
Predicting the Future: 
Resource Requirements 
and Predictive Optimism 
 
 
 
Bradley L. Noble 
Roger D. Chamberlain 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B.L. Noble and R.D. Chamberlain, “Predicting the Future: Resource 
Requirements and Predictive Optimism,” in Proc. of 9th Workshop on Parallel 
and Distributed Simulation, June 1995, pp. 157-164. 
 
 
 
 
Computer and Communications Research Center 
Washington University 
Campus Box 1115 
One Brookings Dr. 
St. Louis, MO  63130-4899 



Predicting the Future: Resource Requirements and Predictive Optimism

Bradley L. Noble Roger D. Chamberlain
brad@ccrc.wustl.edu roger@ccrc.wustl.edu

Computer and Communications Research Center
Washington University, St. Louis, Missouri

Abstract. The partitioning of systems for parallel simula-
tion is a complex task, requiring consideration of both com-
putational load requirements and communications activity.
Typically, this information is not accurately known prior
to execution. This paper investigates the use of historical
information for the prediction of future requirements, both
for computationand communications. In addition, for opti-
mistic simulation algorithms, we present a novel technique
(which we call predictive optimism) whereby binary pre-
diction schemes can be used to increase the accuracy of op-
timistic assumptions, thereby decreasing rollbacks and po-
tentially improving overall simulator performance.

1 Introduction
Traditionally, the distributed simulation of systems has

been carried out in a data parallel manner, in which the
components of the simulated system are partitioned and as-
signed to processors for execution. It is clear that an in-
appropriate partitioning will seriously degrade the perfor-
mance of any distributed simulation algorithm, yet good
partitionings are, in general, difficult to determine. This
is true primarily because the computational work associ-
ated with individual system components and the communi-
cations traffic required between components are typically
unknown prior to the simulation execution.

This lack of a priori knowledge of computational work-
load and communications requirements has lead to two
techniques for system partitioning. The first approach, pre-
simulation, is to execute the simulation for some small
time, measure the computational workload and/or commu-
nications requirements, and use this measured data to repar-
tition the system for the remainder of the execution. The
second approach is to use dynamic repartitioning, whereby
system components are periodically migrated from one
processor to another in response to measured resource re-
quirements (either computation or communication).

A central assumption in both of the above approaches
is that the measured historical data being used to guide
a subsequent partitioning is indicative of future require-

1This work was supported in part by the National Science Foundation
under grant number MIP-9309658.

ments. The main distinction between the two approaches
is the time scale over which this assumption is made. For
static partitioningguided by pre-simulation, we assume the
resource requirements are fairly consistent over the entire
course of the simulation execution. With dynamic migra-
tion, we rely on recent historical data to be a reasonable pre-
dictor for near-term future requirements.

This paper studies the predictive quality of historical
data on future requirements, for both computational work-
load and communications volume. Empirical data is col-
lected from VLSI logic simulations (using the ISCAS-89
sequential benchmark set [2] and a pair of locally available
circuits) that shows high correlation between past resource
requirements and future needs.

In addition, we investigate the standard assumptions
made in optimistic synchronization protocols and show
how binary prediction schemes can be used to increase the
accuracy of optimistic assumptions, a technique we call
predictive optimism. This leads us to question the use of
communications volume as an appropriate metric for sys-
tem partitioning. While the number of messages is a mea-
sure of the amount of communications volume across a pro-
cessor set, it is not necessarily directly indicative of the
amount of information communicated. Using predictive
optimism, we contend that a potentially more appropriate
metric is the entropy of the channel.

In the remainder of this section, we present the model of
distributed discrete-event simulation (DES) used and moti-
vate the study. In the following section, we describe the re-
source requirements prediction. Section 3 defines the pre-
dictive optimism technique. Section 4 describes the exper-
iments performed. Section 5 presents the empirical results
and the final section concludes and describes future work.

1.1 Model of Distributed DES
In parallel discrete-event simulation, system compo-

nents are typically modeled via logical processes (LPs) that
communicate by sending time stamped messages across ex-
plicit communications channels. The set of LPs is parti-
tioned, and the partition blocks are assigned to processors
for execution. At each point in simulated time, an LP may
or may not send a message to a neighboringLP. The channel



can be viewed in much the same way as a binary commu-
nication channel where the presence of a message is repre-
sented by a “1” and the lack of a message by a “0.” We will
exploit this view when describing predictive optimism.

Upon receipt of a message, subject to an appropriate
time synchronization protocol, an LP performs a functional
evaluation which simulates the effect of the incoming mes-
sage on the internal state of the LP and determines what (if
any) outgoing messages are generated. The computational
workload associated with each LP is assumed to be directly
related to the number of functional evaluations performed.
1.2 Motivation

Resource Requirements. Essential to the efficient op-
eration of any parallel application is a computational work-
load that is balanced across the set of processors. Addi-
tionally, if the application requires frequent interprocessor
communication, performance can be diminished by com-
munications traffic contention and latency. As a result,
good partitioning algorithms must simultaneously balance
the computational workload as well as minimize and bal-
ance the communications requirements. This is often ac-
complished by posing the partitioning problem as a com-
binatorial optimization problem, where the goal is to mini-
mize a cost function of the form

C = f(COMP;COMM )

where COMP represents the computational load bal-
ance, COMM represents the communications require-
ments, and f is a combining function of some form (e.g.,
maximum, sum, etc.) [1].

One of the primary limitations of this approach for
discrete-event simulation is the general lack of knowledge
about the resource requirements (both computation and
communications) prior to execution. This has motivated
the use of data collected during simulation execution to
guide subsequent system partitionings, either in the form
of a pre-simulation run [6] or the dynamic redistribution of
LPs during simulation execution [8].

A previous study [3] provided positive evidence for the
use of past computational workload data as a predictor for
future workload in VLSI systems simulation. This empir-
ical study was limited, however, by the the use of a small
set of benchmark circuits, the use of random input vectors
to drive the circuits, and a focus on computational work-
load (ignoring communications requirements). We extend
this previous work to address each of the above limitations.

Predictive Optimism. By their very nature, optimistic
methods make causality errors. When a potential causal-
ity error has been detected (due to the arrival of a straggler
message or an anti-message), the local state is rolled back
to the time stamp of the arrival and the simulation execution
proceeds from that point. Large numbers of rollbacks can

have serious negative implications on the performance of
the simulator, to the point of making the simulation behave
erratically [5].

In all optimistic simulation methods to date, the stan-
dard optimistic assumption made is that if a message has
not yet arrived, no message will arrive, and the simulation
proceeds as if the communication channel were inactive.
We propose to use the past history of messages communi-
cated along a channel to enable a more sophisticated opti-
mistic assumption, which we call predictive optimism.

Information theoretic techniques relating to communi-
cation channels have been available for several decades.
These techniques can be applied to the communication
channels between LPs to make more informed guesses as to
the arrival and potential contents of future messages. Pre-
dicting the arrival of messages can be useful in throttling
mechanisms (e.g., establishing appropriate window sizes),
while predicting the content of messages can increase the
probability that the optimistic assumption is correct and de-
crease the probability of eventual rollback.

In addition, measures of informationcontent, such as en-
tropy, could be used in partitioning algorithms, if the over-
head of a channel crossing processor boundaries is less a
function of the volume of messages and is more a function
of the predictability of message content.

2 Predicting Resource Requirements
When using historical data to predict future resource re-

quirements (either through pre-simulation or as part of a
dynamic component migration algorithm), we are assum-
ing that the historical data is reasonably indicative of fu-
ture requirements. We empirically test this hypothesis (for
both computational workload and communications traffic)
on VLSI logic simulations.

To study computational workload, we measure the num-
ber of functional evaluations associated with each circuit
component. Assuming that the time required for each eval-
uation is constant (a reasonable one for logic circuits), the
evaluation count is a strong indicator of workload. To study
the communications traffic, we measure the number of mes-
sages output from each latch. We limit the communications
data collected to latch outputs for purely pragmatic reasons
as described in Section 4.

For both computational workload and communications
traffic, we are interested in whether requirements stay rel-
atively constant during the course of the simulation execu-
tion. We assess this stability quantitatively by dividing the
simulation execution into time intervals and measuring the
coefficient of variation of the functional evaluation counts
and message counts throughout the execution. Stable re-
source requirements will result in a low coefficient of vari-
ation, while instability in the requirements will manifest it-
self in a high coefficient of variation.



3 Predictive Optimism
All existing optimistic algorithms make the assumption

that if a message has not arrived, none will arrive. Essen-
tially, the assumption is that the current input to the LP
will be the same as the previous input. This assumption
amounts to making a prediction about the input state. For
notational purposes, we will refer to this assumption as a
Previous State Predictor (PSP).

The PSP can be described by x̂t+1 = xt, where xt is the
state of x at time t and x̂t+1 is the estimate of state x at time
t+ 1. Since all future state is determined solely by the last
known state, PSP does not effectively use historical infor-
mation in prediction decisions. Intuitively, PSP will work
well for fairly stable channels but poorly for active ones.
This observation leads us to hypothesize that discrete-event
simulation contains historical information that can be used
to improve the prediction of messages.

If the hypothesis is true, then predictors can be designed
to take advantage of this historical information. The pre-
diction could be of two types: predicting the existence (or
absence) of a message or predicting the contents of a mes-
sage. The first type is beneficial when designing adaptive
throttling techniques for optimistic algorithms (e.g., do not
advance local time beyond when a message is predicted to
arrive). The second type can be used to guide the optimistic
assumption itself. Instead of predicting that the input state
will stay constant, predict the next value of the input state
and proceed to evaluate the resulting (conditional) event.

Predictors exist that predict at time t the next bit xt+1
based on sequential observations of an arbitrary determin-
istic binary sequence x1; x2; � � �. To test the predictability
of messages, we will focus on two predictors. The first is
a simple finite-state predictor, and the second is a more so-
phisticated incremental parsing predictor [4].
3.1 Single-State Predictor

Of the class of finite-state predictors, the simplest, non-
trivial one that retains historical information is the single-
state predictor (SSP). The SSP can be described by

x̂t+1 =

�
“0” if N0 > N1

“1” otherwise

where N0 and N1 are counts of zeros and ones, respec-
tively, observed from the entire sequence x1 throughxt. At
each time, t, the counts are updated and a guess of x̂t+1 is
made based on the largest count. It is easily shown that this
predictor has constant prediction time and constant mem-
ory usage.
3.2 Incremental Parsing Predictor

A much more sophisticated predictor based on the
Lempel-Ziv incremental parsing algorithm used in com-
pression has been developed by Feder et al. [4]. The incre-
mental parsing predictor (IPP) builds a dictionary of dis-

tinct phrases where each phrase is the shortest observed
phrase not previously parsed. The dictionary is structured
as a binary tree and initially starts with a root and two
leaves where each leaf corresponds to the phrases 0; 1 re-
spectively. Starting at the root, the branch corresponding
to the current observed bit is traversed with each new ob-
servation. When a leaf is reached, the tree is extended at
that point, making the leaf an internal node with two new
leaves extended from it.

Each branch keeps a count of the number of traversals.
The prediction x̂t+1 is made according to

x̂t+1 =

�
“0” with probability �t(p̂LZt (0))
“1” with probability �t(p̂LZt (1))

where�t(�) is a time-varying threshold function and p̂LZ
t

(�)

is calculated from the counts stored in the dictionary. The
prediction time is constant for IPP, however the memory re-
quirements are proportional to the number of nodes in the
dictionary (i.e., logarithmic in the length of the input se-
quence).

4 Experimental Methods
The experimental setup uses VLSI logic circuits as the

simulated system. We execute a unit-delay, gate-level sim-
ulation of all of the ISCAS-89 sequential benchmark set in
addition to a pair of locally available circuits. The ISCAS
benchmarks are exercised using random input vectors, and
the remaining two circuits are exercised using “typical us-
age” input vectors. These typical usage vectors were cho-
sen (by the designers of the circuit) to be indicative of the
use of the circuit in normal operation. For all but one of the
circuits, an input vector consists of one clock cycle, and the
circuits were simulated for 5000 vectors. For the remaining
circuit, a vector consisted of three clock cycles, and the cir-
cuit was simulated for 2500 vectors (or 7500 clock cycles).

For the purposes of resource requirements prediction,
the simulation run was divided into intervals of 100 vec-
tors each, and the resource usage counts (functional eval-
uations and messages) were accumulated within each in-
terval. Raw data is presented for a pair of the circuits to
illustrate the trends that were observed. To quantitatively
assess the entire data set, the standard deviation and mean
of the counts are calculated for each component (or chan-
nel) and plotted as a histogram of the coefficients of varia-
tion (the ratio of the sample standard deviations to the sam-
ple means). To address the important issue of random input
vectors vs. typical usage input vectors, the aggregate results
for the two local circuits are presented separately.

Due to data collection limitations in the simulator used,
it was impractical to collect communications data on every
signal line in the circuit. (The functional evaluation data is
collected for every component.) To limit the number of sig-
nals that need to be monitored, we assume that the circuit



is partitioned using a variant of the cones partitioning algo-
rithm [7, 10], in which the only signals that are candidates
for interprocessor communication are the latch outputs. As
a result, an LP consists of one latch with all associated com-
binational logic gates at the latch input.

When investigating the predictive optimism technique,
we exploit a property of the cones partitioning and observe
that messages are constrained to have time stamps that co-
incide with clock edges (the only time a latch output can
change). This implies that the predictors can be exercised
once per clock, rather than once per simulated time step.
We also exploit a property of the two-state logic simulation,
predicting the existence of a message is equivalent to pre-
dicting the content of the message (since the message con-
tents are constrained to be either “0” or “1”).

To assess the predictive optimism, the output of each
latch is fed into each of the three predictors described above
(PSP, SSP, and IPP). Prediction accuracy is then computed
as the ratio of successfully predicted messages to the total
number predictions.

5 Empirical Results
5.1 Resource Requirements

The raw functional evaluation counts for each interval
for each component are presented in Figure 1 for circuit
s510 of the ISCAS-89 set. The number of components in
this circuit is 217. For each component, tracing the line
across the time intervals gives an indication of the variabil-
ity in the computational workload required for that compo-
nent. The high-frequency bouncing indicates the degree to
which neighboring time intervals reflect each other, and the
similarity in height over the entire run indicates the stability
throughout the simulation execution. As can be seen from
the graph, the long term stability is excellent, and the neigh-
boring time intervals have fairly good stability as well.

While this type of plot shows the most detail, it is im-
practical for presenting data from over 140,000 compo-
nents. To reduce the data to manageable form, we calcu-
late the sample standard deviation and mean of the counts
for each component across the time intervals. The ratio of
the standard deviation to the mean (the coefficient of varia-
tion) is then plotted as a histogram to show its distribution.
To correlate the histogram plots with the raw data, Figure 2
shows the histogram for circuit s510. Note that the high-
est value in the distribution has a coefficient of variation of
approximately 0.6, indicating that there are no components
with a large variability in functional evaluations.

The variabilityhistogram for all of the ISCAS-89 bench-
mark circuits is shown in Figure 3, and the histogram for
the two local circuits (with typical usage input vectors) is
shown in Figure 4.

For the ISCAS-89 set, under 0.05% of the components
have a coefficient of variation over 1.0, indicating that the

0
10

20
30

40
50

50

100

150

200

0

100

200

300

400

Time IntervalComponent Number

E
va

lu
at

io
ns

Figure 1: Functional evaluations for circuit s510

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Standard Deviation / Mean

F
ra

ct
io

n 
of

 C
om

po
ne

nt
s

Figure 2: Variability of evaluations for circuit s510

vast majority have a limited degree of variability.
For the local circuits, just under 5% of the components

have a coefficient of variation over 1.0. Of these compo-
nents, however, all have a mean number of functional eval-
uations per interval below 2, indicating that they are rela-
tively insignificant in terms of their impact on the total com-
putational workload. Figure 5 shows the raw data for the
local circuit with the highest variability. Although there
are variations present (components with increasing evalu-
ation counts and components with decreasing evaluation
counts), generally, there is broad-based stability in the com-
putational workload requirements, even with the utilization
of typical usage input vectors.

Switching our consideration to the communications vol-
ume, the raw message counts are presented in Figure 6 for
circuit s1196 of the ISCAS-89 set. The number of commu-
nications channels in this circuit is 18. For each channel,
followinga line across the time intervals gives an indication
of the variability in the communications volume required
for that channel. Again, we see fairly good stability across



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Standard Deviation / Mean

F
ra

ct
io

n 
of

 C
om

po
ne

nt
s

Figure 3: Variability of evaluations ISCAS-89 circuits

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

Standard Deviation / Mean

F
ra

ct
io

n 
of

 C
om

po
ne

nt
s

Figure 4: Variability of evaluations for local circuits

a wide time interval, and reasonably good stability across
shorter time intervals.

As with the functional evaluation data, we calculate the
coefficient of variation for each channel and plot a his-
togram of these values. Figures 7 and 8 are the plots
for the ISCAS-89 set and the two local circuits, respec-
tively. Across the ISCAS-89 benchmark set, a relatively
small fraction of the channels have a coefficient of varia-
tion above 1.0, and for those that do, a significant fraction
have a small mean (below 2 messages per interval).

For the local circuits, the results are very similar to the
ISCAS-89 benchmark set. Approximately 5% of the com-
munications channels have a coefficient of variation over
1.0, with virtually all of those over 1.0 having a very small
mean (less than 0.5 messages per interval). The statisti-
cal outliers simply will not have a significant impact on the
overall communications performance, so their high coeffi-
cient of variation should not be a significant problem.

The results above support the preliminary conclusions
drawn in [3]. Historically measured resource requirements

0
5

10
15

20
25

200
400

600
800

1000

0

500

1000

1500

Time IntervalComponent Number

E
va

lu
at

io
ns

Figure 5: Functional evaluations for local circuit 2

0
10

20
30

40
50

0

5

10

15

0

20

40

60

80

Time IntervalChannel Number

M
es

sa
ge

s

Figure 6: Message volume for circuit s1196

can be a reasonable predictor of future resource require-
ments. We have extended the work in [3] to include a wider
range in circuits (some of which are considerably larger),
test the sensitivity to random input vectors, and include
measurements of communications requirements in addition
to computational workload.

5.2 Individual Message Prediction
The entire ISCAS-89 benchmark set contains a total of

9696 latches, providing us with the same number of chan-
nels to predict. Figure 9 shows the distributionof messages
values for all of the channels. Note that a channel that has a
value of “0” 40% of the time and “1” 60% of the time will
be counted as having an average value of 0.6. It is worth
noting that over 40% of the channels are stuck at “0” or “1.”
For these channels, we expect any reasonable binary pre-
dictor to perform with near perfect accuracy. Any improve-
ments in accuracy beyond this will be gained for channels
with average value between 0 and 1.

Figure 10 shows the accuracy of the PSP at predicting
interprocess messages for the ISCAS-89 set. The mean ac-



0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Standard Deviation / Mean

F
ra

ct
io

n 
of

 C
ha

nn
el

s

Figure 7: Variability of message vol. for ISCAS-89 circuits

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Standard Deviation / Mean

F
ra

ct
io

n 
of

 C
ha

nn
el

s

Figure 8: Variability of message vol. for local circuits

curacy is 84.4% with a standard deviation of 20.2%. As ex-
pected, over 40% of the channels are predicted with near
100% accuracy. It is important to note, however, that over
9% of the messages are predicted with an accuracy of less
than 50%, with minimum accuracy being 0%. This is sig-
nificant because we do not expect the prediction accuracy
for a reasonable predictor to be less than 50% (i.e., worse
than a random guess). This implies that the optimistic as-
sumption is poor for these channels.

The accuracy of the SSP is shown in Figure 11. Here
we see that the mean has increased slightly to 84.9% and
the standard deviation has dropped significantly to 17.8%.
It too attains a near perfect accuracy for over 40% of the
channels. Another important observation is that only 3% of
the messages were predicted with less than 50% accuracy,
however, the minimum accuracy is still 0%.

Comparing the performance of the PSP and SSP to the
IPP shown in Figure 12, we first notice that it has the high-
est mean accuracy at 87% and lowest standard deviation at
15%. Again, a near perfect accuracy is attained for over

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Average Value

F
ra

ct
io

n 
of

 S
ta

te
 B

its

9696 state bits

mean = 0.268, std = 0.315

Figure 9: Dist. of channel values for ISCAS-89 circuits

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Prediction Accuracy

F
ra

ct
io

n 
of

 C
ha

nn
el

s

9696 state bits

mean = 0.844, std = 0.202

Figure 10: PSP results for ISCAS-89 circuits

40% of the channels. In addition, only 1% of the messages
are predicted with less than 50% accuracy as compared to
the PSP at 9% and SSP at 3%. Another significant improve-
ment is that the minimum accuracy of the IPP is 48% as
compared to 0% for both the PSP and SSP. Summary re-
sults for the ISCAS-89 set are given in Table 1.

Table 1: Prediction statistics for ISCAS-89 circuits

Predictor Mean StdDev < 50% Min

PSP 84:4% 20:2% 9:2% 0:0%

SSP 84:9% 17:8% 3:1% 0:0%

IPP 87:3% 15:2% 1:5% 48:4%

To test the sensitivity of these results to the use of ran-
dom input vectors, we repeat the experiment on the local
circuits exercised with typical usage vectors. Figure 13
shows the distribution of messages and Figures 14, 15,
and 16 show the message prediction accuracy of the PSP,



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Prediction Accuracy

F
ra

ct
io

n 
of

 C
ha

nn
el

s

9696 state bits

mean = 0.849, std = 0.178

Figure 11: SSP results for ISCAS-89 circuits

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Prediction Accuracy

F
ra

ct
io

n 
of

 C
ha

nn
el

s

9696 state bits

mean = 0.873, std = 0.152

Figure 12: IPP results for ISCAS-89 circuits

SSP, and IPP respectively for the two circuits.
The summary results are given in Table 2. For these cir-

cuits, the SSP has the lowest mean and highest standard de-
viation. On the other hand, the PSP has a minimum accu-
racy of 0% as compared to 45% for SSP and 63% for IPP.
For the IPP, the mean shows a slight improvement over the
PSP but the standard deviation is significantly reduced.

Table 2: Prediction statistics for local circuits
Predictor Mean StdDev < 50% Min

PSP 92:3% 14:0% 0:8% 0:0%

SSP 87:9% 16:5% 1:6% 45:0%

IPP 92:7% 11:5% 0:0% 62:7%

Due to it’s sophistication, it is not surprising that the IPP
performs better than both the PSP and SSP. What is more
surprising is how poorly the PSP predicts some channels. It
remains to be seen how the effects of poor predictionsaffect
the performance of a simulation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Average Value

F
ra

ct
io

n 
of

 C
ha

nn
el

s

122 channels

mean = 0.151, stdev = 0.224

Figure 13: Distribution of channel values for local circuits

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Prediction Accuracy

F
ra

ct
io

n 
of

 C
ha

nn
el

s

122 channels

mean = 0.923, stdev = 0.140

Figure 14: PSP results for local circuits

6 Conclusions
This paper investigates the use of historical information

for the prediction of future computation and communica-
tions resource requirements. It has been shown that there is
clear merit for incorporating historical information in par-
titioning decisions. Refining partitioning cost functions to
include functional evaluations as well as communication
rates between processors may offer improved performance.

We also present a novel technique called predictive opti-
mism which uses binary prediction schemes to increase the
accuracy of optimistic assumptions. By predicting the ar-
rival of messages, efficient throttling mechanisms can be
developed for optimisticalgorithms. By predicting the con-
tent of messages, fewer rollbacks can be expected, poten-
tially improving the overall performance of the simulator.

Merging these two techniques provides another dimen-
sion to the partitioning problem, by characterizing chan-
nels by their entropy or information content. Partitioning
might then be encouraged across highly predictable chan-
nels. The incremental parsing predictor used in this experi-



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Prediction Accuracy

F
ra

ct
io

n 
of

 C
ha

nn
el

s

122 channels

mean = 0.879, stdev = 0.165

Figure 15: SSP results for local circuits

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Prediction Accuracy

F
ra

ct
io

n 
of

 C
ha

nn
el

s

122 channels

mean = 0.927, stdev = 0.115

Figure 16: IPP results for local circuits

ment builds a prediction dictionary that also can be used to
estimate the entropy of a channel [9].

There are, however, a number of caveats that must be
stated. It is not clear if improving the prediction accuracy
will significantly improve overall simulator performance.
Also, we have compared the accuracy of a predictor that
models existing optimistic algorithms (PSP) to that of a
very simple predictor (SSP) and a fairly sophisticated pre-
dictor (IPP). While the accuracy of the IPP was better than
both the PSP and SSP, it is the most costly to execute (pri-
marily in terms of memory requirements). The tradeoffs
between prediction accuracy and execution costs have not
yet been examined.

Random input vectors were used on a reasonably large
set of circuits, but tests using typical inputs were limited to
only two circuits. These results need to be extended to a
larger set of real input vectors before they can be safely re-
lied upon.

There are other areas that still need investigation. Are
channels where the optimistic assumption has a low predic-

tion accuracy the major cause of erratic performance of op-
timistic time synchronization algorithms? For simulations
with a larger communications symbol set, can the predic-
tion algorithms be modified to incorporate these symbols
so that prediction of message content is possible? Also, we
must develop partitioning algorithms that effectively ex-
ploit the available historical information, be it computa-
tional workload, communications volume, and/or the infor-
mation content of communications channels.

References
[1] A. Boukerche and C. Tropper. A Static Partition-

ing and Mapping Algorithm for Conservative Parallel
Simulations. In Proc. 8th Workshop on Parallel and
Distributed Simulation, pages 164–172, July 1994.

[2] F. Brglez, D. Bryan, and K. Kozminski. Combina-
tional Profiles of Sequential Benchmark Circuits. In
Proc. Int’l Symp. on Circuits and Systems, pages
1929–1934, May 1989.

[3] R. D. Chamberlain and C. L. Henderson. Evaluat-
ing the Use of Pre-Simulation in VLSI Circuit Parti-
tioning. In Proc. 8th Workshop on Parallel and Dis-
tributed Simulation, pages 139–146, July 1994.

[4] M. Feder, N. Merhav, and M. Gutman. Universal Pre-
diction of Individual Sequences. IEEE Trans. on In-
formation Theory, 38(4):1258–1270, July 1991.

[5] Y.-B. Lin and E. D. Lazowska. Processor Scheduling
for Time Warp Parallel Simulation. In Proc. SCS Mul-
ticonference on Advances in Parallel and Distributed
Simulation, pages 11–14, January 1991.

[6] N. Manjikian and W. M. Loucks. High Performance
Parallel Logic Simulation on a Network of Worksta-
tions. In Proc. 7th Workshop on Parallel and Dis-
tributed Simulation, pages 76–84, 1993.

[7] R. B. Mueller-Thuns, D. G. Saab, R. F. Damiano,
and J. A. Abraham. VLSI Logic and Fault Simulation
on General-Purpose Parallel Computers. IEEE Trans.
on Computer-Aided Design, 12(3):446–460, March
1993.

[8] D. M. Nicol and P. F. Reynolds, Jr. A Statistical Ap-
proach to Dynamic Partitioning. In Proc. SCS Multi-
conference on Distributed Simulation, pages 43–51,
1985.

[9] N. T. Plotkin and P. P. Varaiya. The Entropy of Traffic
Streams in ATM Virtual Circuits. In Proc. IEEE Info-
com, pages 1038–1045, June 1994.

[10] S. P. Smith, B. Underwood, and M. R. Mercer. An
Analysis of Several Approaches to Circuit Partition-
ing for Parallel Logic Simulation. In Proc. Int’l Conf.
on Computer Design, pages 664–667, 1987.


