 Processor (up to 9 MB L3 Cache)
Specification Changes

No.
Processor
Stepping

PAL
Version Pg. Status SPECIFICATION CHANGES

A1 1.27

None for this revision of the Specification Update

Itanium® 2 Processor (up to 9 MB L3 Cache)
Specification Clarification

No.
Processor
Stepping

PAL
Version Pg. Status SPECIFICATION CLARIFICATIONS

A1 1.27

2 X 59 Branch prediction across the 40-bit boundary

Itanium® 2 Processor (up to 9 MB L3 Cache)
Documentation Changes

No.
Processor
Stepping

PAL
Version Pg. Status DOCUMENTATION CHANGES

A1 1.27

None for this revision of the Specification Update
20 Intel® Itanium® 2 Processor Specification Update

Summary Table of Changes
IA-32 Execution Layer Specification Clarifications

No.
IA-32 EL Version Pg.

Status SPECIFICATION CLARIFICATIONS
4.3 4.4

1 X X 61 Doc Aliasing of MMX registers to FP registers
2 X X 61 Doc Floating-point and SSE precision
3 X X 61 Doc CPUID values represent the IA-32 execution layer processor model
4 X X 61 Doc IA-32 execution layer resides in the application virtual address space
5 X X 61 Doc Signal delivery may be postponed during code translation or garbage

collection
6 X X 61 Doc Aborting threads could cause other process threads to hang
7 X X 61 Doc Core dump files cannot be produced correctly when an IA-32 process is

aborted
8 X X 62 Doc The I/O Privilege Level (IOPL) mechanism is not implemented
9 X X 62 Doc Software interrupts must be supported by the OS
10 X X 62 Doc Intersegment calls require OS mechanism
11 X X 62 Doc Thread creation may be reported incorrectly to the OS
Intel® Itanium® 2 Processor Specification Update 21

Identification Information
Identification Information

Intel® Itanium® 2 Processor Package Marking
The following section details the processor top-side and bottom-side markings for the Itanium 2
processor and is provided as an identification aid. The processor top-side mark for the product is a
laser marking on the Integrated Heat Spreader (IHS).

Processor Top-Side Marking
Figure 1-1 shows an example of the laser marking on the IHS. The processor top-side mark
provides the following information:

• INTEL Brand/ INTEL Product
• Legal Mark
• Assembly Process Order (APO) Number
• Serial Number

Bottom-Side Marking
The processor bottom-side mark for the product is a laser marking on the pin side of the interposer.
Figure 1-2 shows the placement of the laser marking on the pin side of interposer. The processor
bottom-side mark provides the following information:

• Product ID
• Finish Process Order (FPO) Number
• Serial Number
• S-Spec
• Country of Origin
• 2D Matrix Mark on Itanium 2 processor, not included on Itanium 2 processor (up to 3 MB

L3 cache).

Figure 1-1. Processor Top-Side Marking on IHS

001088b

INTEL CONFIDENTIAL

APO NUMBER
SERIAL NUMBER

i M C 'YY
22 Intel® Itanium® 2 Processor Specification Update

Identification Information
Intel® Itanium® 2 Processor Identification and Package
Information

Figure 1-2. Processor Bottom-Side Marking Placement on Interposer

001267

S-Spec Number Processor Stepping CPUID1

1. The CPUID column in this table indicates the contents of bits 39:0 of CPUID Register 3. Bits 63:40 of this register are reserved.
The Family ID for the Itanium® 2 processor is 0x1F.

Speed
(MHz) L3 Size (Mbytes)

SL67U B3 001F000704h 1000/400 1.5

SL67V B3 001F000704h 1000/400 3

SL67W B3 001F000704h 900/400 1.5

SL6P5 B3 001F000704h 1000/400 1.5

SL6P7 B3 001F000704h 1000/400 3

SL6P6 B3 001F000704h 900/400 1.5

SL6XF B1 001F010504h 1500/400 6

SL6XE B1 001F010504h 1400/400 4

SL6XD B1 001F010504h 1300/400 3

SL76K B1 001F010504h 1400/400 1.5

SL754 B1 001F010504h 1000/400 1.5

SL7FP B1 001F010504h 1400/400 3

SL7FQ B1 001F010504h 1600/400 3

SL7SD A1 001F020104h 1300/400 3

SL7ED A1 001F020104h 1500/400 4

SL7EC A1 001F020104h 1600/400 3

SL7EB A1 001F020104h 1600/400 6

SL87H A1 001F020104h 1600/400 9

SL7EF A1 001F020104h 1600/533 3

Laser Mark

AH1 A1

AH25 A25

Pin 1
Indicator
Intel® Itanium® 2 Processor Specification Update 23

Identification Information
Abbreviation PAL Version1

1. Please refer to the applicable PAL release notes for information regarding changes in each PAL release.

Processor Stepping

Itanium® 2 Processor (up to 3 MB L3 cache)

7.13 B3

7.31 B3

7.36 B3

7.37 B3

7.40 B3

7.59 B3

7.71 B3

7.73 B3

Itanium 2 Processor (up to 6 MB L3 cache)

5.37 B1

5.61 B1

5.65 B1

Itanium 2 Processor (up to 9 MB L3 cache) 1.27 A1
24 Intel® Itanium® 2 Processor Specification Update

Errata (Processor and PAL)
Errata (Processor and PAL)

1. IA64_INST_RETIRED and IA64_TAGGED_INST_RETIRED does not count
predicated off instructions

Problem: The event monitor count for instructions retired (IA64_INST_RETIRED and
IA64_TAGGED_INST_RETIRED) does not include the predicated off instructions.

Implication: The IA64_INST_RETIRED/IA64_TAGGED_INST_RETIRED performance monitoring events
may report an incorrect count.

Workaround: Add the PREDICATE_SQUASHED_RETIRED event monitor count to the
IA64_INST_RETIRED and/or the IA64_TAGGED_INST_RETIRED event monitor count to get
the intended results.

Status: For the steppings effected, see the Summary Table of Changes.

2. Performance Monitor Interrupt raised when freeze bit is written to
Performance Monitoring Counter register

Problem: The Performance Monitor Freeze (PMC[0].fr) bit within the Performance Monitoring Counter
(PMC) register is used to stop performance event monitoring. This can be set by software or by an
event counter overflow. Due to this erratum, the processor may raise a Performance Monitor
Interrupt (PMI) when the freeze bit is set by software, even when the Performance Monitor
Overflow Interrupt (PMC.oi) bit is not enabled and no overflow has occurred.

Implication: The processor may generate a PMI when it’s not expected to do so.

Workaround: The interrupt service routine (ISR) needs to account for the spurious interrupt even if no
performance monitor overflow is indicated.

Status: For the steppings effected, see the Summary Table of Changes.

3. Priority agent requests with unit mask of I/O not counted
Problem: The system bus allows for the BPRI# signal to be asserted one cycle before an ADS# is driven by

the priority agent, provided no BREQ# pins are driven by the processor. Priority agent requests
exhibiting this behavior are not counted by the system bus performance monitoring events when
using a unit mask of ‘I/O’.

Implication: The system bus performance monitoring events may report an incorrect count in this case.

Workaround: Measure the bus transactions for all bus masters (unit mask= ‘ANY’) and subtract from it the sum
of the corresponding bus transactions on each local processor (unit mask= ‘SELF’).

Status: For the steppings affected, see the Summary Table of Changes.

4. Incorrect fault reporting on move to/from the RNAT or BSPSTORE
application registers

Problem: Incorrect faulting behavior may be experienced under the following conditions:

1. A mov.imm (move immediate) to the ar.rsc register is executed in the same instruction bundle
(or the next bundle with no intervening stop bits) as a mispredicted branch.

2. The mispredicted branch path includes another mov.imm to the same ar.rsc register, and is
within two issue groups or less of the (mispredicted) branch instruction. This instruction is not
executed. Also, the value moved to the rsc.mode field must be different than the value moved
to rsc.mode in the mov.imm in step 1.
Intel® Itanium® 2 Processor Specification Update 25

Errata (Processor and PAL)
3. The correct branch path is then taken and includes a move to/from the ar.rnat or ar.bspstore
registers, within the first bundle (or second bundle with no intervening stop bit) of the correct
branch instruction.

Implication: When the above conditions line up (and there are no stalls or cache misses), the instruction in
step 3 (move to/from ar.rnat or ar.bsp) uses the rse.mode value from the mov.imm in the
mispredicted branch path instead of from instruction in step 1. As a result, there may be incorrect
faulting behavior – an illegal opcode fault is missed (if rse.mode!= 0) or falsely indicated (if
rse.mode = 0) and may result in inconsistent system behavior. This erratum has only been observed
in a system validation environment.

Workaround: Use one of the following workarounds:

1. Use the register form of the move instruction or;

2. Ensure there is a stop bit between any mov.imm instruction to/from the ar.rsc registers and
any subsequent branch instruction or;

3. Ensure that there is a stop bit between a “label” (branch target) and a subsequent move to/from
ar.rnat/ar.bspstore.

Status: For the steppings affected, see the Summary Table of Changes.

5. Power good deassertion affects boundary scan testing
Problem: Deassertion of the PWRGOOD signal during boundary scan testing prevents the correct operation

of the sampling functionality in the EXTEST and SAMPLE/PRELOAD JTAG commands.

Implication: As a result of this erratum the boundary scan chain function is disabled and will stop shifting data
when the PWRGOOD signal is low.

Workaround: Keep the PWRGOOD signal asserted during boundary scan testing.

Status: For the steppings affected, see the Summary Table of Changes.

6. IA-32: CPUID instruction returns incorrect L3 cache size
Problem: The IA-32 CPUID instruction will always report the L3 cache size as 3 MB regardless of the actual

size of the L3 cache.

Implication: IA-32 applications using the IA-32: CPUID instruction cannot rely on the cache size reported by
this instruction. Native Itanium architecture-based applications are not affected by this erratum and
can access this information via the processor CPUID registers.

Workaround: Within the Linux* operating system (OS) environment, the ‘/proc/cpuinfo’ file contains this
information. Within the Microsoft* OS environment this information is available through
Windows API calls.

Status: For the steppings affected, see the Summary Table of Changes.

7. Performance Monitoring Event counters may be incorrect when using
Instruction Address Range checking in fine mode

Problem: For performance monitoring events that use Instruction Address Range Matching set to ‘Fine
Mode’ (PMC: 14, bit 13 = 1), the address matching capability will be inconsistent and may yield
incorrect results.

Implication: Due to this erratum the results of an event counter while using ‘Fine Mode’ may not be correct.

Workaround: Use normal mode when using Instruction Address Range checking.

Status: For the steppings affected, see the Summary Table of Changes.
26 Intel® Itanium® 2 Processor Specification Update

Errata (Processor and PAL)
8. Possible deadlock condition after ptc.g is issued on two-way system
Problem: In a two processor system, a ptc.g instruction is issued on processor A. The execution of the

ptc.g on processor A blocks the completion of a semaphore upon which processor B is waiting to
become available. Concurrently processor B is issuing a long series of loads and stores with one or
more instructions being retried or involves system memory access before being retired. Processor
B’s L2 cache entry queue, denoted as OzQ, is full and does not allow the ptc.g operation from
processor A, entry into the L2 OzQ for completion. The ptc.g request will be presented again in
three clock cycles. If processor B continues to execute a code sequence such that the L2 cache OzQ
entries continue to be taken by other load/stores, then the ptc.g operation must continue to wait.

Implication: Due to this erratum, the system may deadlock while waiting for the ptc.g to be completed. Any
break in, or completion of the code loop on processor B, including system interrupts, that allows
the ptc.g operation to enter the L2 cache OzQ on processor B will be enough to release the
deadlock condition. Additional processors will also change the time cycle necessary for this event
to occur. This issue has only been observed during Random Instruction Testing in a system
validation environment.

Workaround: None at this time.

Status: For the steppings affected, see the Summary Table of Changes.

9. EPC, mov ar.pfs and br.ret instructions may combine to yield incorrect
privilege level

Problem: Due to certain internal timing and microarchitectural conditions, OS calls that return to user space
from privilege code promote pages using a br.ret instruction, may not have the expected
privilege level.

Using the following code sequence as an example:
<change of privilege level> //epc on promote page; or br.ret
mov ar.pfs, [value]; //new pfs value has ppl < cpl
br.ret;;

In this case the br.ret is specified to not change the privilege level (pl) since the br.ret is
asking to promote privilege to a numerically lower level. Current processor steppings may change
current privilege level (cpl) to the pl at the beginning of the <change of privilege level>.

Implication: This erratum would result in having the cpl demoted and the user space application may not
receive the correct privilege level. Privilege code promote page usage is limited and controlled by
the OS. This issue has only been observed during random instruction testing in a system validation
environment.

Workaround: Use one of the following workarounds:

1. Use an return from interrupt (rfi) instruction instead of br.ret to return from privilege
code promote pages.

2. Insert a useless call-to-next bundle in all paths leading to a demoting br.ret.

3. PAL version 7.01 and above, have a workaround for this issue and it is enabled by default. The
OS may implement one of the previous workarounds or a check mechanism, such that this
PAL workaround can be disabled. Please review the PAL Release notes for details on the
implementation of this workaround.

Status: For the steppings affected, see the Summary Table of Changes.
Intel® Itanium® 2 Processor Specification Update 27

Errata (Processor and PAL)
10. Removal of WAW hazard may lead to undefined result
Problem: Due to internal conditions an allowed WAW dependency may become a WAW hazard under the

following circumstances:

• A move to the AR.PFS register is followed by a BR.CALL and both are executed in the same
issue group, or

• A move to the AR.EC register is followed by a BR.RET and both are executed in the same
issue group.

These combinations of instructions are legal WAW memory dependencies if one of the operations
is predicated off. If preceding instructions (as indicated above) combine to change the predication
on the BR.CALL or BR.RET from predicated true to predicated false, the processor may
mistakenly decide the WAW hazard is still present and fail to recognize that the WAW has been
removed which may result in an undefined value for ar.pfs or ar.ec.

The following code sequence demonstrates this issue:
p15 = 1;
;;
mov ar.pfs = R[x];
ld.c R[y] = [m]; //causes R[y] to be reloaded.

cmp.eq p15, p16 = R[y], R0;
(p15) br.call;

The RAW dependencies on ld.c to cmp and cmp to branch are legal. When the processor
executes the issue group, the WAW hazard is present and the PFS results are undefined. If the
ld.c misses the advanced load address table (ALAT), the cmp to branch will be re-executed, the
new result of the ld.c causes the p15 value to change to false and thus eliminate the WAW. Then
the processor may fail to recognize that the WAW has been removed.

Implication: An application may hang or signal an exception fault under these circumstances. The affected code
sequence is not known by Intel to be generated in any current compiled code or exist in any current
OS.

Workaround: Separate the predicate producing instruction from its consumer with a stop (as recommended in the
Intel® Itanium® Architecture Software Developer’s Manual, Volume 1: Application Architecture)
or change the predication sequence to assure mutually exclusive predication of the instructions in
the WAW dependency.

Status: For the steppings affected, see the Summary Table of Changes.

11. Unexpected data debug, data access or dirty bit fault taken after rfi
instruction

Problem: A fault may be taken after a rfi instruction has been executed under the following circumstances.
The IPSR.da or IPSR.dd bits are set to disable data debug/data access/dirty bit faults for the first
Itanium processor system environment restore instruction. This is followed by an rfi instruction.
The rfi instruction is followed by additional instructions that generate register stack engine
(RSE) activity (alloc, flushrs, br.ret). The processor will see the RSE activity as valid
Itanium system instructions and clear the ipsr.da/dd bits and this may result in an unexpected data
debug, data access or dirty bit fault at the target of the rfi.

Implication: Due to this erratum an unexpected fault may be generated after an rfi instruction has been
executed. This may slow the transition of the system into the Itanium system environment and log
un-necessary errors.

Workaround: Separate the rfi from the RSE generating instruction by four issue groups of nop instructions.

Status: For the steppings affected, see the Summary Table of Changes.
28 Intel® Itanium® 2 Processor Specification Update

Errata (Processor and PAL)
12. Incorrect privilege level may be granted if a failed speculation check
precedes a privilege level change

Problem: A failed speculation check instruction (chk.s/chk.a/fchkf) that is followed by a privilege
change operation may result with the incorrect privilege level for instructions in the issue group of
the privilege level change and beyond. The privilege changing instruction must occur within two
clock cycles of the failed speculation check.

Implication: As a result of this erratum, the speculation check recovery code and subsequent instructions may
have an incorrect privilege level.

Workaround: Do not use speculation near privilege changing instructions. The workaround for this erratum is to
escalate failed speculation checks (speculation check re-steers) to the OS for recovery. This
workaround is included in PAL version 7.01 and above.

Status: For the steppings affected, see the Summary Table of Changes.

13. Floating-point instructions take a floating-point trap before Unimplemented
Instruction Address trap

Problem: A floating-point instruction that causes a floating-point trap and is the last instruction at the top of
the physical address space should flag an Unimplemented Address trap before the floating-point
trap.

Implication: The correct trap is flagged but only after the floating-point trap is taken first.

Workaround: None at this time.

Status: For the steppings affected, see the Summary Table of Changes.

14. PAL_MC_ERROR_INFO does not return an address for certain double bit
ECC memory errors

Problem: PAL_MC_ERROR_INFO will report the address for the source of a double bit ECC memory error.
However, under the conditions that the data with a 2x ECC error was prefetched to the L2 cache
and later filled into the L1 cache, the source address will not be available.

Implication: PAL_MC_ERROR_INFO will not be able to report the address of a double bit ECC error in this
case. Double bit errors that are consumed in this scenario will be not be recoverable.

Workaround: None at this time.

Status: For the steppings affected, see the Summary Table of Changes.

15. PAL_CACHE_READ and PAL_CACHE_WRITE return incorrect status for L1I
cache access

Problem: The PAL_CACHE_READ and PAL_CACHE_WRITE procedures should return a status value of
‘–7’ (which indicates this operation is not supported for this cache_type and level) when attempting
to read or write to/from the L1I (instruction) and L1D (data) cache. When these procedures attempt
to access the L1I cache an incorrect status value will be returned.

Implication: Due to this erratum, using these PAL procedures to access the L1I cache will result in the return of
an incorrect status value, implying that the L1I cache is readable/writeable by these PAL procedure
calls.

Workaround: Do not use these PAL procedures to access the L1D and L1I caches.

Status: For the steppings affected, see the Summary Table of Changes.
Intel® Itanium® 2 Processor Specification Update 29

Errata (Processor and PAL)
16. Unpredictable behavior if the system is awakened from low power mode by
an MCA

Problem: If the system is in low power mode and an machine check abort (MCA), BERR# or BINIT# is
signaled, the PALE_CHECK handler will be called to process the error condition. However,
PALE_CHECK does not disable low power mode so that it can continue execution. As soon as
PALE_CHECK attempts to drain the processor queues, the system may re-enter low power mode.
This may cause incomplete handling of the error event and potentially, intermittent continuation of
the same event during later signaled BINIT# events.

Implication: The processor can appear to be trapped in low power mode and/or system behavior may be
unpredictable.

Workaround: Do not use low power mode or call the following PAL procedures: PAL_HALT,
PAL_HALT_LIGHT or PAL_HALT_LIGHT_SPECIAL.

Status: For the steppings affected, see the Summary Table of Changes.

17. The system may lose an interrupt when SAL_CHECK reads the IVR
Problem: The PAL_REGISTER_INFO procedure returns an incorrect value to indicate that reading the

Interrupt Vector Register (IVR), CR65 (Configuration Register 65) has no side effects. Based on
this incorrect return value, when SAL_CHECK reads the IVR while saving system state data to
NVRAM, a pending interrupt may be allowed to proceed before the current process has been
completed.

Implication: The SAL_CHECK procedure relies on the return values of PAL_REGISTER_INFO to know
which ARs and CRs are safe to read and save off. Due to this erratum, the SAL_CHECK reads the
IVR, and consequently causes the corresponding bit in the IRR to be cleared and the ISR to change.
The results of the interrupt routine currently being executed may be lost.

Workaround: After calling PAL_REGISTER_INFO with info_request = 3, System Abstraction Layer (SAL) can
force the correct return value for CR65 by setting bit 1 of reg_info_2 to a value of one.

Status: For the steppings affected, see the Summary Table of Changes.

18. A bus MCA nested within a recoverable or firmware-corrected bus MCA may
not be handled correctly

Problem: During the processing of a non-fatal bus MCA, if a second bus MCA is received the second MCA
may be missed.

Implication: A bus MCA received in this scenario may be missed and result in unpredictable system behavior. If
the first MCA is fatal, system behavior remains correct.

Workaround: None at this time.

Status: For the steppings affected, see the Summary Table of Changes.

19. PAL reset sequence performed after a recovery check may result in
incorrect system behavior

Problem: The PAL early self-test sequence performed after a recovery check may not properly serialize
outstanding memory transactions.

Implication: As a result of this erratum, memory transactions that are outstanding at the point of transition from
the recovery check handler to PAL may cause a deadlock condition and possibly hang the
processor.

Workaround: SAL can call the PAL_MC_DRAIN procedure before returning to PAL from recovery check to
ensure that outstanding transactions have completed.

Status: For the steppings affected, see the Summary Table of Changes.
30 Intel® Itanium® 2 Processor Specification Update

Errata (Processor and PAL)
20. PAL_HALT_LIGHT_SPECIAL provides PAL_HALT functionality
Problem: The PAL_HALT_LIGHT_SPECIAL procedure does not issue the stop grant acknowledge special

bus cycle.

Implication: PAL_HALT_LIGHT_SPECIAL behavior will be the same as PAL_HALT.

Workaround: None at this time.

Status: For the steppings affected, see the Summary Table of Changes.

21. PAL_TEST_PROC may access memory with the UC attribute
Problem: The ‘mem_attr’ self-test in PAL_TEST_PROC may access memory with the UC attribute, even

though the ‘attributes’ parameter does not allow UC access.

Implication: PAL_TEST_PROC may access uncacheable memory that may not be supported in some systems.

Workaround: Set bit 44 of the PAL_TEST_PROC procedure self-test control word (st_control) to ‘1’ to skip the
‘mem_attr’ self-test.

Status: For the steppings affected, see the Summary Table of Changes.

22. L2 single bit data error promoted to MCA continues to flag a CMCI
Problem: With correctable machine check interrupt (CMCI) to MCA promotion enabled and an L2 single bit

ECC data error occurs, an MCA is signaled but the CMCI continues to be raised. After the MCA is
completed and the system calls the PAL_MC_RESUME procedure, a CMCI is raised if PSR.i = 1
(respond to external interrupts) and the CMCV.m = 0 (CMCI interrupts are pended).

Implication: A CMCI continues to be signaled on L2 1x ECC data errors, even if CMCI to MCA promotion is
enabled.

Workaround: When enabling CMCI to MCA promotion, mask CMCIs by saving the state of CMCV.m then set
CMCV.m = ‘1’. Restore the original state of CMCV.m when disabling promotion.

Status: For the steppings affected, see the Summary Table of Changes.

23. PAL_TEST_PROC requires specific tests be performed for correct operation
Problem: PAL_TEST_PROC self-test requires three specific tests be performed, otherwise the PAL

procedure may report false failures or unexpected behavior.

Implication: The PAL_TEST_PROC procedure must perform the virtual hash page table (VHPT) test (bit 34),
late floating-point test (bit 41) and RSE test (bit 45). Otherwise the system may have unexpected
behavior or false test failures may be indicated.

Workaround: Bits 34, 41 and 45 in the PAL_TEST_PROC self-test control word (st_control) should be left at the
default settings of ‘0’ so these tests are performed.

Status: For the steppings affected, see the Summary Table of Changes.

24. PAL_TEST_INFO may return incorrect data for invalid test parameters
Problem: The PAL_TEST_INFO procedure may return incorrect data or status if the input arguments are not

valid or are out of range for a given parameter.

Implication: Calling the PAL_TEST_PROC procedure with invalid inputs may result in incorrect data and/or
status instead of indicating invalid arguments.

Workaround: Ensure that PAL_TEST_INFO input parameters are valid and within the argument’s range.

Status: For the steppings affected, see the Summary Table of Changes.
Intel® Itanium® 2 Processor Specification Update 31

Errata (Processor and PAL)
25. PAL_CACHE_INIT may not function properly if levels of the cache hierarchy
are specified

Problem: PAL_CACHE_INIT does not function properly when caches are selected individually.

Implication: A call to initialize the L1D cache may hang the processor and a call to initialize any other cache
structure may fail and return an error.

Workaround: Call the PAL_CACHE_INIT procedure with level = –1 to initialize all caches.

Status: For the steppings affected, see the Summary Table of Changes.

26. PAL_SET_TIMEOUT may have an unexpected result when time-out = 0
Problem: Setting the input parameter time-out = 0 will disable the processor watchdog timer feature.

Implication: Calling PAL_SET_TIMEOUT with time-out = 0 disables the internal processor time-out function.

Workaround: Do not set the time-out parameter to ‘0’.

Status: For the steppings affected, see the Summary Table of Changes.

27. Concurrent MCAs that signal a BERR may not set PSP.bc correctly
Problem: In the case of concurrent MCAs that should result in BERR assertion, the PALE_CHECK handler

may not set the PSP.bc (bus check error) bit before handing off to SAL.

Implication: As a result of this erratum, PAL_MC_ERROR_INFO will indicate that a bus error occurred, but
the PSP at hand-off to SAL_CHECK will not.

Workaround: None at this time.

Status: For the steppings affected, see the Summary Table of Changes.

28. PAL_PLATFORM_ADDR may return an error if bit 63 is set
Problem: PAL_PLATFORM_ADDR should ignore bit 63 of the address argument. If this PAL procedure is

called with bit 63 set to ‘1’ in the address argument, the procedure incorrectly returns status = –2
(invalid argument).

Implication: Due to this erratum, calling PAL_PLATFORM_ADDR with bit 63 of the address set to ‘1’ will
return a status of ‘invalid argument’.

Workaround: Bit 63 should be set to ‘0’ when calling the PAL_PLATFORM_ADDR procedure to avoid this
issue.

Status: For the steppings affected, see the Summary Table of Changes.

29. PAL_TEST_PROC may overwrite predicate registers
Problem: PAL_TEST_PROC may overwrite predicate registers pr4 and pr5, which should be preserved by

the procedure.

Implication: PAL_TEST_PROC may modify pr4 or pr5, resulting in undefined behavior.

Workaround: Code calling this PAL procedure can save and restore these predicate registers around the
PAL_TEST_PROC procedure.

Status: For the steppings affected, see the Summary Table of Changes.

30. Recovery check fails if PAL_B is not found
Problem: SAL may not be able to complete a recovery check when no PAL_B is present. The I/O port

address, interrupt block and other features may not be available for SAL when recovery check is
entered from PAL_A_SPEC.
32 Intel® Itanium® 2 Processor Specification Update

Errata (Processor and PAL)
Implication: Recovery check may fail if PAL_B is not available or is invalid.

Workaround: Ensure that the firmware interface table (FIT) entry for PAL_B points to a valid and correct version
of PAL_B.

Status: For the steppings affected, see the Summary Table of Changes.

31. PAL procedure calls may have unexpected results if an incorrect PAL_B
version is used

Problem: PAL procedures that call PAL_B may not provide the expected results if the first PAL_B entry in
the FIT points to an incorrect version of PAL_B.

Implication: PAL procedures may fail if the PAL_B entry in the FIT is for an incorrect version.

Workaround: Ensure that the FIT entry for PAL_B points to the correct version.

Status: For the steppings affected, see the Summary Table of Changes.

32. Late self-test may have unexpected results during concurrent processor
tests

Problem: While running PAL_TEST_PROC concurrently on more than one processor and the processors
happen to access the same memory address space, a snoop may cause the ALAT test to fail.

Implication: If a processor self-test procedure is using the same memory space for concurrent processor testing,
the ALAT test may fail and cause one processor to enter a spin loop.

Workaround: The ALAT test can be bypassed by setting bit 46 of the PAL_TEST_PROC self-test control word to
‘1’.

Status: For the steppings affected, see the Summary Table of Changes.

33. PAL_TEST_PROC may cause unexpected system behavior
Problem: The PAL_TEST_PROC ‘late floating-point load/store test’ may overwrite the fr2-fr5 and fr30-fr31

floating-point registers and the Bank 0 gr16–gr23 general registers may be overwritten by the
ALAT, VHPT, translation lookaside buffer (TLB) and memory attributes tests.

Implication: PAL_TEST_PROC may corrupt the following registers: Bank 0 gr16–gr23 (general registers) and
the fr2– fr5, fr30–fr31 (floating-point registers).

Workaround: Use different registers or save/restore the contents before/after running PAL_TEST_PROC.

Using the self-test control word of the PAL_TEST_PROC procedure, set the following bits to ‘1’:
To avoid corrupting the Bank 0 general registers do not run the ALAT (bit 46), VHPT (bit 35), TLB
(bit 33) and mem_attr (bit 44) tests. To avoid corrupting the floating-point registers do not run the
late_fp_ld_st (bit 40) test.

Status: For the steppings affected, see the Summary Table of Changes.

34. PAL halt procedures may overwrite predicate registers
Problem: Predicate registers pr1, pr2 and pr3 may be overwritten by the PAL_HALT, PAL_HALT_LIGHT

and PAL_HALT_LIGHT_SPECIAL procedures.

Implication: As a result of this erratum, pr1, pr2 and p3 may be overwritten.

Workaround: Save and restore the predicate registers, as needed when calling these PAL procedures.

Status: For the steppings affected, see the Summary Table of Changes.
Intel® Itanium® 2 Processor Specification Update 33

Errata (Processor and PAL)
35. Two resets may be necessary to leave TAP test mode
Problem: After accessing the test access port (TAP), issuing a RESET# may result in the processor entering

an idle state instead of beginning normal operation. Signaling a second RESET# may be necessary
to properly reinitialize the system under these conditions.

Implication: Due to this erratum, a second RESET# may be required to properly reinitialize the processor after
the TAP port has been accessed. Normal system operation and boot process is not affected.

Workaround: Issue two resets to properly reinitialize the processor after accessing the TAP port.
Status: For the steppings affected, see the Summary Table of Changes.

36. IA-32 instruction pointers may be overwritten under certain boundary
conditions

Problem: Under certain internal conditions involving branch prediction and multiple branch instructions,
IA-32 instruction pointers may be overwritten and result in IA-32 instructions being executed out
of order or incorrectly. An affected code sequence would have consecutive branch instructions that
have started execution before being cancelled.

Implication: Due to this erratum, IA-32 instruction pointers may be overwritten resulting in incorrect IA-32
instruction execution.

Workaround: A workaround for this erratum is included in PAL version 7.31.

Status: For the steppings affected, see the Summary Table of Changes.

37. Initialization and ETM recovery may overwrite branch register
Problem: PAL INIT recovery code may overwrite br0, when it saves the system environment to the min-state

save area. This erratum also affects the recovery path of an enhanced thermal management (ETM)
alert that is generated while a system is in a low power mode.

Implication: INIT and ETM recovery code may overwrite br0, which prevents recovery with
PAL_MC_RESUME and may result in unexpected system behavior.

Workaround: PAL version 7.31 fixes this issue.

Status: For the steppings affected, see the Summary Table of Changes.

38. PAL procedures may not save predicate register 3
Problem: The following PAL procedures may not properly save and restore predicate register pr3. The

affected PAL procedures are:

PAL_CACHE_INIT, PAL_CACHE_LINE_INIT, PAL_CACHE_READ,
PAL_CACHE_WRITE, PAL_CAR_INIT, PAL_COPY_INFO, PAL_COPY_PAL,
PAL_PROC_SET_FEATURES, PAL_TEST_PROC

Implication: Predicate register 3 may be overwritten by the PAL procedures listed above.

Workaround: Save and restore pr3, as needed, when calling the aforementioned PAL procedures.

Status: For the steppings affected, see the Summary Table of Changes.

39. PAL_CACHE_INFO procedure may return undefined value
Problem: The PAL_CACHE_INFO procedure could return an invalid value in the config_info_1 ‘at’ (cache

memory attributes) field. When requesting information for the L2 and L3 cache, the ‘at’ field may
contain the value of 2, which is undefined.

Implication: The PAL_CACHE_INFO procedure, cache memory attributes field may return an undefined value.

Workaround: None at this time.

Status: For the steppings affected, see the Summary Table of Changes.
34 Intel® Itanium® 2 Processor Specification Update

Errata (Processor and PAL)
40. PAL_HALT_LIGHT procedure may generate a spurious Performance
Monitor Interrupt

Problem: The PAL_HALT_LIGHT procedure may not properly set the value of the PMV.m bit on return
from a low power state and as a result, a spurious PMI may be generated.

Implication: A spurious PMI may be indicated when using the PAL_HALT_LIGHT procedure.

Workaround: Set the PMV.m bit to ‘1’ (to mask PMIs) before calling PAL_HALT_LIGHT. Set the PMV.m bit to
‘0’ on return from the PAL_HALT_LIGHT procedure.

Status: For the steppings affected, see the Summary Table of Changes.

41. Unexpected system behavior after PAL_CACHE_FLUSH is executed
Problem: The PSR.ic bit is not restored after the PAL_CACHE_FLUSH procedure is executed with

cache_type = 2. This may result in unexpected behavior when an interrupt is received after calling
PAL_CACHE_FLUSH.

Implication: The system may not respond to interrupts as expected after PAL_CACHE_FLUSH is executed
with cache_type = 2.

Workaround: Save and restore the PSR.ic bit as necessary, before and after calling the PAL_CACHE_FLUSH
procedure.

Status: For the steppings affected, see the Summary Table of Changes.

42. PAL_TEST_PROC may not properly report self-test status
Problem: In the case that some PAL_TEST_PROC self-test functions fail, the test_status field may not

indicate which self-test function has failed. Instead the failed test function may be raised as an
initialization failure and the procedure will enter an infinite loop.

Implication: The PAL_TEST_PROC procedure may enter an infinite loop as a result of some failed self-tests,
instead of operating in a functionally restricted manner.

Workaround: None at this time.

Status: For the steppings affected, see the Summary Table of Changes.

43. PSR.ri may not reflect the correct slot upon entrance to the unimplemented
address fault handler

Problem: In the case of an rfi instruction that targets an instruction in slot 1 or 2 and the interrupt
instruction pointer (IIP) points to an unimplemented physical address, the PSR.ri may point to slot
0 instead of slot 1 or 2 as expected. The required conditions to expose this erratum are: The
processor is in physical address mode (PSR.it=0) and the IIP points to a physical memory address
that is unimplemented.

Implication: When the processor attempts to execute on the indicated instruction bundle an unimplemented
address fault will be taken and the restart instruction will indicate slot 0. Since no instruction in slot
0, 1, or 2 is executable under these conditions, there is no useful information lost when the
unimplemented address fault is taken.

Workaround: None at this time.

Status: For the steppings affected, see the Summary Table of Changes.
Intel® Itanium® 2 Processor Specification Update 35

Errata (Processor and PAL)
44. WC and WB memory attribute aliasing combine with FC and may cause
processor live-lock

Problem: Under certain conditions involving write coalescing (WC) stores and the execution of a flush cache
(fc) instruction, the fc may not be able to proceed until the WC buffers have been emptied,
resulting in a live-lock condition.

The live-lock is armed when one or more WC stores (st [A]) occur and allocate space in the
processor’s WC buffer. A store or load (st/ld [B]) with a writeback (WB) memory attribute is
issued followed immediately by an fc (fc[C]) instruction. The fc is targeted to a virtual address
with the same physical address as address [A], but with a WB memory attribute instead of WC. If
address [B] shares the same physical address bits 14:7 with the flush cache target address [C], then
the processor may live-lock.

Implication: This memory attribute aliasing (MAA) scenario is likely to occur for a short time in OS code page
tear down or where a code page was previously accessed with the WC attribute, but is now
implicitly considered to have WB attributes because memory translation has been disabled
(PSR.dt=0).

Documented in the Intel® Itanium® Architecture Software Developer’s Manual, Volume 2,
Section 4.4.11, as part of the process to properly transition to a new memory attribute, an fc
instruction should be issued to flush the WC buffers. However, the text also states that a memory
fence (mf) instruction should precede the fc instruction. Properly following this transition
procedure will be sufficient to avoid the live-lock condition.

Workaround: Precede fc instructions with mf instructions where WC buffers may be non-empty.

Status: For the steppings affected, see the Summary Table of Changes.

45. Improper use of memory attribute aliasing may lead to out of order
instruction execution

Problem: An fc instruction is issued to a virtual memory address that has been aliased as uncacheable
(UC). This is immediately followed by a load/store to a WB memory address that points to same
physical memory address that is targeted by the fc. Due to internal conditions, the load/store may
be filled from the L2 cache rather then being filled from memory after the fc has been completed.

Implication: Using MAA in this manner requires the proper transitioning sequence as noted in the Intel®

Itanium® Architecture Software Developer’s Manual, Volume 2, Section 4.4.11. Under these
conditions, the order of operations observed directly on the system bus (by using a logic analyzer
for example) may appear to be out of order, however there is no functional impact because the
result of instruction execution will always be correct internally.

Workaround: None at this time.

Status: For the steppings affected, see the Summary Table of Changes.

46. FPSWA may not set the Denormal status flag correctly
Problem: In some cases when the Floating-Point Software Assistant (FPSWA) handles the following

floating-point operation using the specified floating-point class/subclass types, the FPSWA may
not return the correct Denormal/Unnormal (D) status flag setting in the Floating-Point Status
Register (FPSR.sf0:8).

The affected operation is: Infinity * unnormalized number - Infinity = QNaN Indefinite.

Implication: As a result of this erratum, the FPSWA may indicate a Denormal/Unnormal exception fault where
none has occurred.

Workaround: The FPSWA version 1.12 fixes this issue.

Status: For the steppings affected, see the Summary Table of Changes.
36 Intel® Itanium® 2 Processor Specification Update

Errata (Processor and PAL)
47. Executing an rfi instruction that is located at the end of implemented
physical memory can result in an unexpected unimplemented address fault

Problem: Due to this erratum, when the processor is in physical mode and an rfi instruction at the end of
physically implemented memory is executed, the processor will take an unimplemented address
fault regardless of the real target of the rfi (IIP).

Implication: On a platform that supports the full 50 bits of physical address, under the above conditions an
unexpected unimplemented address (UIA) fault could occur and the result depends upon the
implementation of the UIA fault handler. This issue has only been observed in a pre-silicon
simulation environment.

Workaround: Do not place an rfi instruction at the end of implemented physical memory.

Status: For the steppings affected, see the Summary Table of Changes.

48. IA-32: xchg instruction requires release semantics
Problem: The IA-32: xchg instruction can execute and write a value without it being explicitly ordered with

respect to other IA-32 stores. The IA-32 memory model is strongly ordered and requires loads to
have acquire (.acq) semantics and stores to have release (.rel) semantics to be executed in proper
order. As a result of this requirement the xchg instruction requires the use of.acq and.rel semantics
but only provides.acq semantics.

Implication: Due to this erratum, store operations may not be committed to memory in order with respect to
IA-32 xchg operations.

Workaround: None at this time. PAL version 7.37 includes a fix for this issue.

Status: For the steppings affected, see the Summary Table of Changes.

49. PAL MCA handler may not correctly set PSP.co bit
Problem: The PAL MCA handler may not set the continuable bit (PSP.co) for potentially recoverable errors.

Implication: If the PSP.co bit is not set on recoverable errors, the OS and/or application may terminate when
they could have potentially recovered from the error.

Workaround: None at this time.

Status: For the steppings affected, see the Summary Table of Changes.

50. PAL_MC_ERROR_INFO may return incorrect PSP information
Problem: When the PAL MCA handler has detected a fatal condition or has requested a SAL_MC_RENDEZ

procedure call, the PSP returned from the PAL_MC_ERROR_INFO procedure may not contain all
error information.

Implication: If SAL_CHECK is using the PSP returned from the PAL_MC_ERROR_INFO procedure call,
some error information maybe missing which could result in application termination or a system
hang.

Workaround: SAL_CHECK should use the PSP data at PALE_CHECK hand off rather than from
PAL_MC_ERROR_INFO.

Status: For the steppings affected, see the Summary Table of Changes.
Intel® Itanium® 2 Processor Specification Update 37

Errata (Processor and PAL)
51. FPSWA trap may be missed
Problem: For Itanium 2 processor floating-point operations, when a tiny1 result is computed (this usually

corresponds to an underflow occurring), the processor should defer the computation to the FPSWA
handler. In most cases, FPSWA will convert the result to a denormalized value that can be
represented within the specified precision. However, for an extremely limited set of conditions, the
processor fails to recognize this underflow and does not take the appropriate FPSWA trap.

Implication: Exposure to this issue occurs only under the following conditions:

1. Execution of one of the following instructions: fma, fms, fnma, fpma, fpms, fpnma.

2. The input operands for fma, fms, and fnma instructions (with or without.s or.d completers)
must be capable of containing any combination of 64 bits in their significand, in register
format. (If the significands of the operands are limited to less than 64 bits, the operation is not
affected.)

3. The computed result is precisely ± 1.0 x 2(Emin-1) 2. This is a necessary (but not sufficient)
condition as only an extremely small subset of the possible input operand combinations that
generate a result of ± 1.0 x 2(Emin-1) actually lead to a missed FPSWA trap. There must be a
massive and specific cancellation generating the result prior to rounding to the destination
precision.

For operations meeting these conditions, a small subset will not take the FPSWA trap. In these
cases, the result (± 1.0 x 2(Emin-1)) will not be representable within the floating-point format
specified. For example, assuming single precision mode, the result would be ± 1.0 x 2 –127.
Normally, the FPSWA handler converts this result to a denormalized value in the form of
± 0.1 x 2 –126 to fit within the single precision exponent format. Without this conversion the
following impacts may be observed:

• For fma, fms, and fnma operations (with or without.s or.d completers) with FPSR.wre=0 3,
the result in the register file is numerically correct and may be used for subsequent
floating-point operations without issue. However, storing this value to memory (using stfs, stfd
or stfe as appropriate) will result in a correctly signed zero instead of ± 0.1 x 2Emin. This is
equivalent to what occurs for the “Flush-To-Zero” (FTZ)4 mode of operation.
It is possible to preserve the correct numerical result (i.e. 1.0 x 2 –127 for the single precision
example above) by using the stf.spill instruction for stores and the ldf.fill
instruction for any subsequent loads.

• For register precision fma, fms, and fnma operations (with or without.s or.d completers)
with FPSR.wre=1, the result should be ± 1.0 x 2 –65535. However, the result in the register file
will be ± 1.0 x 2 –16382 in the form of a double-extended precision value.

• For parallel floating-point instructions (fpma, fpms, and fpnma), the result is stored in the
register file as a correctly signed zero instead of ± 1.0 x 2(Emin-1). Parallel floating-point
instructions are not used in any known compiled code.

Workaround: For the vast majority of floating-point usage models, no workaround is recommended. The issue is
limited to an extremely small subset of possible floating-point operations with a typical impact of
replacing a tiny value (± 1.0 x 2(Emin-1)) with a correctly signed zero. Any error due to this issue is
typically less, in absolute value, than the majority of rounding errors that normally occur for
floating-point operations. For applications requiring a workaround, the following actions are
required:

1. A result is defined as tiny if it lies between -2Emin and +2Emin after rounding to the destination precision with unbounded exponent range.
Reference the Intel® Itanium® Architecture Software Developer’s Manual or IEEE Standard 754-1985 for Binary Floating-Point Arithmetic
for any additional clarifications.

2. For single precision, Emin = –126; for double precision, Emin = –1022; for double-extended precision, Emin = –16382; for register format,
Emin = –65534.

3. Reference the Intel® Itanium® Architecture Software Developer’s Manual for Floating-point Status Register (FPSR) bit definitions.
4. FTZ mode causes tiny results to be truncated to the correctly signed zero.
38 Intel® Itanium® 2 Processor Specification Update

Errata (Processor and PAL)
1. For fma, fms, and fnma operations (with or without.s or.d completers) with FPSR.wre=0,
avoid input operands with 64-bit significands or use the stf.spill instruction for stores
and the ldf.fill instruction for any subsequent loads.

2. Do not use register precision (FPSR.wre=1) for fma, fms, and fnma operations.

3. Do not use parallel floating-point operations (fpma, fpms, and fpnma).

Status: For the steppings affected, see the Summary Table of Changes.

52. WC evictions and semaphore operations combine to establish a potential
live-lock condition

Problem: In the case that multiple processors are sharing memory space; when stores to WC memory are
closely followed by semaphore operations to cacheable memory, the semaphore operations may
block forward progress of the WC evictions. The semaphore will not be able to proceed until the
WC stores are completed. As a result a live-lock condition is established between the WC evictions
and the semaphore.

Implication: If the live-lock conditions are maintained, the system will eventually signal a BINIT. Other system
activity or external interrupts may change availability of the system bus allowing the live-lock
condition to be broken and the system will proceed as normal.

Workaround: None at this time. PAL version 7.37 includes a fix for this issue.

Status: For the steppings affected, see the Summary Table of Changes.

53. The IA-32 cmpxchg8b instruction may not correctly set ZF flag
Problem: The IA-32 cmpxchg8b instruction should set the Zero Flag (ZF) flag to 1 and update memory

when the compare operation is successful. However, if due to memory contention, the upper four
bytes (bits 63:32) of the targeted memory are changed during execution of the instruction and the
lower four bytes remain unchanged, the ZF flag may be incorrectly set to 1, even though the upper
four bytes of the compare are not equal.

Implication: If this erratum occurs, two processors in a multiprocessor environment can end up owning the same
memory locations when there should be autonomous ownership.

The failing scenario can only occur in a multiprocessor system where there is heavy contention for
the targeted memory location. It also requires that another processor manages to update only the
upper four bytes of the targeted memory location during a very small timing window just prior to
execution of the compare.

This erratum only affects the cmpxchg8b form of the IA-32 cmpxchg instruction and has only
been observed in a synthetic test environment.

Workaround: PAL version 7.40 includes a fix for this erratum.

Status: For the steppings affected, see the Summary Table of Changes.

54. PAL_TEST_PROC status return value
Problem: The PAL_TEST_PROC procedure returns status = –3 when the call has completed successfully

and some self-test errors have occurred. Normally –3 would indicate that the PAL procedure itself
has failed.

Implication: SAL firmware that assumes self-test errors will be reported with status = 0 may not function
correctly.

Workaround: When PAL_TEST_PROC returns status = –3, SAL should check the self-test_state to obtain more
information about the self-test error and report the error.

Status: For the steppings affected, see the Summary Table of Changes.
Intel® Itanium® 2 Processor Specification Update 39

Errata (Processor and PAL)
55. Fault condition may generate incorrect address when using short format
VHPT

Problem: A Debug Breakpoint or Protection Key fault may, under certain internal conditions, cause the
physical address returned for a short format VHPT to not match the virtual address indicated by the
VHPT entry.

The conditions under which this can occur are:

• The VHPT is enabled using the short format in a virtual addressing mode,

• Privilege level 0 access is available,

• Debug Breakpoint faulting is enabled (psr.db=1) and/or Protection Key Checking is enabled
(psr.pk=1) and

• Certain cases of multiple TLB misses that result in multiple VHPT walks, where one of the
VHPT walks is cancelled (because the faulting condition is removed) and then retried.

It is possible under these specific conditions that the short format data associated with the retried
VHPT walk may be associated with another.

Implication: If this erratum were to occur, a Protection Key fault or an Instruction or Data Debug fault may
cause a VHPT entry to be incorrect. This may result in an incorrect code sequence being executed
and would leave the system in an indeterminate state.

With regard to Debug Breakpoint faulting, exposure is limited to development code environments
only. In the case of Protection Key checking, there is no known exposure for all current operating
systems as the conditions for this erratum are not met.

Workaround: This erratum affects only the short format VHPT, using the long format of the VHPT will avoid
either of these faulting conditions. Additionally, in the case of Debug Breakpoint Faulting, prevent
the DBR from ever matching any portion of the VHPT by checking the VHPT before allowing the
DBR to be set.

Status: For the steppings affected, see the Summary Table of Changes.

56. FPSWA version 1.12 may overwrite register fr12
Problem: The FPSWA version 1.12 may overwrite register fr12 when handling FPSWA faults caused by the

fma, fms and fnma instructions consuming denormalized or unnormalized values. FPSWA
should only use registers fr6-fr11.

Implication: Operating systems are required to save and restore fr6-fr11 when handling FPSWA faults. Any
operating system that also saves and restores additional registers including fr12 is not susceptible
to this issue. Depending on how an application uses fr12 and how the operating system preserves it,
this erratum could lead to a number of different failure scenarios including incorrect data. The only
known current exposure is with the Linux* operating system. This erratum is limited to FPSWA
version 1.12.

Workaround: Upgrade to FPSWA version 1.18 or later which corrects the issue.

Status: For the steppings affected, see the Summary Table of Changes.

57. Cache snoops disabled on BINIT#
Problem: After a BINIT# is signaled the processor will disable snoops to contain the propagation of any

errors. The resulting MCA condition will cause the processor to enter the PAL MCA handler,
which will invalidate the processor caches before the hand-off to SAL. The PAL MCA handler
does not re-enable cache snoops before the hand-off to SAL.
40 Intel® Itanium® 2 Processor Specification Update

Errata (Processor and PAL)
Implication: This erratum only occurs after a BINIT event, thus any potential impact is limited to error handling
after this fatal event. As a result of this issue cache coherency will not be maintained after a BINIT
error. SAL code that runs uncacheable is unaffected. Cache coherency is restored after the
processor is reset as part of the normal BINIT event handling.

Workaround: None at this time.

Status: For the steppings affected, see the Summary Table of Changes.

58. RFI to UIA using single step mode may enter ss trap
Problem: In single step mode, a single step trap may be incorrectly taken on an rfi instruction when the

rfi attempts to address unimplemented memory.

Implication: The single step trap should not be taken on an rfi instruction. The result of this erratum would be
an indication that the single step/rfi instruction was completed successfully before entering the
unimplemented memory address (UIA) trap.

Workaround: Avoid taking an rfi to an UIA.

Status: For the steppings affected, see the Summary Table of Changes.

59. On-Die Termination value does not meet specification
Problem: The value of the On-Die Termination (ODT) does not meet the specified range of 45 Ohms ±15%

when measured at Vol. The actual value is 37 Ohms ±5% when measured at Vol. At output voltages
above 0.6V, the ODT values are within the correct range.

Implication: The stronger value of ODT could result in a higher output low voltage (Vol) and reduced noise
margins. Measurements on an Intel platform have not shown any noticeable increase in Vol and
noise margins are within specified ranges.

Workaround: This erratum does not affect any system using on-board termination. No workaround is
recommended for platforms using ODT in a 3-load configuration. ODT termination is not
recommended for 5-load bus configurations, those should use on-board termination.

Status: For the steppings affected, see the Summary Table of Changes.

60. Specific instruction combination may disrupt subsequent operation
Problem: A specific combination of memory and integer instructions may cause the result of a prior integer

operation to be incorrect. The combination of instructions necessary for the failure is:

1. Four or more arithmetic and at least one additional operation executing concurrently,
immediately followed by a subsequent integer operation that consumes data from the previous
operation.

2. Particular data patterns are also required.

3. This erratum is more likely at higher temperatures and higher processor core speeds.

Implication: As a result of this erratum, an integer operation may consume incorrect data leading to
unpredictable system behavior. In some instances, a fatal DTLB MCA or memory page fault may
occur.

Workaround: Intel recommends implementing one of the following workarounds:

• Reduce the processor operating frequency to 800 MHz by adjusting the system bus ratio to
2:8. Consult the Intel® Itanium® 2 Processor Hardware Developer’s Manual for complete
information on setting the system bus ratio.

• Avoid use of the susceptible code sequence and/or add stops between affected instruction
groups.
Intel® Itanium® 2 Processor Specification Update 41

Errata (Processor and PAL)
61. IFS register may be invalidated during MCA or INIT
Problem: If an interrupt service routine (ISR) is reading the interruption function state (IFS) control register

when the processor detects an MCA or receives an INIT event, under certain internal timing
conditions the destination register of the IFS read may indicate that the IFS is invalid.

To be exposed to this issue the processor must be in the proper context to read the IFS control
register. This requires executing at privilege level 0, having interruption collection disabled
(psr.ic=0), and the IFS register must be valid (ifs.v=1). Executing a cover instruction sets ifs.v=1.
In addition MCAs and INITs must not be masked (psr.mc=0).

Implication: When the ISR issues a rfi instruction, the return value of current frame marker (CFM) may not be
properly restored. The contents of the backing store application registers may not be correct in this
situation. Indeterminate system operation can result if this erratum occurs.

Workaround: PAL version 7.59 for the Itanium 2 processor (up to 3 MB L3 cache) and PAL version 5.37 for the
Itanium 2 processor (up to 6 MB L3 cache) contain a workaround that corrects the possible
problem when reading the IFS control register. This workaround requires the OS to abide by some
specific restrictions. All known current OS releases adhere to these restrictions. These restrictions
are:

1. There are no branches within a small window of code after the IFS read. The length of this
window is the shorter of either three bundles or two instruction groups.

2. A cover instruction must not be followed by a branch to a bundle within the window after the
IFS read. The window is as defined in item #1.

3. All ISR code from the cover instruction to the earlier of either changing psr.ic to 1 or the
rfi at the end of the ISR, must exist within the same contiguous region of physical memory.

4. A bsw.1 instruction must not be used within the ISR after a cover instruction and prior to
the IFS read. This applies only if the destination register of the mov from IFS is r29, r30, or
r31. PAL version 7.71 for the Itanium 2 processor (up to 3 MB L3 cache) and PAL version
5.61 for the Itanium 2 processor (up to 6 MB L3 cache) removes the requirement for this
restriction.

5. After an MCA or INIT event, if this workaround is unable to properly recover the IFS control
register state, a fatal MCA will be signaled to prevent unpredictable machine behavior.

6. An additional restriction is that the Dynamic Instruction Cache Prefetch remain enabled
(PAL_PROC_GET_FEATURES [46]=0) otherwise part of the workaround will be ineffective.
This prefetch feature is enabled by default. This restriction has been removed in PAL version
7.77 and above for the Itanium 2 processor (up to 3 MB L3 cache) and PAL version 5.69 and
above for the Itanium 2 processor (up to 6 MB L3 cache).

Status: For the steppings affected, see the Summary Table of Changes.

62. Unimplemented memory access may occur while handling an INIT or MCA
event

Problem: This erratum involves possible incorrect behavior if an ISR or fault handler exists in physical
memory near address zero. If such an ISR or fault handler is executing and a cover instruction
has been executed (IPSR.ic=0, IFS.v=1) and then an INIT or MCA event occurs while the handler
is within the address range of 0 to 0x20, the processor can incorrectly access unimplemented
memory. This results in a second MCA generated by the incorrect PAL behavior and this MCA
occurs while interruption collection (IPSR.ic=0) is disabled.

Implication: It is highly unusual that any part of an ISR or fault handler including the cover instruction would
be located in the first few locations of physical memory. Current known OS releases are not
affected. If this erratum were to occur, receiving nested MCAs is not a condition the OS expects to
encounter. A system crash or fatal error event may occur.
42 Intel® Itanium® 2 Processor Specification Update

Errata (Processor and PAL)
Workaround: Do not locate ISR or fault handling code with a cover instruction within the physical address
range of 0 to 0x20.

Status: For the steppings affected, see the Summary Table of Changes.

63. JTAG Sample/Preload or EXTEST instruction usage
Problem: When using the JTAG Sample/Preload or EXTEST boundary scan instruction, all internal signals

in the BSDL file must have their safe values loaded into the boundary scan serial data register
when the JTAG state machine enters the update DR state. Failure to do so will result in putting the
component into a non-operational test mode.

Implication: Failure to load the data register with safe values for all internal signals contained in the BSDL file
may result in putting the part into a non-operational test mode.

Workaround: When loading the JTAG data register during the Sample/Preload instruction, or EXTEST
instruction, load safe values contained for all internal signals contained in the BSDL files.

Status: For the steppings affected, see the Summary Table of Changes.

64. CPU_CYCLES count includes data from halt states
Problem: The event monitor count for CPU_CYCLES accumulates the count of elapsed processor clock

cycles even in a light halt state. The CPU_CYCLES counter is not expected to accumulate the
count when the processor is in a light halt or powered down state.

Implication: The CPU_CYCLES performance monitoring event may report an incorrect count if the processor
goes into a light halt state.

Workaround: PAL version 5.37 and above, for the Itanium 2 processor (up to 6 MB L3 cache) contain a fix for
this erratum.

Status: For the steppings affected, see the Summary Table of Changes.

65. System bus signals can be driven while RESET# is asserted
Problem: Upon the first assertion of RESET# after PWRGOOD is asserted, the processor may drive some of

the system bus signals. The processor should tristate all system bus signals within two bus clocks
of the assertion of RESET#. Due to this erratum, the processor may not tristate all system bus
signals within this two clock limit.

Implication: The system bus state during this initial time window with RESET# asserted cannot be determined.
Since no processor execution takes place with RESET# asserted, this does not affect processor
operation after the RESET# sequence has been completed.

Workaround: The state of the system bus signals during the initial RESET# sequence should be ignored.

Status: For the steppings effected, see the Summary Table of Changes.

66. PSP.cr is always set to zero (0) at PALE_INIT hand off to SALE_ENTRY
Problem: When PALE_INIT completes the PAL handling of an initialization (INIT) event, status information

is indicated in the Processor State Parameter (PSP) register at the hand off to SALE_ENTRY. After
any INIT event, the state of PSP.cr (bit 20) will incorrectly be set to zero (0) which indicates that
the control registers are not valid. This erratum only pertains to the state of the PSP.cr bit, the actual
contents of all control registers after the INIT is correct and the control register information
recorded by PALE_INIT in the min-state save area is also correct.

Implication: Based on the incorrect state of the PSP.cr bit, the control register information recorded in the
min-state save area could be assumed to be invalid. In fact, the information is an accurate recording
of the control register states at the time of the INIT event. Furthermore, the control registers are
valid at the PALE_INIT to SALE_ENTRY hand off.
Intel® Itanium® 2 Processor Specification Update 43

Errata (Processor and PAL)
Workaround: The value of PSP.cr can be assumed to be one (1) (valid) after any INIT event.

Status: For the steppings effected, see the Summary Table of Changes.

67. Incorrect Thermal Calibration Offset Byte value in the PIROM
Problem: The Thermal Calibration Offset Byte value in the PIROM was incorrectly programmed to eight (8).

The correct value for the Thermal Calibration Offset Byte should be zero (0).

Implication: Systems using the Thermal Calibration Offset Byte value programmed in the PIROM may report
inaccurate information for the following:

1. Temperature readings from the SMBus.

2. Upper and lower thresholds for THRMALERT#.

Workaround: Systems should use a value of 0 for the Thermal Calibration Offset Byte.

Status: For the steppings effected, see the Summary Table of Changes.

68. Performance Monitoring Event counters may be incorrect after leaving a
low-power state

Problem: On entry into the PAL_HALT_LIGHT procedure the performance monitoring counters that are
expected to continue monitoring events in a low-power state will be frozen until the processor
returns to full power.

Implication: As a result of this erratum, the Performance Monitoring Event counters noted in Section 10.3.11 of
the Intel® Itanium® 2 Processor Reference Manual for Software Development and Optimization
may be incorrect after leaving a low-power state.

Workaround: None at this time.

Status: For the steppings effected, see the Summary Table of Changes.

69. Instruction Breakpoint Register update may generate a false instruction
debug fault

Problem: An incorrect instruction debug fault may be indicated on a write to the enable and mask bits in the
Instruction Breakpoint Registers (IBR).

Implication: Code execution may fault on the false instruction debug fault generated by either the write into the
IBR or on other instructions depending upon how the debug mask bits have been set. The IBR is
only accessible in privilege level 0. OS software debug tools may or may not use this debug
breakpoint feature.

Workaround: Disable Debug Breakpoint Faulting (Psr.db=0) before writing the enable and mask bits in the IBR
and then re-enable Debug Breakpoint Faulting.

Status: For the steppings effected, see the Summary Table of Changes.

70. Application fault may be missed on a br.ia instruction
Problem: An Illegal Operation Fault may not be indicated when executing the br.ia instruction and the

BSPSTORE register is not equal to the BSP register.

Implication: An Illegal Operation Fault should be indicated if an unconditional branch (br.ia) into IA-32
application space is made without first issuing a Flush Register Stack (flushrs) instruction to
ensure that BSP and BSPSTORE are equal and the register stack partitions are saved. As a result of
this erratum it is possible that the IA-32 application code will begin execution before indicating a
fault.
44 Intel® Itanium® 2 Processor Specification Update

Errata (Processor and PAL)
Workaround: Ensuring that a flushrs instruction is issued before executing the br.ia instruction, as required
by the Intel® Itanium® Architecture Software Developer’s Manual, will eliminate the exposure to
this erratum.

Status: For the steppings effected, see the Summary Table of Changes.

71. Machine check may not bring the system out of a low-power state
Problem: In the case that the processor has entered a low-power state and MCA checking is masked

(PSR.mc=1) a machine check event may not bring the processor out of the low-power state.

Implication: The Intel® Itanium® Architecture Software Developer’s Manual, Volume 2 (Document No.
245318) documents that the processor should return to the Normal state upon receipt of an
unmasked external interrupt, machine check, Reset, PMI or INIT. As a result of this erratum a
machine check event received in a low-power state while machine check aborts are being masked,
will not be serviced until the system is returned to a normal operating state by any other wakeup
event.

Workaround: Enable machine check abort checking (PSR.mc=0) before entering a low-power state.

Status: For the steppings effected, see the Summary Table of Changes.

72. Machine check event received during PAL execution may have unexpected
results

Problem: Depending on internal conditions, a machine check event (MCA) received during the execution of
certain PAL procedures may have unexpected results.

Implication: During the execution of the following PAL procedures; PAL_CACHE_FLUSH,
PAL_CACHE_INIT, PAL_CACHE_LINE_INIT, PAL_CACHE_READ, PAL_CACHE_WRITE,
PAL_CAR_INIT, PAL_TEST_PROC and PAL_VM_TR_READ, if an MCA event is received the
PAL procedure may fail. Depending on when the MCA is received and the execution environment,
the results may range from a PAL or system error to a processor hang. In most cases the procedure
will execute correctly.

Workaround: Ensure that machine check abort checking is disabled (PSR.mc=1) before calling the PAL
procedures noted above.

Status: For the steppings effected, see the Summary Table of Changes.

73. Rendezvous may result in spin loop due to incorrect rendezvous address
passed to SAL

Problem: When the PAL determines that an error has occurred which could cause a multiprocessor system to
lose error containment, it must rendezvous the other processors in the system before proceeding
with further processing of the machine check. This is accomplished by branching to SAL with a
non-zero return vector address. It is then the responsibility of the SAL to rendezvous the other
processors and return to PAL through this return address. It is possible for PAL to pass an incorrect
return address to SAL during the hand off for processor Rendezvous.

Implication: The normal mode of operation during a rendezvous event is a blue screen, while the processors
enter a spin loop. As a result of this erratum, the hand off to SAL may be fatal.

Workaround: None at this time.

Status: For the steppings effected, see the Summary Table of Changes.

74. Possible degradation in system performance when calling
PAL_CACHE_FLUSH with int = 1 for certain cache memory types

Problem: When the PAL_CACHE_FLUSH procedure is called with int = 1, external interrupts will be polled
periodically while the specified cache type(s) are being flushed. If an external interrupt is seen, this
Intel® Itanium® 2 Processor Specification Update 45

Errata (Processor and PAL)
procedure will return and allow the caller to service the interrupt before all cache lines in the
specified cache type are flushed. The problem is that when PAL_CACHE_FLUSH is called again
to resume the flush operation from where it was interrupted, PAL attempts to start the flush
operation over again rather than continuing from the point of interruption. This erratum affects
cache_types 1, 2, and 3 as described in the The Intel® Itanium® Architecture Software Developer’s
Manual, Volume 2 (Document No. 245318).

Implication: If additional interrupts continue to occur before the completion of the PAL_CACHE_FLUSH, the
procedure may never complete. This may result in degraded system performance due to one
processor not being available or appearing to be stalled. This issue has only been observed in a
validation test environment.

Workaround: Do not call the PAL_CACHE_FLUSH procedure with int = 1 and cache_type = 1, 2 or 3.

Status: For the steppings effected, see the Summary Table of Changes.

75. Memory read current transaction may fail to observe a st, ld.bias or
lfetch.excl

Problem: A memory read current transaction allows a chipset to access a coherent copy of a cache line in a
caching agent without affecting the cache line state in the caching agent. This transaction avoids
later cache misses and subsequent transactions by the cache agent to again cache the line.

The erratum requires the following code sequence:

1. Given two addresses X and Y, which would map to two different L2 cache lines:

a. A memory read current (same cache line as X) must occur coincident to the sequence:
load(X)... load (same cache line as X)... store (same cache line as X);
or

b. A memory read current (same cache line as X) must occur coincident to the sequence:
load(X)... semaphore (Y)... store (same cache line as X);
or

c. Either of the above where store(X) is replaced with an ld.bias(X) or an lfetch.excl(X).

2. First load(X) need not be cached but has to fill the L2 to an E-state.

If systems utilize the memory read current transaction and execute the above code sequence, and
specific internal micro-architectural timings are met, the cache line may be updated to an incorrect
state by the processor.

Implication: Usage models are not known to exist where the st, ld.bias or lfetch.excl to a cache line
(X) at or near the time of a memory read current transaction targeting cache line (X). If the
conditions as described are met, a future external access to the memory contained in cache line (X)
will not receive the expected hitm snoop response from the processor. Internal accesses will miss
and be issued to the system interface.

Workaround: Memory read current transactions should not be used in situations where the above conditions are
met.

Status: For the steppings effected, see the Summary Table of Changes.

76. BINIT taken on 2x ECC and hard-fail errors with BINIT event signaling
disabled

Problem: A Bus Initialization (BINIT) event may still be signaled after a multiple-bit ECC or hard-fail error,
even if BINIT event signaling/checking is disabled.
46 Intel® Itanium® 2 Processor Specification Update

Errata (Processor and PAL)
Implication: Multiple bit ECC errors, PTC and IPI operations that experience transactions errors may normally
signal a Machine check that result in a BINIT response. However, when the BINIT response is
disabled a BINIT is not expected. As a result of this erratum a BINIT will still be signaled for these
types of errors even with the BINIT response disabled.

Workaround: None at this time.

Status: For the steppings effected, see the Summary Table of Changes.

77. Recoverable L3 cache tag ECC error may raise overflow error when CMCI
are promoted to MCA

Problem: In the case that CMCIs are promoted to MCA, certain internal conditions combine with an L3
cache tag ECC error to indicate an overflow error and signal a fatal MCA.

Implication: An L3 cache tag ECC error is normally a recoverable CMCI but when CMCIs are being promoted
to MCA, the error is promoted as a fatal MCA event instead of being firmware corrected. The fatal
MCA is indicated if the cache line tags are snooped after the ECC error is flagged but before the
MCA is taken.

Workaround: A workaround is under investigation.

Status: For the steppings effected, see the Summary Table of Changes.

78. L2 cache line with poison data results in unexpected fatal MCA
Problem: An L2 cache line with latent 2x ECC or poisoned data that is snooped before being consumed may

incorrectly signal a fatal MCA.

Implication: An L2 cache line with a 2x ECC or an error that results in a cache line being poisoned should
indicate a CMCI unless the data is consumed by a processor. A subsequent snoop hit to the
poisoned cache line may cause the errant line to be flagged as an error twice, which would result in
a machine check overflow and a fatal MCA being taken rather than a CMCI. This erratum does not
apply to consumed poisoned data

Workaround: None at this time.

Status: For the steppings effected, see the Summary Table of Changes.

79. XPN time-out with BINIT response disabled may cause system hang
Problem: In the case where the BINIT response to a processor internal time-out response is disabled, a

second XPN time-out error may result in a system hang.

Implication: If an XPN time-out occurs such that a BINIT should be taken but is not due to the fact that the
BINIT on an internal time-out response has been suppressed. A second XPN time-out error may
result in the system hanging because the time-out counter was not reset after the first internal
time-out.

Workaround: Do not suppress the BINIT response to a processor internal time-out.

Status: For the steppings effected, see the Summary Table of Changes.

80. BINIT may be taken after a UC single byte access to ignored/reserved area
of the Processor Interrupt Block

Problem: A Bus INITialization (BINIT#) event may be signaled after an uncacheable (UC) single byte
access to any ignored/reserved area in the upper half of the Processor Interrupt Block.

Implication: Unsupported accesses result in undefined behavior of the processor, hence the BINIT# response is
taken to re-establish a consistent execution environment. In other cases the unsupported access can
be ignored. Single byte UC access to the ignored or reserved areas of the IPI block should be
ignored but as a result of this erratum a BINIT# is signaled.
Intel® Itanium® 2 Processor Specification Update 47

Errata (Processor and PAL)
Workaround: None at this time.

Status: For the steppings effected, see the Summary Table of Changes.

81. Recoverable CMCI may combine with an L3 MCA error to cause fatal
overflow error

Problem: In the case where a recoverable L3 cache or system bus error flags a Correctable Machine Check
Interrupt (CMCI) and is followed by specific MCA events, the overflow bit may be set and result in
a fatal error. The specific MCA events are a L3 cache, system hard-fail, local BINIT# or a
non-coherent UC/WC memory access that receives a HITM response.

Implication: As a result of this erratum a CMCI or MCA event that is normally recoverable, if supported by the
OS, may set the overflow bit and signal a global BINIT#.

Workaround: None at this time.

Status: For the steppings effected, see the Summary Table of Changes.

82. BERR may be indicated when the PAL MCA routine invalidates L2 cache
lines

Problem: A Bus ERRor (BERR#) may be signaled when a read hit occurs to the same L2 cache line that a
PAL MCA routine is in process of invalidating.

Implication: As a result of this erratum a BERR# may be signaled after a hard-fail error, if a read hits a cache
line while the line is being invalidated via the MESI protocol tags but before the cache line ECC
has been updated.

Workaround: None at this time.

Status: For the steppings effected, see the Summary Table of Changes.

83. Pending RSE interrupt during the PAL PMI handler may result in a system
hang

Problem: A system hang may be the result of a pending RSE interruption during the execution of the PAL
PMI handler.

Implication: Depending on the execution of the PAL PMI flow and a pending RSE interruption, the result may
be unsuccessful handling of the PAL PMI handler which would lead to a system hang.

Workaround: None at this time.

Status: For the steppings effected, see the Summary Table of Changes.

84. An INIT signaled during a PAL PMI flow may result in a system hang
Problem: If an MCA/INIT is signaled during the execution of the PAL PMI handler where an rfi is in the

instruction pipeline but not yet executed, the system may hang as the rfi is aborted before
returning from the MCA/INIT procedure.

Implication: There is a small window of exposure where the rfi can be in the instruction pipeline and an
MCA/INIT is taken, where it aborts the rfi before the rfi has been executed. If these conditions
are met the result may be a system hang.

Workaround: None at this time.

Status: For the steppings effected, see the Summary Table of Changes.
48 Intel® Itanium® 2 Processor Specification Update

Errata (Processor and PAL)
85. PMI serviced during the execution of PAL_MC_ERROR_INFO procedure
may result in unpredictable processor behavior

Problem: If a PMI is taken during the execution of the PAL_MC_ERROR_INFO procedure, the branch
return information stored by the PAL call may be lost. As a result, the behavior of the processor is
not guaranteed upon its return from the PMI handler.

Implication: PAL_MC_ERROR_INFO may not complete successfully and the processor behavior may be
unpredictable.

Workaround: None at this time.

Status: For the steppings effected, see the Summary Table of Changes.

86. Data-poisoning bits not included in PAL_MC_ERROR_INFO cache_check
and bus_check structures

Problem: In the Intel® Itanium® Architecture Software Developer’s Manual Specification Update machine
check architecture extensions were added for supporting data-poisoning events. These extensions
will help in supporting different data-poisoning handling policies. Current Itanium 2 processors do
not implement the dp bit in the cache_check and bus_check structures in
PAL_MC_ERROR_INFO.

Implication: When parsing error logs, the OS cannot distinguish between some hardware generated corrected
events versus data-poisoning events.

Workaround: None at this time.

Status: For the steppings effected, see the Summary Table of Changes.

87. PAL_PREFETCH_VISIBILITY call not implemented
Problem: Calling PAL_PREFETCH_VISIBILITY with trans_type argument of 1 returns Invalid Argument.

Implication: PAL_PREFETCH_VISIBILITY does not support physical addressing attribute transitions.

Workaround: None at this time.

Status: For the steppings effected, see the Summary Table of Changes.

88. INIT# signal not recognized properly
Problem: The INIT# signal triggers an unmasked interrupt to the processor. When operating at odd

bus-to-core frequency ratios, the assertion of the INIT# pin may not always be recognized by the
processor, preventing the processor from taking the interrupt.

Implication: Due to internal timing and electrical conditions, it is possible that the processor may not recognize
the INIT# signal when odd bus ratios (i.e., 2:9, 2:11, etc.) are being used. This erratum is
intermittent in nature and could result in the system missing an INIT# assertion.

Note: This erratum does not impact the use of the INIT# pin for power-on configuration during reset, nor
does it affect other system interrupts.

Workaround: One of the following two workarounds can be implemented:

• Either a system bus-based interrupt transaction or the Platform Management Interrupt (PMI)#
input can be used to implement the same functionality. In this case the PAL_PMI code flow
will handoff control to SAL_PMI. The SAL_PMI code can check the status of the INIT#
signal and if INIT# has been asserted, the SAL code flow can call SAL_INIT.

• Early in the SAL_INIT code, send an INIT IPI to all other processors in the domain. The
following issues should be considered to build a more intelligent SAL_INIT implementation:
— Do not call PAL_MC_RESUME during INIT IPI handling.
Intel® Itanium® 2 Processor Specification Update 49

Errata (Processor and PAL)
— If there is any “timeout” mechanism in the INIT handling flow, that value may need to be
increased to reflect the fact that some processors will see INIT#/IPI earlier than others.

— INIT IPIs could be sent only to other processors that have not yet seen the INIT#, this
would be necessary in the case where the SAL/OS INIT code unmasks MCAs
(PSR.mc=0). However, it is typical that MCAs are masked (PSR.mc=1) on the first INIT,
so multiple INITs received by a given processor should not cause a problem for INIT
handling flow as further INITs should be pended but not recognized.

— Consider the processor and ratios in effect in order to determine the necessity of this
workaround.

Status: For the steppings affected, see the Summary Table of Changes.

89. Cache lines with ECC errors may not be invalidated
Problem: In some instances, cache lines with single-bit errors may not be invalidated as expected.

Implication: Multiple CMCIs may be seen for the same single-bit error as it will remain in the L2 or L3 cache
until flushed by regular system execution. The single-bit errors are automatically corrected when
data is requested.

Workaround: None at this time.

Status: For the steppings affected, see the Summary Table of Changes.

90. Interrupts are enabled when exiting from a halt state
Problem: When exiting from PAL_HALT, PAL_HALT_LIGHT, or PAL_HALT_LIGHT_SPECIAL, PSR.ic

is incorrectly set.

Implication: Interrupts are enabled after the processor wakes from the halt state.

Workaround: Disable interrupt collection within the SAL code flow.

Status: For the steppings affected, see the Summary Table of Changes.

91. PAL_PREFETCH_VISIBILITY call may result in a system hang
Problem: Calling PAL_PREFETCH_VISIBILITY with trans_type = 1 could result in PAL entering a spin

loop.

Implication: PAL_PREFETCH_VISIBILITY does not support physical addressing attribute transitions.

Workaround: Do not call PAL_PREFETCH_VISIBILITY with trans_type = 1.

Status: For the steppings affected, see the Summary Table of Changes.

92. Corrected ECC error may not generate CMCI
Problem: A hardware corrected error may not generate a CMCI when an IPI or PTC transaction is in

progress.

Implication: In the case of a 1xECC error on an IPI or PTC transaction, a hardware corrected CMCI may not be
signaled to the operating system even if CMCI signaling for hardware corrected errors is enabled.
It is important to note that the 1xECC error is detected and corrected by the processor and has no
impact to the executing processes.

Workaround: None at this time

Status: For the steppings affected, see the Summary Table of Changes.
50 Intel® Itanium® 2 Processor Specification Update

Errata (Processor and PAL)
93. PAL_CACHE_FLUSH procedure may not flush and invalidate all L2 cache
lines

Problem: In the case that a PAL_CACHE_FLUSH procedure is called to flush and invalidate the L2 cache
lines, cache lines that are in the exclusive or shared state may not be invalidated.

Implication: As a result of this erratum, the PAL_CACHE_FLUSH procedure may not be successful in
invalidating the exclusive or shared cache lines. However, all modified lines are written to memory
and with the memory copy being valid for exclusive and shared state, all memory is up-to-date at
end of routine.

Workaround: Replace the PAL_CACHE_FLUSH procedure call with the “fc” instruction to cover the address
range to be flushed.

Status: For the steppings affected, see the Summary Table of Changes.

94. Performance counters may include data from low power states
Problem: The following list includes a number of processor performance counters that may continue to

accumulate event counts in a low power state.

• BACK_END_BUBBLE.ALL

• BACK_END_BUBBLE.FE

• FE_BUBBLE.ALL

• FE_BUBBLE.BUBBLE

• FE_BUBBLE.GROUP1

• FE_BUBBLE.ALLBUT_IBFULL

• FE_LOST_BW.ALL

• FE_LOST_BW.BUBBLE

• BE_LOST_BW_DUE_TO_FE.ALL

• BE_LOST_BW_DUE_TO_FE.BUBBLE

• IDEAL_BE_LOST_BW_DUE_TO_FE.ALL

• IDEAL_BE_LOST_BW_DUE_TO_FE.BUBBLE

Implication: These performance counters are not expected to continue to accumulate data in a low power state.
As a result of this erratum the count for these events may be inaccurate after leaving a low power
state.

Workaround: None at this time.

Status: For the steppings affected, see the Summary Table of Changes.

95. MCA due to an XPN timeout may result in a spin loop
Problem: If MCAs have been enabled to occur at the halfway count of an XPN timeout, PAL may enter a

spin loop.

Implication: Instead of passing the MCA up to SAL, PAL incorrectly enters a spin loop.

Workaround: Disable the MCA at the halfway count through PAL_PROC_SET_FEATURES.

Status: For the steppings affected, see the Summary Table of Changes.
Intel® Itanium® 2 Processor Specification Update 51

Errata (Processor and PAL)
96. BINIT# may not be asserted for exactly two cycles
Problem: As stated in the RS - Itanium® 2-Based Platform Compatible Processors System Bus Specification,

if an agent samples BINIT# asserted on clock N, and it asserts BINIT# for the first time in cycle N,
then the agent must keep BINIT# asserted for exactly two cycles. Currently all Itanium® 2
processors assert BINIT# for one cycle in the scenario described above.

Implication: The agents on the system bus have one clock cycle to sample asserted BINIT#. Actions taken upon
sampling the asserted BINIT# remain unchanged and are listed in the RS - Itanium® 2-Based
Platform Compatible Processors System Bus Specification.

Workaround: None at this time.

Status: For the steppings affected, see the Summary Table of Changes.

97. Memory read current transaction may fail to observe a st or lead to a system
hang

Problem: A memory read current transaction allows a chipset to access a coherent copy of a cache line in a
caching agent without affecting the cache line state in the caching agent. This transaction avoids
later cache misses and subsequent transactions by the cache agent to again cache the line.

The erratum requires the following code sequence:

1. Given an addresses X which maps to a L2 cache line and an address Y which maps to a cache
line that belongs to the same set as X at L2.

2. A memory read current (same cache line as X) must occur coincident to the sequence.
load(X)... store (same cache line as X)... load (same cache line as Y); If systems utilize the
memory read current transaction and execute the above code sequence, and specific internal
micro-architectural timings are met, subsequent transactions may not return the correct data
and may lead to a system hang.

Implication: Usage models are not known to exist where the st to a cache line (X) at or near the time of a
memory read current transaction targeting cache line (X). If the conditions as described are met,
even though the st is correctly posted to the cache line by the processor, incorrect data is returned
for subsequent system interface accesses to a different cache line. Another possible impact of the
erratum is a system hang due to erroneous assertion of the HIT# and HITM# snoop signals for
accesses to the cache line.

Workaround: Memory read current transactions should not be used in situations where the above conditions are
met.

Status: For the steppings affected, see the Summary Table of Changes.

98. PAL_VM_TR_READ will return an incorrect page size for DTR reads
Problem: When calling PAL_VM_TR_READ with tr_type = 1 (DTR), the return ps field will hold an

incorrect value.

Implication: The value returned by the PAL_VM_TR_READ procedure cannot be relied upon for informational
or architectural implementations.

Workaround: None at this time.

Status: For the steppings affected, see the Summary Table of Changes.

99. Incorrect EID and ID information passed by PAL
Problem: Itanium 2 processor PAL, incorrectly reports the EID and ID mask bits in GR33[31:16] instead of

GR33[47:32].

Implication: EID and ID bits cannot be relied upon for a correct representation of the programability of the LID
register.
52 Intel® Itanium® 2 Processor Specification Update

Errata (Processor and PAL)
Workaround: In the case that the information about the programmable bits of the LID register is required by
SAL, the following steps should be taken:

1. Write 1's to the LID register.

2. Follow the write with a read from the LID register.

3. Bit positions with a read back value of 1 are programmable whereas bit positions with a read
back value of 0 are read-only.

Status: For the steppings affected, see the Summary Table of Changes.

100. Interruption of PAL calls by a PMI
Problem: In the case where a PMI interrupts a PAL procedure and the PMI handler makes a PAL call, the

processor may take a general exception fault.

Implication: Normal operation of the processor is not guaranteed in the above mentioned scenario. It must be
noted that, for this issue to occur, the PAL call made in the PMI handler must alter the machine
state used by the interrupted PAL procedure.

Workaround: None at this time.

Status: For the steppings affected, see the Summary Table of Changes.

101. External interrupt polling and PAL_CACHE_FLUSH
Problem: If PAL_CACHE_FLUSH is called with external interrupt polling enabled (int =1) and an interrupt

occurs during the PAL procedure, the returned progress indicator may be invalid. It must be noted
that this issue only affects an Itanium 2 processor with a cache size smaller than 9MB.

Implication: Subsequent calls to PAL_CACHE_FLUSH that use an incorrect progress indicator will return an
invalid argument.

Workaround: Call PAL_CACHE_FLUSH without enabling interrupt polling (int=0).

Status: For the steppings affected, see the Summary Table of Changes.
Intel® Itanium® 2 Processor Specification Update 53

Errata (IA-32 Execution Layer)
Errata (IA-32 Execution Layer)

1. Ordering of loads and stores
Problem: IA-32 execution layer reorders IA-32 loads and stores during code optimization. Under some

conditions, IA-32 applications sharing memory between processes executing on IA-32 execution
layer may not maintain processor ordering of loads and stores.

Implication: Multiprocessor or multi-threaded IA-32 applications that share memory between processes and
depend upon processor ordering may not behave as expected. Locks, semaphores, and all other
fencing instructions maintain strong ordering and have no exposure to this erratum. Intel has not
been able to reproduce incorrect program behavior due to this erratum with commercial software.

Workaround: Multiprocessor or multi-threaded IA-32 applications should protect access to shared variables with
locks, semaphores, or OS synchronization.

Status: For the versions affected, see the Summary Table of Changes.

2. Segmentation not supported
Problem: IA-32 execution layer does not support segmentation, and only limited support for segmentation

registers is provided.

Implication: IA-32 applications that use segmentation may not operate as expected when executing on IA-32
execution layer. Check with your OS vendor to determine if segmented IA-32 applications are
supported.

Workaround: IA-32 applications should use the flat 32-bit addressing.

Status: For the versions affected, see the Summary Table of Changes.

3. 16-bit application mode not supported
Problem: IA-32 execution layer does not support 16-bit application mode. The size address prefix (0x67) is

supported only for allowed segment overrides.

Implication: IA-32 applications running on IA-32 execution layer that use 16-bit application mode may not
behave as expected. IA-32 execution layer does support 16-bit instructions.

Workaround: IA-32 applications should use 32-bit application mode.

Status: For the versions affected, see the Summary Table of Changes.

4. IA-32 floating-point state
Problem: FPUDataPointer, FPUInstructionPointer, and FPULastInstructionOpcode fields of the

floating-point (FP) state are not updated by the FSAVE, FNSAVE, FXSAVE, FSTENV, and
FNSTENV instructions.

Implication: IA-32 code running on IA-32 execution layer using FSAVE, FNSAVE, FXSAVE, FSTENV, or
FNSTENV instructions cannot retrieve FPUDataPointer, FPUInstructionPointer, and
FPULastInstructionOpcode fields from the last non-control FP instruction using these instructions.
The last FP state is guaranteed only upon unmasked FP exceptions.

Workaround: To get FP state on exceptions, one needs to use the OS-provided context. For example, the user can
get the exception record from Windows* or use sigcontext on Linux*.

Status: For the versions affected, see the Summary Table of Changes.
54 Intel® Itanium® 2 Processor Specification Update

Errata (IA-32 Execution Layer)
5. Floating-point C1 condition code flag support
Problem: IA-32 execution layer does not set the floating-point C1 condition code flag when the last rounding

by the instruction was upward. Other C1 behavior is unaffected.

Implication: IA-32 code running on IA-32 execution layer that depends upon the C1 condition code flag to
identify upward rounding may not behave as expected.

Workaround: None at this time.

Status: For the versions affected, see the Summary Table of Changes.

6. IA-32 floating-point pseudo-denormal, pseudo-NaN, and pseudo-infinity
support

Problem: IA-32 execution layer will treat pseudo-denormal, pseudo-NaN, and pseudo-infinity values as
un-normalized numbers, normalize them, and continue operation rather than raise a denormal
exception.

Implication: IA-32 code running on IA-32 execution layer using pseudo-denormal, pseudo-NaN, and
pseudo-infinity values may not behave as expected. Note that IA-32 processors since the Intel®
387 math coprocessor do not generate pseudo-denormal, pseudo-NaN, and pseudo-infinity values.

Workaround: IA-32 applications should avoid using floating-point encodings not supported by the final version
of the IEEE Standard 754.

Status: For the versions affected, see the Summary Table of Changes.

7. Behavior of quiet and signaling NaNs
These NaN operations have the following behavior:

1. Floating-point operations involving an SNaN operand and a QNaN operand will return a
QNaN with the significand of the lesser operand. When moving values using FLD followed by
FSTP, IA-32 execution layer may not convert SNaNs to QNaNs.

2. SSE operations performed on a pair of XMM registers that contain QNaN values may result in
the destination changing to the resultant QNaN.

Implication: IA-32 code running on IA-32 execution layer that depends upon SNaN or QNaN behavior may not
behave as expected.

Workaround: None at this time.

Status: For the versions affected, see the Summary Table of Changes.

8. IA-32 floating-point exceptions
Problem: On a FP exception, IA-32 execution layer will set the denormalized operand exception flag when a

denormal value has been stored and will set the inexact precision exception flag when an unmasked
overflow/underflow fault occurs.

Implication: IA-32 code running on IA-32 execution layer depending upon the denormalized or inexact
precision flags may not behave as expected.

Workaround: None at this time.

Status: For the versions affected, see the Summary Table of Changes.

9. Partial support for EFLAGS
Problem: IA-32 execution layer supports the ID, OF, DF, SF, ZF, AF, PF, CF, and TF EFLAG bits. The IF

flag is held to 1. The VIP, VM, and IOPL flags are held to 0. The AC, NT, and RF flags can be
written and read by POPF and PUSHF operations, but their semantics are not simulated.
Intel® Itanium® 2 Processor Specification Update 55

Errata (IA-32 Execution Layer)
Implication: IA-32 code running on IA-32 execution layer depending upon privileged EFLAGS state or the AC,
NT and RF flags may not behave as expected.

Workaround: None at this time.

Status: For the versions affected, see the Summary Table of Changes.

10. EFLAGS and floating-point exception flag behavior
Problem: EFLAG and FP exception flags may have incorrect behavior when read from an exception handler

context, when read from another thread or process, or read by self-modifying code if the flags are
not consumed in the original context.

Note: EFLAG and FP exception flags are correct under the use of a debugger.

Implication: Multiprocess, multi-threaded, or self-modifying IA-32 code running on IA-32 execution layer
reading EFLAGS or FP exception flags may not behave as expected if the flags are not consumed
in the original context.

Workaround: None at this time.

Status: For the versions affected, see the Summary Table of Changes.

11. RSM and IRET instructions raise incorrect faults
Problem: On IA-32 execution layer, RSM calls raise a general protection fault, and IRET calls raise an illegal

operation fault.

Implication: These are not expected to occur in user mode.

Workaround: None at this time.

Status: For the versions affected, see the Summary Table of Changes.

12. Cross-modifying code
Problem: IA-32 execution layer may not maintain execution consistency of multiprocess cross-modifying

IA-32 code if a process has opened the instruction page with read-only permission.

Implication: Multiprocess cross-modifying IA-32 applications may not behave as expected, if a process has
opened the instruction page with read-only permission.

Workaround: Multiprocess cross-modifying IA-32 applications should open modified instruction pages with
read/write access.

Status: For the versions affected, see the Summary Table of Changes.

13. Atomicity of lock-prefixed instructions making unaligned memory
references

Problem: On IA-32 execution layer, an IA-32 lock-prefixed instruction making an unaligned memory
reference is performed atomically only with respect to other lock-prefixed instructions making
unaligned memory accesses in the same process.

Implication: If an unaligned memory access is made to the same physical address by a lock-prefixed instruction
and another process, an instruction without a lock prefix, or an aligned lock-prefixed instruction,
atomicity is not guaranteed, and the code may not behave as expected.

Workaround: None at this time.

Status: For the versions affected, see the Summary Table of Changes.
56 Intel® Itanium® 2 Processor Specification Update

Errata (IA-32 Execution Layer)
14. Atomicity of lock-prefixed instructions making uncacheable memory
references

Problem: On IA-32 execution layer, an IA-32 lock-prefixed instruction making an uncacheable memory
reference is performed atomically only with respect to other lock-prefixed instructions making
uncacheable memory accesses in the same process.

Implication: If an uncacheable memory access is made to the same physical address by a lock-prefixed
instruction and another process, an instruction without a lock prefix, or an uncached lock-prefixed
instruction, atomicity is not guaranteed and the code may not behave as expected.

Workaround: None at this time.

Status: For the versions affected, see the Summary Table of Changes.

15. Noninterruptability of 32-bit unaligned and 16-byte stores
Problem: On IA-32 execution layer, if a thread is suspended during a 32-bit unaligned or a 16-byte IA-32

store to cached memory, another thread may observe partially updated memory until the OS can
service the thread suspension.

Implication: When a process performs 32-bit unaligned or 16-byte stores, partial memory updates may be
observed by other threads until the OS can service the thread suspension, resulting in unexpected
behavior.

Workaround: None at this time.

Status: For the versions affected, see the Summary Table of Changes.

16. IA-32 execution layer install and uninstall failures
Problem: On some Itanium 2-based platforms, incorrect reports may be seen while installing or uninstalling

IA-32 execution layer.

Implication: During installation, the IA-32 execution layer installer “IA-32ExecutionLayerSetup.exe” may
incorrectly report that a previous version has been installed and ask the user to remove the previous
installation.

After an uninstall and subsequent reboot, the system may incorrectly ask users to reinstall IA-32
execution layer.

Workaround: Users should download the latest IA-32 execution layer installer
“IA-32ExecutionLayerSetup_1.exe”(revision 1 or greater) from the Microsoft* download center.

Status: For the versions affected, see the Summary Table of Changes.

17. Self-modifying code on unaligned memory may result in an access violation
Problem: If an IA-32 application contains a basic code block that;

• Is doing self-modifying code,

• That modifies the very first instruction of the basic code block, and

• This basic block accesses an unaligned memory address.

Then the application may crash with an access violation (general protection fault).

Implication: Applications that use a self-modifying basic block on unaligned memory addresses may fail and
result in a general protection fault.

Workaround: None at this time.

Status: For the steppings affected, see the Summary Table of Changes.
Intel® Itanium® 2 Processor Specification Update 57

Itanium® 2 Processor Specification Changes
Itanium® 2 Processor Specification
Changes

There are no Specification Changes for this revision of the Intel® Itanium® 2 Processor
Specification Update.
58 Intel® Itanium® 2 Processor Specification Update

Itanium® 2 Processor Specification Clarifications
Itanium® 2 Processor Specification
Clarifications

1. Error logging of deferred IPIs
In the case that an IPI is deferred by the processor and the chipset responds to the deferred IPI with
a hard-fail response in the deferred reply transaction, the processor will not log or generate an
MCA associated with the hard-fail. Hard-fail response to the deferred IPI can, however, be logged
by the chipset.

2. Branch prediction across the 40-bit boundary
Chapter 7, of the Intel® Itanium® 2 Processor Reference Manual for Software Development and
Optimization, May 2004, details Branch Instructions and Branch Prediction. The following
clarification will be added to the introduction of Chapter 7.

• “A branch prediction across a 40-bit boundary may result in an incorrect target prediction on
Itanium 2 processors. Please refer to Table 4-2 for branch prediction latencies in such cases.”
Intel® Itanium® 2 Processor Specification Update 59

Itanium® 2 Processor Documentation Changes
Itanium® 2 Processor Documentation
Changes

There are no Documentation Changes for this revision of the Intel® Itanium® 2 Processor
Specification Update.
60 Intel® Itanium® 2 Processor Specification Update

IA-32 Execution Layer Specification Clarifications
IA-32 Execution Layer Specification
Clarifications

1. Aliasing of MMX registers to FP registers
If a value is written to the FP register, and an MMX™ operation is performed to the corresponding
MMX register, the exponent portion of the corresponding FP register may not be written to 1’s if
the register’s significand is unchanged by the MMX instruction.

As described in the IA-32 Intel® Architecture Software Developer’s Manual, the EMMS instruction,
which empties the MMX state by setting the tags in the x87 FPU tag word to 11B, must be
executed at the end of an MMX routine before calling other routines that can execute FP
instructions.

2. Floating-point and SSE precision
Floating-point and SSE instructions like RCPPS, RCPSS, RSQRTPS, and RSQRTSS may provide
slightly more precise results than Itanium 2 processors or IA-32 Intel processors since IA-32
execution layer may merge separate FADD and FMUL instructions into a single FMA instruction or
replace two roundings by one rounding.

3. CPUID values represent the IA-32 execution layer processor model
CPUID return values accurately represent the IA-32 execution layer processor model, but may not
represent the physical processor in the system. The vendor and family information are correct for
IA-32 execution layer, but cache, translation lookaside buffer (TLB), and other processor-specific
information is not supported. The CPUID values returned by IA-32 execution layer will be
documented in the Intel® Processor Identification and the CPUID Instruction Application Note
(AP-485).

4. IA-32 execution layer resides in the application virtual address space
IA-32 execution layer components, memory for translated code blocks, and IA-32 execution layer
data structures, all reside in the application virtual address space. Memory requests may be denied
if insufficient memory is available. Non-relocatable DLLs may fail to load if that memory is
already occupied.

5. Signal delivery may be postponed during code translation or garbage
collection
During code translation or garbage collection, signal delivery may be postponed. There is no
maximum time-limit, but the delivery is guaranteed to happen eventually.

6. Aborting threads could cause other process threads to hang
An application running on IA-32 execution layer may use internal IA-32 execution layer critical
objects. Aborting a thread that holds an IA-32 execution layer critical object could cause the other
threads in the process to hang.

7. Core dump files cannot be produced correctly when an IA-32 process is
aborted
When an IA-32 process is aborted, a core dump file can often be used for debugging purposes.
Unfortunately, at this time, the core dump files created from an aborted process using IA-32
execution layer does not contain valid information.
Intel® Itanium® 2 Processor Specification Update 61

IA-32 Execution Layer Specification Clarifications
8. The I/O Privilege Level (IOPL) mechanism is not implemented
The I/O Privilege Level (IOPL) mechanism is not implemented and is hard coded to 0. As a result,
all applications that use the IN or OUT instructions, as well as CLI and STI, will result in a #GP
fault.

9. Software interrupts must be supported by the OS
Software interrupts (INT instructions) are only implemented to the extent that they are supported
by the OS, by converting them into an Itanium exception.

10. Intersegment calls require OS mechanism
FAR CALL, FAR JMP, FAR RET, SYSENTER, and SYSEXIT instructions are supported only
when there is a standard interface mechanism in the OS. Call gates and hardware task switch
mechanisms are not supported.

11. Thread creation may be reported incorrectly to the OS
Thread creation may succeed according to the OS, but could later fail inside IA-32 execution layer
due to insufficient resources (memory/handle/semaphore). The created thread will never start
running.
62 Intel® Itanium® 2 Processor Specification Update

	Revision History
	Preface
	Summary Table of Changes
	Identification Information
	Errata (Processor and PAL)
	Errata (IA-32 Execution Layer)
	Itanium® 2 Processor Specification Changes
	Itanium® 2 Processor Specification Clarifications
	Itanium® 2 Processor Documentation Changes
	IA-32 Execution Layer Specification Clarifications

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts false
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
]
 /NeverEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /ZapfDingbats
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

