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1 Collatz problem

In this paper, we consider some holomorphic functions connected with the Collatz problem.

The Collatz problem(or conjecture) is well known under the name 3n+ 1 problem:

Take any positive integer n. If n is even, replace it by n
2
; if n is odd, replace it by 3n+1. Show

that after �nitely many such steps, this process reaches the number 1.

We bring odd numbers into focus. For non-zero integers, we de�ne a function � as follows:

For a non-zero even integer n, �(n) is a unique odd integer m such that

n = 2km (9k = 1; 2; � � �)，

for an odd integer n, �(n) is a unique odd integer m such that

3n+ 1 = 2km (9k = 1; 2; � � �).

Let OZ be the set of all odd integers. Then the above function maps

� : Z n f0g ! OZ ( � Z n f0g),

and we call the restriction (to OZ)

� : OZ ! OZ

the Collatz function.

The Collatz problem asserts that, for each positive odd integer n, we have a positive integer k

such that �k(n) = 1.

Now, we can easily compute the inverse image of the Collatz function � : OZ ! OZ.

Fact 1 For 8k 2 Z, we have

8><
>:

��1(6k + 1) = f4n(8k + 1) + 4n�1 + � � �+ 4 + 1 2 OZ j n = 0; 1; 2; � � �g

��1(6k + 3) = ;

��1(6k + 5) = f4n(4k + 3) + 4n�1 + � � �+ 4 + 1 2 OZ j n = 0; 1; 2; � � �g:

1



2 Some holomorphic functions on C

Here, we construct some holomorphic functions which agree on all positive odd integers

with the Collatz function �. We de�ne a meromorphic function

G(z) :=
P1
m=0

�(2m+ 1)
�

1
(z � 2m� 1)2

� 1
(2m+ 1)2

�
in C,

and a holomorphic function

F (z) :=
�

4
�2

cos2 �z
2

�
G(z) on C.

From Fact 1, we see easily that, for all z 2 C,

G(z) =

1X
k=0

1X
n=0

(6k + 1)
�

1
(z � (4n(8k + 1) + 4n�1 + � � �+ 4 + 1))2

� 1
(4n(8k + 1) + 4n�1 + � � �+ 4 + 1)2

�

+

1X
k=0

1X
n=0

(6k + 5)
�

1
(z � (4n(4k + 3) + 4n�1 + � � �+ 4 + 1))2

� 1
(4n(4k + 3) + 4n�1 + � � �+ 4 + 1)2

�
:

This meromorphic function G(z) has the Laurent expansion

G(z) =
�(2n+ 1)

(z � 2n� 1)2
�

�(2n+ 1)

(2n+ 1)2
+

X
n6=m�0

�(2m+ 1)
�

1
4(m� n)2

� 1
(2m+ 1)2

�

+
X
k�1

(k + 1)

2k+2

� X
n6=m�0

�(2m+ 1)

(m� n)k+2

�
(z � 2n� 1)k

around 2n+ 1 in C (n = 0; 1; � � �), and

F (z) = 2
�2

(1� cos�(z � 2n� 1))G(z) on C.

Fact 2 For the entire function F (z), we have the following:

(1) F (2n+ 1) = �(2n+ 1) for each non-negative integer n, and

F (2n+ 1) = 0 for each negative integer n.

(2) F 0(2n+ 1) = 0 for each integer n.

Now, we also de�ne
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Kp(z) :=
4p

�2p
cos2p �z

2

1X
n=0

�(2n+ 1)

(z � 2n� 1)2p
on C (p = 2; 3; � � �)

and

Lp(z) := � 4p

�2p+1
cos2p �z

2
sin�z

1X
n=0

�(2n+ 1)

(z � 2n� 1)2p+1
on C (p = 1; 2; � � �).

Fact 3 The following identities hold:

(1) Kp(2n+ 1) = Lp(2n+ 1) = L1(2n+ 1) = �(2n+ 1) (n = 0; 1; 2; � � � ; p = 2; 3; � � �), and

Kp(2n+ 1) = Lp(2n+ 1) = L1(2n+ 1) = 0 (n = �1;�2; � � � ; p = 2; 3; � � �).

(2) K 0
p(2n+ 1) = L0p(2n+ 1) = L01(2n+ 1) = 0 (n 2 Z; p = 2; 3; � � �).

And we have

8><
>:

(sin �z)F 0(z)� �(cos�z � 1)F (z) = 2�L1(z)

(1 + cos�z)F 00(z) + 2�(sin�z)F 0(z) + (2� cos�z)�2F (z) = 3�2K2(z)

(8z 2 C).

We note that the function y(z) = cos�z + 1 on C satis�es the di�erential equations

8><
>:

(sin �z)y0(z)� �(cos�z � 1)y(z) = 0

(1 + cos�z)y00(z) + 2�(sin�z)y0(z) + (2� cos�z)�2y(z) = 0:

Further we have, for all z 2 C,

8>>>>><
>>>>>:

(sin �z)K 0
p(z)� p�(cos�z � 1)Kp(z) = 2p�Lp(z) (p = 2; 3; � � �)

(sin �z)L0p(z)� �((p+ 1) cos�z � p)Lp(z) = �
(2p+ 1)�

2
(cos�z � 1)Kp+1(z)

(p = 1; 2; � � �):

The function y(z) = (cos�z + 1)p on C satis�es the di�erential equations

8><
>:

(sin �z)y0(z)� p�(cos�z � 1)y(z) = 0

(sin �z)y00(z)� �(p cos�z � p+ 1)y0(z) = 0 (p = 1; 2; � � �):

3



3 Attractive �xed points and the Fatou set

Here we state some propositions concerning the Fatou set and the Julia set of the entire

function F (z).

First, for 8 x < 0 in R we �nd that

0 > G(x) =
1X
m=0

�(4m+ 1)
�

1
(x� 4m� 1)2

� 1
(4m+ 1)2

�

+

1X
m=0

�(4m+ 3)
�

1
(x � 4m� 3)2

� 1
(4m+ 3)2

�

>
1

(1� x)2
� 1 + 5

(3� x)2
� 5

32
+ 1

(5� x)2
� 1

52
+ 11

(7� x)2
� 11

72

+ 7
(9� x)2

� 7
92

+ 17
(11� x)2

� 17
112

� 3
16

log
(9� x)

9
� 7

36
+ 7

4(9� x)

� 3
8
log

(11� x)
11

� 17
44

+
17

4(11� x)
;

because

0 >

1X
m=3

�(4m+ 1)
�

1
(x� 4m� 1)2

� 1
(4m+ 1)2

�

+
1X
m=3

�(4m+ 3)
�

1
(x� 4m� 3)2

� 1
(4m+ 3)2

�

>

1X
m=3

(3m+ 1)
�

1
(x� 4m� 1)2

� 1
(4m+ 1)2

�

+

1X
m=3

(6m+ 5)
�

1
(x� 4m� 3)2

� 1
(4m+ 3)2

�

>

Z 1

2

�
3t+ 1

(x� 4t� 1)2
� 3t+ 1

(4t+ 1)2

�
dt

+

Z 1

2

�
6t+ 5

(x � 4t� 3)2
� 6t+ 5

(4t+ 3)2

�
dt

= � 3
16

log
(9� x)

9
� 7

36
+ 7

4(9� x)

� 3
8
log

(11� x)
11

� 17
44

+ 17
4(11� x)

:

Fact 4 We have the following:

(1) F (x) > 0 for 8 x > 0 in R.
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(2) 0 � F (x) � 4
�2

�
cos2

�x
2

��
1

(1� x)2
� 1 +

5
(3� x)2

� 5
32

+
1

(5� x)2
� 1

52

+ 11
(7� x)2

� 11
72

+ 7
(9� x)2

� 7
92

+ 17
(11� x)2

� 17
112

� 3
16

log
(9� x)

9
� 7

36
+ 7

4(9� x)

� 3
8
log

(11� x)
11

� 17
44

+ 17
4(11� x)

�
for 8 x � 0 in R:

The Taylor expansion of G(z) around 0 in C is

G(z) =
P
k�1(k + 1)

�P
m�0

�(2m+ 1)

(2m+ 1)k+2

�
zk

= 2
�P

m�0

�(2m+ 1)

(2m+ 1)3

�
z + 3

�X
m�0

�(2m+ 1)

(2m+ 1)4

�
z2 + � � �,

and

F (z) = 2
�2

(1 + cos�z)G(z) on C.

Proposition 1 For the entire function F (z), we have the following:

(1) z = 0 is a repelling �xed point of F (z) such that 1:024 < F 0(0) < 1:07, where

F 0(0) =
8
�2

1X
n=0

�(2n+ 1)

(2n+ 1)3

= 8
�2

1X
k=0

1X
n=0

6k + 1
(4n(8k + 1) + 4n�1 + � � �+ 4 + 1)3

+ 8
�2

1X
k=0

1X
n=0

6k + 5
(4n(4k + 3) + 4n�1 + � � �+ 4 + 1)3

( = 1:043 � � � derived by computer.)

(2) z = 1 is a superattractive (namely F 0(1) = 0) �xed point of F (z).

(3) There exists an attractive �xed point z0 (2 R) of F (z) such that � 1
20

< z0 < 0.

Further, around 2n+ 1 in C (n = 0; 1; � � �) we have

F (z) = �(2n+ 1)

+ 2�(2n+ 1)
X
m�1

(�1)m
�

1
(2m+ 1)!

+ 1
(2n+ 1)2�2(2m)!

�
�2m(z � 2n� 1)2m

+ 2
�2

(1� cos�(z � 2n� 1))
X

n6=m�0

�(2m+ 1)
�

1
(z � 2m� 1)2

� 1
(2m+ 1)2

�
:
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From the above expression, for 8n = 0; 1; 2; � � � we can compute that

jF (z)� F (2n+ 1)j < 6(2n+ 1)�2(z � 2n� 1)2 if jz � 2n� 1j < 1
�
.

Proposition 2 Every positive odd integer is in the Fatou set F(F ) of the entire function

F (z). Moreover, for 8n = 0; 1; 2; � � � we have

�
z 2 C

�� jz � 2n� 1j < 1
12�2(2n+ 1)

�
� F(F ):

Fact 5 From Fact 4 (2) we have

(1) 0 � F (x) � x+ 1 for 8 x � �1 in R:

(2) The composite Fn of F satis�es

0 � Fn(x) � �1 if 0 � x � �n� 1 in R (8n = 1; 2; � � �).

Proposition 3 Every negative odd integer is in the Julia set J(F ) of the entire function F (z).

Moreover, we have

J(F ) \ (�1; 0] = [n>0 F�n(0) \ (�1; 0].

By THEOREM 3.1 of [1], we have the following:

Proposition 4 Every component of the Fatou set of F (z) is simply connected.
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