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Abstract 

This paper presents a methodology for hardware/software co-design with particular emphasis on the 

problems related to the concurrent simulation and synthesis of hardware and software parts of the 

overall system. The proposed approach aims at overcoming the problem of having two separate 

simulation environments by defining a VHDL-based modeling strategy for software execution, thus 

enabling the simulation of hardware and software modules within the same VHDL-based CAD 

framework. The proposed methodology is oriented towards the application field of control-

dominated embedded systems implemented onto a single chip. 

1. Introduction 

Many application areas, spanning from telecom systems, automotive equipment to consumer 

electronics, aims at tradeoff implementation costs and performance requirements, through the use of 

heterogeneous hardware/software architectures. In particular, for many application fields requiring 

an ASIC approach to the design, the interest of the CAD developers in methodologies and support 

tools balancing the performance of customized hardware with the low cost and flexibility of 

software components has been steadily increasing in the past few years. Therefore, new design 

automation methodologies should complete current ASIC design flows in order to integrate 

dedicated logic obtained from behavioral (or Register-Transfer Level) synthesis with programmable 

parts. 

A wide class of computing systems requiring such a detailed design of both hardware and software 

subparts, fall in the category of embedded systems. In the following we will refer to the class of 

embedded systems which are dedicated to a specific application. For this term we adopt the most 

restrictive view [Wol94] of a system based on a programmable instruction-set processor which 

executes a fixed software program, connected to hardware dedicated modules which interact with 

the external environment and with the processor. They are usually characterized by a reactive 

behavior to the environment stimuli, also conditioned by real-time constraints, sometimes requiring 

a high-performance non-conventional design of the software. Although a certain 

flexibility/modifiability of the system is always a desirable property, the significant level of 

customization required by the application, the absence of notable interactions with users and the 

physical nature of the final product (e.g. a digital switching system, a remote automotive fuel 

injection controller, small-size portable equipment,...) lead to an almost impossible on-line after 

production tuning of the system. These reasons, in addition to the time-to-market pressure on 

delivering as soon as possible the final product, force the designers to freeze the system-level design 
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once the refinement of the initial specification becomes synthesizable. As a consequence, the space 

for trade-off analysis of different architectural solutions is dramatically shrunk. The result is that a 

traditional design flow is usually far from a quantitative approach, it is basically driven by a 

minimum design effort strategy, generating problems during the final modules integration, due to 

the lack of a concurrent design strategy. The presence of programmable components acts both as a 

leverage for reducing costs and as a bare support for patching the missing system functionality, 

since the impact of software modifications is less expensive in comparison with hardware redesign. 

However, improving the design process is not only a matter of modifying the designer’s view of 

system-level analysis, the activity of combining mixed hw/sw systems is fairly complex since there 

is a number of preliminary problems and positions to be carefully considered to successfully obtain 

an effective overall system synthesis. In fact, to take full advantage from concurrent design of mixed 

hw/sw architectures, new design automation strategies should be designed to allow a smooth 

integration with available industrial design environments and standards (e.g. VHDL). One of the 

challenges/requirements is to achieve cooperation instead of competition with the EDA (Electronic 

Design Automation) tools composing the ESDA (Electronic System Design Automation) arena. 

A basic path for the concurrent design process (co-design) starts from capturing the functionality of 

the whole system (co-specification), possibly avoiding any implementation bias. Such a model 

constitutes the basis for the system-level exploration, i.e. the activity of experimenting/evaluating 

different architectural solutions that will produce two sets of subsystems to be implemented one as 

hardware and the other as software modules (partitioning and binding). The final stage consists of 

the actual synthesis of both the hardware-bound and programmable parts (co-synthesis). Some 

important aspects to be considered along the co-design process are the early prediction of the final 

results, the possibility of performing a global analysis formally or by simulation (co-simulation), the 

managing and evaluation of different design alternatives, and the reusability support. 

Although hardware/software co-design goals and techniques will not probably converge to a single 

common interpretation, due to the wide spectrum of application fields and design requirements, the 

potential value-added provided by the automation of co-design tasks has been shown by a number 

of recent research works. The proposed approaches can be roughly partitioned in strategies starting 

from a fully software system implementation moving pieces of software toward the hardware 

domain and, viceversa, strategies aiming at obtaining the minimum cost by replacing pieces of 

hardware with software code. Two pioneer researches, representing this duality of goals, are 

COSYMA [Ben93] and VULCAN-II [Gup92] [Gup93]. 

The first assumes as input of the co-design flow a textual specification written in the Cx language, a 

C extension supporting task-level concurrence and timing constraints. Such a specification is 

translated into an internal representation (Extended Syntax Graph) on which preliminary simulation 

and profiling can be carried out. The environment provides an automatic partitioning stage based on 

a simulated annealing algorithm. Candidate solutions are compared by applying a cost function to 

the marked graph. After hw/sw partitioning, hardware-bound parts of the ESG are translated into 

HardwareC language and implemented via the Olympus high-level synthesis system [DeM90], 

while C source code is generated from software-bound parts. 
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The front-end and back-end stages of VULCAN are conceptually similar to the ones provided by 

COSYMA: a textual specification (written in HardwareC) is translated into an internal graph-based 

representation (System Graph); after hw/sw partitioning, parts targeted to hardware are synthesized 

by Olympus while C code is produced for software by exploiting a coroutine-based multiprocessing 

scheme. The main difference can be found in the strategy adopted by the partitioner, based on 

iterative process moving of operations between the partitions with the goal of reducing 

communication overhead while satisfying timing, bus/processor utilization and feasibility 

constraints. 

In the SpecSyn system-design environment [Gaj94a], specifications are captured via the SpecCharts 

visual language and translated into an internal representation called PSM. Partitioning is performed 

through algorithms based on clustering or simulated annealing and results are evaluated by 

estimation tools providing metrics for software and hardware speed, silicon area and code size. An 

approach to interface synthesis is discussed in [Gaj94b]. A discussion on the importance of having a 

suitable intermediate format to represent system-level specifications can be found in [Vah95]. The 

PARTIF tool ([Ism94]) allows the user to explore alternative system-level partitions by 

manipulating a hierarchical concurrent finite-state model (SOLAR). A primitive set of 

transformation (moving states, merging states) and decomposition (splitting/cutting macro-states) 

rules has been defined. 

An alternative solution to hw/sw binding is shown in the CASTLE project [Stei93]. Systems are 

modeled in standard languages such as VHDL, Verilog and C. The internal representation (Software 

View) is hierarchical and composed of control-flow graphs and basic blocks. The CASTLE 

approach is based on the concept of a library of complex components (processors, memories, 

special-purpose off-the-shelf chips as well as ASICs) and a library-driven mapping strategy. 

In [Cho94] is presented a co-design environment, called Chinook, tailored to implement reactive 

real-time controllers with particular emphasis on the problems of modules interfacing and 

synchronization. The system goal is to cover the problems of partitioning, device synthesis, low 

level scheduling, code generation and performance estimation. The top-level system specification is 

captured via a Verilog description while the output consists of all the elements necessary to build 

the embedded system: the netlist of coprocessor and glue logic together with the assembly code 

retargeted to the specific microprocessor.  

Finally, a co-design environment not emphasizing the automation of the hw/sw partitioning stage 

based on an extension of the well know FSM paradigm, has been proposed in [Chi93a] [Chi94]. 

The system specifications are modeled by asynchronous non-deterministic finite-state machines 

(CFSM) which, in perspective, will be obtained from a VHDL or ESTEREL front-end. The internal 

representation of CFSM (SHIFT) is suitable for preliminary analysis by formal verification 

techniques.  

The research area concerning hardware/software co-simulation has been widely explored for 

DSP-oriented applications only [Buc94] [Sut93]. A survey of alternative strategies for more general 

applications is presented in [Alt91] and [Vah95b] while [Wol94] provides an extensive survey of 

the existing open research issues and project on embedded system co-design. A specific approach is 
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proposed in [Gup92] through the Poseidon system, an event-driven scheduler able to manage mixed 

hw/sw models. Hardware models are simulated at gate-level (i.e. after synthesis and optimization) 

by the Mercury logic simulator, while the generated software in C language is first compiled into 

assembly code and managed by a target-specific assembly code executor. In fact, Poseidon acts as a 

higher-level integrator of multiple heterogeneous simulators. 

A different approach showing the different points of view on co-design related issues, can be found 

in [Wol92]. This research work tends to unify embedded system co-design and distributed systems 

design within a common conceptual framework. 

However, despite the number of proposals appeared in literature, usually they are still too advanced 

for being considered in current industrial environments. In particular, these approaches do not 

consider in a unified way the activities of co-simulation and co-synthesis under the point of view of 

obtaining system representations compatible with current industrial standards. Main purpose of our 

research is to define a pragmatic approach that could be accepted as prototype in the R&D 

department of an Italian telecom company. Therefore main requirement is the possibility of 

integration within an industrial design flow and to allow human intervention on all decisions 

pertaining system exploration, with the possibility of backtracking along the design process and of 

reusing already designed submodules. 

The paper introduces a novel methodology to manage the co-design process for a specific 

application field, i.e. control-dominated ASICs, such as those embedded into telecom digital 

switching subsystems. Usually this class of systems is composed of interacting hardware and 

software components where a mix of algorithm and event-driven control/communication functions 

(e.g. protocol stacks) are affected by real-time constraints and have to be captured/processed in an 

integrated manner. 

The development of such a methodology is currently in progress within a research project called 

TOSCA (TOols for System Co-design Automation), in which one of the main activities is the 

definition of a support environment by integrating commercial EDA software with new 

experimental tools [Ant94a] [Ant94b] [Bal95]. One of the main characteristics of the TOSCA 

framework over other literature proposals is the high level of integration with the existing 

commercial EDA tools through the direct interfacing to an existing design entry environment (e.g. 

speedChart), a VHDL representation of the hardware-bound parts, the direct synthesis of the 

software modules and the possibility of achieving co-simulation of the entire mixed hw/sw system 

within the same VHDL-based environment. Moreover, the CAD environment allows the user to 

cover the whole design process, ranging from the system-level specification capture down to the 

synthesis, by considering low level effects of the software timing properties (at the assembly level), 

by providing the code for software processes as well as the necessary operating system support and, 

finally, by generating the interfaces among hw and sw modules. In addition, the internal 

representation paradigm, based on process algebra [Hoa78] [Jpb94], provides the possibility of 

extending the analysis to include formal verification capabilities. 

The two main phases of the TOSCA co-design environment discussed in this paper are the hardware 

and software co-synthesis and the co-simulation of the system obtained. Therefore the paper is 
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organized as follows: section two gives an overview of the TOSCA design flow and defines the 

objectives of the supported co-design activities. Then section three introduces the target system 

architecture and details the synthesis of software and hardware modules, it also discuss the problems 

related with direct synthesis of interfaces and software retargeting. An example of software 

synthesis is reported in Appendix 1. Section four introduces the co-simulation engine while showing 

the strategies adopted to simulate both hardware and software modules by using the same 

VHDL-based environment. 

The final section outlines the main results of our approach and points out the future research 

guidelines. 

2. The TOSCA design flow 

System design companies need methodologies and tools suitable to be integrated within existing 

design flows, usable by designers with a low training effort and able to move down from abstract 

specification toward the actual implementation, while maintaining the capability of performing an 

efficient global co-simulation at any considered level. The state of the art of research in this field, 

tends to focus on specific aspects of the problem or to be affected by an high level of customization, 

making difficult a significant cooperation with existing design environments. 

The methodology we are proposing aims at providing a complete stand-alone design framework, 

whose main structure is shown in fig.1, allowing a realistic integration with commercial EDA tools 

as back-end or front-end to the global framework. 
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Figure 1. The architecture of the TOSCA co-design environment. 

The analysis of the basic design flow followed by system designers has allowed us to identify the 

proposed automated methodology which takes into account the needs and requirements of the 

designer. The co-design process supported by the TOSCA CAD environment is composed of the 

following, partially interleaved, coarse-grain phases:  

1. System description, including functional requirements, performance goals and feasibility 

constraints. 

2. Analysis of the system specification through a set of metrics for early prediction of the 

implementation results. 
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3. System-level partitioning and binding, to identify a decomposition in modules of the initial 

specification together with their implementation technology. Manipulations of the system 

specification, preserving its functionality, are performed. They are driven by the set of metrics 

which estimate the final results and by the design constraints. 

4. System-synthesis, producing the assembly code for the software part and VHDL for the 

hardware-bound modules. 

5. Co-simulation of the final system and user-level back-annotation of the results. 

The acquisition of the specifications requires the possibility of integrating elements obtained from 

different sources, since often most designs are realized starting from previous product releases or 

make use of existing, or third party, modules. Therefore, the value added of a co-design 

methodology is tightly conditioned by the achievement of a realistic integration with current trends 

of specification standards. The characteristics of most project specifications, which are not 

unconstrained, can be summarized as follows: 

• Some parts can be a priori hardware or software bound; this can derive from direct intervention 

of experienced designers or forced by top-level specifications/requirements. 

• Some parts can be not only hardware or software bound but already synthesized, e.g. because of 

reusability of proprietary (or widely accepted) software algorithms and hardware subsystems 

(e.g. belonging to the company library of VHDL models). 

• Design centers with up to date CAD environments can produce models captured via a mixed 

graphical/textual formalism, based on concurrent and hierarchical FSMs (e.g. the statecharts 

family [Har87] [Har90]), or at least through a HDL (basically VHDL and Verilog). 

• Some parts can be designed without any particular bias, currently in our system this is realized 

by using a process algebra computational model; however different solutions can be envisaged 

without loss of generality. 

• Non purely functional requirements, such as area, total cost, power are given by considering the 

system as a whole, regardless of its modules composition and unbalanced granularity. This 

sometimes catches the co-design process in local optimums, because design optimization is 

usually performed onto a limited subset of the modules composing the system. 

To adjust to such an industrial practice, the methodology developed in TOSCA allows the 

concurrent existence of multiple formalisms able to cover hardware oriented models, intrinsically 

software parts as well as specification parts without any particular implementation bias. To manage 

such a variety of formalisms, a uniform internal representation has been created based on a process 

algebra computational model with an OCCAMII more pragmatic syntax [Jpb94] [Bal96]. Modules 

which are already synthesized and cannot be modified in the following phases of system exploration 

are only encapsulated, while other modules described through different formalisms can be mapped 

(up to now only speedCHART and OCCAMII, but any formalism can be easily translated into the 

formal internal representation adopted). The overall system representation is stored within an object 

oriented database (TOSCA DB) tailored to support high-level architectural exploration, shared by 

all the tools composing the TOSCA environment. 
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System designs can also be specified by means of a graphical front-end for OCCAMII specifications 

developed in TCL (Tools Command Language). Three different editors have been developed to 

manage the design complexity. 

1. A Project editor/Exploration Manager, that is the user interface aiming at providing a complete 

management of the co-design flow (e.g. saving/restoring of different versions of the project, 

documentation of the analysis results, ...); fig.2 depicts the graphical front-end gathering all the 

tools composing the TOSCA environment. 

2. A Process editor, allowing the specification of graphical state-based processes, including an 

editor for the textual parts; fig.3 shows the capturing of a system description through the built-in 

process editor. 

3. A Hierarchy editor, whose main purpose is to manage the specification of a complex system in 

terms of connections between hierarchical modules, possibly belonging to heterogeneous domain 

(e.g. existing VHDL library models, graphical FSMs descriptions,...) 

 

 

Figure 2.The Project Editor framework. Figure 3. The Process Editor. 

A simulation tool based on Petri Nets, written in C, has been developed for early functional 

validation and profiling. 

The entire co-design process evolution is controlled by an Exploration Manager (EM) tool whose 

goal is to maintain a complete history of the multiple alternative design paths explored by the user. 

All the data are stored within a common design database whose user-friendly interface enables 

direct intervention in each of the steps composing system-level design, simulation  and synthesis. 

The EM allows the user to manage: 

• The internal representation of the system specification; 

• The evaluation of different design alternatives at system level; 

• A step by step visualization of statistics and results concerning the transformations performed 

onto the system representation; 

• The documentation of the design flow spanning from the system specification to the synthesis 

data. 
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After the preliminary phase of design capture, the main activity managed by the EM is the 

manipulation of the initial system modularization to produce a new set of system partitions and their 

association (if still floating) either with software or dedicated hardware units. Our approach, apart 

from possible bindings forced by users, does not start from an a priori default solution (e.g. initially 

fully software bound).  

The system exploration and partitioning process can be viewed as an incremental activity of 

modification of the initial specification through the application of transformations. The TOSCA 

project has considered this process through: 

• The definition and implementation of formal transformation rules working onto the internal 

model stored within the design database [For95] [Bal95]; 

• The definition of a partitioning algorithm and its implementation within the Exploration 

Manager framework to obtain a tool allowing both direct intervention of the user and automatic 

selection of the strategies by following the built-in evaluation criteria [Bal95]; 

• The definition and implementation of a set of metrics to drive the partitioning process [Bal95] 

[For95] [Bal96]. 

The user can organize these actions either along customizable schedules called recipes or can 

proceed under his own direct control. The output of this activity is a set of monolithic architectural 

units with a binding establishing either a hardware or a software implementation. Each architectural 

unit is then passed as input to the following co-synthesis stages. 

The criteria guiding the selection of the transformations to be applied to the system description (in 

order to fulfill the target design requirements) are supported by a quantitative evaluation. Such an 

evaluation is performed by means of a set of metrics which drive both the definition of a 

coarse-grain initial solution and an iterative fine tuning until all the design constraints are met.  

The basic transformation applied is processes collapsing. This will occur whenever the measure of a 

closeness criteria, during the selection of the closest processes, will remain under a certain a priori 

defined threshold. This solution is particularly flexible since it is possible to consider a set of 

criteria, with different priorities that will be changed dynamically, according to the current processes 

granularity or user choice. 

The activity of identifying some closeness properties among parts of the system specification, can 

be performed as a static analysis based on metrics for early prediction of cost/performance. It aims 

at producing an initial nearly-optimum allocation and binding to be iteratively improved by the user 

until design goals are satisfied. The final exploration stage, including at least one actual synthesis 

cycle, is the most time consuming and it is strongly sensitive to the quality of the pre-allocation 

performed during the former phases; it returns information that will be back-annotated as a 

replacement of predicted data. 

The metrics consider the system analysis from a threefold point of view: 
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• Statically, by analyzing composition and structure of the description contained within the 

database. 

• Dynamically, but still independent of the implementation, through an high-level execution and 

profiling of the specification in order to extract information such as communication bottlenecks 

and statistics on operators applications to better tune the decision on the initial partitioning and 

binding. 

• After-synthesis, requiring at least a complete synthesis cycle. This returns information that will 

be back-annotated as a replacement of predicted data and will also contribute to the final design 

evaluation. 

A proper set of metrics for early prediction of cost/performance, as well as to evaluate the system 

synthesis results, has been developed and constitutes the basis for the partitioning process. The 

following types of parameters have been considered in the definition of the cost/performance 

metrics. 

• Communication: costs related to the number of lines and bandwidth for hardware-hardware  and 

software-hardware communication. 

• Interfacing: according to the adopted communication/synchronization technique among 

different modules (e.g. between hardware and software, one interface unit per coprocessor vs. a 

common bus manager/arbiter queuing messages), costs can be affected by number and 

granularity of modules. Alternative bus protocol templates can be evaluated. 

• Area: this is the most important aspect because of the single chip implementation. Overall 

optimization takes into account possible user-defined binding along the evaluation and 

comparison among different alternatives. 

• Resources exploitation: on the software side, since the microprocessor is anyhow present, it is 

important to increase as much as possible the CPU utilization while fulfilling the temporal 

requirements of the programmed modules and the effectiveness of memory. Another relevant 

issue is related to the power consumption that is improved by a modularization able to identify 

the minimum set of coprocessors with the lowest amount of idle time. 

• Reuse: expressed by the number and complexity of different subsections used to build the 

modules and by the quota of the system covered by library components or existing modules. 

More specific information on the definition and use of metrics can be found in [Bal95] [Bal96], 

since it does not represent the main focus of this paper. 

The co-synthesis step is constituted by two different tools: a tool for VHDL description generation 

for hardware-bound architectural units including interface generation, and a software synthesis tool 

for software-bound architectural units, including the Operating System support. 

The class of embedded systems we are considering, characterized by real-time reactive 

requirements, and the typical application size enabling the use of a single ASIC including a CPU, 

has led to discard a C-language based solution for the software parts since we believe that software 

needs to be considered at a lower level, to carefully control time delay, code size and low level 

interfacing alternative schemes. Easy retargeting and portability are frequently advocated as some of 
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the main advantages of high-level languages with respect to assembly, our solution is to consider the 

software description at the level of a virtual assembly instruction set (VIS) whose structure can be 

mapped onto different CPU cores with fully predictable translation rules and, consequently, reliable 

performance estimation. As shown in the following, this solution provides the possibility of 

achieving a fully VHDL based co-simulation of each proposed hardware/software architecture, in 

order to get feedback on the effectiveness of the implementation. In fact a suitable VHDL model for 

VIS instruction-level execution, has been developed [Ant94b], so that the entire system can be co-

simulated through a unified VHDL-based environment. The model is parametrizable in order to 

make possible the analysis of low-level timing/cost/performance, for different classes of 

microprocessors. 

Up to now studies devoted to include a C-based real-time preemptive microkernel have been 

postponed. According to the needs of the application field, requiring simplicity and predictability, a 

static schedule approach with a coroutine scheme has been adopted as the target software structure. 

Hardware synthesis is performed by generating behavioral VHDL for synthesis from the internal 

OCCAMII representation of the selected modules. It is also possible to generate RTL level VHDL 

for logic synthesis for finite state machine descriptions. Interfaces are generated with respect to the 

adopted model of communication. At this time a fixed protocol is implemented, coherent with the 

target architecture adopted as discussed in section 3. 

3. System synthesis 

In our approach, the system is intended to be implemented onto a single chip including an 

off-the-shelf microprocessor core with its memory (even if part of the memory can be external) and 

the dedicated logic implementing a set of coprocessors, i.e. the set of synthesized hardware-bound 

modules identified during system exploration (see fig.4). 
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Figure 4. The hardware-software target architecture. 

In this discussion the term coprocessor includes also arithmetic/logic operations and possible private 

storage capability, while high-level synthesis tools typically separate controllers from data-paths. 

The master processor is programmable and the software can be either on-chip resident or read from 
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an external memory; dedicated units operate as peripheral coprocessors. Hardware and software 

bound elements are interfaced by means of a master-slave shared bus communication strategy. All 

hardware to hardware communications are managed through dedicated lines. The RAM memory 

required for program/data storage shares the main data bus with the coprocessors, but can be 

accessed only by the master CPU. Communications among CPU and coprocessors are based on a 

memory mapped I/O scheme with one bus interface manager per coprocessor based on a common 

I/O buffered protocol manager. 

Before committing to a specific implementation, the initial system specification can be manipulated 

to fulfill the target design requirements. This partitioning process, can be viewed as an incremental 

activity of modification of the initial specification through the application of transformations 

[For95] [Bal96], briefly summarized in section 2. 

Once a pair of hardware and software bound sets of modules have been defined, the following step 

is to produce their implementations. The synthesis stage will produce a mapping of the system onto 

the target architecture reported in fig.4, i.e.: 

• assembly-level code for each sw-bound process, according to the target microprocessor 

instruction set; 

• operating system support for process to process communication (both between sw to sw and sw 

to hw), as well as for CPU scheduling; 

• VHDL code for each architectural unit (coprocessor) corresponding to hw-bound processes; this 

includes also the implementation of the hardware side of the interfacing subsystem, allowing the 

mapping of the abstract process to process communication onto an actual system architecture. 

3.1 Software synthesis 
The software system has to be designed according to the reference architecture that is itself strongly 

influenced in terms of programming paradigm and hardware by the application field and the 

cost/performance goals. The basic requirements of an embedded system are the performing of 

activities according to a set of precise timing constraints (timeliness) and the flexibility, that in our 

case means that system configuration and software behavior have to be easy to update. These 

requirements are crucial to enhance maintenance, possibility of customization and re-use of the 

system and design methodology. Low-cost embedded systems characterized by small/medium size 

applications require the development of a light-weight software in terms of typical operating system 

services provided, but with an high degree of reliability and predictability. The run-time support 

provided in TOSCA has been kept minimal and includes only those features that are actually needed 

to support exception handling, configuration control, communication management and process 

activation, chosen during the customization phase. The operating system micro-kernel actually acts 

as a high-level process manager whose evolution is controlled by a deterministic algorithm, with 

synchronization among processes or with the environment (i.e. the coprocessors or external devices 

connected to the system). 

Since the current target architecture considers just one microprocessor, concurrence is emulated 

through interleaving of processes, each corresponding to a software-bound part of the system 
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modularization, whose ordering is statically defined, i.e. a pre-runtime schedule has been adopted. 

This solution has been chosen because high processor utilization is foreseen to reduce 

implementation costs, so that there is not much spare CPU available. As a consequence, a solution 

able to guarantee a priori that all the stringent timing constraints will be met, seems to be the only 

viable. We found many advantages of this solution compared to the presence of an on-line schedule 

policy, such as the significant reduction in the share of run-time resources necessary to implement 

context switching and the scheduling itself, but the most important is that it is easier to satisfy our 

primary goal of meeting the real-time deadline. 

Software-bound processes, that are viewed as a set of sequential cooperating threads with shared 

memory similar to a coroutine scheme, are constituted by operations that must be executed in a 

prescribed order. The number of processes is known in advance, and it will never change run-time. 

This implies that the operating system does not require a dynamic scheduling since the scheduling 

policy can be computed off-line and code-wired. Therefore, the solution proposed requires only a 

small operating system providing the mechanisms for process activation and the communication 

support. 

In general, two classes of processes can be present: periodic, whose computation is executed 

repeatedly in a fixed amount of time and asynchronous, that usually consist of computations 

responding to an event (internal or external). A typical example of periodic process is the sampling 

of external data with the consequent updating of state internal variables and outputs as it happens in 

a transmission frame manager of a telecom digital switching system. For a number of real-time 

applications, periodic processes where the sequencing and timing constraints are known in advance, 

seem to constitute the bulk of computation. The number of asynchronous processes is usually 

limited, requiring short computation times. Moreover, information due to external or internal events 

can be recorded and buffered until they can be handled by periodic processes tailored to serve them. 

Different and more general techniques for mapping asynchronous processes onto an equivalent set 

of periodic processes can be found in [Mok84], therefore we considered only the problem of 

scheduling periodic processes. 

The algorithm we implemented, given the set of processes constituting the sw-bound part of the 

system, determines a schedule (whenever it exists) such that each process is activated after its 

release time and carries out its computation before its deadline. Fig.5 reports the timing 

characterization of a periodic process. Even though the exact timing characteristics of system 

components and events sometimes cannot be predicted, we overcome such a problem by using a 

worst case estimation of these parameters so that the scheduling algorithm can guarantee a 

predictable behavior. 

The methodology we adopted to obtain the pre-run time schedule is based upon a systematic 

improvement of an initial schedule until a feasible (near optimal) schedule is found. The analysis of 

the VIS code corresponding to each software-bound part allows the VIS scheduler to consider each 

software process characterized by a release time, the duration and a deadline, which can be broken 

into a set of code segments. An analysis of the internal composition of the process provides the start 

time of each code segment relative to the beginning of the process it belongs. Exclusion relations 
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may be present among segments when some of them must avoid interruption by others to prevent 

possible errors caused by simultaneous access to shared resources, e.g. data structures, I/O devices, 

coprocessors. Precedence relations, that occur when a segment requires some information produced 

by other process segments, are also considered. 

The scheduler produces an ordered set of code segments fulfilling deadlines and constraints (if they 

exist) where the lateness of all segments is minimized. The context switching overhead has been 

considered by including an additional delay to the purely computational time. To characterize the 

software running onto the microprocessor, other information is produced by the scheduler by 

inspecting the final schedule produced: the level of process fragmentation and the relative overhead, 

the slack time, the CPU utilization and, in case of non feasible schedule, the critical segments 

responsible of the algorithm failure. 

process A

release(A)

start(A) end(A)

deadline(A)

period(A)

time
 

Figure 5.Timing characterization of a process. 

The starting point of the algorithm is a valid initial schedule satisfying release times, exclusion and 

precedence constraints obtained through an heuristic belonging to the class earliest-deadline-first. 

Through a branch and bound technique a search-tree is built where each node is a schedule. Nodes 

are obtained from their parents by introducing new additional properties (preemption and 

exclusion): by computing the lower bound of the lateness of any schedule deriving from that node 

the best solution among all candidates is selected. A skeleton of the algorithm is depicted in fig.6. 

repeat { 

 select child-node with min-lateness among unexpanded nodes; 

 compute SG1, SG2; 

 for each segment ∈ SG1 and SG2 create new schedule; 

 compute lateness lower-bound of each schedule; 

until (lateness - LowerBound) ≤ ε } 

Figure 6. The scheduling strategy, ε is the maximum acceptable error. 

A valid solutioni (VSi) computed through an earliest-deadline-first policy and its latest segment 

(LSi) are associated with the generic node i of the search tree. In order to produce new solutions 

improving the current one, two groups of segments SG1i, SG2i are determined such that: 

a) SG1i: VSi can be improved if the latest segment is scheduled before a segment of SG1i; 

b) SG2i: VSi can be improved if the latest segment preempts a segment of SG2i. 

According to the properties a) and b), for each segment belonging to the two groups SG1 and SG2, a 

new schedule (successor node) is created. The result of this step consists of two sets of new 

schedules (nodes), that are dominated by the nodei, associated with the lower bound on the lateness 
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for each schedule obtained during this stage. Among the unexpanded nodes, the one with the lowest 

bound is considered the best candidate to achieve an optimal solution (i.e. lateness equal to a goal 

value LowerBound) for a new branching. The search proceeds until either a feasible solution is 

determined or no unexpanded node exists with a lower bound less than the least lateness of all the 

valid solutions computed up to now (that will constitute an optimal solution). In such a way, all the 

possible improvements of the initial schedule are considered, so that the optimal solution is 

determined, if one exists. Moreover, in the case of algorithm failure, the responsible segment (the 

one with the least lateness) and consequently the owner process is determined and can be used as 

starting point for actions aiming at making the implementation of the software-bound parts feasible. 

As an example let us consider the simple case of the following input file (left) for the scheduler and 

the corresponding graphical representation (right): 
 
 
 
{Pa 0 30 80 0 0} {} {} 
{Pb 20 20 81 0 0} {C} {} 
{Pc 40 30 70 0 0} {} {} 

PbPa

704020 81

8050300

t
Pc

Rel(Pa)

Rel(Pb)

Rel(Pa) Rel(Pc)
Dln(Pc)

Dln(Pa)

Dln(Pb)

 
Figure 7. An example of scheduling problem associated with its textual and graphical representation. 
Rel(P) and Dln(P) indicates release and deadline of the process P. 

The problem is composed of three processes (Pa, Pb, Pc) where, the items of the corresponding list 

represent the name, the release time, the computation time, the deadline and two values to mimic 

the delay necessary to restore and save the process context (for simplicity set to zero), respectively. 

The other lists report possible constraints (exclusion and preemption), in the proposed example Pb 

excludes Pc. The expanding sets are SG1={Pb} and SG2={Pa}, therefore the two sets of new 

schedules are composed only by one element each. The actual schedules are obtained from the 

characteristic properties of SG1, i.e. {Pc precedes Pb} (fig.8-left) and similarly for SG2, i.e. {Pc 

Preempts Pa, Pb Preempts Pa} (fig.8-right). 
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Figure 8. The schedules originated by the SG1 and SG2 expanding sets. 

For each schedule the report file includes a section containing the information summarized in fig.9. 

In the leftmost schedule the latest segment is Pb1 and the Lateness evaluates 

End(Pb1)-Deadline(Pb1) = 9 that is a local optimum. The latest segments of the second open node 

of the search tree, i.e. the rightmost schedule, are Pa3 and Pc2, the Lateness evaluates End(Pa3)-

Deadline(Pa) = End(Pc2)-Deadline(Pc) = 0. No further expansion of the tree is possible, therefore 

the rightmost schedule represents a global optimum since Lateness is equal to least LowerBound 
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of all the open nodes considered up to now. The output of the scheduler is thus the process 

segmentation and ordering on the right of fig.8. 
   

 Schedule of fig.8 (left) Schedule of fig.8 (right) 

ListSortedSegments Pa1, Pc1, Pb1 Pa2, Pb2, Pc2, Pa3 

Sections Pa1, Pc1, Pb1 Pa2, Pb2, Pc2, Pa3 

LatenessSchedule 9 0 

LatestSegment Pb1 Pa3, Pc2 

CPUinactivity 10 0 

MaxSlackTime 10 0 

EndSchedule 90 80 

StartSchedule 0 0 

TotalTimeSchedule 90 80 

LowerBound 9 0 

Figure 9. Data computed at each step of the scheduling process. LatestSegment is the critical 
parameter determining the lateness of the schedule, TotalTimeSchedule is the overall execution time 
of the schedule and the Sections field contains the sets of contiguous segments. 

The software part of the system is implemented by means of a generic Virtual Instruction Set (VIS) 

which allows a better control of time delays, code size and a low level characterization of I/O 

interfaces. The VIS is an intermediate language between OCCAMII and the target CPU assembly 

aiming at capturing the minimum set of features shared by microcontrollers for embedded 

applications. This solution allows us to achieve the following goals: 

• integrated simulation of the mixed hardware-software system; 

• extension of the analysis to cover also multiple processor families; 

• good predictability of the final running software behavior; 

• integrated synthesis flow able to cover the entire system development in terms of hardware, 

interfaces, software and operating system support. 

The VIS is defined in terms of a customizable and orthogonal register-oriented machine with a 

common address space for both code and data. This means that each register can act as accumulator 

and all the operations (e.g. addressing, arithmetic-logic, data transfer) can be performed no matter 

which register is used as operand. The instruction set has been designed in order to be easily 

retargeted onto different CPUs: a mix of CISC and RISC typical instructions are included. A generic 

VIS instruction can either be one-to-one mapped on a native target assembly instruction or 

correspond to a group of assembly instructions. In such a way, if the selected CPU does not match 

the VIS instruction, the retargeting of the code is performed via an alternative definition of the 

instruction using only the RISC-side of the VIS, thus reducing the effort to reconfigure the software 

whenever alternative CPUs are evaluated. 

The VIS supports unsigned/signed integer data types (BIT, BYTE, INT16 or word and 32-bits 

integer called longword) as well as all typical arithmetic/logic operations. The address space spans 

over 32 bits so that each VIS argument is always contained within a longword. The memory format 
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for the data is aligned in terms of 32-bits words, as a consequence four memory locations are 

necessary to store a byte. Boolean variables can be packed to save memory space. 

The instruction format is similar to the one of the MC68000 with a suffix indicating the operand 

type, e.g. MOVE.B R1, R2 copies a byte from R1 to R2. Three types of instruction formats have 

been defined: 

• op destination, source 

• op arg1, arg2 

• op 

where both destination and source can be registers or memory references (source can also 

be an immediate operand) and arg1,arg2 model operations where the argument order is not 

relevant. 

The generation of the VIS code as well as the final implementation of the software running on the 

target microprocessor follows the phases depicted in fig.10. Three main steps compose the top part 

of such an activity: initialization, code generation, estimation of time delays and binary code size. 
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Figure 10. The software generation process. 

At the beginning the system is initialized by reading from a technology file the information 

characterizing the selected CPU, e.g. the clock period, the instruction set, the registers number, type 

and size of the registers, the number of clock per instruction, etc. . The code generation involves 

register usage optimization and automated packing of bit variables. The estimation of timing 

performance and memory requirements for back-annotation towards the system design exploration 

phase can be obtained for several possible microprocessor cores. In fact, its actual behavior is 

represented by the following three groups of information (for each foreseen CPU): 

• retargeting rules (RR): specifying the rules for mapping VIS code onto the target microprocessor 

instruction set; 

• time/size table (TST): reporting for each VIS instruction the number of clock cycles and bytes of 

the corresponding target CPU mapping (which, in general, is not composed of a single 

instruction). 

• technology (TF): containing information on the adopted CPU as the BUS width, the power 

consumption, the pin-out of the microprocessor, the particular characteristics of the adopted 
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model of microprocessor with respect to the rest of the CPU family, such as, for instance the 

memory size. 

The first step is the compilation of the OCCAMII specification in VIS. Although the entire system 

specification will not probably be implemented in software, the estimation of the VIS performance 

and cost is initially carried out for all the OCCAMII modules composing the description. The 

obtained result is employed during the system partitioning to compare/drive alternative 

modularizations and hardware vs software bindings. The obtained code is not executable since the 

following decisions have yet to be taken: register mapping, process scheduling, system bootstrap, 

memory allocation including symbolic vs actual address determination. 

A pre-allocation of the register to extract execution times and memory requirements is performed 

according to the information included within the technology file. The VIS code is then annotated 

with the information needed by the scheduler to produce a correct ordering of the processes 

execution, by adding some bracket-encapsulated tags. A simple example of VIS compilation for a 

sub-part (Hamming encoder) belonging to a car antitheft system that we use as a small 

benchmarking, is shown in appendix 1. The example is composed of a process receiving data from 

the channel dataIn where two parallel sections allow the system to compute the Hamming 

encoding of the input to be transmitted on the dataOut channel (see fig.11). 

 

Figure 11. Screen-dump of the description of a Hamming decoder described by using the TOSCA 
OCCAMII process editor.  

The VIS code maintains a structure similar to the original OCCAMII model: the body of each 

process is identified through the <process> and </process> tags while concurrent processes 

(corresponding to the PAR construct of OCCAM) fall within the scope of a <group> identifier. 
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As reported above, the scheduler may require to break the processes to meet time deadlines; as a 

consequence, it is necessary to consider the impact of additional context-switching overheads. The 

scheduler performs such an analysis by considering the <USE Regs-List>  and <LEAVE 

Regs-List> tags which represent, incrementally, the registers necessary to be saved at any point 

in time. Critical sections, corresponding to non-breakable actions such as an interrupt handling, are 

enclosed within <atomic> </atomic> to prevent a possible preemption. 

Data transfer from software to hardware and viceversa is modeled via memory-mapped coprocessor 

registers, associated with each port. In this example, the 12-bits channel has been mapped onto a 16 

bits word corresponding to a pair of contiguous memory locations. 

Timing characterization is also performed with a fine granularity to improve the freedom of the 

scheduler to choose the point where to break processes. The left-most tags of each VIS instruction 

contains the computation of <minimum typical maximum> delays  to execute the operation 

according to the target CPU. Up to now, according to the most common types of embedded system 

microprocessors, effects concerning pipelined instruction execution or parallel fetch have not been 

considered. For an analysis on how these issues can be managed for DSP applications, see [Sut93]. 

During software synthesis, processes as well as the operating system microkernel are directly 

assembled into VIS code. As reported above, the software system is composed of processes and of a 

kernel basically operating as a context switcher: although no sophisticated mechanisms for memory 

protection are necessary, particular attention has been devoted to the software section responsible 

for communication by adopting ad-hoc solutions to suit each specific circumstance. Our software 

synthesis system has to implement two different communication schemes: software to software, 

hardware to software (and viceversa). Processes communication takes place through buffered 

channels that will be implemented according to the type of data protocol and the hw/sw binding of 

the source and target processes. 

Protocol implementation of complex data types is defined in terms of composition of basic types, 

such as BOOL, BYTE, INT16 (16-bit integer). The needs for communication involving the system 

bus have been reduced during the system partitioning phase since, under the scheduling algorithm 

viewpoint, the bus is a shared resource that will originate a critical section within the 

software-bound process requiring its use, thus increasing the difficulty to determine a feasible 

schedule. 

Even though the basic OCCAMII model is composed of direct, point-to-point, asynchronous 

channels, our implementation has been extended to provide also a broadcasting node by expanding 

its definition into a software process able to copy the datum on all the target channels. The channel 

is mapped onto a pair {memory variable, data ready flag} shared by all processes. Since 

communication rates can vary across different processes, no matter if they belong to the same 

hardware or software partition, appropriate FIFO buffering capability has been introduced. 

Hardware/software interface is performed via memory mapped registers.  

A parametrizable retargeting tool, able to map VIS code on different target CPU has been 

implemented and tested for a Motorola 68000 microprocessor family, the extension towards the 

PowerPC architecture is part of the current effort. 
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3.2 Hardware and interface synthesis 
Concerning the hardware mapping strategy adopted in TOSCA, it should be pointed out that 

control-oriented specifications cannot easily be managed by classical high-level synthesis 

approaches involving operators scheduling. In fact, circuit speed estimation is very difficult when 

dealing with descriptions dominated by conditional functions, where arithmetic operations are 

typically restricted to a few sums and comparisons (if anyone of them is present at all). During the 

next stage involving VHDL translation into a generic netlist, technology mapping and logic 

implementation, any direct relation between functional specification and synthesized 

implementation is lost. Estimating area is also a very hard task. As a consequence, scheduling 

operators according to estimated propagation delays cannot be considered a realistic approach. In 

the previous version of the TOSCA module devoted to hardware mapping, each hardware-bound 

architectural unit is implemented by generating a finite state machine VHDL description, together 

with its bus interface [Ant94b]. If the starting point is a synchronous model (as those obtained from 

speedCHART), no additional scheduling step is needed. The VHDL code generator translates the 

internal representation of each FSM into a VHDL template (block-encapsulated processes) 

compliant to the guidelines for synthesis enforced by commercial tools such as Mentor Graphics 

Autologic and Synopsys VHDL Compiler. The data flow graphs modeling conditions and actions 

are translated into VHDL statements included in the related template. The algorithm adopted is able 

to produce a very readable description by building expressions whenever possible, instead of basic 

assignments for each DFG node. Parameters such as the logic types to be used can be customized by 

the user. In particular cases, such as for instance counters, predefined library components may be 

preferred to RTL synthesis in order to guarantee an efficient implementation. 

However, recently several commercial VHDL behavioral synthesis tools are emerging (Synopsys, 

Synthesia). This opportunity is particularly valuable to cope with system-level architectural 

exploration needing fast speed/cost prediction techniques, avoiding as much as possible to move 

down to the gate-level netlist. The current version of TOSCA is oriented towards a direct 

compilation of process algebra description into behavioral VHDL, that is becoming the target 

abstraction level for synthesis. In summary, three different hardware synthesis paths can be applied: 

1. transparent passing of the initial VHDL description to the synthesis tool; 

2. RTL synthesizable VHDL description of the modules such as FSM; 

3. behavioral VHDL descriptions of the hardware-bound modules. 

A suitable VHDL generator has been developed, starting from the OCCAMII description stored 

within the database and building a tree modeling the statements nesting. It produces a set of 

modules corresponding to the hardware bound architectural units (coprocessors) with their 

communication interfaces. The VHDL code generator performs a depth-first scan of the tree 

representing the OCCAMII structure and produces two output files: the first contains the entities 

declarations with the corresponding behavioral description while the second is a package containing 

all the procedures necessary to realize the communication among processes. 
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Since channels are not supported by VHDL, ad hoc fully hardware interface structures covering 

both buffered and unbuffered communication have been introduced. 

In case of hardware-to-hardware communication, the realization of each channel requires the 

instance of three signals to implement the negotiation process - s_req (send-request), s_data 

(send-data) and r_ack (receive-ack) - that will be used to expand each OCCAMII declaration of 

channel - CHAN OF TYPE ChannelName - into the following VHDL code: 
signal ChannelName_s_req:boolean:=false; 
signal ChannelName_s_data:=0; 
signal ChannelName_r_ack:boolean:=false; 

These variables are used to generate an handshake mechanism with the semantic defined by the 

following VHDL code: 

if not s_req then 
 wait until s_req; 
else 
 wait for 0 ns; 
end if; 

The OCCAMII statements for message passing ChannelName!variable and ChannelName?variable 

are translated into the following two procedures, respectively: 

send_unbuffered(ChannelName_s_req,ChannelName_r_ack,ChannelName_s_data,variable) 
recv_unbuffered(ChannelName_s_req,ChannelName_r_ack,ChannelName_s_data,variable) 

The unbuffered communication needs an additional pair of signals, full_f (fifo full) and 

empty_f (fifo empty), modeling the availability of free positions within the FIFO buffer, as input 

to the sender and the receiver processes, respectively. The VHDL procedure for buffered 

communication thus becomes: 

send_f (ChName_s_req, ChlName_r_ack, ChName_s_data, ChName_full_f, variable) 
recv_f (ChName_s_req, ChName_r_ack, ChName_s_data, ChName_empty_f, variable) 

In addition to the above procedure, a VHDL process fifo_ChName will be instanced to actually 

implement the message storage and management unit. This element can be customized according to 

the desired buffer size (N) and channel type (e.g. INT). 

Each entity description of the modules connected via hardware channels contains the declaration of 

a set of ports corresponding to the signals used to implement the communication protocol. 

The hardware side of the hw-to-sw communication has been implemented by studying an additional 

BUS interface unit to be added to the coprocessor (see fig.4). Such a module contains a pair (input 

and output) of FIFO buffers used to store the messages that processor and coprocessor need to 

exchange. The entire communication is mastered by the processor which triggers the reading of data 

from the output queue or the sending of messages to the input queue according to the data flow 

direction of the original OCCAMII channel. When a message is sent out on the BUS, the 

coprocessor protocol manager performs a decoding of the BUS address to discover if it has to be 

processed. A maximum of 255 coprocessors are allowed with at most eight bi-directional channels 

per each. For each queue, a pair of status registers (in, out) storing the information on FIFO content 

(e.g. empty) are foreseen, their information can be accessed by the processor communication 

primitives. In summary, for the target architecture we are considering, the ADDRESS BUS bits 

have been associated with the following information: 
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A0..A2 coprocessors or other peripheral selection; 

A3 data BUS contains a datum or the status register; 

A4 selection of the status register to put on the data bus; 

A5..A7 FIFO selection among the possible eight per coprocessor; 

A8..A15 coprocessor selection among the possible 255. 

The customization of such a scheme onto the MC68000 is straightforward, the only additional 

control signals to be taken into account are R/W, BUSREQ and MEMREQ. When a software-bound 

process needs to send a datum to the n-th coprocessor, the software communication procedures will 

put on A8..A15 the binary encoding of the coprocessor number, on A5..A7 the FIFO identifier 

corresponding to the channel considered, A0..A2=1 to select the coprocessors address space, A3=0, 

R/W=0 and MEMREQ=BUSREQ=1. The datum on the data bus will be acquired by the addressed 

coprocessor and placed within the proper input FIFO queue which is assumed to be sufficiently 

large to contain all the incoming messages (this is a matter of correct design, not impacting the 

suitability of the proposed scheme). The hw-to-sw communication takes place in a similar way. 

4. Simulation of interacting hardware and software subparts 

Although a preliminary validation of the initial system-level specification is performed during the 

initial design phases, an additional simulation step at the hw/sw architectural level still represents a 

significant value-added to obtain feedback on the effectiveness of the selected design-space 

exploration recipes. Furthermore, already existing components may be excluded from the 

specification-level (or managed as black boxes) and considered during the co-simulation and logic 

synthesis stages only. 

The co-simulation task involves four main entities: the dedicated coprocessors, the programmable 

core, the software running on the core and the interface logic. An homogeneous simulation 

environment based on VHDL has been adopted due to the following reasons: 

• VHDL methodologies and tools are already available in most design centers; 

• in any case, VHDL models have to be generated as input to commercial register-transfer level 

synthesis tools for the dedicated coprocessors and interfaces; 

• VHDL language features allow the concise modeling of programmable cores as well as the 

simulation-oriented representation of the related software; 

• existing hardware modules can be easily included in new projects developed by using the 

proposed hw/sw co-design methodology. 

Co-simulation is more critical for the programmable subsystem with respect to the dedicated 

hardware parts because it requires VHDL models for the selected CPU core cells whose acquisition 

can be difficult and/or expensive. Moreover, a conventional CPU core model (as provided, for 

instance, by third-part developers) is able to run target binary code only. As a consequence, a 

specific binary code generator has to be developed for each target CPU (or an assembly code 

generator if an assembler tool is supplied in addition to the VHDL model). 
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The proposed approach focuses on minimizing the retargeting effort as well as reducing the number 

of intermediate steps required to obtain an architectural model ready for co-simulation. The 

underlying concept exploits the characteristics of the virtual instruction set. In fact, VIS code 

obtained from software mapping is already optimized for the selected target CPU core and can be 

executed with no a priori partitioning of the code/data memory space due to the virtual addressing 

scheme adopted. 

For simulation purposes only, each target CPU core model will be implemented through 

• a basic kernel executing VIS code that is target-CPU independent; 

• a customizable target-dependent I/O module, tailored to manage the bus-based interface to/from 

the dedicated coprocessors; 

• the time/size table (TST) of the selected target CPU. 

In such a way, coprocessors are interfaced to the CPU core through the target bus protocol, while 

code/data memory representation and access are not explicitly handled at bus level but encapsulated 

within the virtual kernel. 

For instance, the internal structure of the M68000 core model is shown in fig.12. The vkernel 

module represents the virtual part, performing the fetch/decode/exec loop. The io_manager 

process translates I/O requests from the virtual kernel into the target-specific bus protocol (read and 

write bus cycles). An abstract representation of the memory space is embedded in the virtual kernel. 
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Figure 12. Virtual and target-specific parts in the CPU model and their connection with the rest of the 
system architecture. 

A VHDL view of the entire hw/sw system for simulation underlying the architecture depicted on 

fig.12 is reported in fig.13; the Motorola 68000 has been adopted as target CPU core. 



23 

entity system is 

  port( 

    clk:   in std_ulogic; 

    reset: in std_ulogic; 

    ........ 

  ); 

end; 

 

architecture system_arc of system is 

  signal     a:     std_ulogic_vector(22 downto 0); 

  signal     as:    std_ulogic; 

  signal     rw:    std_ulogic; 

  signal     uds:   std_ulogic; 

  signal     lds:   std_ulogic; 

  signal     dtack: std_ulogic; 

  signal     d:     std_ulogic_vector(31 downto 0); 

  signal     ipl:   std_ulogic_vector(2 downto 0); 

  ... 

begin 

 cpu: m68k generic map(4096,256,8192) 

           port map(clk,reset,a,as,rw,uds,lds,dtack,d,ipl); 

 c1: coprocessor1 port map(clk,reset,a,as,uds,lds,dtack,d,...); 

  ...   

 cN: coprocessorN port map(clk,reset,a,as,uds,lds,dtack,d,...); 

end; 

Figure 13. VHDL top-level representation of a mixed hw/sw system. 

Each coprocessor unit is composed of a bus protocol manager, a set of memory-mapped registers 

and the finite-state machine as obtained from the previous restructuring, allocation, binding and 

hardware mapping stages. The protocol manager is synchronized with the CPU clock and it is 

sensitive to a subset of the configurations on the address bus, each of them selecting a particular 

entry in the register bank. 

An overview of the VHDL code implementing the entire CPU entity is presented in fig.14. The 

source code follows the modularization depicted in fig.12. The io_manager process 

communicates with the vkernel instance through the following signals: 

io_manager_enabled: used by the vkernel to enable the io_manager during the I/O stages; 

io_manager_request: specifies the kind of vkernel request (read or write); 

io_buffer: used for data transfer; 

io_virtual_address: used by the vkernel to communicate the VIS code addresses that 

must be translated into physical addresses on the system bus. 

The io_manager process is composed of two sections modeling the read and the write I/O 

requests, respectively. Note that bus protocols and transfer speed are strictly dependent on the target 

CPU. For instance, a complete unidirectional transfer carried out by the M68000 is completed in 

four clock cycles. As a consequence, the bus managers belonging to the coprocessors have to be 

synthesized according to such behavioral constraints. 

The statement: 

a <= io_base + io_virtual_address; 

implements the generation of target physical I/O addresses from virtual offsets. 
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entity m68k is 

  generic( 

    code_size: integer := 1024; 

    data_size: integer := 512; 

    io_base: std_ulogic_vector(22 downto 0) 

    ); 

  port( 

    clk:   in std_ulogic; 

    reset: in std_ulogic; 

    a:     out std_ulogic_vector(22 downto 0); 

    as:    out std_ulogic; 

    rw:    out std_ulogic; 

    uds:   out std_ulogic; 

    lds:   out std_ulogic; 

    dtack: in std_ulogic; 

    d:     inout std_ulogic_vector(31 downto 0); 

    ipl:   in std_ulogic_vector(2 downto 0) 

  ); 

end; 

package core_pack is 

  type io_man_req is (read,write); 

  type sizes is (byte,word,long); 

end; 

 

use work.core_pack.all; 

use work.m68k_pack.all; 

 

architecture m68k_arc of m68k is 

   

  signal io_manager_enabled: boolean:= false; 

  signal io_manager_request: io_man_req; 

  signal io_buffer: std_ulogic_vector(31 downto 

0); 

  signal io_virtual_address: integer; 

 

begin 

 

  io_manager: process 

  begin 

    if io_manager_enabled then 

      if io_manager_request = read then 

        a<="zzzzzzzzzzzzzzzzzzzzzzz"; 

        rw<= ’1’; 

        wait until clk=’1’ and clk’last_value = 

’0’ and clk’event; 

        a <=io_base + io_virtual_address; 

        wait until clk=’0’ and clk’last_value = 

’1’ and clk’event; 

        as <= ’0’; 

        uds <= ’0’; 

        lds <= ’0’; 

        wait until clk=’1’ and clk’last_value = 

’0’ and clk’event; 

        wait until clk=’0’ and clk’last_value = 

’1’ and clk’event; 

        wait until clk=’1’ and clk’last_value = 

’0’  

             and clk’event and dtack = ’0’; 

        wait until clk=’1’ and clk’last_value = 

’0’ and clk’event; 

        wait until clk=’0’ and clk’last_value = 

’1’ and clk’event; 

        io_buffer <= d; 

        wait until clk=’0’ and clk’last_value = 

’1’ and clk’event; 

        as <= ’1’; 

        uds <= ’1’; 

        lds <= ’1’; 

        a<="zzzzzzzzzzzzzzzzzzzzzzz"; 

      else -- write 

        a<="zzzzzzzzzzzzzzzzzzzzzzz"; 

        rw<= ’1’; 

        wait until clk=’1’ and clk’last_value = 

’0’ and clk’event; 

        a <=io_base + 

std_ulogic_vector(io_virtual_address); 

        wait until clk=’0’ and clk’last_value = 

’1’ and clk’event; 

        as <= ’0’; 

        rw <= ’0’; 

        wait until clk=’1’ and clk’last_value = 

’0’ and clk’event; 

        d <= io_buffer; 

        wait until clk=’0’ and clk’last_value = 

’1’ and clk’event; 

        uds <= ’0’; 

        lds <= ’0’; 

        wait until clk=’1’ and clk’last_value = 

’0’  

             and clk’event and dtack = ’0’; 

        wait until clk=’1’ and clk’last_value = 

’0’ and clk’event; 

        as <= ’1’; 

        uds <= ’1’; 

        lds <= ’1’; 

        a<="zzzzzzzzzzzzzzzzzzzzzzz"; 

        rw <= ’1’; 

        d<="zzzzzzzzzzzzzzzz"; 

        wait until clk=’0’ and clk’last_value = 

’1’ and clk’event; 

      end if; 

      io_manager_enabled <= false; 

    end if; 

  end process; 

 

  vk: vkernel generic 

map(8,code_size,data_size,4) 

          port 

map(clk,reset,io_buffer,io_manager_enabled, 

                  

io_manager_request,io_virtual_address); 

 

end; 

Figure 14. VHDL code for the CPU entity. 
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The software mapping stage produces an ASCII file containing a virtual assembly code description. 

Such a file is loaded during the initialization phase of a simulation session into the internal data 

structures. Code and data segments are managed in different ways (fig.15). 

entity vkernel is 

  generic( 

    DBANK_SIZE: integer:= 10; 

    code_size: integer := 1024; 

    data_size: integer := 1024; 

    BUS_READ_DELAY :integer 

    ); 

  port( 

    clk:       in std_ulogic; 

    reset:     in std_ulogic; 

    io_buffer: inout std_ulogic_vector(31 

downto 0); 

    io_manager_enabled: inout boolean; 

    io_manager_request: out io_man_req; 

    io_virtual_address: out integer 

    ); 

end; 

 

use work.core_pack.all; 

 

architecture vkernel_arc of vkernel is 

   type opcodes is ( 

     w_move, 

     w_and, 

     w_or, 

     w_xor, 

     w_not 

  ); 

 

-- CODE MEMORY 

 

  type kinds is (reg,mem,bv_imm,int_imm,io); 

  type vis_arg is record 

    kind: kinds; 

    bv_value: std_ulogic_vector(31 downto 0); 

    int_value: integer; 

  end record; 

  type vis_instruction is record 

    opcode: opcodes; 

    dest: vis_arg; 

    src: vis_arg; 

  end record; 

  type code_memory is array(0 to code_size-1) 

of vis_instruction; 

  signal code: code_memory; 

 

  -- DATA MEMORY 

 

  type vis_variable is record 

    value: std_ulogic_vector(31 downto 0); 

    size: sizes; 

  end record; 

  type data_memory is array(0 to data_size-1) 

of vis_variable; 

  signal data: data_memory; 

 

  -- DATA REGISTERS   

 

  type data_register is std_ulogic_vector(31 

downto 0); 

  type data_bank is array(0 to DBANK_SIZE-1) 

of data_register; 

  signal dbr: data_bank; 

 

  -- CODE POINTERS   

 

  -- current instruction pointer 

  ip: integer range 0 to code_size-1;    

  -- auxiliary pointer for indirect jump 

  aux_ip: integer range 0 to code_size-1;  

 

  -- TIMING TABLE 

 

  type timing_table is array (0 to 

opcodes’SIZE-1) of integer; 

  signal t_table: timing_table; 

Figure 15. VHDL data structures for code/data segments and register bank. 

VIS instructions are modeled by the vis_instruction record data type containing the opcode 

(as defined by the enumerative type opcodes) and the source/destination operands. Legal types for 

source operands are register (reg), memory (mem), bit vector/integer immediate (bv_imm, 

int_imm) or memory-mapped I/O (io), while destination types are restricted to register, memory 

or I/O. Since according to the VIS definition each data transfer has to involve at least one register, 

direct transfers from memory to memory (or I/O) are not supported. 

The code segment (code signal) is implemented as an array of vis_instruction records. The 

current instruction can be referenced through the instruction pointer ip. An auxiliary pointer 

aux_ip is used for indirect jumps. 
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Program variables are implemented via a vis_variable record data type whose fields specify 

content and size (byte, word, long word). The data segment is represented by an array of records. 

The virtual kernel also includes a general purpose register bank (dbr), whose cardinality is 

parametrized through the DBANK_SIZE generic. 

Instruction fetch/decode tasks are reported in fig.16. The fetch operation is implemented by 

referencing the location in the code array pointed by ip. A case construct selects the proper action 

according to the VIS opcode. 

architecture vkernel_arc of vkernel is 

... 

begin 

  process 

    variable i: vis_instruction; 

  begin 

    wait until clk=’1’ and clk’last_value = 

’0’ and clk’event;    

    i := code(ip); 

    case i.opcode is 

      when jump => 

        ip <= i.src.int_val; 

      when ind_jump => 

        ip <= ip_aux; 

      when w_move => 

        ... 

      when w_and => 

        ... 

    end case; 

  end process; 

end; 

Figure 16. Instruction fetch/decode VHDL template. 

To give a flavor of how the typical VIS instruction can be simulated, the corresponding VHDL 

source code is shown in fig.17. Such a model has to deal with three main issues: 

• the different addressing modes as specified by operand types; 

• the modeling of target-dependent instruction delays by means of a customizable table (t_table) 

mapping opcodes onto the corresponding number of clock cycles necessary to execute the 

instruction; 

• the cooperation between the virtual kernel and the I/O manager in case of operands located in 

coprocessor memory-mapped registers. 

Concerning the last issue, it should be noted that the kernel suspends itself until the I/O manager has 

completed its own task, by entering into an idle loop as long as a certain number of clock cycles 

(specified by the BUS_READ_DELAY parameter) is expired. The delay value related to bus write 

operations is not needed since it can be computed by subtracting BUS_READ_DELAY from the 

total instruction delay. For instructions not involving input/output, the delay is simply modeled by a 

waiting cycle activated after the (instantaneous) instruction execution. 

architecture vkernel_arc of vkernel is 

... 

procedure delay (opcode: in opcodes) is 

begin 

  for k in t_table(opcode’POS - 1) loop 

    wait until clk=’1’ and clk’last_value = 

’0’  

         and clk’event;  

  end loop; 

end; 

begin 

  process 

    variable i: vis_instruction; 

  begin 

    wait until clk=’1’ and clk’last_value = 

’0’ and clk’event;    

    i := code(ip); 

    case i.opcode is 

      when w_and => 

        if (i.dest.kind = reg) then 

           case i.src.kind is 

             when reg => 

               dbr(i.dest.int_value) <=  

                 dbr(i.src.int_value) and 

dbr(i.dest.int_value); 

               delay(w_and); 

             when mem => 

               dbr(i.dest.int_value) <=  
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                 data(i.src.int_value) and 

dbr(i.dest.int_value); 

               delay(w_and); 

             when bv_imm => 

               dbr(i.dest.int_value) <=  

                 i.src.bv_value and 

dbr(i.dest.int_value); 

               delay(w_and); 

             when int_imm => 

               dbr(i.dest.int_value) <=  

                 i.src.int_value and 

dbr(i.dest.int_value); 

               delay(w_and); 

             when io => 

               -- start bus read cycle 

               io_manager_enabled <= true; 

               io_manager_request <= read; 

               -- bus transfer delay 

               for k in BUS_READ_DELAY-1 loop 

                 wait until clk=’1’ and 

clk’last_value = ’0’  

                      and clk’event;  

               end loop; 

               dbr(i.dest.int_value) <=  

                 io_buffer and 

dbr(i.dest.int_value); 

           end case; 

        elsif (i.dest.kind = mem) then 

          case i.src.kind is 

             when reg => 

               data(i.dest.int_value) <=  

                 dbr(i.src.int_value) and 

data(i.dest.int_value); 

               delay(w_and); 

             when bv_imm => 

               data(i.dest.int_value) <=  

                 i.src.bv_value) and 

data(i.dest.int_value); 

               delay(w_and); 

             when int_imm => 

               data(i.dest.int_value) <=  

                 i.src.int_value) and 

data(i.dest.int_value); 

               delay(w_and); 

           end case; 

        else -- i.dest.kind = io 

          -- start bus read cycle 

          io_manager_enabled <= true; 

          io_manager_request <= read; 

          -- bus transfer delay 

          for k in BUS_READ_DELAY-1 loop 

            wait until clk=’1’ and 

clk’last_value = ’0’  

                 and clk’event;  

          end loop; 

          case i.src.kind is 

             when reg => 

               io_buffer <=  

                 dbr(i.src.int_value) and 

io_buffer; 

             when bv_imm => 

               io_buffer <=  

                 i.src.bv_value and io_buffer; 

             when int_imm => 

               io_buffer <=  

                 i.src.int_value and 

io_buffer; 

           end case; 

           -- start bus write cycle 

           io_manager_enabled <= true; 

           io_manager_request <= write; 

           -- bus transfer delay 

          for k in t_table(i.opcode’POS - 1) - 

BUS_READ_DELAY loop 

            wait until clk=’1’ and 

clk’last_value = ’0’  

                 and clk’event;  

           end loop; 

        end if; 

    end case; 

  end process; 

end; 

 

Figure 17. VHDL implementation of a VIS instruction. 

6. Concluding remarks 

This paper has presented a suitable methodology to support hw/sw co-design. A prototype toolset 

covering co-speification, hw/sw architectural exploration, co-synthesis and co-simulation activities 

has been developed. The system achieves a good integration with the existing commercial design 

environments through the VHDL description of the hardware part, the assembly level synthesis of 

the software modules (and of the operating system support) and the import of design models defined 

via different design environments (e.g. speedCHART). The focus of this paper have been mainly the 

co-synthesis and co-simulation steps. 
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Software synthesis is performed by translating the software-bound architecture units into a Virtual 

Assembly code which satisfies all real-time constraints by means of an optimal static schedule. The 

Virtual Assembly is then translated into the actual microprocessor assembly chosen for the system. 

This solution allows an higher degree of control of the software execution and a greater flexibility in 

evaluating alternative microprocessor cores. Moreover, the fine granularity evaluation of the 

software characteristics improves the reliability of its cost estimation during the partitioning process 

with respect to a C-level analysis of the software parts. 

The hardware modules are generated as VHDL code together with the interfaces which are, at this 

time, fixed. Different paradigms of communication will be made available in future versions of the 

framework. 

Finally, co-simulation is achieved by completely modeling the hardware and software parts in a 

common VHDL-based environment. 

Evaluation of these strategies have been performed on a number of medium size examples, allowing 

the identification of optimal solution in a reduced time. We are currently developing a large telecom 

example to test all features of the proposed approach. 
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Appendix 1. 

The annotated VIS code for the Hamming decoder of fig.11 is here reported. 

 
//PROC HammingEncoder (CHAN OF BYTE inChannel, CHAN OF [12]BIT 
outChannel) 
 <ports> 
 inChannel 
 outChannel 
 </ports> 
 
 <data> 
 
//BYTE dataIn: 
dataIn defb  0 
 
//[12]BIT dataOut: 
dataOut defw  0 
 
//BIT b0,b1,b3,b7: 
b0 defb  0 
b1 defb  0 
b3 defb  0 
b7 defb  0 
 
//BIT c2,c4,c5,c6,c8,c9,c10,c11: 
c2 defb  0 
c4 defb  0 
c5 defb  0 
c6 defb  0 
c8 defb  0 
c9 defb  0 
c10 defb  0 
c11 defb  0 
 
 </data> 
 
 <code> 
//SEQ 
 
//inChannel ? dataIn 
 
 <process> 
 <atomic><live none>   //not necessary 
 move.l  inChannel,R1 <2 2 6> 
 call  read_byte <2 4 6> //result in R0 
 move.b  R0,@dataIn(BP) <2 4 4> //save in R1 
 </atomic> 
 </process 6 10 16> 
//PAR 
 <group> 
 
//c2 := dataIn[0] 
 <process><use R0> 
 move.b  @dataIn(BP),R0 <2 4 4> 
 and.b  01h,R0  <1 2 4>//result in R0 
 move.b  R0,@c2(BP)  <2 4 4><free R0> 
 </process 5 10 12> 
 
 
.... similarly for c4, c5, c6, c8, c9, c110 .... 
 
 
//c11 := data[7] 
 <process><use R0> 
 move.b  @dataIn(BP),R0 <2 4 4> 
 and.b  80h,R0  <1 2 4> 
 move.b  R0,@c11(BP)  <2 4 4><free R0> 
 </process 5 10 12> 

 
 </group> 
//PAR 
 <group> 
 
//b0 := c2 BITOR c4 BITOR c6 BITOR c8 BITOR c10 
 <process><use R0> 
 move.b  @c2(BP),R0 <2 4 4> 
 or.b  @c4(BP),R0 <2 4 4> 
 or.b  @c6(BP),R0 <2 4 4> 
 or.b  @c8(BP),R0 <2 4 4> 
 or.b  @c10(BP),R0 <2 4 4> 
 move.b  R0,@b0(BP)  <2 4 4><free R0> 
 </process 12 24 24> 
 
... similarly for b1 and b3 ... 
 
//b7 := c8 BITOR c9 BITOR c10 BITOR c11 
 <process><use R0> 
 move.b  @c8(BP),R0 <2 4 4> 
 or.b  @c9(BP),R0 <2 4 4> 
 or.b  @c10(BP),R0 <2 4 4> 
 or.b  @c11(BP),R0 <2 4 4> 
 move.b  R0,@b7(BP)  <2 4 4><free R0> 
 </process 10 20 20> 
 
 </group> 
 
//dataOut := [b0,b1,c2,b3,c4,c5,c6,b7,c8,c9,c10,c11] 
 <process><use R0> 
 move.b  @b0(BP),R0 <2 4 4> 
 <use R1> 
 move.w  0001h,R1 <2 2 6> 
 and.w  R1,R0  <1 1 2> 
 <use R2> 
 move.b  @b1(BP),R2 <2 4 4> 
 shl.w  #1,R1  <1 1 2> 
 and.w  R1,R2  <1 1 2> 
 or.w  R2,R0  <1 1 2><free R2> 
 <use R2> 
 
... similarly for c2, b3, c4, c5, c6, b7, c8, c9, c10 ... 
 
 move.b @c11(BP),R2 <2 4 4> 
 shl.w #1,R1  <1 1 2> 
 and.w R1,R2  <1 1 2><free R1> 
 or.w R2,R0  <1 1 2><free R2> 
 <live R0></process 59 84 122> 
//outChannel ! dataOut 
 <process> 
 <atomic><live R0>   //in this case atomic it is not  
   //actually necessary 
 move.l outChannel,R1 <2 2 6> 
 call write_int <2 4 6> //dataOut is yet in R0 
 </atomic> 
 </process 4 6 12> 
//: 
 ret    <2 2 2><live none> 
 </code> 

 


