Some Holomorphic Functions connected with the Collatz Problem

Toshio URATA
Department of Mathematics Education, Aichi University of Education, Kariya 448-8542, Japan

1 Collatz problem

In this paper, we consider some holomorphic functions connected with the Collatz problem. The Collatz problem(or conjecture) is well known under the name $3 n+1$ problem: Take any positive integer n. If n is even, replace it by $\frac{n}{2}$; if n is odd, replace it by $3 n+1$. Show that after finitely many such steps, this process reaches the number 1.

We bring odd numbers into focus. For non-zero integers, we define a function ϕ as follows: For a non-zero even integer $n, \phi(n)$ is a unique odd integer m such that

$$
n=2^{k} m \quad(\exists k=1,2, \cdots)
$$

for an odd integer $n, \phi(n)$ is a unique odd integer m such that

$$
3 n+1=2^{k} m \quad(\exists k=1,2, \cdots)
$$

Let $O \boldsymbol{Z}$ be the set of all odd integers. Then the above function maps

$$
\phi: \boldsymbol{Z} \backslash\{0\} \quad \rightarrow \quad O \boldsymbol{Z}(\subset \boldsymbol{Z} \backslash\{0\}),
$$

and we call the restriction (to $O \boldsymbol{Z}$)
$\phi: O \boldsymbol{Z} \rightarrow O \boldsymbol{Z}$
the Collatz function.
The Collatz problem asserts that, for each positive odd integer n, we have a positive integer k such that $\phi^{k}(n)=1$.

Now, we can easily compute the inverse image of the Collatz function $\phi: O \boldsymbol{Z} \rightarrow O \boldsymbol{Z}$.

Fact 1 For $\forall k \in \boldsymbol{Z}$, we have

$$
\left\{\begin{array}{l}
\phi^{-1}(6 k+1)=\left\{4^{n}(8 k+1)+4^{n-1}+\cdots+4+1 \in O \boldsymbol{Z} \mid n=0,1,2, \cdots\right\} \\
\phi^{-1}(6 k+3)=\emptyset \\
\phi^{-1}(6 k+5)=\left\{4^{n}(4 k+3)+4^{n-1}+\cdots+4+1 \in O \boldsymbol{Z} \mid n=0,1,2, \cdots\right\}
\end{array}\right.
$$

2 Some holomorphic functions on C

Here, we construct some holomorphic functions which agree on all positive odd integers with the Collatz function ϕ. We define a meromorphic function

$$
G(z):=\sum_{m=0}^{\infty} \phi(2 m+1)\left(\frac{1}{(z-2 m-1)^{2}}-\frac{1}{(2 m+1)^{2}}\right) \quad \text { in } \boldsymbol{C}
$$

and a holomorphic function

$$
F(z):=\left(\frac{4}{\pi^{2}} \cos ^{2} \frac{\pi z}{2}\right) G(z) \quad \text { on } \boldsymbol{C}
$$

From Fact 1, we see easily that, for all $z \in C$,

$$
\begin{array}{r}
G(z)=\sum_{k=0}^{\infty} \sum_{n=0}^{\infty}(6 k+1)\left(\frac{1}{\left(z-\left(4^{n}(8 k+1)+4^{n-1}+\cdots+4+1\right)\right)^{2}}\right. \\
\left.-\frac{1}{\left(4^{n}(8 k+1)+4^{n-1}+\cdots+4+1\right)^{2}}\right) \\
+\sum_{k=0}^{\infty} \sum_{n=0}^{\infty}(6 k+5)\left(\begin{array}{r}
\left(z-\left(4^{n}(4 k+3)+4^{n-1}+\cdots+4+1\right)\right)^{2} \\
\\
\left.-\frac{1}{\left(4^{n}(4 k+3)+4^{n-1}+\cdots+4+1\right)^{2}}\right)
\end{array} .\right.
\end{array}
$$

This meromorphic function $G(z)$ has the Laurent expansion

$$
\begin{aligned}
G(z)=\frac{\phi(2 n+1)}{(z-2 n-1)^{2}}-\frac{\phi(2 n+1)}{(2 n+1)^{2}} & +\sum_{n \neq m \geq 0} \phi(2 m+1)\left(\frac{1}{4(m-n)^{2}}-\frac{1}{(2 m+1)^{2}}\right) \\
& +\sum_{k \geq 1} \frac{(k+1)}{2^{k+2}}\left(\sum_{n \neq m \geq 0} \frac{\phi(2 m+1)}{(m-n)^{k+2}}\right)(z-2 n-1)^{k}
\end{aligned}
$$

around $2 n+1$ in $\boldsymbol{C}(n=0,1, \cdots)$, and

$$
F(z)=\frac{2}{\pi^{2}}(1-\cos \pi(z-2 n-1)) G(z) \quad \text { on } \boldsymbol{C}
$$

Fact 2 For the entire function $F(z)$, we have the following:
(1) $F(2 n+1)=\phi(2 n+1)$ for each non-negative integer n, and $F(2 n+1)=0 \quad$ for each negative integer n.
(2) $F^{\prime}(2 n+1)=0 \quad$ for each integer n.

Now, we also define

$$
K_{p}(z):=\frac{4^{p}}{\pi^{2 p}} \cos ^{2 p} \frac{\pi z}{2} \sum_{n=0}^{\infty} \frac{\phi(2 n+1)}{(z-2 n-1)^{2 p}} \quad \text { on } \boldsymbol{C} \quad(p=2,3, \cdots)
$$

and

$$
L_{p}(z):=-\frac{4^{p}}{\pi^{2 p+1}} \cos ^{2 p} \frac{\pi z}{2} \sin \pi z \sum_{n=0}^{\infty} \frac{\phi(2 n+1)}{(z-2 n-1)^{2 p+1}} \quad \text { on } \boldsymbol{C} \quad(p=1,2, \cdots) .
$$

Fact 3 The following identities hold:
(1) $\quad K_{p}(2 n+1)=L_{p}(2 n+1)=L_{1}(2 n+1)=\phi(2 n+1) \quad(n=0,1,2, \cdots, p=2,3, \cdots)$, and $K_{p}(2 n+1)=L_{p}(2 n+1)=L_{1}(2 n+1)=0 \quad(n=-1,-2, \cdots, p=2,3, \cdots)$.
(2) $\quad K_{p}^{\prime}(2 n+1)=L_{p}^{\prime}(2 n+1)=L_{1}^{\prime}(2 n+1)=0 \quad(n \in \boldsymbol{Z}, p=2,3, \cdots)$.

And we have

$$
\left\{\begin{array}{l}
(\sin \pi z) F^{\prime}(z)-\pi(\cos \pi z-1) F(z)=2 \pi L_{1}(z) \\
(1+\cos \pi z) F^{\prime \prime}(z)+2 \pi(\sin \pi z) F^{\prime}(z)+(2-\cos \pi z) \pi^{2} F(z)=3 \pi^{2} K_{2}(z)
\end{array} \quad(\forall z \in C) .\right.
$$

We note that the function $y(z)=\cos \pi z+1$ on C satisfies the differential equations

$$
\left\{\begin{array}{l}
(\sin \pi z) y^{\prime}(z)-\pi(\cos \pi z-1) y(z)=0 \\
(1+\cos \pi z) y^{\prime \prime}(z)+2 \pi(\sin \pi z) y^{\prime}(z)+(2-\cos \pi z) \pi^{2} y(z)=0 .
\end{array}\right.
$$

Further we have, for all $z \in C$,

$$
\begin{cases}(\sin \pi z) K_{p}^{\prime}(z)-p \pi(\cos \pi z-1) K_{p}(z)=2 p \pi L_{p}(z) & (p=2,3, \cdots) \\ (\sin \pi z) L_{p}^{\prime}(z)-\pi((p+1) \cos \pi z-p) L_{p}(z)=-\frac{(2 p+1) \pi}{2}(\cos \pi z-1) K_{p+1}(z) \\ & (p=1,2, \cdots) .\end{cases}
$$

The function $y(z)=(\cos \pi z+1)^{p}$ on C satisfies the differential equations

$$
\left\{\begin{array}{l}
(\sin \pi z) y^{\prime}(z)-p \pi(\cos \pi z-1) y(z)=0 \\
(\sin \pi z) y^{\prime \prime}(z)-\pi(p \cos \pi z-p+1) y^{\prime}(z)=0
\end{array} \quad(p=1,2, \cdots) .\right.
$$

3 Attractive fixed points and the Fatou set

Here we state some propositions concerning the Fatou set and the Julia set of the entire function $F(z)$.

First, for $\forall x<0$ in \boldsymbol{R} we find that

$$
\begin{aligned}
0>G(x)= & \sum_{m=0}^{\infty} \phi(4 m+1)\left(\frac{1}{(x-4 m-1)^{2}}-\frac{1}{(4 m+1)^{2}}\right) \\
& +\sum_{m=0}^{\infty} \phi(4 m+3)\left(\frac{1}{(x-4 m-3)^{2}}-\frac{1}{(4 m+3)^{2}}\right) \\
& >\frac{1}{(1-x)^{2}}-1+\frac{5}{(3-x)^{2}}-\frac{5}{3^{2}}+\frac{1}{(5-x)^{2}}-\frac{1}{5^{2}}+\frac{11}{(7-x)^{2}}-\frac{11}{7^{2}} \\
& +\frac{7}{(9-x)^{2}}-\frac{7}{9^{2}}+\frac{17}{(11-x)^{2}}-\frac{17}{11^{2}} \\
& -\frac{3}{16} \log \frac{(9-x)}{9}-\frac{7}{36}+\frac{7}{4(9-x)} \\
& \quad-\frac{3}{8} \log \frac{(11-x)}{11}-\frac{17}{44}+\frac{17}{4(11-x)}
\end{aligned}
$$

because

$$
\begin{gathered}
0>\sum_{m=3}^{\infty} \phi(4 m+1)\left(\frac{1}{(x-4 m-1)^{2}}-\frac{1}{(4 m+1)^{2}}\right) \\
+\sum_{m=3}^{\infty} \phi(4 m+3)\left(\frac{1}{(x-4 m-3)^{2}}-\frac{1}{(4 m+3)^{2}}\right) \\
>\sum_{m=3}^{\infty}(3 m+1)\left(\frac{1}{(x-4 m-1)^{2}}-\frac{1}{(4 m+1)^{2}}\right) \\
+\sum_{m=3}^{\infty}(6 m+5)\left(\frac{1}{(x-4 m-3)^{2}}-\frac{1}{(4 m+3)^{2}}\right) \\
>\int_{2}^{\infty}\left(\frac{3 t+1}{(x-4 t-1)^{2}}-\frac{3 t+1}{(4 t+1)^{2}}\right) d t \\
+\int_{2}^{\infty}\left(\frac{6 t+5}{(x-4 t-3)^{2}}-\frac{6 t+5}{(4 t+3)^{2}}\right) d t \\
=-\frac{3}{16} \log \frac{(9-x)}{9}-\frac{7}{36}+\frac{7}{4(9-x)} \\
-\frac{3}{8} \log \frac{(11-x)}{11}-\frac{17}{44}+\frac{17}{4(11-x)}
\end{gathered}
$$

Fact 4 We have the following:
(1) $F(x)>0$ for $\forall x>0$ in \boldsymbol{R}.

$$
\begin{align*}
& 0 \geq F(x) \geq \frac{4}{\pi^{2}}\left(\cos ^{2} \frac{\pi x}{2}\right)\left(\frac{1}{(1-x)^{2}}-1+\frac{5}{(3-x)^{2}}-\frac{5}{3^{2}}+\frac{1}{(5-x)^{2}}-\frac{1}{5^{2}}\right. \tag{2}\\
&+ \frac{11}{(7-x)^{2}}-\frac{11}{7^{2}}+\frac{7}{(9-x)^{2}}-\frac{7}{9^{2}}+\frac{17}{(11-x)^{2}}-\frac{17}{11^{2}} \\
&-\frac{3}{16} \log \frac{(9-x)}{9}-\frac{7}{36}+\frac{7}{4(9-x)} \\
&\left.-\frac{3}{8} \log \frac{(11-x)}{11}-\frac{17}{44}+\frac{17}{4(11-x)}\right) \\
& \text { for } \forall x \leq 0 \text { in } \boldsymbol{R} .
\end{align*}
$$

The Taylor expansion of $G(z)$ around 0 in C is

$$
\begin{aligned}
G(z)= & \sum_{k \geq 1}(k+1)\left(\sum_{m \geq 0} \frac{\phi(2 m+1)}{(2 m+1)^{k+2}}\right) z^{k} \\
& =2\left(\sum_{m \geq 0} \frac{\phi(2 m+1)}{(2 m+1)^{3}}\right) z+3\left(\sum_{m \geq 0} \frac{\phi(2 m+1)}{(2 m+1)^{4}}\right) z^{2}+\cdots,
\end{aligned}
$$

and

$$
F(z)=\frac{2}{\pi^{2}}(1+\cos \pi z) G(z) \quad \text { on } \boldsymbol{C} \text {. }
$$

Proposition 1 For the entire function $F(z)$, we have the following:
(1) $z=0$ is a repelling fixed point of $F(z)$ such that $1.024<F^{\prime}(0)<1.07$, where

$$
\begin{aligned}
& F^{\prime}(0)= \frac{8}{\pi^{2}} \sum_{n=0}^{\infty} \frac{\phi(2 n+1)}{(2 n+1)^{3}} \\
&= \frac{8}{\pi^{2}} \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \frac{6 k+1}{\left(4^{n}(8 k+1)+4^{n-1}+\cdots+4+1\right)^{3}} \\
& \quad \frac{8}{\pi^{2}} \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \frac{6 k+5}{\left(4^{n}(4 k+3)+4^{n-1}+\cdots+4+1\right)^{3}} \\
&(=1.043 \cdots \text { derived by computer. })
\end{aligned}
$$

(2) $z=1$ is a superattractive (namely $\left.F^{\prime}(1)=0\right)$ fixed point of $F(z)$.
(3) There exists an attractive fixed point $z_{0}(\in \boldsymbol{R})$ of $F(z)$ such that $-\frac{1}{20}<z_{0}<0$.

Further, around $2 n+1$ in $\boldsymbol{C}(n=0,1, \cdots)$ we have

$$
\begin{aligned}
F(z)= & \phi(2 n+1) \\
& +2 \phi(2 n+1) \sum_{m \geq 1}(-1)^{m}\left(\frac{1}{(2 m+1)!}+\frac{1}{(2 n+1)^{2} \pi^{2}(2 m)!}\right) \pi^{2 m}(z-2 n-1)^{2 m} \\
& +\frac{2}{\pi^{2}}(1-\cos \pi(z-2 n-1)) \sum_{n \neq m \geq 0} \phi(2 m+1)\left(\frac{1}{(z-2 m-1)^{2}}-\frac{1}{(2 m+1)^{2}}\right) .
\end{aligned}
$$

From the above expression, for $\forall n=0,1,2, \cdots$ we can compute that

$$
|F(z)-F(2 n+1)|<6(2 n+1) \pi^{2}(z-2 n-1)^{2} \quad \text { if } \quad|z-2 n-1|<\frac{1}{\pi}
$$

Proposition 2 Every positive odd integer is in the Fatou set $F(F)$ of the entire function $F(z)$. Moreover, for $\forall n=0,1,2, \cdots$ we have

$$
\left\{z \in C\left||z-2 n-1|<\frac{1}{12 \pi^{2}(2 n+1)}\right\} \quad \subset \quad F(F)\right.
$$

Fact 5 From Fact 4 (2) we have
(1) $0 \geq F(x) \geq x+1$ for $\forall x \leq-1$ in \boldsymbol{R}.
(2) The composite F^{n} of F satisfies

$$
0 \geq F^{n}(x) \geq-1 \quad \text { if } \quad 0 \geq x \geq-n-1 \quad \text { in } \quad \boldsymbol{R} \quad(\forall n=1,2, \cdots)
$$

Proposition 3 Every negative odd integer is in the Julia set $J(F)$ of the entire function $F(z)$. Moreover, we have

$$
J(F) \cap(-\infty, 0]=\cup_{n>0} F^{-n}(0) \cap(-\infty, 0]
$$

By THEOREM 3.1 of [1], we have the following:
Proposition 4 Every component of the Fatou set of $F(z)$ is simply connected.

References

[1] I. N. Baker: Wandering domains in the iteration of entire functions, Proc. London Math. Soc., 49(1984), 563-576.
[2] W. Bergweiler: Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N.S.) 29:2(1993), 151-188.
[3] Marc Chamberland: A Dynamical Systems Approach to the 3x+1 Problem, Proceedings of International Conference on the Collatz Problem and Related Topics 1999, Ed. M. Chamberland.
[4] A. E. Eremenko and M. Y. Lyubich: Dynamical properties of some classes of entire functions, Ann. Inst. Fourier(Grenoble) 42:4(1992), 989-1020.
[5] J. C. Lagarias: The $3 x+1$ Problem and its Generalizations, Amer. Math. Monthly 92(1985), 3-23.
[6] Simon Letherman, Dierk Schleicher, and Reg Wood: The $3 n+1$-Problem and Holomorphic Dynamics, Experimental Mathematics, 8:3(1999), 241-251.
[7] Urata Toshio, Suzuki Katsufumi: Collatz Problem(Japanese), Epsilon (The Bulletin of the Soc. of Mathematics Education of Aichi Univ. of Edu.) 38(1996) , 123-131.
[8] Urata Toshio, Suzuki Katsufumi, Kajita Hisao: Collatz Problem II(Japanese), Epsilon (The Bulletin of the Soc. of Mathematics Education of Aichi Univ. of Edu.) 39(1997), 121-129.
[9] Urata Toshio, Suzuki Katsufumi: Collatz Problem III(Japanese), Epsilon (The Bulletin of the Soc. of Mathematics Education of Aichi Univ. of Edu.) 40(1998), 57-65.
[10] Urata Toshio: Collatz Problem IV(Japanese), Epsilon (The Bulletin of the Soc. of Mathematics Education of Aichi Univ. of Edu.) 41(1999) , 111-116.
[11] Toshio Urata: The Collatz Problem over the 2-adic Integers, manuscript.

