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Preface

This is the second edition of A Practical Guide to Tensegrity Design. The first edition was
released in spiral-bound format generated from LATEX source in 1994. Section 1.3 on the
early history of tensegrity has been rewritten. New material on realistically modeling the
complex details of hubs has been added throughout the book. Illustrations have been
clarified and augmented. Two electronic editions have been prepared, one using XHTML
and MathML, and the other in PDF format generated from the updated LATEX source.

The book covers the basics of doing calculations for the design and analysis of tensegrities.
Examples with complete data have been provided so you can calibrate your software
accordingly. The book presumes you are well versed in linear algebra and differential
calculus and are willing to explore their application in diverse ways.

I’ve found the tools here useful for designing and analyzing tensegrities and hope they
prove useful to you. I would be interested in hearing how they work out for you and
receiving data you have generated from the design and analysis of tensegrity structures. I’d
also appreciate suggestions for improvement and notification of mistakes of any sort
including typographic errors.

Bob Burkhardt
Shirley, Massachusetts
September 3, 2004
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At that time the School was located at MIT and being directed by Bruce Wedlock. I was
surprised to find myself on the MIT campus again, and took advantage of the continued
access to MIT’s excellent libraries. I dug up a lot of the books in the references
(Appendix C) there. (As far as libraries are concerned, I also found the General, Research
and Art Libraries at the Boston Public Library to be very helpful.) Eventually, I landed a
job at the School, first as a teaching assistant in electronics technology and then as an
instructor teaching computer programming. At one point, Dr. Wedlock kindly let me offer
a course on tensegrity through the School though the course finally had to be canceled due
to insufficient enrollment.

xix
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Chapter 1

An Introduction to Tensegrity

1.1 Basic Tensegrity Principles

Anthony Pugh1 gives the following definition of tensegrity:

A tensegrity system is established when a set of discontinuous compressive
components interacts with a set of continuous tensile components to define a
stable volume in space.

Tensegrity structures are distinguished by the way forces are distributed within them. The
members of a tensegrity structure are either always in tension or always in compression. In
the structures discussed in this book, the tensile members are usually cables or rods, while
the compression members are sections of tubing. The tensile members form a continuous
network. Thus tensile forces are transmitted throughout the structure. The compression
members are discontinuous, so they only do their work very locally. Since the compression
members do not have to transmit loads over long distances, they are not subject to the
great buckling loads they would be otherwise, and thus they can be made more slender
without sacrificing structural integrity.

While the structures discussed in this book aren’t commonly seen, tensegrity structures are
readily perceptible in the surrounding natural and man-made environment. In the realm of
human creation, pneumatic structures are tensegrities. For instance, in a balloon, the skin
is the tensile component, while the atoms of air inside the balloon supply the compressive
components. The skin of the balloon consists of atoms which are continuously linked to
each other, while the atoms of air are highly discontinuous. If the balloon is pushed on
with a finger, it doesn’t crack; the continuous, flexible netting formed by the balloon’s skin
distributes this force throughout the structure. And when the external load is removed, the

1Pugh76, p. 3. See also the last footnote in this chapter which cites Kanchanasaratool02’s elegantly
succinct definition and the footnote in Section 6.2.3 which cites Wang98’s rigorous and descriptive definition.
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balloon returns to its original shape. This resilience is another distinguishing characteristic
of tensegrity structures.

Another human artifact which exhibits tensegrity qualities is prestressed concrete. A
prestressed concrete beam has internal steel tendons which, even without the presence of
an external load, are strongly in tension while the concrete is correspondingly in
compression. These tendons are located in areas so that, when the beam is subjected to a
load, they absorb tensile forces, and the concrete, which is not effective in tension, remains
in compression and resists the heavy compressive forces elsewhere in the beam. This
quality of prestressed concrete, that forces are present in its components even when no
external load is present, is also very characteristic of tensegrity structures.

In the natural realm, the structural framework of non-woody 2 plants relies completely on
tensegrity principles. A young plant is completely composed of cells of water which behave
much like the balloon described above. The skin of the cell is a flexible inter-linkage of
atoms held in tension by the force of the water in the contained cell.3 As the plant is
stretched and bent by the wind, rain and other natural forces, the forces are distributed
throughout the plant without a disturbance to its structural integrity. It can spring back to
its usual shape even when, in the course of the natural upheavals it undergoes, it finds
itself distorted far from that shape. The essential structural use the plant makes of water is
especially seen when the plant dries out and therefore wilts.

1.2 Applications of Tensegrity

The qualities of tensegrity structures which make the technology attractive for human use
are their resilience and their ability to use materials in a very economical way. These
structures very effectively capitalize on the ever increasing tensile performance modern
engineering has been able to extract from construction materials. In tensegrity structures,
the ethereal (yet strong) tensile members predominate, while the more material-intensive
compression members are minimized. Thus, the construction of buildings, bridges and
other structures using tensegrity principles could make them highly resilient and very
economical at the same time.

In a domical configuration, this technology could allow the fabrication of very large-scale
structures. When constructed over cities, these structures could serve as frameworks for
environmental control, energy transformation and food production. They could be useful in
situations where large-scale electrical or electromagnetic shielding is necessary, or in

2The qualification “non-woody” is used to exclude trees. The woody elements of a tree are made to
undergo both tension and compression, much as is required of the structural elements of a geodesic dome.

3Donald Ingber has pointed out (personal communication, October 8, 2004) that this very simple view
of the living cell does not reflect very well the results of modern research in applying tensegrity principles to
the analysis of cell structure. No doubt this example would benefit from the attention of a biologist and the
details would change as a result. For a look at how tensegrity principles have been applied to the analysis
of living cells, see Ingber98.
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extra-terrestrial situations where micrometeorite protection is necessary. And, they could
provide for the exclusion or containment of flying animals over large areas, or contain
debris from explosions.

These domes could encompass very large areas with only minimal support at their
perimeters. Suspending structures above the earth on such minimal foundations would
allow the suspended structures to escape terrestrial confines in areas where this is useful.
Examples of such areas are congested or dangerous areas, urban areas and delicate or
rugged terrains.

In a spherical configuration, tensegrity designs could be useful in an outer-space context as
superstructures for space stations.

Their extreme resilience make tensegrity structures able to withstand large structural
shocks like earthquakes. Thus, they could be desirable in areas where earthquakes are a
problem.

1.3 Early Tensegrity Research

Key contributions to the early development of tensegrity structures appear to have come
from several people. Some historians claim Latvian artist Karl Ioganson exhibited a
tensegrity prism in Moscow in 1920-21 though this claim is controversial.4 Though
Ioganson’s work was destroyed several years later by the Soviet regime, photographs of the
exhibition survived, and French architect David Georges Emmerich cited a different
structure by Ioganson as a precedent to his own work.5 The word “tensegrity” (a
contraction of “tensile-integrity”) was coined by American entrepreneur Buckminster
Fuller.6 Fuller considered the framing of his 1927 dymaxion house and a 1944 construction
to be early examples of the technology.7

In December, 1948, after attending lectures by Fuller at Black Mountain College in North
Carolina, Kenneth Snelson made a catalytic contribution to the understanding of

4Gough98, Fig. 13, p. 106, makes this claim. Kenneth Snelson contests this claim and does not believe
the sculpture in the old exhibition photo on which the claim is based was a tensegrity prism.

5Emmerich88, pp. 30-31. The structure Emmerich references is labeled “Gleichgewichtkonstruktion”. He
states:

Cette curieuse structure, assemblée de trois barres et de sept tirants, était manipulable à l’aide
d’un huitième tirant detendu, l’ensemble étant déformable. Cette configuration labile est très
proche de la protoforme autotendante à trois barres et neuf tirants de notre invention.

This apparently means he doesn’t recognize Ioganson’s invention of the tensegrity prism. Gough98’s thorough
examination of the exhibition photographs unfortunately doesn’t mention Emmerich’s work.

6See the description for Figure 1 in U.S. Patent No. 3,063,521, “Tensile-Integrity Structures”, November
13, 1962. Kenneth Snelson prefers the description “floating compression” to the term tensegrity.

7Fuller73, Figs. 261, 262 and 263, pp. 164-165.
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tensegrity structures when he assembled his X-Piece sculpture.8 This key construction was
followed by further contributions by Fuller, Snelson and others of their circle.9

Independently, in France, in 1958, Emmerich was exploring tensegrity prisms and
combinations of prisms into more complex tensegrity structures, all of which he labeled as
“structures tendues et autotendantes” (self-tensioning tensile structures).10

Emmerich, Fuller and Snelson came out with patent claims on various aspects of the
technology in the 1960’s,11 and all continued developing the technology. Fuller’s primary
interest was adapting the technology to the development of spherical and domical
structures with architectural applications in mind.12 He also used tensegrity structures to
make some philosophical points.13 As an architect, Emmerich was also interested in
architectural applications and designed at least one dome as well.14 Snelson is primarily
interested in the artistic application of tensegrity and has explored the technology in a
variety of sculptures.15 His work in tensegrity also led him to develop a model of the
atom.16 All three developed tower or mast structures which continue to be a source of
fascination for tensegrity enthusiasts but only recently have found practical application in
the development of deployable structures.17

While many tensegrity models were built and achieved quite a fame for themselves, for
instance through a notable exhibition of Fuller’s work at the Museum of Modern Art in
New York, 18 and a retrospective on Snelson’s work at the Hirschorn Museum in

8See Lalvani96, pp. 45-47. Fuller immediately publicized Snelson’s invention, but via a variation
on Snelson’s X-Piece which used tetrahedral radii rather than an X as the compression component
(Fuller73, Figs. 264-267). Snelson didn’t publish until a decade later when he filed his patent (U.S. Patent
No. 3,169,611). Emmerich characterizes Fuller’s contribution to Snelson’s invention as that of a “catalyst”
(Lalvani96, p. 49).

It seems both Fuller and Snelson catalyzed this tensegrity revolution by bringing together their relevant
ideas and experience and fabricating artifacts that stimulated further innovations. Another important step,
which either of them could have taken first, was to start using the simple linear compression components
which are used to fabricate the structures studied in this book. In 1949, the same year that Fuller found out
about Snelson’s work, he fabricated the tensegrity icosahedron (Section 2.3) which is an outgrowth of the
“jitterbug”/cuboctahedron framework whose dynamics he had been exploring. On the other hand, Snelson
fabricated his “tower” (U.S. Patent No. 3,169,611, Fig. 25, or perhaps a two-fold one composed of his “X-
Modules” which are made of two tendon-connected linear struts) out of a designer’s frustration with Fuller’s
“mast” design and its complex compression components with their tetrahedral radii.

9Fuller73, Figs. 264-280, pp. 165-169.
10Lalvani96, p. 29.
11R. Buckminster Fuller, U.S. Patent No. 3,063,521, “Tensile-Integrity Structures”, November 13, 1962.

David Georges Emmerich, French Patent No. 1,377,290, “Construction de Reseaux Autotendants”, Septem-
ber 28, 1964, and French Patent No. 1,377,291, “Structures Linéaires Autotendants”, September 28, 1964.
Kenneth Snelson, U.S. Patent No. 3,169,611, “Continuous Tension, Discontinuous Compression Structure”,
February 16, 1965.

12Fuller73, Figs. 268-280, pp. 165-169. See also Lalvani96 and Wong99, pp. 167-178, for further discussion
of the Fuller-Snelson collaboration and controversy.

13See Fuller75, Fig. 740.21, p. 407, for an example.
14Emmerich88, pp. 158-159.
15See the “Sculpture” section of Snelson’s website, http://www.kennethsnelson.net.
16See “The Atom” section of Snelson’s website, http://www.kennethsnelson.net.
17For example, Skelton97.
18Geodesic D.E.W. Line Radome, Octe-truss and Tensegrity Mast - one-man, year-long, outdoor garden
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Washington, D.C., 19 the bulk of production structures which Fuller and his collaborators
produced were geodesic domes rather than tensegrity structures.20

It seems probable that part of the reason that tensegrity structures didn’t get farther, even
in circles where there was a strong interest in practical applications of tensegrity, was the
apparent dearth of powerful and accurate tools for carrying out their design. Fuller’s basic
tensegrity patent has quotations of member lengths, but no indication of how one would
compute the lengths.21 Probably the lengths were computed after the fact by measuring
the tendon lengths of a finished structure.

An early exception to this dearth of information on tensegrity calculating was Hugh
Kenner’s excellent work Geodesic Math22 which went into an exact technique for the very
simple tensegrity prism and outlined an approximate technique for dealing with some
simple spherical structures. His technique for designing prisms will be presented in
Section 2.2 as an introduction to tensegrity calculations since these simple structures are
an excellent avenue for developing an intuitive feel for what tensegrity is all about.

First-hand accounts of the early history of tensegrity can be found in Coplans67, Fuller61
and Lalvani96.

1.4 Recent Tensegrity Research

Civil engineers have taken an interest in tensegrity design. An issue of the International
Journal of Space Structures23 was devoted to tensegrity structures. In that collection, R.
Motro notes in his survey article “Tensegrity Systems: State of the Art”:

...there has not been much application of the tensegrity principle in the
construction field. ...examples...have generally remained at the prototype state
for lack of adequate technological design studies.24

The primary obstacles to the practical application of tensegrity technology which these
researchers have identified are:

exhibit, 1959. Also at least one tensegrity was exhibited inside. See Fuller73, p. 169, illus. 280.
19Kenneth Snelson and Douglas G. Schultz, Kenneth Snelson, an exhibition, Buffalo, New York: Albright-

Knox Art Gallery, c1981. The exhibition was in Washington, D.C., June 4 to August 9, 1981.
20See Section 1.5 for a comparison of geodesic dome and tensegrity technology.
21See Figure 7 in U.S. Patent No. 3,063,521, “Tensile-Integrity Structures”, November 13, 1962.
22Kenner76.
23Vol. 7 (1992), No. 2.
24Motro92, p. 81.
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1. Strut congestion - as some designs become larger and the arc length of a strut
decreases, the struts start running into each other.25

2. Poor load response - “relatively high deflections and low material efficiency, as
compared with conventional, geometrically rigid structures.”26

3. Fabrication complexity - spherical and domical structures are complex which can
lead to difficulties in fabrication.27

4. Inadequate design tools - as Motro’s statement above suggests, lack of design and
analysis techniques for these structures has been a hindrance.

Double-layer designs introduced in Motro’s and Hanaor’s work28 begin to deal with the first
obstacle. Poor load response (the second obstacle) is still a problem in their configurations,
and they don’t have much advice on fabrication techniques (the third obstacle). They have
developed tools to deal with the fourth obstacle. These tools are based on earlier work by
J. H. Argyris and D. W. Scharpf analyzing prestressed networks.29.

In what follows, reference will be made to this work; however, the techniques presented
here are somewhat different and take advantage of some special characteristics of tensegrity
structures. The civil engineers’ work is the source of the “double-layer” terminology used
to describe some of the structures presented here. Appendix A discusses relationships
between the civil engineers’ work and some of the ideas presented here.

1.5 Other Space Frame Technologies

Other space frame technologies can be roughly sorted into three categories. The first
category contains those space frame technologies where members are very homogenous.
They are typically realized as planar trusses perhaps connected at an angle with other
planar trusses. Biosphere 230 is an example. Their faceted shape means they contain less
space per unit of material than a spherical shape would. Makowski65 contains a variety of
examples.

The second category contains those which are typified by the geodesic domes31 and Kiewitt
domes.32 Geodesic domes share many qualities of tensegrity domes. The primary difference

25Hanaor87, p. 35.
26Hanaor87, p. 42.
27Hanaor87, p. 44.
28See Hanaor92, Hanaor87, Motro87 and Appendix A.
29Argyris72.
30Kelly92, p. 90.
31Fuller73, pp. 182-230.
32Makowski65.
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is the requirement of these technologies that all components be able to sustain both tensile
and compressive forces.

The third category is typified by the circus tent. Here a tensile network (the tent fabric) is
supported at various locations by large poles. Anchors and supporting cables usually also
play a role. These structures can almost be considered a sort of tensegrity since elements of
the structure are either in tension all the time or compression all the time. Their
compressive elements are much fewer and much more massive than in the usual sort of
tensegrity. Many times these poles disrupt the internal space of the structure substantially.
The tensile network has a catenary shape to it between the compressive supports. This
means it encloses less space than it would if it were supported as in the usual spherical
tensegrity with many struts embedded in the network. For a variety of examples of
structures in this category, see Otto73.

1.6 Book Scope and Outline

The discussion here will center on tensegrity structures of a particular type. They are
composed of discrete linear members: the tensile members can be thought of as cables
which pull two points together, while the compression members can be thought of as
sections of rigid tubing which maintain the separation of two points. The tensile members
are continuously connected to each other and to the ends of the compression members
while the compression members are only connected to tensile members and not to other
compression members.33 The primary motivation for this work is to outline mathematical
methods which can be applied to the design and analysis of this sort of tensegrity.

Also some new classes of tensegrity structures are presented. In particular,
highly-triangulated methods of tensegrity trussing will be discussed which can be applied
to domical, spherical and more general tensegrity designing. These double-layer tensegrities
are designed to be effective in larger structures where trussing is needed.

While a lot of the discussion will center around highly symmetric, spherical structures, the
derivation and analysis of truncated structures like domes are also fully treated. The
development of techniques for these less symmetric applications makes tensegrity a much
more likely tool for addressing practical structural problems.

Finally, sections on analyzing member forces and clearances in tensegrity structures are
included. This analysis is a large element of concern in any engineering endeavor and also

33These structures would be described as Class 1 tensegrity structures using the definition cited in Kan-
chanasaratool02. That definition is:

A tensegrity system is a stable connection of axially-loaded members. A Class k tensegrity
structure is one in which at most k compressive members are connected to any node.

“Connection” doesn’t seem like quite the right word here and could be a typographical error. Substituting
“continuously-connected collection” yields a better description. “node” is synonymous with “hub”.
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of interest to anyone who seeks an understanding of the behavior of tensegrity structures.



Chapter 2

Basic Tensegrity Structures

2.1 Basic Tensegrity Structures: Introduction

This section presents some simple tensegrity structures. In this form, the basic features of
tensegrity structures are most readily grasped. In the context of these structures, various
mathematical tools are illustrated which can be applied to tensegrity design. Some of these
structures are simple enough that the member lengths can be expressed in algebraic
formulas. But even with these simple structures, sometimes the help of the computer, and
the powerful numerical calculation tools it provides, is needed.

These simple structures permit some mathematical approaches which are intuitively
appealing but which are difficult to apply to more complex structures. The intuitive
approaches deal explicitly with angular measures. The alternative Cartesian approach
involves no angles, only points and distances between them. For computations, the
Cartesian approach is simple and powerful, but the physical reality of the structure is less
apparent in the mathematics, and the approach needs to be supplemented with other tools
when structure visualization is necessary.

2.2 T-Prism: The Simplest Tensegrity

2.2.1 T-Prism Intuition

The t-prism is illustrated in Figure 2.1. It is the simplest and therefore one of the most
instructive members of the tensegrity family. Some art historians believe it was first
exhibited by the Latvian artist Karl Ioganson in Moscow in 1920-21 though this claim is

29
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Figure 2.1: Tensegrity Prism
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controversial.1

A model can be easily constructed using 5/16-inch-diameter (8 mm) dowel, some small
screw eyes,2 and some braided Dacron or nylon fishing line. The dowel should be cut into
three seven-inch (178 mm) lengths and an eye screwed into either end of each length. Both
eyes on a dowel should face the same direction. Then, using the fishing line, the three
dowels are tied together by connecting one end of each of them to one end of each of the
others so that there is a three-inch (76 mm) length of line between each pair of dowels.3

The result should be an equilateral triangle of tendons, each three inches (76 mm) long,
connecting the three struts together. Next the opposite ends of the struts are tied together
in a similar manner. These two sets of tendons are the end tendons. At this point, the
result should be a triangular prism whose side edges are marked out by the struts and
whose triangular ends are made of fishing lines (see Figure 2.2).

The structure can be held up with a thumb and two fingers from each hand so that it can
be viewed as a prism. When one end of the prism is twisted relative to the other, the
rectangular sides of the prism lose their rectangularity and become non-planar
quadrilaterals. Two opposite angles of each quadrilateral become obtuse (greater than 90◦),
and two opposite angles become acute (less than 90◦). The structure is completed by
connecting the vertices of each quadrilateral corresponding to the two obtuse angles with a
tendon made of fishing line.

The length of these final three tendons (one for each side of the prism – the side tendons)
has to be chosen carefully; otherwise, the structure will turn out to be a loose jumble of
sticks and fishing line. As the two ends of the prism are twisted relative to each other, the
vertices corresponding to the opposite obtuse angles initially grow closer to each other. As
the twisting continues, there comes a point where they start to move apart again. If the
side tendons are tied with a length of fishing line which corresponds to the minimum length
reached at this point (which comes when the two ends are twisted 150◦ relative to each
other), the structure is stable since it can’t move away from that configuration except by
lengthening the distance between those two points, and that is prevented by the
minimum-length tendon. This is the “trick” which underlies all the tensegrity design
methods explored here.

1Gough98, Fig. 13, p. 106, shows a tensegrity prism which claims to be a modern reconstruction of
Ioganson’s sculpture which was destroyed in the mid-1920’s by the Soviet regime. Snelson contests this
reconstruction and does not believe the sculpture in the old exhibition photo on which it is based was
a tensegrity prism. As was noted in Chapter 1, the tensegrity prism was the first tensegrity structure
assembled by Emmerich. Snelson also claimed it in his patent (see U.S. Patent No. 3,169,611, Fig. 22b).

2Small screw eyes, 7-8 mm in diameter, work the best. Likely candidates can be found in hardware
stores or picture framing shops. Anthony Pugh (Pugh76, p. 72) favors nails instead of screw eyes. Nails
have the advantage that ad hoc adjustments of the member lengths don’t have to be made to accommodate
the dimensions of the attachment point. Pugh’s detailed information on tensegrity model construction is
recommended reading.

3A stunsail tack bend (used in sailing) is an effective knot in this application. If problems are encountered
tying the fishing line to the right length, thin gauge wire can be used. This doesn’t have to be knotted but
merely twisted at the right length. The sharp wire ends can be a hazard.
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Figure 2.2: T-Prism Construction: Triangular Prism Stage
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Coordinates
Point z radius angle
A 0 r 0
B 0 r 2π

3

C 0 r −2π
3

A′ h r θ
B′ h r θ + 2π

3

C ′ h r θ − 2π
3

Table 2.1: T-Prism: Polar Coordinates

So next the computation of the length of this minimum-length tendon is explored.

2.2.2 T-Prism Mathematics: Cylindrical Coordinates

[A lot of the analysis presented in this section is derived from Kenner76, pp. 8-10. The
analysis presented there is a more general one.]

For the t-prism, the most intuitive and convenient coordinate system for mathematical
analysis is the cylindrical coordinate system.4 Figure 2.3 outlines how the t-prism is
oriented in this system. The z axis of the system coincides with the axis of the t-prism
(OO′) and therefore pierces the centers of two triangular ends. The center of one of these
ends (O) coincides with the origin, while the other center (O′) lies on the positive z axis.
The points which make up the triangle about the origin are marked with the labels A, B,
and C. The z coordinate of all these points is 0. This position will be held constant in the
mathematical analysis. On the other triangle, the corresponding points are marked A′, B′

and C ′. The z coordinate of these points is h, the height of the t-prism. This height is a
variable in the mathematical analysis.

Since the z axis goes through the centers of both triangles, their vertices are equidistant
from the z axis. The measure of this distance, denoted r, represents the radial portion of
their coordinate representation. This value will also be held constant for the purposes of
the mathematical analysis. Besides the z axis, the figure also contains the reference axis
labeled x. This axis serves as the reference for the value of the angular coordinate.5 The
value of this coordinate for A′ is the variable θ, while the value of this coordinate for A is
fixed at 0. The value of θ (which is measured in radians) measures the twist of the two
triangular ends with respect to each other. Since A′, B′, and C ′ lie on the same triangle,
the angular component for B′ is θ + 2π

3
and that for C ′ is θ − 2π

3
. Table 2.1 summarizes the

coordinate values for the six points.

4A presentation of this system can be found in most calculus texts, for instance Leithold72, p. 863.
5The value can be expressed in radians or degrees. Here (for mathematical convenience) radians are

primarily used.
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Figure 2.3: T-Prism: Cylindrical Coordinates
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Now the struts (the compressive component of the structure) can be inserted into the
model. These will correspond to the line segments AA′, BB′ and CC ′. Next the side
tendons are specified which link up the two tendon triangles which in turn make up the
ends of the prism. Starting from point A, the side tendon can be connected to either B′ or
C ′. Either decision would result in a viable structure provided the connections are made
consistently around the structure. One of these structures would be the mirror image of
the other. Here the side tendon is connected to C ′, so the side tendons correspond to the
line segments AC ′, BA′ and CB′.

Now the essence of the problem is reached: how long should each member (each tendon
and each strut) be? By fixing the value of r (the radius of the prism’s triangular ends), the
length of each end tendon (call this value u) has been fixed via the equation u = 2r sin π

3
.

For the other members, there are two choices. The side tendon lengths AC ′ etc. can be
specified and then AA′ etc. chosen to be the maximum length struts compatible with the
specified tendon lengths; or, the strut lengths AA′ etc. can be specified and then AC ′ etc.
chosen to be the minimum length side tendons compatible with the specified strut
lengths. Here the strut lengths are fixed and the side tendon lengths minimized.6 The
choice is arbitrary here and there is no real benefit to doing it one way or the other. In
more complex structures, however, specifying the struts a priori allows the designer to
specify them all to be equal in length. This uniformity eases the manufacture of the struts
since only one length of strut needs to be made.

So the problem is:

Using the variables h and θ, minimize side tendon length t = |AC ′| keeping in mind the
following constraints:

• Fixed triangle radius r

• Fixed strut length s = s = |AA′|

• Strut symmetry constraints: |AA′| = |BB′| = |CC ′|

• Side tendon symmetry constraints: |AC ′| = |BA′| = |CB′|

The symmetry constraints stem from the fact that this tensegrity is based on a triangular
prism which has a three-fold symmetry about its axis. Symmetrical struts are chosen to be
equal for convenience. They could just as well be specified to all have different lengths.
The side tendon lengths are chosen to be equal for convenience also. Here more care needs
to be taken since the side tendon lengths, |AC ′| etc., are variables of the problem, and
artificial constraints here could invalidate the mathematical model of the structure. There
is nothing in the geometry of the structure which says these tendons must be equal, and

6This is implicitly the solution sought in the experiment with the t-prism carried out above. The struts
were fixed in length and the t-prism was twisted until the opposite rectangle ends were as close together as
possible.
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actually a valid structure could be constructed with these tendons unequal; but, as it turns
out, when the structure otherwise exhibits a rotational symmetry, imposing this symmetry
on the solution results in a viable structure, and, as important, it whittles down the size of
the problem considerably.

To get mathematical formulas for the different lengths, the formula for the length of a
chord on a cylinder is needed. It is:

l2 = (∆z)2 + 2r2 − 2r2 cos (∆θ)

where

l = length of the chord
∆z = difference in z coordinate between the two points
∆θ = difference in angular coordinate between the two points

Notice that the formula is expressed in terms of the second power of the length. The
second root of this expression would also yield a formula for the length; but, it is just as
valid,7 and, more importantly, mathematically easier, to work in second powers. In
virtually every tensegrity problem examined in these notes, working with second powers of
lengths makes the problem more tractable.

All this considered, the final mathematical form for the problem is:

minimize t2 = |AC ′|2 = h2 + 2r2 − 2r2 cos (2π
3
− θ)

θ, h

subject to s2 = s2 = |AA′|2 = h2 + 2r2 − 2r2 cos θ
r = r

This constrained optimization problem can be turned into an easier unconstrained one by
solving the constraint for h2 + 2r2 and substituting this into the objective function. Doing
this, the equivalent unconstrained problem is obtained:

minimize s2 + 2r2 cos θ − 2r2 cos (2π
3
− θ)

θ

Taking the derivative with respect to θ and equating the result to 0 yields:8

7For example, instead of constraining the strut length to be a certain value, the second power of the strut
length can be constrained to the the second power of that certain value, and the effect of the constraint will
be the same.

8Here an important mathematical advantage of expressing the angular measures in terms of radians is
realized: the derivative of cos is simply − sin. The result is equated to 0 since that is a necessary first order
condition for a minimum.
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−2r2 sin θ − 2r2 sin (
2π

3
− θ) = 0

or

sin θ = − sin (
2π

3
− θ) = sin (θ − 2π

3
).

The sines of two angles can be equal only if either their difference is an even multiple of
π, or their sum is an odd multiple of π. In this case only the latter is a possibility.9

The first alternative is that that the sum is just π, i.e. that:

θ + (θ − 2π

3
) = π

which means a solution to the problem is

θ =
5π

6
= 150◦.

Substitution of this value for θ into the modified objective function above yields:

t2 = |AC ′|2 = s2 + 2r2 cos (
5π

6
)− 2r2 cos (

−π
6

).

In the experiment above, the fixed strut length, s, was 7 and the fixed end tendon length,
u, was 3. Hence:

s2 = 72 = 49

r2 = (
u

2 sin (π
3
)
)2 = (

3

2 sin (π
3
)
)2 = 3

and therefore:

t2 = |AC ′|2 = 49 + 2 · 3(
−
√

3

2
−
√

3

2
) = 49− 2 · 3

√
3 = 38.6077

So t = |AC ′| = 6.2135 inches (158 mm).

9The difference between the two angles in question is θ − (θ − 2π
3 ) = 2π

3 which is not an even multiple of
π.
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The next alternative is that the sum is −π, i.e. that

θ + (θ − 2π

3
) = −π.

This alternative yields the solution

θ =
−π
6
.

This solution corresponds to a maximum value of the objective function rather than a
minimum. Mathematically, this alternative could be eliminated by examining the second
order conditions for a minimum. The previous solution would fulfill them; this solution
would not. For now, such care need not be taken since it is also known that θ needs to be
positive. However, as the models get more complex, these issues will need to be dealt with.
This latter solution would be a valid tensegrity solution if the strut length were being
maximized with respect to a fixed-length side tendon.

All other alternatives10 are equivalent to the two examined since the other alternatives can
be reduced to one of the solutions examined plus an even multiple of π.

2.2.3 T-Prism Mathematics: Cartesian Coordinates

As an introduction to the material presented in succeeding chapters, the triangular t-prism
is re-examined from the vantage point of Cartesian coordinates. The three-fold symmetry
of the triangular prism make this analysis much simpler as compared with prisms of higher
symmetry.

Now each vertex of the prism is expressed as a point in xyz-space. The three-fold
symmetry constrains the coordinates of the three points within each triangle to be
permutations of each other. A and A′ are arbitrarily chosen to be the basic points. The
other points are called symmetry points since they can be generated from the basic points.
These coordinate values are summarized in Table 2.2 and illustrated in Figure 2.4.

With Cartesian coordinates, it is no longer convenient to deal with the parameter r, and
instead the common length of each end tendon, u, is used directly. The constraints
imposed by the specification of fixed lengths for the sides of the triangles formed by the
end tendons must now be explicitly written out for each triangle:

10These would involve substituting other odd multiples of π besides π and −π into the equations above.
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Figure 2.4: T-Prism: Cartesian Coordinates

Coordinates
Point x y z
A xA yA zA
B zA xA yA
C yA zA xA
A′ xA′ yA′ zA′
B′ zA′ xA′ yA′
C ′ yA′ zA′ xA′

Table 2.2: T-Prism: Cartesian Coordinates



40 CHAPTER 2. BASIC TENSEGRITY STRUCTURES

u2 = u2 = |AB|2 = (xA − xB)2 + (yA − yB)2 + (zA − zB)2

= (xA − zA)2 + (yA − xA)2 + (zA − yA)2

u2 = u2 = |A′B′|2 = (xA′ − zA′)2 + (yA′ − xA′)2 + (zA′ − yA′)2

Only the constraint for one side of each triangle is written out since the symmetry of the
structure (which is subsumed in the coordinate representation) ensures that if the
constraint is met for one side of the triangle, the other sides will satisfy the constraint also.
The constraint imposed by the strut length appears as:

s2 = s2 = |AA′|2 = (xA − xA′)2 + (yA − yA′)2 + (zA − zA′)2

Again, this equation is not written out for all three struts since the structure’s symmetry
ensures that if the constraint is met for one strut, it will be met for the others.

Taking all this into consideration, the mathematical representation of the problem now
appears as:

minimize t2 = |AC ′|2 = (xA − yA′)2 + (yA − zA′)2 + (zA − xA′)2

xA, yA, zA
xA′ , yA′ , zA′

subject to u2 = u2 = |AB|2 = (xA − zA)2 + (yA − xA)2 + (zA − yA)2

u2 = u2 = |A′B′|2 = (xA′ − zA′)2 + (yA′ − xA′)2 + (zA′ − yA′)2

s2 = s2 = |AA′|2 = (xA − xA′)2 + (yA − yA′)2 + (zA − zA′)2

0 = xA + yA + zA + xA′ + yA′ + zA′
0 = xA − yA

The final two constraints are added for computational reasons. Without these constraints,
the problem has infinitely many solutions.11

These equations don’t lend themselves to the easy substitutions that the previous set up
did, and, in this problem, certainly the previous approach is to be preferred since it is so
simple to solve. The problem with the earlier approach is that it doesn’t generalize as
easily to more complex problems as this Cartesian approach does.

Given the complexities involved in solving a system like this, the discussion of how the
solution is obtained will be deferred until later when the problems absolutely require it.

11The fourth constraint centers the t-prism about the origin. The fifth constraint fixes it with respect to
rotations about its central axis.
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Figure 2.5: Tensegrity Icosahedron

2.2.4 T-Prism Mathematics: Further Generalizations

Kenner76 shows how the formulae of Section 2.2.2 can be generalized to handle four-fold
and higher-symmetry prisms and cases where the radii of the ends differ. For the
higher-symmetry prisms, it is also not necessary that the side tendon be restricted to
connecting adjacent struts: it can skip over one or more struts in its trip from one end of
the prism to the other. Although Kenner76 doesn’t explore this possibility, it is easy
enough to generalize his formulae to handle it.

2.3 T-Icosahedron: A Diamond Tensegrity

The t-icosahedron is illustrated in Figure 2.5. It was first exhibited by Buckminster Fuller
at Black Mountain College in 1949.12 It is one of the few tensegrities which exhibit mirror

12Fuller73, Fig. 270.
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symmetry. Its network of tendons would mark out a cuboctahedron if the (non-planar)
quadrilaterals in which the struts are nested were changed to squares. The struts are
inserted as the diagonals of these squares so each strut is parallel to the strut in the
opposite square and so no strut shares a vertex with another strut. This tensegrity is
classified as a “diamond” type because each strut is surrounded by a diamond of four
tendons by which it is seemingly supported by two adjacent struts. This type contrasts
with the “zig-zag” type which is described in Section 2.4.

The octahedral symmetry of the t-icosahedron gives the Cartesian coordinate system a real
advantage in analyzing this structure since the Cartesian coordinate axes exhibit exactly
the same symmetry. As a contrast to the approach taken with the t-prism, the member
lengths for this structure will be derived by maximizing the length of the struts with
respect to a fixed length for the tendons.

Figure 2.6 shows how the system of tendons can vary from a doubled-up octahedral
arrangement to a cuboctahedron and then all the way back down to an octahedron. The
place where a typical strut will go is marked by a pair of small outward-pointing arrows.
These small arrows also indicate the direction of movement of this pair of opposite points
of the quadrilateral as the tendon system goes through its transformations. An
inward-pointing pair of small arrows indicates how the other pair of points in the
quadrilateral moves during the transformations. Just past the middle of the
transformations, the distance between the points indicated by the outward-pointing arrows
reaches a maximum. By inserting the struts into the tendon system at this stage, the
structure can be stabilized since any other stage in the transformations cannot
accommodate a strut of this length.

As mentioned, this family of tensegrities is exceptionally easy to model with Cartesian
coordinates. Figure 2.7 presents the model used here. The family is extremely simple in
that at every stage each point is symmetric to all of the others.13 (In addition all the
tendons are symmetric to each other, as are all the struts.) So when the coordinates for
one point are known, the symmetry transformations of the tensegrity can be applied to find
the coordinates of any other point.

The coincidence of the symmetry of the tensegrity with that of the coordinate system is
most readily exploitable if the first point, A, is chosen to lie in the positive quadrant of the
xy plane. Its coordinates are xA, yA and 0. To do a mathematical analysis, two other
points, B and C, are needed. They will be used to express the equations for the length of a
strut (which is being maximized) and the length of a tendon (which represents a
constraint). A glance at Figure 2.7 shows that B is obtained from A by rotating the figure
about the axis through origin and the point (1.0, 1.0, 1.0) by 120◦.14 The corresponding
rotation of the coordinate axes takes the x axis into the y axis, the y axis into the z axis

13This means that, given one point on the structure and any other point on the structure, the structure
can be rotated so the given point is positioned where the other point used to be and the structure will appear
to be unmoved.

14This axis is not shown in the figure, since would point straight out at the viewer from the origin and
thus only be visible as a point.
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Figure 2.6: T-Icosahedron: Transformations
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Figure 2.7: T-Icosahedron: Cartesian Coordinates
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and the z axis into the x axis. This means the coordinates of B are xB = zA = 0, yB = xA
and zB = yA. C is obtained from A by a 180◦ rotation about the y axis. So xC = −xA,
yC = yA and zC = −zA = 0.

Thus, the problem can be expressed as follows:

maximize s2 = |AC|2
xA, yA

subject to 1 = |AB|2

The value for the fixed lengths of the tendons has been chosen as 1. Substituting using the
standard Pythagorean length formula yields:

maximize (2xA)2

xA, yA

subject to 1 = x2
A + (yA − xA)2 + y2

A

This problem can be solved using the method of Lagrange.15 The adjoined objective
function

(2xA)2 + λ(x2
A + (yA − xA)2 + y2

A − 1)

is differentiated by xA, yA and λ and the resultant equations set to zero obtaining:

0 = 8xA + λ(4xA − 2yA)

0 = λ(4yA − 2xA)

0 = x2
A + (yA − xA)2 + y2

A − 1

The second equation says xA = 2yA. Substituting that result into the third equation gives:

0 = 4y2
A + y2

A + y2
A − 1

So yA =
√

1
6
, xA = 2

√
1
6

and the strut length is 4
√

1
6

= 1.63299.

The Theorem of Pythagoras and the symmetry of the Cartesian coordinate system
combined to make the work very easy here. Expressing points as symmetry

15See any calculus text, for example Leithold72, pp. 951-954.
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Figure 2.8: Tensegrity Tetrahedron

transformations of other points can be quite a mess, the general case involving a matrix
multiplication, but here a few permutations sufficed.

So working with structures with octahedral symmetry is very desirable just from a
computational point of view. In later sections some spherical tensegrity trusses are studied
where the use of octahedral symmetry is a practical necessity just from a geometric point
of view. This being the case, computational complexities are kept to a minimum if
Cartesian coordinates are used.

2.4 T-Tetrahedron: A Zig-Zag Tensegrity

The t-tetrahedron is illustrated in Figure 2.8. It was first exhibited by Francesco della Sala
at the University of Michigan in 1952.16 It is called a “zig-zag” tensegrity because each

16Fuller73, Fig. 268.
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"β

Figure 2.9: T-Tetrahedron: Mathematical Model

strut is held out by two struts tied into a zig-zag of three tendons spanning the strut. The
t-tetrahedron is the zig-zag counterpart of the diamond t-icosahedron examined in
Section 2.3. Both structures have six struts. The t-tetrahedron has four tendon triangles,
whereas the t-icosahedron has eight.

Closer examination of these two structures yields another way the diamond and zig-zag
forms can be contrasted. Four non-adjacent triangles of the t-icosahedron can be chosen to
correspond to those of the t-tetrahedron. Each of these four triangles is connected to its
three partners by two tendons (see Figure 2.5). The “nose” of each of the triangles is
connected to the “ear” of the other (assuming the two triangles are looking at each other).
This contrasts with the t-tetrahedron where each triangle is connected to each of its
neighbors with a single tendon connecting the “noses” of the two triangles. With fewer
tendons, the t-tetrahedron is simpler and less rigid than its diamond counterpart. In
general, due to the use of fewer tendons, zig-zag structures are simpler and less rigid than
their diamond counterparts.

The mathematical model for this structure is based on the structure itself and doesn’t refer
to any 3D coordinate systems. The mathematical analysis relies heavily on results from
spherical trigonometry.17

17See Hogben65, pp. 367-382 for an intuitive look at this subject, and Kells42, Chapters 3, 5 and 8 for a
more thorough and technical look.
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Figure 2.10: T-Tetrahedron: Detail

Figure 2.9 illustrates the model for analyzing the t-tetrahedron. The t-tetrahedron can be
conceived of as four triangles mounted on four rays extending from the center of the
tetrahedron. The angle between any two of these rays is denoted by β. The main interest

here will be in β
2

which is approximately 54.736◦ (cos (β
2
) =

√
1
3
; sin (β

2
) =

√
2
3
). Two of

these rays and the corresponding triangles have been included in Figure 2.10.

All four triangles are symmetrical with respect to each other and have radius r. This
symmetry allows only two methods of transforming a triangle: moving it in and out along
its ray and rotating it about that ray. This symmetry also dictates that if one triangle
rotates counter-clockwise,18 the other triangles rotate correspondingly. It is assumed that
initially the triangles are oriented so they are all pointing at each other. The rotation angle
is denoted by θ.

As mentioned, each pair of triangles is connected by a tendon (whose length will be
minimized) and a strut as well (whose length represents a constraint). It is assumed that
the tendon runs between the two triangle vertices which are initially pointing at each other
and that the strut runs between the two vertices 120◦ (= 2π

3
) counter-clockwise from the

vertices attached to the tendon.

18In speaking of triangle rotation, it is always assumed the structure is being viewed from outside. Counter-
clockwise in this case amounts to a right-handed rotation of the triangle about its axis since the axis points
out from the origin. From inside the structure, this would appear to be clockwise rotation.
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Since both triangles are orthogonal to their corresponding rays, all their vertices are the
same distance from the center of the tetrahedron. This distance is denoted r′. Thus all the
vertices can be conceived of as being located on a circumscribing sphere of radius r′. Two
symmetrical instances of these vertices are labeled V and V ′. Other important points on
this sphere are where the rays intersect it. These are labeled U and U ′.

The arc corresponding to the tendon (V̂ V ′), the arc connecting the center points of the two
triangles (ÛU ′), and the arcs corresponding to the radii of the two triangles (ÛV and Û ′V ′)
define two spherical triangles. These two triangles touch each other at the point where ÛU ′

and V̂ V ′ intersect. This point is labeled W . The symmetry of the structure dictates that
the corresponding parts of these two triangles must be equal. (In particular the structure
could be rotated 180◦, exchanging U with U ′, and the structure should appear to be
unchanged.) This means that the arcs ÛW and Û ′W are equal and their common measure

is β
2
. Also V̂ W = V̂ ′W = V̂ V ′

2
.

The angular measure of V̂ V ′ is denoted γ. It is useful to know how γ changes as a function
of the twist angle θ, the triangle radius r and the sphere radius r′. This length can be
computed using the Law of Cosines of Spherical Trigonometry. That law yields:

cos (
γ

2
) = cos (

β

2
) cosα + sin (

β

2
) sinα cos θ

where α denotes the arc length of ÛV which equals the arc length of Û ′V ′. By inspection,

it can be seen that sinα = r
r′

and therefore cosα =
√

1− r2

r′2
so:

cos (
γ

2
) =

cos (β
2
)
√
r′2 − r2 + sin (β

2
)r cos θ

r′2

=
g(θ, r′)

r′2

For convenience, the functional notation

g(θ, r′) ≡ cos (
β

2
)
√
r′2 − r2 + sin (

β

2
)r cos θ

denotes part of this expression. Note that only values which will be variables in the
analysis appear explicitly as arguments in this function.

From this cosine value, the length of the tendon connecting the two triangles (denoted t)
and its second power can be derived as follows:
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t

2
= r′ sin (

γ

2
)

t2 = 4r′2(1− cos2 (
γ

2
))

t2 = 4(r′2 − g2(θ, r′))

t2 = f(θ, r′)

Again, for convenience the functional notation

f(θ, r′) ≡ 4(r′2 − g2(θ, r′))

is used. f1(θ, r′) and f2(θ, r′) refer to the partial derivatives of this function with respect to
its first and second arguments.

f1(θ, r′) = 8g(θ, r′) sin (
β

2
)r sin (θ)

f2(θ, r′) = 8(r′ − g(θ, r′)r′
cos (β

2
)√

r′2 − r2
)

Now only a formula for the strut length need be derived before the analysis moves on to
the specification of the minimization problem. Strut length, denoted by s, is simply
specified by the formula:

s2 = f(θ +
2π

3
, r′)

This follows since, as noted above, the strut vertices are located 2π
3

radians
counter-clockwise from the tendon vertices on the same two triangles.

So the minimization problem is simply:

minimize t2 = f(θ, r′)
θ, r′

subject to s2 = f(θ + 2π
3
, r′)

Assuming the constraint can be solved for r′ in terms of θ, this can be respecified as the
unconstrained minimization problem:
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minimize t2 = f(θ, r′); r′ = r′(θ)
θ

The first order condition for a minimum is:

0 = f1(θ, r′) + f2(θ, r′)
dr′

dθ
.

dr′

dθ
is obtained by implicitly differentiating the constraint:

0 = f1(θ +
2π

3
, r′) + f2(θ +

2π

3
, r′)

dr′

dθ
dr′

dθ
= −

f1(θ + 2π
3
, r′)

f2(θ + 2π
3
, r′)

Substituting this expression into the original first order condition yields:

0 = f1(θ, r′)− f2(θ, r′)
f1(θ + 2π

3
, r′)

f2(θ + 2π
3
, r′)

This equation is solved simultaneously with the constraint equation to get the minimizing
value of θ and (incidentally) the corresponding value for r′. While the mathematical
programming problems examined in previous sections could be solved completely using
mathematical formulas, this problem requires numerical tools to reach a final solution.

The procedure for numerically deriving a solution to these equations, and thus to the
mathematical programming problem, is as follows:

Step 1 Set θ = 0.

Step 2 Given θ, solve the constraint for r′.

Step 3 Given r′, solve the first order condition for θ.

Step 4 Repeat the process from Step 2 until θ converges.

To find equation solutions, a simple binary algorithm for finding zeros of functions was
used. This involved specifying a search interval for each equation19 and then evaluating the
equation at each endpoint. One of the values should be greater than zero and one less than

19For the constraint, r and s were used as the bounds for r′. For the first order condition, −π2 and π
2 were

used as the bounds for θ.
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Iteration Solution Values
# r′ θ
1 2.10683424 0.124151607
2 2.07636415 0.120243860
3 2.07719872 0.120351753
4 2.07717557 0.120348762
5 2.07717622 0.120348845
6 2.07717620 0.120348842

Table 2.3: T-Tetrahedron: Solution

zero. The equation is then evaluated at the midpoint of the interval and a search interval
specified which is bounded by the midpoint and the endpoint which differs from it in sign.
In this manner, the search interval is halved at each iteration. When the search interval is
less than twice the tolerance specified for a solution, the midpoint of the search interval is
taken as the solution. This technique works remarkably well given how simple it is.

The triangle radius was chosen to be 1 (which implies a length of
√

3 for its tendons) and
the strut length s to be 4. Applying the above technique, the sequence of values shown in
Table 2.3 was obtained.

The final solution was θ = 0.120348842 radians. The length of the tendon is obtained by
substituting the final values for θ and r′ into the equation for tendon length. This yields a
tendon length of 1.84242715.

2.5 Basic Tensegrity Structures: Conclusions

In this chapter, several simple tensegrity structures were examined and some methods
presented for designing them. Future chapters will build on this foundation as the design of
more and more complex structures is explored. Cartesian methods will be emphasized more
and more and spherical trigonometry will pretty much disappear from the scene as the
most complex structures are analyzed. The nature of the problems seem to require this.



Chapter 3

General Tensegrity Structures

3.1 General Programming Problem

3.1.1 General Programming Problem: Introduction

An inventory of the components of a tensegrity structure can start out with sub-systems
called hubs. These hubs are the areas in the tensegrity where members meet and are
fastened together. Members are interactions between pairs of hubs and can be further
broken down into struts (compression members which keep pairs of hubs apart) and
tendons (tensile members which pull pairs of hubs together). There may be constraints
relating to member lengths, symmetry and geometrical determinacy.

In initial design stages, it may be easier to treat the hubs as undifferentiated systems where
members all meet at a point. This was the strategy used in Chapter 2. In many real
applications though, tendons are attached to the hub at multiple points. In these cases, the
design either has to formally model the hub as composed of multiple attachment points or
adopt some ad hoc way of relating the model’s geometry to that of the physical structure.
When the hub is formally modeled as a collection of separate attachment points, one or
more vectors will indicate how these attachment points are positioned with respect to each
other and relative to a single basic point associated with the hub. Additional constraints
will be necessary to determine each vector’s length and direction.

As Chapter 2 showed, an effective tensegrity design strategy involves minimizing or
maximizing the lengths of one set of members while the other members are constrained to
have various fixed lengths. So, the general problem is set out as:

53
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minimize o ≡ w1l
2
1 + · · ·+ wnol

2
no

P1, ..., Pnh , V1, ..., Vnv

subject to Member constraints:

±l2no+1 ≥ ±l2no+1

· · ·
±l2nm ≥ ±l2nm

Symmetry constraints:

s1 = s1(· · ·)
· · ·

sns = sns(· · ·)

Point constraints:

d1 = W 1 · Pd1

· · ·
dnd = W nd · Pdnd

Vector constraints:

c1 = c1(· · ·)
· · ·

cnc = cnc(· · ·)

where:

nh = number of hubs = number of basic points
nv = number of vectors
no = number of members in the objective function
nm = number of members in the model
nõ = nm − no = number of constrained members
ns = number of symmetry constraints
nd = number of point constraints
nc = number of vector constraints

The expression P1, ..., Pnh , V1, ..., Vnv appearing under “minimize” indicates that the
coordinate values of the basic points and vectors are the control variables of the
minimization problem. These are the values which are changed (in accordance with the
constraints) to find a minimum value for o.

In the objective function, wio is a positive constant value if the corresponding member is a
tendon and negative if the member is a strut where io ∈ {1, . . . , no}.
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In the objective function and member constraints, lim stands for the length of member im
where im ∈ {1, . . . , nm}.

In the member constraints, liõ is a positive constant value. “+” precedes liõ and liõ if the
corresponding member is a tendon, and “-” precedes them if the member is a strut where
iõ ∈ {no + 1, . . . , nm}.

In the other constraints, sis(· · ·) and cic(· · ·) are functions of the coordinate values, and sis ,
did and cic are constant values where is ∈ {1, . . . , ns}, id ∈ {1, . . . , nd} and ic ∈ {1, . . . , nc}.

In the point constraints, W id is a triplet of fixed values which is applied to Pdid using a dot
product where for any value of id, did ∈ {1, . . . , nh}.

So, the examination of this problem is divided into five sections: the objective function, the
member constraints, the symmetry constraints, the point constraints and the vector
constraints.1

3.1.2 General Programming Problem: Objective Function

In the basic tensegrity structures of Chapter 2, the objective functions consisted of the
second power of the length of one member. If this member was a tendon, the quantity was
minimized. If this member was a strut, the quantity was maximized. For these simple
structures, including just one instance of a symmetrical class of members in the objective
function worked fine, but, for more complex structures, this procedure leads to a lopsided
structure having one tendon much shorter than its comparable companions. So, in complex
structures, the lengths of several instances of non-symmetrical classes of members are
minimized (for tendons) or maximized (for struts).

How can this be done? A mathematical programming problem can’t have more than one
objective function; so, a different objective function for the length of each non-symmetrical
instance is not a possibility. What can be done is minimize a weighted sum of the
second powers of these lengths. Positive weights are used for tendon lengths. If a strut is
included in the objective function, it is included with a negative weight since minimizing
the additive inverse of a quantity is the same as maximizing the quantity. This approach
results in a valid tensegrity since, in the final solution, each of the member lengths will be
minimized (for tendons) or maximized (for struts) with respect to the others. If this
weren’t the case, the length of one member could be reduced (for a tendon) or increased
(for a strut) while maintaining the lengths of the others. This would result in a weighted
sum less than the minimum which cannot be if the problem was solved correctly. So, the
general form for the objective function is:

o ≡ w1l
2
1 + · · ·+ wnol

2
no

1Roth81 contains a highly-technical mathematical look at this problem.
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Besides allowing tendons to be minimized and struts to be maximized in the same
objective function, the weights give the designer control over the relative lengths of the
members which appear in the objective function. The weights can be chosen as desired
subject only to the requirement that the weight for a tendon must be positive (since
tendon lengths are minimized) and the weight for a strut must be negative (since strut
lengths are maximized). In Section 7.2.6 it is shown that any valid tensegrity
configuration can be viewed as the solution to a mathematical programming problem of
this form with an appropriate selection of weights. This fact gives this weighted-sum
approach complete generality as a tool for tensegrity design.

3.1.3 General Programming Problem: Member Constraints

The member lengths which don’t appear in the objective function appear in the constraints.
The constraint function is the second power of member length in the case of a tendon and
minus the second power of length in the case of a strut. This value is constrained to be

less than or equal to ±l2iõ where again the member type determines the sign used.

In the general model, these constraints are inequalities since tendons are members which
can pull points together but can’t push them apart, and struts are members which can
push points apart but can’t pull points together. Practically, the strut may be made of
materials which are capable of sustaining a very substantial tensile load (though certainly
the struts may be fabricated so they can stand no tensile load at all), but in a final design,
they should not be sustaining such a load since they are not designed for this. So, even for
struts, an inequality is called for in the constraints.

Since, for uniformity, the equations are organized so that the constrained value is always
less than or equal to some fixed value, the second power of strut lengths and the

corresponding l
2

iõ
constants are negated in the strut constraint equations. In practice (see

Section 3.2), all the constraints are treated as equalities.

3.1.4 General Programming Problem: Symmetry Constraints

In the simple tensegrities examined in Chapter 2, symmetry constraints were mentioned,
but were dealt with implicitly in the mathematical programming problems by doing
substitutions. The simplicity of the symmetry transformations and the coordinate systems
used allowed the coordinates of one point to be expressed as a simple signed permutation
of the coordinates of another point.

In the general problem, the very real possibility exists that some symmetry constraints
cannot be so simply accounted for. In general, a symmetry-transformed coordinate is a
linear combination of all three coordinates of another point. However, for most of the
models discussed in this book, though some of them are rather complex, the symmetry
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constraints are of the simpler type so that they do not appear in the programming problem
explicitly, but only appear implicitly as coordinate permutations. This is because most of
the models have octahedral symmetries. When other symmetries are used, for example the
icosahedral symmetry of the model discussed in Section 5.4, symmetry constraints may
need to be introduced explicitly. This introduction creates no real mathematical problems
other than slowing down the computations due to the larger system.

sis is always 0, but it is convenient to keep the label for symbolic manipulations later.

3.1.5 General Programming Problem: Point Constraints

This type of constraint appeared explicitly as the last two constraints in the
Cartesian-coordinate model for the t-prism in Section 2.2.3. It appeared implicitly in the
cylindrical-coordinate model of the t-prism in Section 2.2.2 where the z coordinates of
points A, B and C were fixed at 0. In general, for cylindrical (e.g. masts) or truncated
(e.g. domes) structures point constraints need to be introduced to make the mathematical
model of the structure determinant. For structures with spherical symmetries, the member,
symmetry and vector constraints are sufficient for determining the structure. Point
constraints are linear equalities restricting a point to lie in a specific plane. In Cartesian
coordinates, the format of a point constraint is a dot product of a point with a triplet of
fixed values. The dot product is constrained to be a particular value. The triplet of fixed
values is referred to as the determining vector of the point constraint, and the point lies in
a plane orthogonal to this vector when it conforms to the constraint. Point constraints
don’t seem to be necessary when using conjugate direction methods to solve a
mathematical programming problem, but can be necessary when using Newton’s method
to improve a solution’s accuracy.

3.1.6 General Programming Problem: Vector Constraints

Vector constraints fill in the details about the geometry of complex hubs. The use of these
constraints, and the list of vectors they affect, V1, ..., Vnv , represents a move away from the
initial gross analysis of a tensegrity structure where the details of strut-tendon connections
are omitted for simplicity’s sake, to a more detailed analysis of the structure where the
struts and tendons are no longer assumed to meet at a point. This includes situations
where a tendon is attached to a point away from the ends of the strut, i.e. between the
ends somewhere, or off the centerline of the strut, or both. A vector is a difference between
two points and is necessary to model the offset from the strut end point to the point where
the tendon is attached.

In general, the tendon attachment points will still be clustered in two areas on the strut in
proximity to the locations which were modeled as simple strut end points in the gross
analysis. Each cluster of points is defined with respect to the basic point which corresponds
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to the hub they represent, or in some cases they are defined with respect to a convex
combination of the basic points corresponding to the two hubs a strut connects. Especially
in the latter case, the center of the hub will not necessarily coincide with the location of
the corresponding basic point.

As an example of what vector constraints are like, consider the case where, instead of
assuming the tendon is connected on the center line of the strut, it is more realistically
assumed that the tendon connects to the surface of the strut and thus the attachment
point falls off the center line of the strut. For this example, the strut is assumed to be a
simple cylinder.

The first step is to introduce a single vector which represents the offset to the tendon
attachment point from a reference point lying on the center line of the strut. This reference
point may be one of the basic points corresponding to the two hubs the strut connects or
perhaps a point on a line through the basic points of those two hubs. A vector constraint is
then introduced which indicates how far from the reference point the tendon is to be
connected. In this case, that distance would correspond to the radius of the strut. This
constraint would restrict the tendon’s attachment point to lie on a sphere about the point.
A second constraint is then introduced to restrict the vector to be orthogonal to the center
line of the strut. The attachment point is thus constrained to lie on a plane through the
reference point and orthogonal to the strut’s center line. This second constraint makes sure
the tendon is attached to the surface of the strut rather than at an interior point.

An example using vector constraints appears in Section 7.3.6.

3.2 Solving the Problem

What follows are some methods for solving this general problem. The problem can be
characterized as a mathematical programming problem in which both the objective
function and the constraints are non-linear in the control variables. The constraint region
is not convex2, so the simpler algorithms admissible in that case cannot be used. The
non-linearity of the objective functions and constraints is a simple one. They are both
quadratic in the control variables. This simplifies taking their derivatives.

The first simplification made is to assume all the constraints hold with equality. This is
fairly innocuous and makes solving the problem easier. The final solution must be checked
however to make sure tendons and struts have appropriate member forces.

Two formulations allow unconstrained mathematical programming techniques to be
applied to this problem. The first formulation is referred to as the penalty formulation and
uses penalty3 methods. In this formulation, the constraints are recast as deviations from

2The non-convexity is due to the strut constraints. For a proof, see Appendix B.
3Luenberger73, pp. 278-280.
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zero and the sum of the second powers of these deviations is incorporated into the the
objective function with a large positive coefficient. This formulation is especially useful in
the initial stages of solving a problem since it easily handles large deviations from the
constraint requirements.

The second formulation is referred to as the exact formulation. It divides the coordinates
into dependent and independent sets and solves the constraints for the dependent set in
terms of the independent set. The number of coordinates in the dependent set will equal
the number of constraint equations. Once this is done, the programming problem can then
be treated as an unconstrained problem with the independent coordinates as the control
variables. The non-linearity of the constraint system means Newton’s method4 must be
used to solve the equations. This method may not work if the initial coordinate values
imply large deviations from the constraint requirements. This formulation allows the
programming problem to be solved to a high degree of accuracy.

In using Newton’s method in conjunction with the exact formulation, both the constraint
deviation and its partial derivative with respect to the members of the dependent
coordinate set must be computed. Since the constraints are quadratic in the coordinate
values, the partial derivatives are linear in the coordinate values. This means it is easy to
compute them using formulas. It is also possible to compute the partial derivatives using
numerical techniques; however, this may yield less accurate results.

A requirement for the exact formulation to work is a method for reliably dividing the
coordinates into a dependent and an independent set since not every partitioning results in
a solvable system. This can be done as follows. A nõ + nc + ns + nd by 3(nh + nv) matrix is
set up. Call this matrix A. The ijth element of this matrix, aij, represents the partial
derivative of the ith constraint with respect to the jth coordinate value. Gaussian
elimination is applied to the matrix with pivoting both over rows and columns.5 At the
end of this process, the coordinates corresponding to the nõ + nc + ns + nd left-most
columns are selected as the dependent set. The remaining coordinates compose the
independent set. If coordinate values change a great amount, it may be advisable to
recompute this partitioning to maintain the best possible partitioning.

Once one of these strategies is selected, a method must be picked for solving the
unconstrained problem. Two effective methods are Parallel Tangents (also called
PARTAN)6 and Fletcher-Reeves.7 These two methods recommend themselves especially in
conjunction with the penalty formulation since they are immune to the problems posed by
the asymmetric eigenvalues of the objective function which results from that formulation.
Other conjugate direction methods may work as well and will enjoy the same immunity.

4Luenberger73, pp. 155-158.
5This is referred to as “complete” or “total” pivoting. This only gets a footnote in most treatments of

Gaussian elimination since for most applications “partial” pivoting (pivoting over rows only) is sufficient.
For example, see Johnston82, p. 31.

6Luenberger73, pp. 184-186.
7Luenberger73, pp. 182-183.
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Both of these methods require a method for doing a line search for finding which point in a
given direction minimizes the objective function. One method is outlined below. It
assumes the value of the objective function for the current coordinate values has already
been computed.

1. An initial step size is selected and the point in the given direction found whose
distance from the initial point matches this step size. The value of the objective
function is computed at this new point.8

2. If the objective function value is larger at the new point, the step size is halved until
a decrease is obtained, and halving continues until no more improvement (i.e. no
more decrease in the objective function) is obtained. If the objective function value is
smaller at the new point, the step size is doubled until no further decreases are
obtained. In this second case, if the first doubling of the step size doesn’t result in an
additional decrease, the original step size is halved to see if that results in a decrease.
If it does, halving continues until no further decrease is realized.

3. A quadratic technique is used to fine tune the step size. Three points are selected
from the doubling/halving process above (the initial point, the best point and the
point selected after the best point). A quadratic curve is fitted to the step sizes and
objective function values corresponding to these three points. Using this curve, the
step size corresponding to the minimum value for the objective function is computed.
The actual value for the objective function for this step size is computed. This
procedure is repeated, substituting the new point generated for one of the old points.
Repetition is terminated when no further improvement to the actual value of the
objective function is obtained. The formula for computing the new step size is:

sn =
(s2

1 − s2
2)o1 + (s2

2 − s2
0)o2 + (s2

0 − s2
1)o3

2((s1 − s2)o1 + (s2 − s0)o2 + (s0 − s1)o3)

where sn is the new step size, s1, s2, s3 are the step sizes corresponding to the three
points and o1, o2, o3 are the three objective function values.

The final fine-tuning step is important since both PARTAN and Fletcher-Reeves count on
the point being an accurate minimizing point in the direction chosen. Once a solution to
the unconstrained problem has been reached using conjugate direction methods, Newton’s
method can be applied to the unconstrained problem to improve the accuracy of the result.

8If the exact formulation is being used, it is possible that this step will generate constraint deviations
large enough that Newton’s method doesn’t converge. If this happens, the step size should be halved.



Chapter 4

Higher Frequency Spheres

4.1 Higher Frequency Spheres: Introduction

Now some concrete applications of the methods discussed in Chapter 3 can be made. They
will be applied to “higher frequency” versions of the simple spherical structures discussed
in Chapter 2. “Higher frequency” in this context means that the spherical structures are
composed of a greater number of members. If the members used are about the same size as
before, this means the sphere will grow in size. If instead the radius of the sphere stays the
same size, the surface now has a finer texture.

As in the model for the t-tetrahedron, the tensegrities will be considered to be a collection
of tendon triangles lying approximately on a sphere interconnected with adjacent tendon
triangles via struts and tendons. The lengths of the struts as well as of the lengths of the
tendons making up the tendon triangles will be considered as fixed, and thus appear as
parameters in the mathematical programming problem, while the (second powers of) the
lengths of the tendons interconnecting adjacent tendon triangles will appear in the
objective function and will be collectively minimized.

Although at least one member’s length must appear as a constraint for the problem to be
mathematically determinant, there is nothing hard and fast about the classification of
members as minimands or constraints. For different applications, different classifications
might be useful. The classification selected here is convenient because it allows a good
number of the tendon and strut lengths to be constrained, and still enough degrees of
freedom are left in the minimization process that tendons of the same class aren’t wildly
asymmetric. Having a good number of the member lengths constrained is convenient
because it means their lengths can be specified precisely; all the tendons or struts of a
certain class can be constrained to have the same lengths.

61
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Figure 4.1: 2ν Diamond T-Tetrahedron

4.2 Diamond Structures

4.2.1 Diamond Structures: Descriptive Geometry

As mentioned in Section 2.3, diamond structures are characterized by the fact that each
tendon triangle is connected to adjacent tendon triangles via one strut and two
interconnecting tendons. This section will examine a diamond configuration of the
tensegrity tetrahedron. The zig-zag configuration of the 2ν1 t-tetrahedron was examined in
Section 2.4. The diamond configuration of the 2ν t-tetrahedron is illustrated in Figure 4.1.
It is topologically identical to the t-icosahedron (Figure 2.5 of Section 2.3). The only

1The qualifier “2ν” is explained below.
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$a

b

bb

Figure 4.2: 4ν Breakdown of Tetrahedron Face Triangle

difference is that the tendon triangles of the 2ν diamond t-tetrahedron are two different
sizes. The t-icosahedron is actually a special case of the 2ν diamond t-tetrahedron with all
tendons the same length.

To review the contrast between the diamond and zig-zag configurations presented in
Section 2.4, it is most productive to focus on the group of four small triangles from the 2ν
diamond t-tetrahedron. These correspond to the 2ν zig-zag t-tetrahedron’s four tendon
triangles. If two tendon triangles from this group are considered to be facing each other
nose-to-nose, the strut can be seen to connect the right ear of one triangle with the right
ear of the other triangle as it did in the zig-zag t-tetrahedron. However, there are now two
tendons interconnecting the two tendon triangles instead of just one. Each connects the
right ear of one tendon triangle with the nose of the other.

These two tendons are symmetrical to each other, so the problem still consists of
minimizing one length as it did in the original zig-zag problem, and even the same
geometrical model as was used to solve that problem could be used here. However, the
general case is more complex than this and is not amenable to treatment with models such
as were used to examine the simple 2ν zig-zag t-tetrahedron. So, to illustrate the general
procedure, calculations are done for a frequency-four (or 4ν for short) diamond
t-tetrahedron.

It is called a 4ν structure because its geometry derives from the 4ν geodesic subdivision of
the tetrahedron.2 Only even-frequency subdivisions are used in tensegrity designs.
Figure 4.2 shows a 4ν breakdown of a triangle (in this case, the face of a tetrahedron). The

2Kenner76, Chapter 5.



64 CHAPTER 4. HIGHER FREQUENCY SPHERES

%a
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bb

Figure 4.3: 4ν Tetrahedron Face Triangle Projected on to a Sphere

labels a and b indicate which triangles are symmetrically equivalent. The heavy lines
represent the lines of the geodesic breakdown used in the tensegrity design. Kenner’s
procedure is followed and these triangles are projected onto a sphere circumscribing the
tetrahedron (see Figure 4.3). Notice that, considering symmetry transformations, there are
two types of tendon triangles composing the system, an equilateral tendon triangle and an
isosceles one.

Next the interconnecting struts and tendons are introduced. Figure 4.4 shows
representative examples of the interconnecting struts. There are two types of strut. One
type connects adjacent isosceles triangles, the other type connects isosceles with equilateral
triangles. Figure 4.5 shows the corresponding interconnecting tendons. There are a pair of
tendons corresponding to each strut type. Note that in both the figures, the triangles have
been skewed toward their final positions for clarity’s sake. In the tensegrity programming
problem, the sum of second powers of the lengths of the four diamond tendons will be
minimized, while the lengths of the struts and other tendons will be considered constraints.

4.2.2 Diamond Structures: Mathematical Model

Figures 4.6 and 4.7 show a tetrahedron inscribed within Cartesian coordinate space in a
convenient orientation. With this orientation, any symmetry transformation of the
tetrahedron can be accomplished merely by permuting the coordinate axes. On the
tetrahedral face which falls in the positive quadrant (but extends into three others as well),
the elements of the 4ν geodesic subdivisioning relevant to tensegrities have been inscribed.
On this triangle, there are four points labeled P1, P2, P3 and P4. P1, P2 and P3 represent
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Figure 4.4: 4ν Diamond T-Tetrahedron: Representative Struts
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Figure 4.5: 4ν Diamond T-Tetrahedron: Representative Tendons
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Figure 4.6: 4ν Diamond T-Tetrahedron: Coordinate Model (Face View)
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Coordinates
Vertex x y z
V1 1.0 -1.0 1.0
V2 -1.0 1.0 1.0
V3 1.0 1.0 -1.0

Table 4.1: 4ν Diamond T-Tetrahedron: Reference Vertex Coordinates

Coordinates
Point x y z
P1 1.0 -0.5 0.5
P2 0.5 -0.5 1.0
P3 0.5 0.0 0.5
P4 0.5 0.0 0.5

Table 4.2: 4ν Diamond T-Tetrahedron: Point Coordinates

the vertices of the isosceles triangle (or at least it will be isosceles when these points are
projected onto a sphere); P4 is a point on the equilateral triangle.

With these four points, all of the other points of the 4ν subdivisioning can be generated by
using the symmetry transforms of the tetrahedron. Notice that, although geodesic
structures exhibit mirror symmetry frequently, tensegrity structures generally do not. So
P2 cannot be generated from P1 using a mirroring operation. Also, initially P3 and P4

coincide since initially the vertices of the isosceles and the equilateral triangle are in
contact. When the computations start though, they will part company.

The four points, P1, P2, P3 and P4, can be generated from the three vertex points, V1, V2

and V3, of the triangular tetrahedron face as follows:

P1 = 3
4
V1 + 0

4
V2 + 1

4
V3

P2 = 3
4
V1 + 1

4
V2 + 0

4
V3

P3 = 2
4
V1 + 1

4
V2 + 1

4
V3

P4 = 2
4
V1 + 1

4
V2 + 1

4
V3

Thus, the coordinates of V1, V2 and V3 summarized in Table 4.1 imply the coordinate
values of P1, P2, P3 and P4 summarized in Table 4.2.

When the values for P1, P2, P3 and P4 are projected onto the unit sphere, Table 4.3 is
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Coordinates
Point x y z

P1

√
2
3
−
√

1
6

√
1
6

P2

√
1
6
−
√

1
6

√
2
3

P3

√
1
2

0
√

1
2

P4

√
1
2

0
√

1
2

Table 4.3: 4ν Diamond T-Tetrahedron: Projected Point Coordinates

obtained. These coordinates will serve as the initial values for the computation process.
From them the initial values of all member lengths will be computed.

In order to express all the members of the tensegrity, three more points are needed, P5, P6

and P7. These points are symmetry transforms of P2, P3 and P4 respectively. P5 and P6 are
obtained from P2 and P3 by a 120◦ left-hand rotation of the tetrahedron about the vector
from the origin to V1. In this coordinate system, this is achieved by taking the x axis into
the −y axis, the −y axis into the z axis, and the z axis into the x axis, so that P5 and P6

can be expressed respectively as (z2,−x2,−y2) and (z3,−x3,−y3).3 P7 is obtained from P4

by a 120◦ left-hand rotation of the tetrahedron about the vector from the origin to the
point (1.0, 1.0, 1.0). This is achieved by taking the x axis into the z axis, the y axis into
the x axis, and the z axis into the y axis, so that P7 can be expressed as (y4, z4, x4).

So whenever coordinates for P5, P6 or P7 are required, these transformed versions of P2, P3

or P4 will be used. Thus the symmetry constraints of the programming problem are
implicitly subsumed in these expressions for P5, P6 and P7. The variables of the
programming problem are still limited to the xyz coordinates of the original four points,
and no new constraints need to be added to take into account symmetry.

Table 4.4 summarizes the initial lengths for the constrained members obtained using these
coordinate values. The relevant mathematical programming problem is:

3xn, yn and zn represent the Cartesian coordinates of Pn.
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Member
# ID End Points Length Comments
1 t12 P1 P2 0.577350 Constraint
2 t13 P1 P3 0.517638 Constraint
3 t23 P2 P3 0.517638 Constraint
4 t47 P4 P7 1.0 Constraint
5 sab P1 P7 1.414214 Constraint
6 sbb P2 P6 0.919401 Constraint
7 tab1 P3 P7 1.0 To be minimized
8 tab2 P1 P4 0.517638 To be minimized
9 tbb1 P1 P6 0.517638 To be minimized
10 tbb2 P2 P5 0.577350 To be minimized

Table 4.4: 4ν Diamond T-Tetrahedron: Initial Member Lengths

minimize o ≡ |P3 − P7|2 + |P1 − P4|2 +
P1, P2, P3, P4 |P1 − P6|2 + |P2 − P5|2

subject to Tendon constraints:

1
3

≥ |P1 − P2|2
tan ( π

12
) ≥ |P1 − P3|2

tan ( π
12

) ≥ |P2 − P3|2
1 ≥ |P4 − P7|2

Strut constraints:

−2 ≥ −|P1 − P7|2
−0.84529946 ≥ −|P2 − P6|2

This completely specifies the problem. Again, only the coordinates of P1, P2, P3 and P4 are
variables in the minimization process since the coordinates of P5, P6 and P7 are specified to
be symmetry transforms of the coordinates of these points.

This is a very formal statement of the problem, and, as stated in Section 3.2, to solve it the
inequality constraints are assumed to be met with equality.

4.2.3 Diamond Structures: Solution

As mentioned in Section 3.2, the partials of the constraint equations can be conceived as a
matrix, A, which has as many rows as their are constraints (6 in this case) and as many
columns as there are coordinate values (12 in this case). The ijth element of this matrix,
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Variable Derivative
x1 -0.875117
x2 -0.160155
x3 1.38037
z3 0.345092
x4 -0.345093
z4 0.597720

Table 4.5: 4ν Diamond T-Tetrahedron: Initial Objective Function Derivatives

aij, is the derivative of the ith member with respect to the jth coordinate value. The
coordinate values are numbered in the order they appear, so for example, a4,11 is the
partial derivative of the second power of the length of the t47 tendon with respect to y4. Its
value is 2(y4 − x4) + 2(y4 − z4). This partial is unusual in that it has two terms. Most of
the partials are either zero or consist of a single difference.

The first step is to conceptualize this as an unconstrained minimization problem by
choosing a subset of the coordinate variables to be dependent variables whose values will
be obtained by solving the constraints given the values for the independently specified
coordinates. Since there are six constraints, there will be six dependent variables. This
leaves six (12-6) independent variables. By coincidence, the number of independent
variables is equal to the number of dependent variables in this problem. Using Gaussian
elimination with double pivoting on the partial derivative matrix for the system resulted in
x1, x2, x3, z3, x4 and z4 being used as the initial independent variables. So, given the
values for these variables, the constraints were solved for the remaining dependent variables
y1, z1, y2, z2, y3 and y4.

The initial derivatives of the objective function with respect to the independent variables
are summarized in Table 4.5. At a minimum point, the values of all these derivatives will
be as close to zero as the accuracy of the computations permits. Instead of constantly
looking at this whole list of derivatives (which can be very long for a complex structure) to
assess how close to a minimum the system is, two summary statistics can be examined, the
geometric average of the absolute values of these derivatives, and the variance of the
natural logarithm of (the absolute value of) these derivatives. The variance is an important
statistic, since if the system starts going singular, one or more of the derivatives will start
to diverge from the rest. This singularity is a signal that the partitioning of variables
between independent and dependent variables needs to be redone.

The value of the objective function was initially 1.86923. The system was solved using the
parallel tangent technique which resulted in an objective function value of 1.65453.
Table 4.6 summarizes the corresponding point values, and Table 4.7 summarizes the
lengths of the members in the objective function thus obtained.

This would be the end of the calculations, except that when the endogenous member forces
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Coordinates
Point x y z
P1 0.887555 -0.438450 0.455646
P2 0.677306 -0.505030 0.989215
P3 0.614181 -0.076748 0.705421
P4 0.710900 -0.048791 0.590190

Table 4.6: 4ν Diamond T-Tetrahedron: Preliminary Coordinate Values

Member
ID Length
tab1 0.940409
tab2 0.448489
tbb1 0.455651
tbb2 0.601166

Table 4.7: 4ν Diamond T-Tetrahedron: Preliminary Objective Member Lengths

are calculated, they indicate that “tendon” t12 is marginally in compression (see Table 7.1).
This problem stems from the substitution of equalities for inequalities in the constraints. If
inequalities had been used, this particular constraint would be found to be not effective. At
this point the problem was dealt with by eliminating the member from the constraints
(which means the tendon won’t appear in the final structure).4 Eliminating this constraint
also means a new selection of independent variables needs to be made since seven are now
needed. Repartitioning resulted in z1 being added to the independent variables. Using the
parallel tangent technique on this problem resulted in a final objective function value of
1.65174. Table 4.8 summarizes the corresponding point values; Table 4.9 summarizes the
objective function member lengths, and Figure 4.8 shows the final design where the
location of the omitted tendon is indicated by a dashed line.

4Alternatively, its length could have been shortened until it was effective.

Coordinates
Point x y z
P1 0.874928 -0.442843 0.484207
P2 0.675644 -0.506061 0.981906
P3 0.602311 -0.068420 0.715369
P4 0.699892 -0.049794 0.605188

Table 4.8: 4ν Diamond T-Tetrahedron: Final Coordinate Values
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Member
ID Length
tab1 0.937671
tab2 0.446946
tbb1 0.473042
tbb2 0.590748

Table 4.9: 4ν Diamond T-Tetrahedron: Final Objective Member Lengths

Figure 4.8: 4ν Diamond T-Tetrahedron: Final Design
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Figure 4.9: 4ν Zig-Zag T-Tetrahedron: Representative Struts

4.3 Zig-Zag Structures

4.3.1 Zig-Zag Structures: Descriptive Geometry

A zig-zag structure retains the struts and tendon triangles of the corresponding diamond
structure; however, now adjacent tendon triangles are interconnected with only one tendon
instead of two. This single tendon connects the “noses” of the two tendon triangles.
Examination of the structure from the struts’ point of view shows each strut is traversed
by a “zig-zag” of three tendons. The simplest zig-zag tensegrity is the t-tetrahedron
examined in Section 2.4 (Figure 2.8). Again, since more complex zig-zag structures are not
amenable to the treatment used in that simple structure, the general procedure will be
illustrated using the zig-zag version of the 4ν t-tetrahedron examined in Section 4.2.

Figures 4.9 and 4.10 respectively show representative examples of the interconnecting
struts and tendons. In these figures, the model has been expanded so that the struts are
longer than in the initial geodesic calculation, while the tendon triangles remain the same
size. This is done since, in the initial configuration, the noses of the tendon triangles touch
each other and so the interconnecting zig-zag tendons have zero length. Expanding the
structure without increasing the sizes of the tendon triangles gives the interconnecting
tendons a non-zero length. The lengths of these tendons can be minimized to get a valid
tensegrity. In the initial configuration, these tendons are certainly of minimum length, and
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Figure 4.10: 4ν Zig-Zag T-Tetrahedron: Representative Tendons

Member
# ID End Points Comments
7 tab P3 P4 To be minimized
8 tbb P1 P5 To be minimized

Table 4.10: 4ν Zig-Zag T-Tetrahedron: Zig-Zag Tendon End Points

the structure is theoretically a tensegrity in that configuration, but practically it isn’t an
interesting solution since the sbb strut and its transformations intersect each other.

4.3.2 Zig-Zag Structures: Mathematical Model

The list of points is the same as that in Section 4.2.2, as is the list of constrained members.
To avoid the problem of ending up with a solution in which the minimum of the objective
is zero, the struts sab and sbb are lengthened from

√
2 and 0.919401 to 2 and

√
3

respectively. In the objective function the diamond tendons of Section 4.2.2, tab1, tab2, tbb1
and tbb2, are replaced by the zig-zag tendons tab and tbb. As mentioned, their initial lengths
are zero. Table 4.10 enumerates the end points of these additional members.

The relevant mathematical programming problem becomes:
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minimize o ≡ |P3 − P4|2 + |P1 − P5|2
P1, P2, P3, P4

subject to Tendon constraints:

1
3

≥ |P1 − P2|2
tan ( π

12
) ≥ |P1 − P3|2

tan ( π
12

) ≥ |P2 − P3|2
1 ≥ |P4 − P7|2

Strut constraints:

−4 ≥ −|P1 − P7|2
−3 ≥ −|P2 − P6|2

As before, only the coordinates of P1, P2, P3 and P4 are variables in the minimization
process since the coordinates of P5, P6 and P7 are specified to be symmetry transforms of
the coordinates of these points. Also, all inequality constraints are assumed to be met with
equality.

4.3.3 Zig-Zag Structures: Solution

With the increased lengths of the struts, the initial values used for the problem no longer
satisfy the constraints. With the best partitioning of the system (that used in
Section 4.2.3), Newton’s method diverges when it is applied to the system to solve the
constraint equations. So, in this case, the penalty formulation was used with a penalty
value of µ = 105. The problem thus becomes:

minimize |P3 − P4|2 + |P1 − P5|2 + µ[1
3
− |P1 − P2|2]2+

P1, P2, P3, P4 µ[tan ( π
12

)− |P1 − P3|2]2 + µ[tan ( π
12

)− |P2 − P3|2]2+
µ[1− |P4 − P7|2]2 + µ[4− |P1 − P7|2]2 + µ[3− |P2 − P6|2]2

Ten iterations of the method of Fletcher-Reeves were applied to the modified objective
function. These iterations brought the constraints close enough to a solution that the
penalty formulation could be discarded for the exact formulation. Another ten iterations of
Fletcher-Reeves brought the system to a solution.

The final values for the lengths of members in the objective function are summarized in
Table 4.11. The corresponding point values are summarized in Table 4.12.

The value of the objective function was 1.03848. In this structure, there was no problem
with non-effective constraints as there was in the previous structure. Figure 4.11 shows the
final design.
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Member
ID Length
tab 0.579238
tbb 0.838431

Table 4.11: 4ν Zig-Zag T-Tetrahedron: Final Objective Member Lengths

Coordinates
Point x y z
P1 1.374465 -0.537613 1.081334
P2 1.008191 -0.399971 1.505871
P3 1.314861 -0.058122 1.267036
P4 1.067078 0.464915 1.243542

Table 4.12: 4ν Zig-Zag T-Tetrahedron: Final Coordinate Values

Figure 4.11: 4ν Zig-Zag T-Tetrahedron: Final Design
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Chapter 5

Double-Layer Tensegrities

5.1 Double-Layer Tensegrities: Introduction

For most of the tensegrities discussed so far, the tensile members compose a single
continuous spherical layer.1 Such structures are resilient, but are not very rigid and tend to
vibrate too much for many practical applications. Also, it seems likely that large-frequency
realizations of these structures, as can happen with geodesic domes, will have little
resistance to concentrated loads, so that it would be difficult to suspend substructures from
the their roofs, and they might cave in excessively under an uneven load like snow.

These considerations are a strong motivation for the development of a space truss
configuration for tensegrity structures. Such a configuration would be analogous to the
space truss arrangements developed for the geodesic dome, like the Kaiser domes of Don
Richter,2 or Fuller and Sadao’s Expo ’67 Dome3 and serve the same purpose. Tensegrity
space trusses are characterized by an outer and inner shell of tendons interconnected by a
collection of struts and tendons. The result is a more rigid structure which is more
resistant to concentrated loads.

Designs for tensegrity trusses have been developed in a planar context by several authors.
The trusses described in this book, especially the geodesic one described in Section 5.3, are
akin to those experimented with by Kenneth Snelson in the 1950’s.4 Appendix A compares
the truss of Section 5.3 with an example of another similar approach to tensegrity trusses
by different authors.

In Section 5.2, a general approach to the design of tensegrity trusses is outlined. Then, in
Sections 5.3 and 5.4, two examples are given of geometries which implement this approach.
The second example demonstrates incidentally how icosahedral symmetries can be handled

1The only exception is the t-prism of Section 2.2 which has a more cylindrical shape.
2Fuller73, pp. 62-63, 224-227.
3Kenner76, p. 115.
4See photos in Lalvani96, p. 48.
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Figure 5.1: Tensegrity Tripod

within the Cartesian framework.

5.2 Double-Layer Tensegrities: Trusses

Take the finished t-prism introduced in Section 2.2 and remove the triangle of tendons
corresponding to one of the ends. When pressed towards each other, the three free strut
ends will strongly resist the effort and stay apart. This composite compression member, a
tensegrity tripod or t-tripod, can thus be attached to three hubs of a tensegrity structure
and keep them apart. It is illustrated in Figure 5.1. When used to support a single-layer
tendon network, the t-tripods’ struts will be outside the layer containing the three hubs,
thus eliminating the intractable interference problems that can result in larger structures
when simple two-hubbed struts lie in the same layer which they support.

Let the single-layer network supported by the t-tripods be spherical and composed of
vertex-connected polylaterals.5 No more than one vertex is shared between adjacent
polylaterals, and every vertex is shared by exactly two polylaterals. The apexes of the
t-tripods could point out or in, but assume they point out. In addition to the continuous
single-layer spherical network, there will be a discontinuous outer network formed by the

5The term “polylateral” is used rather than polygon since a polygon is planar and the figure referenced
here may not be. The polylateral concept envisions a ring of vertexes, each vertex corresponding to a hub in
a tensegrity. The vertexes in the ring are continuously connected pair-wise by edges, each edge corresponding
to a tendon in a tensegrity. Each edge connects two vertexes, and each vertex is connected to two edges.
Flattening a polylateral would yield the boundary of a polygon, and a triangular polylateral is distinguished
by the fact that it can always be considered the boundary of a polygon, the triangle. Fuller uses the term
“polyvertexion” as an operational substitute for polyhedron with qualifications that seem applicable here as
well. See Fuller92, pp. 130-131, Fig. 6.6 (p. 132) and p. 233.
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tendon triangles of the apexes of the t-tripods being used as compression members. Call
these apex tendons the outer convergence tendons, and call the t-tripod tendons
connecting these triangles with the opposite ends of the t-tripod’s struts the primary
interlayer tendons.

To lend more stability to the structure, the outer network is completed by binding together
the t-tripod apexes using another set of tendons called the outer binding tendons. Let
the outer network have exactly the same topology as the inner network though of course
the lengths of the outer network’s tendons will be different. Untwisting a t-tripod removes
the three free ends of the t-tripod even further from each other. Thus, if possible, the outer
convergences should be bound together in such a way that tensioning the outer binding
tendons untwists the t-tripods. In this way, while the outer network of tendons presses in,
the inner network will press out under the impetus of its expanding compression members,
the untwisting t-tripods.

When the struts meet on the inner network, they form convergences where struts from
several different t-tripods are connected together with tendons that form a polylateral.
These tendons are the inner convergence tendons and topologically they are equivalent
to the outer binding tendons. The remaining tendons of the inner network are the inner
binding tendons whose polygons alternate with those of the inner convergence tendons.
They are topologically equivalent to the outer convergence tendons, which means they are
triangles in this example.

A t-prism doesn’t need to be based on a triangle; any polygon will do, and eliminating the
tendons on one end will generate a “t-polypod” which can be used just like the t-tripod as
a complex compression member to support a tendon network. Close examination of the
tendons of an inner convergence will show that, in conjunction with the converging struts,
they form an inward-pointing t-polypod when the appropriate tendons are added
connecting the convergence polygon to the opposite ends of the struts. These connecting
tendons are the secondary interlayer tendons and complete the truss network.

With this method of generating a tensegrity truss, the topology of the inner and outer
layers will not only need to be identical, the tendon triangles and polygons which make up
each layer will need to be divisible into two groups which alternate. A triangle or polygon
from one group will need to be completely surrounded by polygons from the other group.
An identical truss could have been generated by starting with the inward-pointing
t-polypods supporting a complete outer network and then binding their apexes together
and adding interlayer tendons to generate the outward-pointing t-tripods.

The end result is a rigid tensegrity space frame aimed at extremely large-scale applications
like the covering of entire settlements or the superstructure of a space station. Though it is
possible to have polylaterals alternating with polylaterals in the spherical network instead
of one of the sets of polylaterals being restricted to triangles, an emphasis on triangles may
yield a more rigid structure. The complexity of this tensegrity will require that designs be
checked carefully to make sure struts and tendons have sufficient clearance and that
member forces are appropriate, i.e. tendons are in tension and struts are in compression.
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*
Figure 5.2: 4ν Octahedron: Alternating Triangles (Vertex View)

5.3 Double-Layer Tensegrities: Geodesic Networks

A network topology suitable for tensegrity designs can be obtained from an even-frequency
Class I subdivision of the triangular faces of the tetrahedron, octahedron or icosahedron.
Alternatively, Class II subdivisions of these same polyhedra can be used if the frequency is
a multiple of four.6 Network topologies generated this way are referred to as geodesic
networks since they are based on subdivision systems used to design geodesic domes. A
Class I subdivision was illustrated in Figure 4.2. Only Class I subdivisions are used in this
book.

A 4ν breakdown of the octahedron serves for the example of this method of generating
tensegrity trusses. The portion of this breakdown relevant to tensegrity structures is shown
in Figure 5.2. The breakdown triangles are shown with solid lines, and the edges of the
base octahedron are shown as dashed lines.

The first step in constructing the tensegrity is to divide the resulting network into two sets
of alternating triangles. In Figure 5.2, one set is shown with light solid lines, and the other

6See Kenner76, Chapter 7, for a discussion of Class I and Class II subdivisions.
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set is shown with heavy solid lines. A triangle of one set is adjacent only to triangles of the
other set. This alternation requirement was mentioned in Section 5.2 and here means only
geodesic subdivisions of the octahedron can be used. The tetrahedron and icosahedron are
excluded since their odd three- and five-fold symmetries don’t permit the required
alternating classification of the triangles. The exclusive use of the octahedron makes the
computational work simpler since, as mentioned in Section 2.3, the symmetries of the
octahedron are very easily expressed in the Cartesian framework.

Here both the inwardly- and outwardly-pointing t-polypods mentioned in Section 5.2 are
t-tripods. The placement of the struts is chosen to maximize the untwisting effect
mentioned in Section 5.2. It differs from the usual way of threading struts between
adjacent triangles in single layer tensegrities.

The truss is shown graphically in Figure 5.6. The fact that only t-tripods appear in the
structure gives the struts more effectiveness. They overlap less than they would if there
were t-polypods of greater frequency, so the set of struts covers more area. Since the struts
will in general be the most expensive component, this is a desirable feature. Also, having
t-tripods everywhere rather than higher-frequency t-polypods enhances the stiffness of the
structure since triangles can’t distort like other polylaterals.

Figure 5.3 is a schematic which shows the identity symmetry region corresponding to the
structure along with portions of the other symmetry regions that surround it. Figure 5.4
shows how the symmetry regions appear when drawn on the base octahedron. The borders
of the symmetry regions appear as dotted lines in Figure 5.3 and Figure 5.4. The points
labeled A and B correspond to the centers of two adjacent octahedral triangles. Arrows are
used to indicate the coordinate axes within the context of each of these triangles. In
Figure 5.3, the numbers in circles indicate the correspondence of each region to a symmetry
transformation in Table 5.5, and the position of each point is labeled with its number.

Due to the alternating triangles, the symmetry region for a double-layer tensegrity is twice
the size of that for the corresponding single-layer tensegrity. The single-layer tensegrity’s
symmetry region is one third of an octahedral face, so the double-layer symmetry region is
the union of one third of one octahedral face with one third of an adjacent face. The
symmetry region for a geodesic is one sixth of an octahedral face since geodesics also exhibit
reflective symmetry while single-layer tensegrities based on geodesic subdivisions don’t.

Figure 5.3 also shows visually how the point correspondences of Table 5.6 are derived. For
example, P6 is at the same position7 in symmetry region 2 as P3 is in symmetry region 1.
This means point 6 can be obtained by applying symmetry transformation 2 to point 3.

Figure 5.5 indicates the positions of the basic struts which compose the structure. An
arrow in the center of each strut indicates the direction from the outer point to which the
strut is connected to the inner point to which the strut is connected. These struts are
clustered around two basic t-tripods whose centers are indicated with circles.

7In Figures 5.3 and 5.5, 6 rather than P6 is used to mark the position of P6 since it marks the position
of both P6 and P ′6.
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Figure 5.4: 4ν Octahedron: Double-Layer Symmetry Regions
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Table 5.1 enumerates the members of this structure. The end points of each member are
shown along with its weight (if it will appear in the objective function) or its length (if it is
a constraint). Outer points are indicated with the same labels as the corresponding inner
points except that the labels of the outer points have a prime mark.

The inner and outer tendon networks are generated by projecting the alternating triangles
of Figure 5.2 onto concentric spheres. This allows Kenner’s tables8 to be used to generate
initial point coordinates. The radius of the inner network (2.0) was chosen so that the
inner tendon lengths were all approximately 1.0, and the radius of the outer network (4.0)
was chosen to yield strut lengths of approximately 3.0. Since this tensegrity doesn’t share
the mirror symmetry of geodesic structures, Kenner’s table had to be expanded by rotating
all the points about the z axis by 90◦. This corresponds to increasing the value of what is
there called φ (here it is called θ in accordance with the standard practice) by 90◦.

Table 5.2 outlines the correspondence between the basic points and Kenner’s coordinate
system (rotated points are indicated with an asterisk). The resulting coordinate values for
the inner and outer points are summarized in Table 5.3. The realized initial lengths are
summarized in Table 5.4.

The symmetry transformations for any double-layer t-octahedron are enumerated in
Table 5.5. It shows how the coordinates of a symmetry point are derived from those of a
basic point under each possible transformation. The derivation of the symmetry points
from the basic points is shown in Table 5.6. Outer points follow the same symmetries as
inner points.

The strategy for computing the structure was to minimize a weighted9 combination of the
interlayer and binding tendons subject to constraints on the struts and convergence
tendons. An initial iteration was done using the penalty formulation (µ = 105) in
conjunction with PARTAN since an exact approach would have had difficulty given the
divergence between the initial values and the constraints. After this four iterations were
done with the exact formulation in conjunction with PARTAN to bring the values to
convergence. The derivatives of the objective function with respect to the independent
variables were all less than 10−6. The coordinates selected to be independent variables were
x1, z2, y3, z4, x

′
1, z

′
1, z

′
2, x

′
3, y

′
3, z

′
3, x

′
4 and y′4.

Table 5.7 shows the values for the final lengths and relative forces (see Chapter 7 for the
method of computing relative forces); Table 5.8 shows the final values for the coordinates
of the basic points, and Figure 5.6 shows the final design.

8Kenner76, “Octahedron Class I Coordinates: Frequencies 8, 4, 2”, column 4ν, p. 128.
9The weights used are shown in Table 5.1.
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Member Constrained
# End Points Weight Length Comments
1 P ′1 P8 N/A 3.0 Struts
2 P ′2 P6 N/A 3.0
3 P ′3 P5 N/A 3.0
4 P ′4 P9 N/A 3.0
5 P ′2 P8 2.0 N/A Primary Interlayer Tendons
6 P ′3 P6 2.0 N/A
7 P ′1 P5 2.0 N/A
8 P ′7 P9 2.0 N/A
9 P ′1 P2 2.0 N/A Secondary Interlayer Tendons
10 P ′2 P3 2.0 N/A
11 P ′3 P1 2.0 N/A
12 P ′4 P7 2.0 N/A
13 P ′1 P ′2 N/A 1.0 Outer Convergence Tendons
14 P ′2 P ′3 N/A 1.0
15 P ′3 P ′1 N/A 1.0
16 P ′4 P ′7 N/A 1.0
17 P ′2 P ′8 0.4 N/A Outer Binding Tendons
18 P ′3 P ′6 0.4 N/A
19 P ′1 P ′5 0.4 N/A
20 P ′7 P ′9 0.4 N/A
21 P1 P2 1.0 N/A Inner Binding Tendons
22 P2 P3 1.0 N/A
23 P3 P1 1.0 N/A
24 P4 P7 1.0 N/A
25 P2 P8 N/A 1.0 Inner Convergence Tendons
26 P3 P6 N/A 1.0
27 P1 P5 N/A 1.0
28 P7 P9 N/A 1.0

Table 5.1: 4ν T-Octahedron: Truss Members

Coordinates
Point Kenner’s Label θ φ
P1 (P ′1) 1,0 0.0 18.4349488
P2 (P ′2) 1,1 90.0 18.4349488
P3 (P ′3) 2,1 45.0 35.2643897
P4 (P ′4) 2,1* 135.0 35.2643897

Table 5.2: 4ν T-Octahedron: Angular Point Coordinates
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Figure 5.6: 4ν T-Octahedron: Final Design
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Coordinates
Point x y z
P1 0.632456 0.000000 1.897367
P2 0.000000 0.632456 1.897367
P3 0.816497 0.816497 1.632993
P4 -0.816497 0.816497 1.632993
P ′1 1.264911 0.000000 3.794733
P ′2 0.000000 1.264911 3.794733
P ′3 1.632993 1.632993 3.265986
P ′4 -1.632993 1.632993 3.265986

Table 5.3: 4ν T-Octahedron: Initial Basic Point Coordinates

5.4 Double-Layer Tensegrities: Hexagon/Triangle

Networks

A second approach to designing tensegrity trusses relies on networks which have triangles
alternating with hexagons and pentagons, rather than triangles alternating with triangles
as with the first approach. An advantage of this approach over the approach of Section 5.3
is that it works with all symmetries. Geodesic breakdowns of the tetrahedron, octahedron,
icosahedron, cube, rhombic dodecahedron or triacontahedron can be used.

Geodesic networks are used here only as a first step in the derivation of a network. In the
geodesic network’s triangles, attention is now placed on the hexagons which fill up the gaps
between the triangles. Thus, these triangles and the gaps between them form a system of
alternating triangles and hexagons except at the vertices of the base polyhedron where a
triangle, square or pentagon will be substituted for a hexagon.

For an example, see Figure 5.7 which illustrates a 2ν icosahedron. At this low frequency,
the single triangles on each icosahedral face surround pentagonal gaps which correspond to
the vertices of the base icosahedron. At higher frequencies, hexagonal gaps would appear
on the edges (as in Figure 4.2) and/or the faces of the base polyhedron. At high
frequencies, the hexagonal gaps dominate since the occasional pentagonal, square or
triangular gaps only appear at the vertices of the base polyhedron. Hence, the final
network is referred to as a “hexagon/triangle” network even though at the lowest 2ν
frequency hexagons don’t appear at all.

This recontextualized geodesic network is not suitable for a t-tripod-based tensegrity truss
though since adjacent polylaterals share edges rather than just points. A suitable network
can easily be constructed though by inscribing a smaller version of each polylateral within
that polylateral by connecting the midpoints of its sides appropriately. This technique is
illustrated for the 2ν icosahedron in Figure 5.8.
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Member
# Length
1 2.683281
2 3.109991
3 3.055050
4 3.109990
5 2.366432
6 2.581988
7 2.353904
8 2.353903
9 2.366432
10 2.353904
11 2.353903
12 2.581988
13 1.788854
14 1.755484
15 1.755484
16 2.309401
17 1.788854
18 2.309401
19 1.755484
20 1.755484
21 0.894428
22 0.877743
23 0.877743
24 1.154700
25 0.894428
26 1.154700
27 0.877743
28 0.877743

Table 5.4: 4ν T-Octahedron: Initial Member Lengths
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Transform
Number x y z

1 x y z
2 y z x
3 z x y
4 −x −y z
5 −y z −x
6 z −x −y
7 −x y −z
8 y −z −x
9 −z −x y

10 x −y −z
11 −y −z x
12 −z x −y

Table 5.5: T-Octahedron: Symmetry Transformations

Coordinates Basic Transform
Point x y z Point Number
P5 −x4 −y4 z4 P4 4
P6 y3 z3 x3 P3 2
P7 −z4 −x4 y4 P4 9
P8 −x1 −y1 z1 P1 4
P9 −z2 −x2 y2 P2 9

Table 5.6: 4ν T-Octahedron: Symmetry Point Correspondences
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Member Relative
# Length Force
1 3.000000 -11.992
2 3.000000 -12.042
3 3.000000 -11.648
4 3.000000 -11.991
5 2.443023 4.886
6 2.436281 4.873
7 2.495792 4.992
8 2.422962 4.846
9 2.074289 4.149
10 2.068446 4.137
11 2.080869 4.162
12 2.046919 4.094
13 1.000000 3.443
14 1.000000 6.359
15 1.000000 3.112
16 1.000000 4.691
17 2.634124 1.054
18 2.651139 1.060
19 2.904639 1.162
20 2.885858 1.154
21 1.203002 1.203
22 1.252409 1.252
23 1.323913 1.324
24 1.292575 1.293
25 1.000000 4.981
26 1.000000 6.311
27 1.000000 4.638
28 1.000000 8.543

Table 5.7: 4ν T-Octahedron: Final Member Lengths and Forces
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Coordinates
Point x y z
P1 1.010025 -0.112004 1.942398
P2 -0.067774 0.387035 2.133503
P3 0.769352 1.139748 1.584713
P4 -0.712330 1.046316 1.746339
P ′1 1.569404 0.631114 3.383602
P ′2 0.616675 0.818931 3.622416
P ′3 1.177704 1.533667 3.204803
P ′4 -1.699080 2.137517 2.514813

Table 5.8: 4ν T-Octahedron: Final Basic Point Coordinates

,
Figure 5.7: 2ν Icosahedron
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-
Figure 5.8: Hexagon/Triangle Tensegrity Network Inscribed in a 2ν Icosahedron

As in Section 5.3, this network is projected on a sphere and duplicated to form an inner
and outer network. The triangles on the outer network form the apexes of
outwardly-pointing t-tripods (the outer convergence triangles), while the hexagons on the
outer network form the tendons which bind them together (the outer binding hexalaterals).
On the inner sphere, the hexalaterals form the apexes of inwardly-pointing t-hexapods (the
inner convergence hexalaterals), and the triangles form the tendons which bind them
together (the inner binding triangles). The struts and their corresponding tendons (the
primary and secondary interlayer tendons) connect the triangles on the outer network with
the hexalaterals on the inner network. As before, struts are placed so that the untwisting
effect of the binding tendons is enhanced.

Figure 5.9 illustrates this network as represented in Cartesian coordinates. This
representation is meant to exploit the octahedral symmetries of the icosahedron as much as
possible. Thus many of the symmetry points can be expressed as simple permutations of
the basic points. To capture the icosahedral symmetries however, a general transformation
matrix must be introduced.

In Figure 5.9, the axis labeled P represents the five-fold symmetry axis about which the
structure is transformed.10 This axis goes through a vertex of the reference, unit-side-length
icosahedron. The coordinates of this vertex are (1

2
, 0, τ

2
) where τ ≡ 1+

√
5

2
≈ 1.618034 is the

ratio constant of the golden section. This transformation is needed to express P2 in terms
of the basic point P1. (Cartesian coordinates allow P3 to be expressed more simply as just
a permutation of P1 (P3 = (z1, x1, y1)).) P2 is generated from P1 by a −72◦ rotation of the

10P stands for pentagon.
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.
P

x y

z

P1

P2

P3

4V1

4V2

4V3

Figure 5.9: 2ν Hexagon/Triangle T-Icosahedron: Coordinate System

structure about the axis P . The matrix which achieves this transformation is:11

T ≡


1
2

τ
2

1
2τ

−τ
2

1
2τ

1
2

1
2τ
−1

2
τ
2



Thus each coordinate of P2 is represented as a linear combination of the coordinates of P1.
In the model, this substitution could be made in all the formulas. However, it is simpler
just to consider P2 as a basic point and introduce the transformation matrix as three
constraints expressing the coordinates of P2 as linear combinations of the coordinates of P1.

Figure 5.10 illustrates the basic members of the structure as well as an outline of some of
the symmetry members embedded in the coordinate system which is used to analyze the
structure. The low frequency of the structure means there are very few basic members to
keep track of. On the other hand, the high order of symmetry of the icosahedron means
that the structure as a whole will encompass about as much space as a structure based on
a more complicated 4ν breakdown of the octahedron. This symmetry-induced simplicity is
an important consideration in favor of icosahedral structures. Table 5.9 summarizes the
member breakdown including weights for members included in the objective function and
length constraints for the others.

11Derived using formulas provided in Rogers76, Chapter 3.
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Figure 5.10: 2ν Hexagon/Triangle T-Icosahedron: Truss Members

Member Constrained
# End Points Weight Length Comments
1 P ′3 P2 N/A 3.0 Strut
2 P ′1 P2 2.00 N/A Primary Interlayer Tendon
3 P ′3 P1 2.00 N/A Secondary Interlayer Tendon
4 P ′1 P ′3 N/A 1.0 Outer Convergence Tendon
5 P ′1 P ′2 0.45 N/A Outer Binding Tendon
6 P1 P3 1.00 N/A Inner Binding Tendon
7 P1 P2 N/A 1.0 Inner Convergence Tendon

Table 5.9: 2ν Hexagon/Triangle T-Icosahedron: Truss Members



98 CHAPTER 5. DOUBLE-LAYER TENSEGRITIES

Coordinates
Vertex x y z
V1

1
2

0 τ
2

V2 0 τ
2

1
2

V3
τ
2

1
2

0

Table 5.10: Unit Icosahedron: Selected Vertex Coordinates

The mathematical programming problem reduces to:

minimize o ≡ 2(|P ′1 − P2|2 + |P ′3 − P1|2) + 2
5
|P ′1 − P ′2|2 + |P1 − P3|2

P1, P
′
1, P2, P

′
2

subject to Tendon constraints:

1 ≥ |P ′1 − P ′3|2
1 ≥ |P1 − P2|2

Strut constraint:

−9 ≥ −|P ′3 − P2|2

Symmetry constraints:

P2 = TP1

P ′2 = TP ′1

The latter “two” constraints actually represent six linear constraints in all and are the
icosahedral symmetry transformations.

The next thing needed is initial coordinate values for the computation. These can be
derived from the coordinates the unit icosahedron vertices, in particular, the coordinates of
the icosahedral triangle generated by axes permutations located in the positive octant.
Table 5.10 summarizes these coordinate values. The locations of 4V1, 4V2 and 4V3 are
shown in Figure 5.9.

Taking the midpoints of the sides of the triangle represented by these three points yields
the vertices of a triangle of a half-scale version of the unit icosadodecahedron. Taking the
midpoints of this second triangle and multiplying by four yields the vertices of a triangle of
a unit-scale version of the the reference network for the tensegrity being analyzed here.
The coordinates of the point needed are:
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Coordinates
Point x y z
P1 1.809017 1.309017 2.118034
P ′1 2.713525 1.963525 3.177051

Table 5.11: 2ν Hexagon/Triangle T-Icosahedron: Initial Basic Point Coordinates

Member Relative
# Length Force
1 3.000000 -11.325
2 2.395526 4.791
3 2.017577 4.035
4 1.000000 4.032
5 2.241086 1.008
6 1.471948 1.472
7 1.000000 5.899

Table 5.12: 2ν Hexagon/Triangle T-Icosahedron: Final Member Lengths and Forces

(
2 + τ

2
,
1 + τ

2
,
1 + 2τ

2
)

This serves as the initial value for P1. The initial value for P ′1 can be computed by scaling
up P1 until the strut length constraint is approximately satisfied. A value of 1.5 for the
scale factor worked satisfactorily here. These initial coordinate values are summarized in
Table 5.11.

Since P2 and P ′2 are being treated as control variables as well, initial values must be
supplied for them. These initial values are computed by multiplying P1 and P ′1 by T. The
coordinates of P3 expressed in terms of P1 are (z1, x1, y1). P ′3 has the same relationship
with P ′1. These last relationships fully determine the model.

The model was solved using a similar approach to that used for the 4ν t-octahedron in
Section 5.3. An initial iteration was done using the penalty formulation (µ = 105) in
conjunction with Fletcher-Reeves. After this 10 iterations were done with the exact
formulation in conjunction with Fletcher-Reeves to bring the values to convergence. The
derivatives of the objective function with respect to the independent variables were all less
than 10−6. Member clearances were all greater than 0.15 model units.

Table 5.12 shows the values for the final lengths and relative forces (see Chapter 7 for the
method of computing relative forces); Table 5.13 shows the final values for the coordinates
of the basic points, and Figure 5.11 shows the final design.
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Coordinates
Point x y z
P1 1.635712 0.467068 1.294325
P ′1 2.427554 1.611718 1.991202

Table 5.13: 2ν Hexagon/Triangle T-Icosahedron: Final Coordinate Values

Figure 5.11: 2ν Hexagon/Triangle T-Icosahedron: Final Design



Chapter 6

Double-Layer Tensegrity Domes

6.1 Double-Layer Tensegrity Domes: Introduction

Tensegrity spheres seem appropriate for environments where external loads are evenly
distributed about the surfaces of structures. Examples of this type of environment are
underground, underwater, the atmosphere and outer space. For the surface of the earth,
truncated structures, domes, are more likely to find favor as the base of such structures
provides an effective way of dissipating the concentrated load of gravity as well as a needed
source of floor space within the structure. With this consideration in mind, a method of
truncating double-layer spherical tensegrity structures is presented in this chapter.

Truncating a single-layer tensegrity sphere amounts to removing a vertex-tangent group of
triangles or other low-frequency polylaterals and replacing them with a single polylateral of
high frequency. This high-frequency polylateral (the base mentioned above) will be tangent
with the remaining polylaterals at the vertexes which were touched by the removed
polylaterals.

To have a workable tensegrity, the truncation must be done so that each vertex of the new
polylateral is tangent with exactly one vertex of one of the remaining original polylaterals.
Situations where the new polylateral is tangent at more than one point with one of the
original polylaterals are not admissible. This represents a restriction on the groups of
polylaterals which can be removed. Figures 6.1 and 6.2 illustrate groups which meet and
do not meet this restriction. Even with this restriction, single-layer truncated tensegrities
don’t seem practical since the re-routing of the struts in the neighborhood of the
truncation invariably results in intractable interference problems.

For double-layer tensegrities where the tendon network is conceived of as an alternating set
of polylaterals as was described in Section 5.2, an additional restriction is necessary: the
remaining polylaterals tangent to the new polylateral must all belong to the same
alternation group. This ensures the new polylateral is a well-defined member of the
alternation group alternate to that of the remaining polylaterals tangent to it. In addition,

101
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/
Figure 6.1: Valid Tensegrity Truncation Groups

0
Figure 6.2: Invalid Tensegrity Truncation Groups
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the problem with re-routing struts which plagues single-layer structures can be avoided in
double-layer structures if the truncation polylateral is chosen so that it approximates a
great circle; that is, the polylateral has no sharp turns.

A significant problem posed by a truncation is a loss of symmetry. This has the undesirable
effect of greatly increasing the size of the programming problem whose solution is required
to generate a structure at a given frequency. There is not much way around this
unfortunately.

The large truncation needed to provide a base for a dome can also cause a structure to
deviate to a great extent from its original configuration. These deviations are usually in a
way which cause the base area to contract relative to the original cross-section it had in the
sphere. These deviations can also introduce new, intractable interference problems. So, for
this type of truncation, it is often desirable to fix all the points of the new polylateral and
perhaps further adjust them to lie in a plane and observe other convenient regularities.
Such constraints can also be desirable just from the point of view of easing the processes of
designing and building a foundation for a tensegrity dome.

Attaching the dome to its base means introducing the material on which the dome is
situated as a structural member which constrains the base points to stay at specified fixed
positions. Such a structure is no longer a tensegrity according to some definitions since it
now depends on the base material to help shape it. It is no longer self-supporting.

6.2 A Procedure for Designing Double-Layer

Tensegrity Domes

The following steps implement the design of a truncated, double-layer structure along the
lines discussed in Section 6.1 are as follows:

Step 1 Solve the tensegrity programming problem for the spherical version of the
structure.

Step 2 Implement the topological changes required by the truncation.

Step 3 Adjust the base points (the points of the truncation polylateral as they manifest
themselves on the inner tendon network) so they lie evenly-spaced on a circle
which approximates as closely as possible their unadjusted positions in the
original sphere.

Step 4 Add guys.

Step 5 Using the coordinate values from the sphere as initial values, solve the tensegrity
programming problem for the truncated sphere.
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Step 6 Make necessary adjustments to fix member force and interference problems.

To illustrate a method for truncating double-layer spheres, the tensegrity based on the 6ν
octahedron is useful. It has a low-enough frequency to be pedagogically tractable and a
high-enough frequency that the appearance of higher-frequency structures can be
anticipated in studying it.

6.2.1 Dome Step 1: Compute the sphere

Figures 6.3 and 6.4 diagram the basic triangle network for the 6ν double-layer tensegrity
octahedron sphere and a coordinate system for its analysis in the same manner as
Figures 5.3 and 5.5 did for the 4ν version in Section 5.3. The main difference is that, with
the higher frequency, there is more of everything. For example, now the struts in Figure 6.4
are clustered about three basic t-tripods instead of two as in Figure 5.5.

Table 6.1 enumerates the members of this 6ν version of the double-layer sphere. The
anomalous value of 1.5 for the length of Member #33 in Table 6.1 was chosen in light of
the experience with the 4ν structure.

The weights for the inner and outer binding tendons in the objective function are derived
using the formula k( b1+b2

2b1b2
)2 where the values used for k are 0.5 and 1.2 respectively for the

outer and inner binding tendons. b1 and b2 represent the spherical excess corresponding to
the initial values of the two endpoints of the tendon.1 The spherical excess is the amount
the sphere radius exceeds the distance of the unprojected endpoint from the center of the
octahedron. This number is calculated as a ratio and is always greater than or equal to 1.0.
It is equal to 1.0 at the vertexes of the octahedron. Giving a smaller weight to the tendons
distant from the vertexes of the basis octahedron allows them to be longer than they would
otherwise be. This allows the octahedral faces to bulge out more than they would
otherwise and gives the structure a more-spherical, less-faceted, look. The
objective-function weights for the primary and secondary interlayer tendons are 2.0 and 1.4
respectively independent of any spherical excess values.

As with the 4ν version of this sphere, the derivation of the initial point values is facilitated
by the use of the geodesic breakdown. Kenner’s tables2 were used to generate initial point
coordinates. Again, Kenner’s table has to be expanded by rotating all the points about the
z axis by 90◦. Table 6.2 outlines the correspondence between the basic points and his
coordinate system (rotated points are indicated with an asterisk).

The initial coordinate values for inner and outer realizations of these points are
summarized in Table 6.3. These are derived from the angular values in Table 6.2 with inner
and outer radiuses applied. The inner radius (3.15) was chosen so the triangle tendon

1b stands for bulge.
2Kenner76, “Octahedron Class I Coordinates: Frequencies 12, 6, 3”, column 6ν, p. 126.
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Figure 6.3: 6ν T-Octahedron Sphere: Symmetry Regions
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Member Constrained
# End Points Weight Length Comments
1 P ′1 P11 N/A 3.0
2 P ′2 P7 N/A 3.0
3 P ′3 P10 N/A 3.0
4 P ′4 P12 N/A 3.0
5 P ′9 P15 N/A 3.0 Struts
6 P ′8 P2 N/A 3.0
7 P ′7 P8 N/A 3.0
8 P ′5 P3 N/A 3.0
9 P ′14 P6 N/A 3.0
10 P ′2 P11 2.0 N/A
11 P ′3 P7 2.0 N/A
12 P ′1 P10 2.0 N/A
13 P ′9 P12 2.0 N/A
14 P ′8 P15 2.0 N/A Primary Interlayer Tendons
15 P ′4 P2 2.0 N/A
16 P ′13 P8 2.0 N/A
17 P ′6 P3 2.0 N/A
18 P ′7 P6 2.0 N/A
19 P ′1 P2 1.4 N/A
20 P ′2 P3 1.4 N/A
21 P ′3 P1 1.4 N/A
22 P ′4 P9 1.4 N/A
23 P ′9 P8 1.4 N/A Secondary Interlayer Tendons
24 P ′8 P4 1.4 N/A
25 P ′7 P13 1.4 N/A
26 P ′5 P6 1.4 N/A
27 P ′14 P7 1.4 N/A
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Member Constrained
# End Points Weight Length Comments
28 P2 P11 N/A 1.0
29 P3 P7 N/A 1.0
30 P1 P10 N/A 1.0
31 P9 P12 N/A 1.0
32 P8 P15 N/A 1.0 Inner Convergence Tendons
33 P4 P2 N/A 1.5
34 P13 P8 N/A 1.0
35 P6 P3 N/A 1.0
36 P7 P6 N/A 1.0
37 P ′1 P ′2 N/A 1.0
38 P ′2 P ′3 N/A 1.0
39 P ′3 P ′1 N/A 1.0
40 P ′4 P ′9 N/A 1.0
41 P ′9 P ′8 N/A 1.0 Outer Convergence Tendons
42 P ′8 P ′4 N/A 1.0
43 P ′7 P ′13 N/A 1.0
44 P ′5 P ′6 N/A 1.0
45 P ′14 P ′7 N/A 1.0
46 P ′2 P ′11 0.5000 N/A
47 P ′3 P ′7 0.3065 N/A
48 P ′1 P ′10 0.4196 N/A
49 P ′9 P ′12 0.3065 N/A
50 P ′8 P ′15 0.2692 N/A Outer Binding Tendons
51 P ′4 P ′2 0.4196 N/A
52 P ′13 P ′8 0.3065 N/A
53 P ′6 P ′3 0.3065 N/A
54 P ′7 P ′6 0.2692 N/A
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Member Constrained
# End Points Weight Length Comments
55 P1 P2 1.2000 N/A
56 P2 P3 1.0069 N/A
57 P3 P1 1.0069 N/A
58 P4 P9 0.7356 N/A
59 P9 P8 0.6462 N/A Inner Binding Tendons
60 P8 P4 0.7356 N/A
61 P7 P13 0.7356 N/A
62 P5 P6 0.7356 N/A
63 P14 P7 0.6462 N/A

Table 6.1: 6ν T-Octahedron Sphere: Truss Members

Coordinates
Point Kenner’s Label θ φ
P1 (P ′1) 1,0 0.0 11.3099
P2 (P ′2) 1,1 90.0 11.3099
P3 (P ′3) 2,1 45.0 19.4712
P4 (P ′4) 2,1* 135.0 19.4712
P5 (P ′5) 3,0 0.0 45.0
P6 (P ′6) 3,1 26.5651 36.6992
P7 (P ′7) 3,2 63.4349 36.6992
P8 (P ′8) 3,1* 116.5651 36.6992
P9 (P ′9) 3,2* 153.4349 36.6992

Table 6.2: 6ν T-Octahedron: Angular Point Coordinates
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Coordinates
Point x y z
P1 0.6178 0.0000 3.0888
P2 0.0000 0.6178 3.0888
P3 0.7425 0.7425 2.9698
P4 -0.7425 0.7425 2.9698
P5 2.2274 0.0000 2.2274
P6 1.6837 0.8419 2.5256
P7 0.8419 1.6837 2.5256
P8 -0.8419 1.6837 2.5256
P9 -1.6837 0.8419 2.5256
P ′1 1.0100 0.0000 5.0500
P ′2 0.0000 1.0100 5.0500
P ′3 1.2139 1.2139 4.8555
P ′4 -1.2139 1.2139 4.8555
P ′5 3.6416 0.0000 3.6416
P ′6 2.7528 1.3764 4.1292
P ′7 1.3764 2.7528 4.1292
P ′8 -1.3764 2.7528 4.1292
P ′9 -2.7528 1.3764 4.1292

Table 6.3: 6ν T-Octahedron: Initial Basic Point Coordinates

lengths average approximately 1 (0.995729). The outer radius (5.15) was chosen so strut
lengths in the double-layer versions of the structure would initially average approximately
3. The implied initial lengths are summarized in Table 6.4.

The derivation of the symmetry points from the basic points is shown in Table 6.5. The
symmetry transforms on which this table is based are enumerated in Table 5.5. Outer
points follow the same symmetries as inner points.

The structure was computed by minimizing a weighted combination of the interlayer and
binding tendons subject to constraints on the struts and convergence tendons. Two initial
iterations were done using the penalty formulation (µ = 105) in conjunction with
Fletcher-Reeves to bring the initial points into approximate conformance with the
constraints. After this five iterations were done with the exact formulation in conjunction
with Fletcher-Reeves to bring the values to convergence. The derivatives of the objective
function with respect to the independent variables were all less than 10−6.

Table 6.6 shows the values for the final lengths and relative forces (see Chapter 7 for the
method of computing relative force). Table 6.7 shows the final values for the coordinates of
the basic points. Figure 6.5 shows how the final version of the spherical structure appears
as viewed from outside one of the octahedral vertices. For clarity, interlayer tendons have
been excluded and members in the background have been eliminated by truncation. For



6.2. A PROCEDURE FOR DESIGNING DOUBLE-LAYER TENSEGRITY DOMES 111

Member Member Member
# Length # Length # Length
1 2.5487 2 2.7450 3 2.7577
4 3.0672 5 3.3095 6 2.7450
7 2.9385 8 3.0672 9 3.3095
10 2.2908 11 2.4057 12 2.2248
13 2.4057 14 2.5135 15 2.2248
16 2.4057 17 2.4057 18 2.5135
19 2.2908 20 2.2248 21 2.2248
22 2.4057 23 2.5135 24 2.4057
25 2.4057 26 2.4057 27 2.5135
28 0.8737 29 1.0456 30 0.7622
31 1.0456 32 1.1906 33 0.7622
34 1.0456 35 1.0456 36 1.1906
37 1.4284 38 1.2461 39 1.2461
40 1.7094 41 1.9465 42 1.7094
43 1.7094 44 1.7094 45 1.9465
46 1.4284 47 1.7094 48 1.2461
49 1.7094 50 1.9465 51 1.2461
52 1.7094 53 1.7094 54 1.9465
55 0.8737 56 0.7622 57 0.7622
58 1.0456 59 1.1906 60 1.0456
61 1.0456 62 1.0456 63 1.1906

Table 6.4: 6ν T-Octahedron: Initial Member Lengths

Coordinates Basic Transform
Point x y z Point Number
P10 −x4 −y4 z4 P4 4
P11 −x1 −y1 z1 P1 4
P12 −x5 −y5 z5 P5 4
P13 y5 z5 x5 P5 2
P14 y6 z6 x6 P6 2
P15 −y9 z9 −x9 P9 5

Table 6.5: 6ν T-Octahedron: Symmetry Point Correspondences



112 CHAPTER 6. DOUBLE-LAYER TENSEGRITY DOMES

Member Relative
# Length Force
1 3.0000 -11.294
2 3.0000 -9.788
3 3.0000 -10.052
4 3.0000 -10.125
5 3.0000 -10.019
6 3.0000 -9.925
7 3.0000 -10.052
8 3.0000 -10.064
9 3.0000 -9.870
10 2.3545 4.709
11 2.3871 4.774
12 2.4881 4.976
13 2.2793 4.559
14 2.2883 4.577
15 2.3153 4.631
16 2.2212 4.442
17 2.2209 4.442
18 2.2354 4.471
19 2.1286 2.980
20 2.0833 2.917
21 2.1669 3.033
22 2.0342 2.848
23 2.0334 2.847
24 1.6827 2.356
25 2.0342 2.848
26 2.0454 2.863
27 2.0516 2.872

reference, selected points are labeled.

6.2.2 Dome Step 2: Implement the truncation

Figure 6.6 diagrams the four “great” circle truncation possibilities for this structure as they
fall on its reference octahedron. Figure 6.7 shows the same four truncation boundaries as
they fall on the inner layer of the sphere. None of these boundaries corresponds to a true
great circle. The true great circle lies at the center of their range and is not usable as a
truncation at this frequency. In a higher-frequency structure there would be still more of
these circles available. All of them are possibilities as truncation definitions, although the
ones farther away from the true great circle would probably require greater adjustments to
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Member Relative
# Length Force
28 1.0000 4.945
29 1.0000 4.580
30 1.0000 3.811
31 1.0000 5.009
32 1.0000 5.092
33 1.0000 4.947
34 1.0000 4.958
35 1.0000 5.258
36 1.0000 5.163
37 1.0000 4.144
38 1.0000 4.887
39 1.0000 4.040
40 1.0000 4.865
41 1.0000 4.867
42 1.0000 5.214
43 1.0000 4.815
44 1.0000 5.083
45 1.0000 5.547
46 1.8502 0.925
47 2.4709 0.757
48 2.1613 0.907
49 2.6524 0.813
50 2.7414 0.738
51 2.4735 1.038
52 2.7549 0.844
53 2.6798 0.821
54 2.6482 0.713
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Member Relative
# Length Force
55 1.2081 1.450
56 1.2653 1.274
57 1.2626 1.271
58 1.3406 0.986
59 1.6730 1.081
60 1.2480 0.918
61 1.9008 1.398
62 1.8434 1.356
63 1.9693 1.273

Table 6.6: 6ν T-Octahedron Sphere: Final Member Lengths and Forces

Coordinates
Point x y z
P1 1.0378 -0.2360 3.5592
P2 -0.0640 0.2053 3.7844
P3 0.8711 1.0149 3.5173
P4 -1.0998 1.2224 3.4065
P5 2.9400 -0.4191 2.3400
P6 1.7538 0.7511 3.1285
P7 1.3434 1.6303 2.8864
P8 -1.4134 2.2919 2.8451
P9 -2.3233 0.8934 2.9682
P ′1 1.3525 0.2829 5.3714
P ′2 0.3628 0.4068 5.4440
P ′3 0.9467 1.1801 5.1968
P ′4 -1.5610 1.7442 4.6513
P ′5 3.7764 0.4745 3.0005
P ′6 3.0842 0.8558 3.6132
P ′7 1.4390 2.9290 3.5221
P ′8 -2.1735 2.3144 4.1038
P ′9 -2.4411 1.3815 4.3450

Table 6.7: 6ν T-Octahedron Sphere: Final Basic Point Coordinates
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Figure 6.5: 6ν T-Octahedron Sphere: Vertex View
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Figure 6.6: 6ν T-Octahedron: Truncation Boundaries (Octahedron)

work well. At this frequency, the two middle truncations are equally far from the true great
circle, and so neither has an advantage as far as adjustments required. This being the case,
the one that allows more volume was selected.

Figures 6.8 and 6.9 diagram the basic triangle network for the truncated structure and a
coordinate system for its analysis. These figures are in roughly the same style as the
corresponding figures for the 4ν and 6ν spheres. Figure 6.8 is more complex than for those
earlier structures since it attempts to diagram the correspondence between the symmetry
regions of the 6ν sphere and those of the dome.

The boundaries of the symmetry regions for the sphere are outlined with dotted lines as
before and labeled with small numbers in circles. The numbers correspond to the
symmetry transformations listed in Table 5.5. The boundaries for the dome are outlined by
a hollow dotted line. The dome’s symmetry regions are enumerated with larger numbers in
circles. These numbers also correspond to the symmetry transformations listed in
Table 5.5, although, due to the loss of symmetry, only the first three entries in the table are
possibilities. A grasp of the correspondence between the two regions is useful for generating
initial points for the dome calculations from the final values of the sphere calculations.
These correspondences are used in Tables 6.16 and 6.17. As noted below, these
correspondences are altered slightly for the inner points at the base of the dome.

Tables 6.8 through 6.15 enumerate the members of the truncated structure. The
anomalous members which have a length of 1.5 correspond to Member #33 in Table 6.1 for
the sphere. For the most part, the weights for this structure are mapped from the weights
used for the corresponding members in the spherical version of the structure. The
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Figure 6.7: 6ν T-Octahedron: Truncation Boundaries (Sphere)

exceptions are the weights for members #160, #161, #163, #164, #166 and #167. The
reasons for these exceptions are discussed below. In addition to the members enumerated
in Tables 6.8 through 6.15, guys will be introduced in Step 4.

The tables for this structure are much larger, and the computations required are
correspondingly more massive, due to the loss of symmetry induced by the truncation. The
dome is composed of three symmetrical parts whereas the same area on the sphere was
composed of about eight symmetrical parts. The net result is that the tables for the dome
are over twice as large as those for the sphere.

Decisions must be made in the neighborhood of the truncation on how to reroute the struts
whose inner terminal points lay on the set of triangles which were excluded. The best
procedure seems to be to connect them to the inner binding triangle which underlies their
tripod. To make this work, the weights are multiplied by 5

12
for inner binding tendons

which touch the base. These are the members mentioned above whose weights do not equal
those of the corresponding members in the spherical structure (#160, #161, #163, #164,
#166, #167). This reduction in the weights allows the final dome to achieve a height which
approximates the height of its initial configuration. With unaltered weights, it would turn
out more squat.

The secondary interlayer tendons at these positions, #64, #67 and #70, disappear since
there are struts at those same positions in this configuration. Also, the tendons generated
by the truncation are eliminated from the model. The inner truncation tendons are
redundant since they connect the base points which are fixed. The outer truncation tendons
are not necessary for structural integrity and detract from the appearance of the structure.
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Figure 6.8: 6ν T-Octahedron Dome: Symmetry Regions
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Figure 6.9: 6ν T-Octahedron Dome: Truss Members
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Member Constrained Sphere
# End Points Weight Length Member
1 P ′2 P7 N/A 3.0 7
2 P ′29 P4 N/A 3.0 8
3 P ′25 P1 N/A 3.0 9
4 P ′5 P9 N/A 3.0 1
5 P ′6 P2 N/A 3.0 2
6 P ′4 P11 N/A 3.0 3
7 P ′8 P17 N/A 3.0 4
8 P ′13 P26 N/A 3.0 5
9 P ′7 P6 N/A 3.0 6

10 P ′10 P19 N/A 3.0 2
11 P ′14 P8 N/A 3.0 3
12 P ′9 P5 N/A 3.0 1
13 P ′12 P21 N/A 3.0 5
14 P ′15 P10 N/A 3.0 6
15 P ′11 P29 N/A 3.0 4
16† P ′16 P22 N/A 3.0 6
17 P ′28 P20 N/A 3.0 4
18 P ′27 P13 N/A 3.0 5
19† P ′18 P23 N/A 3.0 9
20 P ′23 P16 N/A 3.0 7
21 P ′17 P14 N/A 3.0 8
22† P ′20 P24 N/A 3.0 8
23 P ′24 P18 N/A 3.0 9
24 P ′19 P15 N/A 3.0 7

Table 6.8: 6ν T-Octahedron Dome: Struts

In Tables 6.8 through 6.15, members re-routed to a new inner point (as compared with the
configuration of their corresponding member in the sphere) due to the truncation are
marked with †. Members which were excluded (although for completeness they are
included in the tables) are marked with ‡.

The basic points and their initial coordinate values (as derived from the final values for the
corresponding points in the sphere) are summarized in Tables 6.16 and 6.17. The
applicable transforms are listed in Table 5.5. The coordinates of P22, P23 and P24 in
Table 6.16 do not correspond exactly to the values of the corresponding points in the
sphere. This is due to the Step 3 adjustment.

P22, P23 and P24 of the truncated sphere map from P2, P6 and P3 respectively of the
complete sphere, rather than P4, P7 and P6 as would be expected from an unaltered
symmetry mapping. This alteration was made so that, even with the change in topology,
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Member Constrained Sphere
# End Points Weight Length Member
25 P ′3 P7 2.0 N/A 16
26 P ′1 P4 2.0 N/A 17
27 P ′2 P1 2.0 N/A 18
28 P ′6 P9 2.0 N/A 10
29 P ′4 P2 2.0 N/A 11
30 P ′5 P11 2.0 N/A 12
31 P ′13 P17 2.0 N/A 13
32 P ′7 P26 2.0 N/A 14
33 P ′8 P6 2.0 N/A 15
34 P ′14 P19 2.0 N/A 11
35 P ′9 P8 2.0 N/A 12
36 P ′10 P5 2.0 N/A 10
37 P ′15 P21 2.0 N/A 14
38 P ′11 P10 2.0 N/A 15
39 P ′12 P29 2.0 N/A 13
40† P ′22 P22 2.0 N/A 15
41 P ′21 P20 2.0 N/A 13
42 P ′16 P13 2.0 N/A 14
43† P ′23 P23 2.0 N/A 18
44 P ′17 P16 2.0 N/A 16
45 P ′18 P14 2.0 N/A 17
46† P ′24 P24 2.0 N/A 17
47 P ′19 P18 2.0 N/A 18
48 P ′20 P15 2.0 N/A 16

Table 6.9: 6ν T-Octahedron Dome: Primary Interlayer Tendons
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Member Constrained Sphere
# End Points Weight Length Member
49 P ′2 P3 1.4 N/A 25
50 P ′29 P1 1.4 N/A 26
51 P ′25 P2 1.4 N/A 27
52 P ′5 P6 1.4 N/A 19
53 P ′6 P4 1.4 N/A 20
54 P ′4 P5 1.4 N/A 21
55 P ′8 P13 1.4 N/A 22
56 P ′13 P7 1.4 N/A 23
57 P ′7 P8 1.4 N/A 24
58 P ′10 P14 1.4 N/A 20
59 P ′14 P9 1.4 N/A 21
60 P ′9 P10 1.4 N/A 19
61 P ′12 P15 1.4 N/A 23
62 P ′15 P11 1.4 N/A 24
63 P ′11 P12 1.4 N/A 22
64‡ P ′16 P22 N/A N/A 24
65 P ′28 P21 1.4 N/A 22
66 P ′27 P16 1.4 N/A 23
67‡ P ′18 P23 N/A N/A 27
68 P ′23 P17 1.4 N/A 25
69 P ′17 P18 1.4 N/A 26
70‡ P ′20 P24 N/A N/A 26
71 P ′24 P19 1.4 N/A 27
72 P ′19 P20 1.4 N/A 25

Table 6.10: 6ν T-Octahedron Dome: Secondary Interlayer Tendons
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Member Constrained Sphere
# End Points Weight Length Member
73 P3 P7 N/A 1.0 34
74 P1 P4 N/A 1.0 35
75 P2 P1 N/A 1.0 36
76 P6 P9 N/A 1.0 28
77 P4 P2 N/A 1.0 29
78 P5 P11 N/A 1.0 30
79 P13 P17 N/A 1.0 31
80 P7 P26 N/A 1.0 32
81 P8 P6 N/A 1.5 33
82 P14 P19 N/A 1.0 29
83 P9 P8 N/A 1.0 30
84 P10 P5 N/A 1.0 28
85 P15 P21 N/A 1.0 32
86 P11 P10 N/A 1.5 33
87 P12 P29 N/A 1.0 31
88‡ P22 P22 N/A N/A 33
89 P21 P20 N/A 1.0 31
90 P16 P13 N/A 1.0 32
91‡ P23 P23 N/A N/A 36
92 P17 P16 N/A 1.0 34
93 P18 P14 N/A 1.0 35
94‡ P24 P24 N/A N/A 35
95 P19 P18 N/A 1.0 36
96 P20 P15 N/A 1.0 34

Table 6.11: 6ν T-Octahedron Dome: Inner Convergence Tendons
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Member Constrained Sphere
# End Points Weight Length Member
97 P ′2 P ′3 N/A 1.0 43
98 P ′29 P ′1 N/A 1.0 44
99 P ′25 P ′2 N/A 1.0 45

100 P ′5 P ′6 N/A 1.0 37
101 P ′6 P ′4 N/A 1.0 38
102 P ′4 P ′5 N/A 1.0 39
103 P ′8 P ′13 N/A 1.0 40
104 P ′13 P ′7 N/A 1.0 41
105 P ′7 P ′8 N/A 1.0 42
106 P ′10 P ′14 N/A 1.0 38
107 P ′14 P ′9 N/A 1.0 39
108 P ′9 P ′10 N/A 1.0 37
109 P ′12 P ′15 N/A 1.0 41
110 P ′15 P ′11 N/A 1.0 42
111 P ′11 P ′12 N/A 1.0 40
112 P ′16 P ′22 N/A 1.0 42
113 P ′28 P ′21 N/A 1.0 40
114 P ′27 P ′16 N/A 1.0 41
115 P ′18 P ′23 N/A 1.0 45
116 P ′23 P ′17 N/A 1.0 43
117 P ′17 P ′18 N/A 1.0 44
118 P ′20 P ′24 N/A 1.0 44
119 P ′24 P ′19 N/A 1.0 45
120 P ′19 P ′20 N/A 1.0 43

Table 6.12: 6ν T-Octahedron Dome: Outer Convergence Tendons
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Member Constrained Sphere
# End Points Weight Length Member

121 P ′3 P ′7 0.3065 N/A 52
122 P ′1 P ′4 0.3065 N/A 53
123 P ′2 P ′1 0.2692 N/A 54
124 P ′6 P ′9 0.5000 N/A 46
125 P ′4 P ′2 0.3065 N/A 47
126 P ′5 P ′11 0.4196 N/A 48
127 P ′13 P ′17 0.3065 N/A 49
128 P ′7 P ′26 0.2692 N/A 50
129 P ′8 P ′6 0.4196 N/A 51
130 P ′14 P ′19 0.3065 N/A 47
131 P ′9 P ′8 0.4196 N/A 48
132 P ′10 P ′5 0.5000 N/A 46
133 P ′15 P ′21 0.2692 N/A 50
134 P ′11 P ′10 0.4196 N/A 51
135 P ′12 P ′29 0.3065 N/A 49
136‡ P ′22 P ′22 N/A N/A 51
137 P ′21 P ′20 0.3065 N/A 49
138 P ′16 P ′13 0.2692 N/A 50
139‡ P ′23 P ′23 N/A N/A 54
140 P ′17 P ′16 0.3065 N/A 52
141 P ′18 P ′14 0.3065 N/A 53
142‡ P ′24 P ′24 N/A N/A 53
143 P ′19 P ′18 0.2692 N/A 54
144 P ′20 P ′15 0.3065 N/A 52

Table 6.13: 6ν T-Octahedron Dome: Outer Binding Tendons
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Member Constrained Sphere
# End Points Weight Length Member

145 P2 P3 0.7356 N/A 61
146 P29 P1 0.7356 N/A 62
147 P25 P2 0.6462 N/A 63
148 P5 P6 1.2000 N/A 55
149 P6 P4 1.0069 N/A 56
150 P4 P5 1.0069 N/A 57
151 P8 P13 0.7356 N/A 58
152 P13 P7 0.6462 N/A 59
153 P7 P8 0.7356 N/A 60
154 P10 P14 1.0069 N/A 56
155 P14 P9 1.0069 N/A 57
156 P9 P10 1.2000 N/A 55
157 P12 P15 0.6462 N/A 59
158 P15 P11 0.7356 N/A 60
159 P11 P12 0.7356 N/A 58
160 P16 P22 0.3758 N/A 60
161 P28 P21 0.3758 N/A 58
162 P27 P16 0.6462 N/A 59
163 P18 P23 0.2692 N/A 63
164 P23 P17 0.3065 N/A 61
165 P17 P18 0.7356 N/A 62
166 P20 P24 0.3462 N/A 62
167 P24 P19 0.3065 N/A 63
168 P19 P20 0.7356 N/A 61

Table 6.14: 6ν T-Octahedron Dome: Inner Binding Tendons

Member
# End Points

169‡ P22 P23

170‡ P23 P24

171‡ P24 P28

172‡ P ′22 P ′23

173‡ P ′23 P ′24

174‡ P ′24 P ′28

Table 6.15: 6ν T-Octahedron Dome: Truncation Tendons
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Coordinates Sphere Transform
Point x y z Point Number
P1 1.7538 0.7511 3.1285 P6 1
P2 1.3434 1.6303 2.8864 P7 1
P3 -0.4191 2.3400 2.9400 P5 2
P4 0.8711 1.0149 3.5173 P3 1
P5 1.0378 -0.2360 3.5592 P1 1
P6 -0.0640 0.2053 3.7844 P2 1
P7 -1.4134 2.2919 2.8451 P8 1
P8 -1.0998 1.2224 3.4065 P4 1
P9 -1.0378 0.2360 3.5592 P1 4
P10 0.0640 -0.2053 3.7844 P2 4
P11 1.0998 -1.2224 3.4065 P4 4
P12 2.3233 -0.8934 2.9682 P9 4
P13 -2.3233 0.8934 2.9682 P9 1
P14 -0.8711 -1.0149 3.5173 P3 4
P15 1.4134 -2.2919 2.8451 P8 4
P16 -2.8451 1.4134 2.2919 P8 9
P17 -2.9400 0.4191 2.3400 P5 4
P18 -1.7538 -0.7511 3.1285 P6 4
P19 -1.3434 -1.6303 2.8864 P7 4
P20 0.4191 -2.3400 2.9400 P5 11
P21 0.8934 -2.9682 2.3233 P9 8
P22 -3.7309 -0.0860 0.0478 P2 9
P23 -3.1023 -1.7622 1.0954 P6 9
P24 -1.6100 -3.2017 1.0425 P3 11

Table 6.16: 6ν T-Octahedron Dome: Initial Inner Coordinate Values

the initial positions and lengths of the struts would correspond to their final positions in
the sphere computations. Since the spherical excesses of P2 and P3 differ from P4 and P6,
the initial weights for members #160, #161, #166 and #167 also differ from the values for
the corresponding members of the spherical structure. Note that in addition, as mentioned
above, the actual weights used for these members are 5

12
the weights corresponding to the

sphere.

The derivation of the symmetry points from the basic points is shown in Table 6.18. Outer
points follow the same symmetries as inner points. As mentioned above, due to the loss of
symmetry as a result of the truncation, only the first three entries of Table 5.5 are
possibilities here.
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Coordinates Sphere Transform
Point x y z Point Number
P ′1 3.0842 0.8558 3.6132 P ′6 1
P ′2 1.4390 2.9290 3.5221 P ′7 1
P ′3 0.4745 3.0005 3.7764 P ′5 2
P ′4 0.9467 1.1801 5.1968 P ′3 1
P ′5 1.3525 0.2829 5.3714 P ′1 1
P ′6 0.3628 0.4068 5.4440 P ′2 1
P ′7 -2.1735 2.3144 4.1038 P ′8 1
P ′8 -1.5610 1.7442 4.6513 P ′4 1
P ′9 -1.3525 -0.2829 5.3714 P ′1 4
P ′10 -0.3628 -0.4068 5.4440 P ′2 4
P ′11 1.5610 -1.7442 4.6513 P ′4 4
P ′12 2.4411 -1.3815 4.3450 P ′9 4
P ′13 -2.4411 1.3815 4.3450 P ′9 1
P ′14 -0.9467 -1.1801 5.1968 P ′3 4
P ′15 2.1735 -2.3144 4.1038 P ′8 4
P ′16 -4.1038 2.1735 2.3144 P ′8 9
P ′17 -3.7764 -0.4745 3.0005 P ′5 4
P ′18 -3.0842 -0.8558 3.6132 P ′6 4
P ′19 -1.4390 -2.9290 3.5221 P ′7 4
P ′20 -0.4745 -3.0005 3.7764 P ′5 11
P ′21 1.3815 -4.3450 2.4411 P ′9 8
P ′22 -4.6513 1.5610 1.7442 P ′4 9
P ′23 -3.5221 -1.4390 2.9290 P ′7 9
P ′24 -0.8558 -3.6132 3.0842 P ′6 11

Table 6.17: 6ν T-Octahedron Dome: Initial Outer Coordinate Values

Coordinates Basic Transform
Point x y z Point Number
P25 y1 z1 x1 P1 2
P26 y12 z12 x12 P12 2
P27 y21 z21 x21 P21 2
P28 z22 x22 y22 P22 3
P29 z3 x3 y3 P3 3

Table 6.18: 6ν T-Octahedron Dome: Symmetry Point Correspondences
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Coordinates Sphere Transform
Point x y z Point Number
P22 -3.784385 0.063992 0.205336 P2 9
P23 -3.128494 -1.753833 0.751127 P6 9
P24 -1.014868 -3.517327 0.871082 P3 11

Table 6.19: 6ν T-Octahedron Dome: Base Point Initial Raw Coordinate Values

6.2.3 Dome Step 3: Adjust the base points

Table 6.19 shows the unadjusted raw coordinate values for the base points. The
mathematical programming problem for the dome treats these three points are fixed.
Strictly speaking, once these points are treated as fixed, the structure is no longer a
tensegrity since it is no longer self-supporting.3

Practically speaking, this seems a useful approach to developing a dome. So, the
self-support requirement some definitions make for a true tensegrity will be ignored and the
constraints to fix the base points will be included with the point constraints discussed in
Chapter 3. Certainly it would be possible to develop a dome which met the self-support
requirement. Another truncation technique would need to be developed, but the truncation
would probably be a little more ragged looking and the structural support from the fixed
base points would probably be missed. The resulting dome would be more mobile though.

To facilitate construction and perhaps make the structure more aesthetically pleasing, the
base points for the not-quite-a-tensegrity dome being designed here are adjusted to lie
evenly spaced on a circle about the symmetry axis of the dome. This section gives the
details of how that adjustment is made.

The symmetry axis is the line through the origin and the point (1.0, 1.0, 1.0). It is
convenient to normalize the corresponding vector so it has length 1.0, so the vector
( 1√

3
, 1√

3
, 1√

3
) is used whenever the symmetry axis is needed for computations and is called

3See Wang98. Wang goes beyond the definition by Pugh quoted in Chapter 1 to identify the following
characteristics of a tensegrity structure:

1. It is composed of compression and tension elements.

2. The struts (compression elements) are discontinuous while the cables (tension elements) are continuous.

3. The structure is rigidified by self-stressing.

4. The structure is self-supporting.

Sometimes the second item is modified to allow struts which are attached to each other by pin joints.
None of the examples discussed in this book are of that sort. Certainly all the techniques described here
would apply to such tensegrities, but simpler procedures might apply in these cases and thus obviate the
need for solving a mathematical programming problem. Kenner76, p. 6, uses the term “self-sufficient” to
describe the quality of tensegrity structures characterized by the fourth item.
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P⊥ Coordinates
Point x y z r h
P22 -2.612699 1.235678 1.377022 3.201451 -2.029419
P23 -1.751428 -0.376766 2.128194 2.781844 -2.385149
P24 0.205503 -2.296956 2.091453 3.113264 -2.113745

Average N/A N/A N/A 3.032187 -2.176104

Table 6.20: 6ν T-Octahedron Dome: Raw Base Point Characteristics

A.

The transformed points lie on a circle chosen so that the points are moved as little as
possible because of the transformation. The radius of the circle is the average distance of
the raw points from the symmetry axis (see Chapter 8 for the formula for calculating the
distance of a point from a line). This value is called ravg. In addition, the transformed
points are selected so that they all have the same value when projected onto the symmetry
axis, and it will be the average of the values for the three raw points. This common value is
called as havg. The projection is computed by taking the dot product of the point with A.
The component of the point orthogonal to the axis is called P⊥i and is computed using the
formula P⊥i = Pi − (Pi · A)A. This data is summarized in Table 6.20.

The transformed value of P22, call it P ∗22, is generated using the formula
P ∗22 = havgA+ ravg

|P⊥22|
P⊥22. The transformed values for the other two points are generated by

by rotating P ∗22 about the symmetry axis by 2π
9

and 4π
9

. Nine was chosen as the divisor for
the two rotation angles since there are nine base points when all symmetry transformations
are taken into account. The general matrix for rotating a point about a normalized (so it
has length one) vector (x, y, z) by an angle θ is:4

 x2 + (1− x2) cos θ xy(1− cos θ)− z sin θ xz(1− cos θ) + y sin θ
xy(1− cos θ) + z sin θ y2 + (1− y2) cos θ yz(1− cos θ)− x sin θ
xz(1− cos θ)− y sin θ yz(1− cos θ) + x sin θ z2 + (1− z2) cos θ


In the present situation, the normalized vector in question is just A and the value of θ is
2π
9

. Substituting these values yields the matrix:


1
3

+ 2
3

cos (2π
9

)
(1−cos ( 2π

9
))

3
− sin ( 2π

9
)√

3

(1−cos ( 2π
9

))

3
+

sin ( 2π
9

)√
3

(1−cos ( 2π
9

))

3
+

sin ( 2π
9

)√
3

1
3

+ 2
3

cos (2π
9

)
(1−cos ( 2π

9
))

3
− sin ( 2π

9
)√

3
(1−cos ( 2π

9
))

3
− sin ( 2π

9
)√

3

(1−cos ( 2π
9

))

3
+

sin ( 2π
9

)√
3

1
3

+ 2
3

cos (2π
9

)


Applying this matrix once to P ∗22 yields P ∗23. Applying this matrix twice to P ∗22 yields P ∗24.

4From Rogers76, Chapter 3.
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The transformed values are what appear in Table 6.16.

6.2.4 Dome Step 4: Add guys

With the truncation methodology discussed here, adding guys, and points on the ground to
attach them to, is usually advisable. A valid tensegrity could be obtained without these
guys, but it would be a very rickety one. Minor lateral forces applied to the structure
would move it substantially. With the guys in place, the structure will resist lateral forces
more robustly.

The guys are where the outer layer of tendons meets the ground. Their attachment points
should be chosen so they mimic the effect of the outer-layer tendons which would have
appeared in this vicinity but were discarded due to the truncation. The guy attachment
points are in the same plane as the base points and will fall on a circle which is a dilatation
of the base-point circle. More precisely, the attachment-point circle is chosen to be the
intersection of a sphere approximating the outer layer of tendons with the ground. Call the
radius of this circle r′avg. r

′
avg is calculated using the formula

r′avg =

√√√√√√√√(

ns
h
2∑
i=1
|P ′i |
ns
h

2

)2 − h2
avg

where nsh is the number of basic points in the sphere, and P ′i is an outer-layer basic point
of the sphere. For the 6ν sphere, the value of nsh is 18, and the value of r′avg is√

5.150852 − (−2.176104)2 = 4.66860.

Another question is how much to rotate the guy-attachment points relative to the base
points. A sensible place to start would seem to be half the angle between the base points,
π
9

in this case. These can be adjusted later if that can help ease distortions of the
realization of the sphere’s configurations in the dome. With this in mind, it seems
reasonable to put the guys in the objective function to let the computations themselves
give feedback on the necessary rotation factor.

The guy weights should be chosen also so as to aid the realization of the sphere’s
configurations in the dome as closely as possible.

Table 6.21 lists the coordinates which resulted from applying the above procedures to
deriving the guy attachment points. Table 6.22 gives the data for the one guy attachment
point which is generated using a symmetry transformation. Table 6.23 enumerates the data
for the six guys which are added to the model in this step.
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Coordinates
Point x y z
P ′30 -4.795937 -0.711963 1.738777
P ′31 -3.058334 -3.264453 2.553663
P ′32 -0.477574 -4.877340 1.585790

Table 6.21: 6ν T-Octahedron Dome: Guy Attachment Point Coordinates

Coordinates Basic Transform
Point x y z Point Number
P ′33 z′30 x′30 y′30 P ′30 3

Table 6.22: 6ν T-Octahedron Dome: Guy-Attachment-Point Symmetry Correspondence

Member Constrained Sphere
# End Points Weight Length Member

175 P ′30 P ′23 0.4000 N/A N/A
176 P ′23 P ′31 0.4000 N/A N/A
177 P ′31 P ′24 0.4000 N/A N/A
178 P ′24 P ′32 0.4000 N/A N/A
179 P ′32 P ′28 0.4000 N/A N/A
180 P ′28 P ′33 0.4000 N/A N/A

Table 6.23: 6ν T-Octahedron Dome: Guys
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Member Preliminary Final
Pair Clearance Clearance
7-20 0.1373 0.1994
13-17 0.1596 0.1855
13-24 0.1587 0.1811
17-24 0.1591 0.1894
18-20 0.1403 0.1927
21-23 0.1741 0.1901
18-44 0.1101 0.1519
20-31 0.1106 0.1616

Table 6.24: 6ν T-Octahedron Dome: Preliminary and Final Values for Problem Clearances

6.2.5 Dome Step 5: Compute the dome

As usual, the structure was computed by minimizing a weighted combination of the
interlayer and binding tendons subject to constraints on the struts and convergence
tendons. The big difference was the base points were kept fixed. In addition to providing
the benefits mentioned previously, fixing these points also makes the structure
mathematically determinate.

Two initial iterations were done using the penalty formulation (µ = 105) in conjunction
with Fletcher-Reeves to bring the initial points into approximate conformance with the
constraints. The source of the initial non-conformity with the constraints is the adjustment
of the base points that was done in Step 3. After this three iterations were done with the
exact formulation in conjunction with Fletcher-Reeves to bring the values to convergence.
The derivatives of the objective function with respect to the independent variables were all
less than 10−5.

6.2.6 Dome Step 6: Make adjustments to fix problems

The same clearance goals that are used for the 4ν t-octahedron spherical truss in
Section 8.2.3 seem appropriate for this structure. With these thresholds, eight member
pairs were singled out as having poor clearances. The poor clearances were mostly between
pairs of struts. Table 6.24 enumerates the member pairs involved and the corresponding
clearances. In addition, the solution exhibited a substantial range in member forces in the
tendons, from a minimum of 0.7076 (#143) to a maximum of 5.5859 (#99).

The interference problem is the most fundamental one. A range of tendon forces can be
dealt with at construction time by using different materials depending on the relative force
for the tendons, though in some situations it might be worthwhile to see what can be done
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Strut Outer Binding Revised
# Tendon # Weight
18 138 0.4038
20 140 0.4597
13 133 0.4038
24 144 0.3371
21 141 0.3678
17 137 0.3371

Table 6.25: 6ν T-Octahedron Dome: Member Weight Adjustments

to moderate the range of forces at design time. The forces are greatest in the convergence
and interlayer tendons and smallest in the binding tendons and guys.

The interference problem can mostly be attributed to the low frequency of the model. At
lower frequencies, the inward-pointing tripods whose peaks are the inner convergence
tendon triangles tend to be shallow. This means the non-adjacent component members
approach each other too closely in the vicinity of the convergence triangle.

The interference problem can be fixed by decreasing the lengths of the outer binding
tendons which constrain the extent of the base of the tripod. Since the binding tendons are
all weighted members of the objective function in this model, this means increasing the
weight corresponding to the outer binding tendon in question. The outer binding tendon to
select is the one which most parallels the strut with the clearance problem. Increasing the
weight on this tendon gives the strut a steeper trajectory on its path from the outer to the
inner layer and thus keeps it from approaching nearby tendons and struts at the
convergence too closely. Table 6.25 lists the outer-binding tendon corresponding to each
strut with an interference problem and the new value which was selected for the tendon’s
weight.

The revised model was brought to convergence using three iterations with the exact
method in conjunction with Fletcher-Reeves. The derivatives of the objective function with
respect to the independent variables were all less than 10−5 and all clearances were above
their respective thresholds.

Tables 6.26 to 6.30 show the values for the final lengths and relative forces. As before,
excluded members are marked with ‡. Tables 6.31 and 6.32 show the final values for the
coordinates of the basic points. Figures 6.10 and 6.11 show how the final structure appears
as viewed from the side and base of the structure respectively. For clarity, interlayer
tendons have been excluded5 and members in the background have been eliminated by
truncation. For reference, selected points are labeled.

5In Figure 6.10 the interlayer tendons at the base are included. In Figure 6.11 guys are also excluded.
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Figure 6.10: 6ν T-Octahedron Dome: Side View
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Figure 6.11: 6ν T-Octahedron Dome: Base View
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Member Relative Member Relative
# Force # Force
1 -10.0652 13 -10.1760
2 -10.0700 14 -9.9202
3 -9.8692 15 -10.1476
4 -11.3735 16 -6.9104
5 -9.7762 17 -9.8347
6 -9.9708 18 -10.6229
7 -10.4024 19 -6.8948
8 -10.0965 20 -9.9960
9 -9.8578 21 -10.0265
10 -10.0713 22 -6.9341
11 -9.9785 23 -9.5009
12 -11.2464 24 -10.1033

Table 6.26: 6ν T-Octahedron Dome: Final Strut Forces
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Member Relative Member Relative
# Length Force # Length Force
25 2.21528 4.43056 49 2.03547 2.84966
26 2.21563 4.43127 50 2.04556 2.86379
27 2.23160 4.46319 51 2.05261 2.87366
28 2.34655 4.69309 52 2.11527 2.96138
29 2.38618 4.77235 53 2.08314 2.91640
30 2.49013 4.98025 54 2.14563 3.00388
31 2.27745 4.55489 55 2.04900 2.86860
32 2.29331 4.58661 56 2.03644 2.85101
33 2.32354 4.64708 57 1.66652 2.33313
34 2.38195 4.76390 58 2.06601 2.89242
35 2.49956 4.99913 59 2.15096 3.01134
36 2.37208 4.74416 60 2.11199 2.95678
37 2.26419 4.52838 61 2.03412 2.84777
38 2.29568 4.59136 62 1.64781 2.30693
39 2.26971 4.53941 63 2.03600 2.85040
40 2.25878 4.51755 64‡ N/A N/A
41 2.24921 4.49841 65 2.03254 2.84556
42 2.23545 4.47090 66 2.04716 2.86602
43 2.25887 4.51773 67‡ N/A N/A
44 2.24099 4.48198 68 2.04286 2.86000
45 2.25145 4.50290 69 2.03439 2.84814
46 2.22034 4.44068 70‡ N/A N/A
47 2.23455 4.46910 71 2.04209 2.85893
48 2.21944 4.43888 72 2.03221 2.84510

Table 6.27: 6ν T-Octahedron Dome: Final Primary and Secondary Interlayer Tendon
Lengths and Forces
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Member Relative Member Relative
# Force # Force
73 4.94358 97 4.80745
74 5.26772 98 5.13742
75 5.16773 99 5.60404
76 4.99886 100 4.16775
77 4.65185 101 4.90834
78 3.74185 102 4.01986
79 5.18694 103 5.00085
80 5.03322 104 4.84606
81 4.93701 105 5.26904
82 5.14960 106 4.86884
83 3.71641 107 3.88380
84 4.87812 108 4.23798
85 5.03940 109 5.26776
86 5.07807 110 5.32991
87 5.16635 111 4.92827
88‡ N/A 112 4.59887
89 5.01478 113 5.07911
90 5.46741 114 5.78452
91‡ N/A 115 5.09214
92 4.28841 116 4.80643
93 4.59298 117 5.27596
94‡ N/A 118 4.72593
95 4.69291 119 5.04795
96 4.92845 120 5.43235

Table 6.28: 6ν T-Octahedron Dome: Final Inner and Outer Convergence Tendon Forces
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Member Relative Member Relative
# Length Force # Length Force

121 2.71468 0.83201 145 1.89573 1.39443
122 2.63323 0.80705 146 1.83588 1.35041
123 2.66060 0.71632 147 2.01047 1.29907
124 1.83931 0.91966 148 1.21969 1.46362
125 2.46934 0.75682 149 1.28634 1.29525
126 2.30250 0.96601 150 1.28603 1.29493
127 2.54956 0.78140 151 1.28778 0.94725
128 2.61512 0.70407 152 1.65590 1.06997
129 2.59438 1.08847 153 1.28393 0.94442
130 2.56952 0.78752 154 1.25425 1.26293
131 2.18508 0.91675 155 1.27167 1.28048
132 1.85150 0.92575 156 1.22455 1.46946
133 2.63419 1.06381 157 1.75026 1.13094
134 2.60938 1.09477 158 1.32695 0.97606
135 2.73434 0.83804 159 1.39698 1.02757
136‡ N/A N/A 160 2.90432 1.09132
137 2.69610 0.90895 161 2.54133 0.95493
138 2.72853 1.10191 162 1.84911 1.19481
139‡ N/A N/A 163 2.94704 0.79343
140 2.54147 1.16838 164 2.52654 0.77435
141 2.69328 0.99054 165 1.79527 1.32054
142‡ N/A N/A 166 2.87212 0.99419
143 2.66242 0.71680 167 2.67465 0.81974
144 2.68231 0.90430 168 1.89872 1.39663

Table 6.29: 6ν T-Octahedron Dome: Final Outer and Inner Binding Tendon Lengths and
Forces

Member Relative
# Length Force

175 2.13957 0.85583
176 2.03774 0.81510
177 2.20311 0.88124
178 2.06426 0.82570
179 2.23546 0.89419
180 2.00217 0.80087

Table 6.30: 6ν T-Octahedron Dome: Final Guy Lengths and Forces
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Coordinates
Point x y z
P1 1.80813 0.75948 3.17349
P2 1.37576 1.63043 2.94000
P3 -0.38534 2.33141 2.97035
P4 0.93791 1.01456 3.59498
P5 1.08789 -0.26100 3.66069
P6 0.00032 0.20887 3.95059
P7 -1.37989 2.26180 2.89276
P8 -1.03831 1.21623 3.55502
P9 -0.98267 0.24115 3.76980
P10 0.13756 -0.21195 3.96804
P11 1.10801 -1.24300 3.47290
P12 2.34501 -0.88144 2.93375
P13 -2.16855 0.81829 3.08325
P14 -0.80566 -1.01805 3.78455
P15 1.36294 -2.31666 2.73597
P16 -2.65858 1.30563 2.36051
P17 -2.80252 0.32432 2.48821
P18 -1.69815 -0.70421 3.46056
P19 -1.33769 -1.58608 3.15663
P20 0.38282 -2.35663 2.93031
P21 0.77488 -2.93589 2.21564
P22 -3.73094 -0.08603 0.04784
P23 -3.10232 -1.76219 1.09539
P24 -1.60996 -3.20168 1.04252

Table 6.31: 6ν T-Octahedron Dome: Final Inner Coordinate Values
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Coordinates
Point x y z
P ′1 3.14866 0.86815 3.60831
P ′2 1.46480 2.92782 3.57404
P ′3 0.49843 2.97345 3.82708
P ′4 1.12403 1.16198 5.26616
P ′5 1.52593 0.25847 5.41497
P ′6 0.54407 0.39653 5.54496
P ′7 -2.11381 2.32487 4.18070
P ′8 -1.49949 1.78849 4.75941
P ′9 -1.19400 -0.20205 5.60735
P ′10 -0.20625 -0.35308 5.64651
P ′11 1.60916 -1.87445 4.55170
P ′12 2.49145 -1.52781 4.23324
P ′13 -2.36532 1.39524 4.45003
P ′14 -0.82018 -1.11302 5.43305
P ′15 2.16560 -2.42225 3.92697
P ′16 -3.97029 1.88345 2.29814
P ′17 -3.70848 -0.43912 3.29623
P ′18 -3.04238 -0.81407 3.94099
P ′19 -1.41738 -2.90865 3.69479
P ′20 -0.43534 -3.06546 3.79964
P ′21 1.37815 -4.22827 2.17849
P ′22 -4.47657 1.26415 1.69803
P ′23 -3.50421 -1.41803 3.29141
P ′24 -0.95692 -3.59216 3.12842
P ′30 -4.79594 -0.71196 1.73878
P ′31 -3.05833 -3.26445 2.55366
P ′32 -0.47757 -4.87734 1.58579

Table 6.32: 6ν T-Octahedron Dome: Final Outer Coordinate Values



Chapter 7

Tensegrity Member Force Analysis

7.1 Force Analysis: Introduction

A method for ascertaining the forces in the various members of a tensegrity structure is
useful to the builder. It allows the builder to make a sensible choice of materials for the
different members which will meet the requirements of the loads the members will have to
bear. In early design stages, force analysis will point up any overloaded members in the
structure as well as situations where a member is bearing no load or a load which is not
appropriate to it (for instance when calculations show a tensile member is bearing a
compressive load). Force analysis aids the formulation of an assembly strategy: it is easier
to install the tighter members earlier when they bear less of their full load.

The gross analysis of forces in a tensegrity structure is comparatively simple due to the
flexible interconnection of the members. Shear forces can be neglected, and only the axial
tensile and compressive forces need to be taken into account.1 However, a detailed analysis
of a tensegrity, for example of the various parts of a hub, may require attention to shear
forces.

In most non-tensegrity trusses, the forces in the members of the truss are only due to the
propagation through the structure of external loads exogenous to the structure such as
the force of gravity and the foundation of the structure pressing up against it. However,
tensegrity structures are prestressed so that an additional portion (and, in some
applications, the total portion) of the force in a member can be attributed to the structure
itself. This is due to the fact that a tensegrity structure relies on the isometric straining of
the inwardly pulling tensile members against the outwardly pushing compression members
to create a stable structural system. The geometry of the structure determines the
magnitude (up to a scale factor) of the member forces due to these endogenous factors.

1For example, see Chajes83, pp. 36-37. “Axial” means the direction of the force coincides with the
direction of the member.

143
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So, in analyzing the forces in a tensegrity structure, both exogenous and endogenous
factors must be taken into account. The analysis of the endogenous forces is derived
directly from the model used for computing tendon lengths and is discussed first. The
analysis of exogenous forces is discussed second since it presumes the analysis of
endogenous forces has already been done.

7.2 Endogenous Member Forces

7.2.1 Endogenous Force Analysis: Method

The analysis of endogenous forces falls in large measure out of the mathematical
programming procedures which were used to design the structure. This is due to the fact
that the distribution of forces in the structure can be viewed as the solution to an extremal
problem very similar to the one which was solved to design the structure. In this new
problem, potential energy is being minimized instead of tendon lengths. It will be shown
that, for members appearing as constraints, the relative force the member is subject to is
obtained merely by differentiating the objective function with respect to the constraint
value and multiplying the result by minus the member length (the second root of the
constraint value). For members appearing in the objective function, the relative force will
be just the member length multiplied by its weight in the objective function. These results
can be scaled up or down according to how hard the structure is to be tensioned.

The analysis of endogenous forces, also called prestress forces, assumes the structure is
floating in space and not subject to external loads. The analysis comes back to Earth when
the response of members to external loads is examined in Section 7.3.

7.2.2 Endogenous Force Analysis: A Justification for the Method

One justification for the method described above lies in the principle that any system in
stable equilibrium is at a local minimum in its potential energy. Theodore Tauchert2 gives
the following formal statement of this Principle of Minimum Potential Energy:

Of all displacement fields which satisfy the prescribed constraint conditions, the
correct state is that which makes the total potential energy of the structure a
minimum.

In a tensegrity system, the potential energy is the energy bound up in the tendons and
struts. When a member changes length, its potential energy changes according to how
much work is done on it. (The members are assumed to be linearly elastic.):

2Tauchert74, p. 74.
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deim = fimdlim

where deim is the change in potential energy of the imth member, fim is the stress on the
member and dlim is the change in length of the member. The usual convention that fim is
negative when the stress is compressive and positive when the stress is tensile applies here.
If the system is in equilibrium, a small feasible3 change in the lengths of all the members
should result in a zero change in the aggregate potential energy of the system since that
potential energy must be at a minimum. 4 The condition for zero aggregate energy change
can be summarized as:

0 = de1 + de2 + · · ·+ denm

where, as in Chapter 3, nm is the number of members.

Using the other formula, this can be rewritten as:

0 = f1dl1 + f2dl2 + · · ·+ fnmdlnm

How does this relate to the mathematical programming problem of Chapter 3? Since
members 1 through no appear in the objective function and members no + 1 through nm
appear as constraints, and using ∂o

∂(l
2
iõ

)
to denote the amount the objective function changes

in response to a change in the second power of the length of the iõth constrained
member, it must be that the response of the objective function to an arbitrary change in
the lengths of the constrained members is:

do =
∂o

∂(l
2

no+1)
d(l

2

no+1) + · · ·+ ∂o

∂(l
2

nm)
d(l

2

nm)

= 2
∂o

∂(l
2

no+1)
lno+1dlno+1 + · · ·+ 2

∂o

∂(l
2

nm)
lnmdlnm

The formula for o says, for the objective members, it is also true that:

do = w1d(l∗1
2) + w2d(l∗2

2) + · · ·+ wnod(l∗no
2)

3Feasible here means that all constraint equations continue to be satisfied. In contrast to the situation
in Chapter 3 however, all member lengths may change. This means lno+1, . . . , lnm may change. In addition
the constraints are met with equality

4A negative change would directly violate the assumption that the original configuration was a minimum.
A positive change would indirectly violate the assumption since the point displacement which resulted in the
change could be negated and this would result in a negative change from the original configuration.
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which reduces to:

do = 2w1l
∗
1dl
∗
1 + 2w2l

∗
2dl
∗
2 + · · ·+ 2wnol

∗
nodl

∗
no

where l∗io is the minimizing length of the ioth unconstrained member.

If all the constraints are changed by an arbitrary amount, then it must be true that:

2w1l
∗
1dl
∗
1 + · · ·+ 2wnol

∗
nodl

∗
no = 2

∂o

∂(l
2

no+1)
lno+1dlno+1 + · · ·+ 2

∂o

∂(l
2

nm)
lnmdlnm

or (using the fact that the constraints are met with equality, canceling the common factor
of two and collecting terms):

0 = w1l
∗
1dl
∗
1 + · · ·+ wnol

∗
nodl

∗
no +− ∂o

∂(l
2

no+1)
lno+1dlno+1 + · · ·+− ∂o

∂(l
2

nm)
lnmdlnm

The similarity of this formula to the formula for potential energy minimization indicates a
conclusion is almost at hand. The only complication is that in this latter formula, although
the changes in the lengths of the constrained members may be considered arbitrary, the
changes in the lengths of members included in the objective function must be regarded as
changes in the minimizing tendon lengths and are not arbitrary feasible changes. This
complication can be disposed of by noticing that it is assumed feasible displacements from
a minimizing solution are being examined. Since the objective function is at a minimum,
any feasible displacement of the objective variables away from their minimizing values will
have no effect on the objective function value.

Thus, a feasible displacement of the member lengths is broken into two parts. First, the
lengths of the constrained members are displaced. That displacement will result in a
corresponding minimizing displacement of the unconstrained member lengths such that the
equation just set forth is satisfied. Then an additional displacement is added to the lengths
of the unconstrained members so that the total displacement is equal to the initial
arbitrary feasible displacement. The additional effect of this displacement on the objective
function value must be zero since it is a feasible displacement from a minimum with no
change in the constraints. Therefore, the change in the objective function resulting from
the arbitrary displacement is the same as the result obtained when the unconstrained
members change in a minimizing manner.

So it is verified that for an arbitrary feasible deviation from a minimizing solution:

w1l1dl1 + · · ·+ wnolnodlno = w1l
∗
1dl
∗
1 + · · ·+ wnol

∗
nodl

∗
no
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Thus:

0 = w1l1dl1 + · · ·+ wnolnodlno +− ∂o

∂(l
2

no+1)
lno+1dlno+1 + · · ·+− ∂o

∂(l
2

nm)
lnmdlnm

So, if

f1 = λw1l1

· · ·
fno = λwnolno

fno+1 = −λ ∂o

∂(l
2

no+1)
lno+1

· · ·
fnm = −λ ∂o

∂(l
2

nm)
lnm

where λ is some positive constant, the system will be in stable equilibrium. These are
precisely the formulas described in Section 7.2.1. Notice that since for a strut ∂o

∂(l
2
iõ

)
is

positive, fiõ will be negative, a compressive force. And since ∂o
∂(l

2
iõ

)
is negative for a tendon,

fiõ is positive, a tensile force.

This manner of computing the member forces is very convenient since it derives from the
method for computing member lengths. These force computations can be used to check
proposed solutions of the mathematical programming problem which characterizes a given
tensegrity. If tendons are not in tension, or struts are not in compression, the solution is
not valid. (Perhaps some constraints which have been assumed to hold with equality are
actually not effective.) In more complex structures, such a check is almost obligatory since
some adjustments may need to be made for a valid solution to be attained. Thus, the
processes of length computation and endogenous force computation are highly
interdependent.

It is also interesting to use this result to examine a characteristic which has been attributed
to Kenneth Snelson’s structures. In his article “Kenneth Snelson”, Grégoire Müller5 states:

... in Snelson’s pieces the degree of tension in the tension elements is directly
proportional to the amount of space they occupy – a practical fact that he has
encountered in the making of his sculptures, ...

Given the above-justified formulas for computing endogenous member forces, Müller’s
statement would seem to indicate that Snelson’s design methodology is equivalent to

5Müller71, p. 26.
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minimizing a simple unweighted sum of second powers of member lengths. It may be that
the approach of minimizing an unweighted sum of second powers yields the most rigid and
strongest designs and may be the appropriate choice in many situations, but it should be
recalled how, in Section 6.2.1, the weighted approach helped to develop a spherical
appearance when an unweighted sum of second powers would have yielded something very
faceted looking.

7.2.3 Endogenous Force Analysis: Another Justification for the
Method

Another justification for the method can be found by correlating the following two facts:

1. A solution to the member-force problem must necessarily exhibit an equilibrium of
forces for any particular coordinate value.

2. The necessary first-order conditions for a solution to the tensegrity optimization
problem require a set of terms to sum to zero.

Correlating these two facts will provide a solution to the member-force problem which also
generalizes to non-member constraints like those pertaining to vectors.

The necessary equilibrium of forces in all coordinate directions for a solution to the
member-force problem is an implication of Newton’s second law of motion: if a body is to
be at rest, the net sum of forces on that body must be zero. For a tensegrity, this means
that, for a given hub to be at rest, the forces due to all the members and point constraints
that impact that hub must sum to zero in all the three coordinate directions for the basic
point corresponding to that hub.

The necessary first-order conditions for a solution to the tensegrity optimization problem
can be obtained using the method of Lagrange which was used in Section 2.3. In contrast
with that section, here the method of Lagrange is not useful for reaching a solution; but
once a solution is obtained, it is useful in interpreting and applying it. For the general
tensegrity programming problem, the adjoined objective function appears as:

w1l
2
1 + · · ·+ wnol

2
no+

µno+1(l
2

no+1 − l2no+1) + · · ·+ µnm(l
2

nm − l
2
nm) +

σ1(s1 − s1(· · ·)) + · · ·+ σns(sns − sns(· · ·)) +

δ1(d1 − (W 1 · Pd1)) + · · ·+ δnd(dnd − (W nd · Pdnd )) +

γ1(c1 − c1(· · ·)) + · · ·+ γnc(cnc − cnc(· · ·))
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where µiõ , σis , δid and γic are the Lagrange multipliers for the member, symmetry, point
and vector constraints respectively. Using a result from advanced calculus6 which states
that the value of the Lagrange multiplier at a solution point is just the derivative of the
objective function value with respect to the constraint parameter, the adjoined objective
function can be rewritten as:

w1l
2
1 + · · ·+ wnol

2
no+

∂o

∂(l
2

no+1)
(l

2

no+1 − l2no+1) + · · ·+ ∂o

∂(l
2

nm)
(l

2

nm − l
2
nm) +

∂o

∂s1

(s1 − s1(· · ·)) + · · ·+ ∂o

∂sns
(sns − sns(· · ·)) +

∂o

∂d1

(d1 − (W 1 · Pd1)) + · · ·+ ∂o

∂dnd
(dnd − (W nd · Pdnd )) +

∂o

∂c1

(c1 − c1(· · ·)) + · · ·+ ∂o

∂cnc
(cnc − cnc(· · ·))

The necessary first-order conditions require that the derivative of this equation with
respect to any coordinate value be zero. So, if −λ

2
times the derivative of a term in the

adjoined objective function with respect to a coordinate value is used as the force
corresponding to that coordinate direction for the object the term corresponds to, those
force values for that particular coordinate value will sum to zero as required for the hub
corresponding to that coordinate to be at rest according to Newton’s second law of motion.
The −λ

2
is introduced to cancel a ubiquitous two which would otherwise appear due to all

the second powers and so the direction of the forces is correct. As in Section 7.2.2, λ is an
arbitrary positive scaling value.

As an example, consider the member constraints. The force vectors corresponding to the
two endpoints, call them Pa and Pb, of the constrained iõth member will be

λ ∂o
∂(l

2
iõ

)
(Pa − Pb) and λ ∂o

∂(l
2
iõ

)
(Pb − Pa) respectively.

Notice that since, for a strut, ∂o
∂(l

2
iõ

)
is positive, if this constrained member is a strut, the

endpoint forces are in an outward direction which would be expected. The magnitude of
this force is λ ∂o

∂(l
2
iõ

)
liõ which is the result which was obtained in Section 7.2.2. For the ioth

member in the objective function, the force vectors corresponding to the two endpoints will
be

−λwio(Pa − Pb) and −λwio(Pb − Pa) respectively.

6See the “Sensitivity Theorem” in Luenberger73, p. 231.
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Since, for a strut, wio is negative and therefore −λwio is positive, if this objective member
is a strut, the endpoint forces are in an outward direction which would be expected. The
magnitude of this force is λwiolio which again is the result which was obtained in
Section 7.2.2.

As another example, consider the case of the idth point constraint. In this case,
differentiating the expression ∂o

∂did
(did − (W id · Pdid )) with respect to the three coordinates

of Pdid yields λ
2
∂o
∂did

W id An increase in did implies the constraint plane is moving in the

direction of W id . If ∂o
∂did

is positive, this means an increase in did represents more

constraint; hence, it makes sense that the reaction force from the constraint is pushing (or
pulling) in the direction of W id .

Again it is seen that for tensegrities the solution of the optimization problem also provides
useful information about the distribution of forces in the structure. The main advantage of
this way of looking at the problem of computing forces in tensegrities is that it provides a
way of computing the forces corresponding to non-member constraints which the previous
approach had nothing to say about. The previous approach is valuable for the additional
perspective it provides on the problem.

7.2.4 Endogenous Force Analysis: A Sample Calculation for the
Exact Formulation

The analysis of the solution to the mathematical programming problem for the 4ν diamond
tensegrity tetrahedron in Section 4.2.3 mentioned that the analysis of endogenous forces
indicated that the initial solution which satisfied the first-order conditions was not valid
since member force calculations indicated one of the tendons was acting as a strut. In this
section, the details of those calculations are presented.

The formulas for the relative forces on the members included in the objective function pose
no problem since they are just the lengths of the members. To calculate the relative force
for the constrained iõth member, the value of ∂o

∂(l
2
iõ

)
, the total derivative of the objective

function with respect to the second power of the length of the iõth member, is necessary.
The method used to calculate ∂o

∂(l
2
iõ

)
depends on whether the penalty or exact formulation

(see Section 3.2) is being used.

For the 4ν diamond tensegrity tetrahedron, the final computations were made using the
exact formulation. For this formulation, computing ∂o

∂(l
2
iõ

)
is a straight forward exercise in

linear algebra. By the envelope theorem of economics7, the total derivative of the objective
function with respect to a change in a constraint parameter (in this case the second power
of the length of the iõth member) is equal to the partial effect on the objective function due

7Varian78, p. 267.
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to changes in the dependent variables (which must change since the equations determining
them have changed). Due to the minimization, the effects on the objective function due to
changes in the independent variables do not need to be taken into account. So, to find ∂o

∂(l
2
iõ

)
,

the response of the dependent variables to a unit change in the length of the iõth member
is computed; then, using the partial derivatives of the objective function with respect to
the dependent variables, the corresponding response of the objective function is computed.

To calculate the response of the dependent variables, the following linear system is solved:

Jx = b

where J is an nõ + nc + ns + nd by nõ + nc + ns + nd matrix and x and b are
nõ + nc + ns + nd column vectors.

J is the submatrix of the matrix of member (and other equation) partials corresponding to
the system of equations which determine the dependent variables as a function of the
constraint parameters (mainly second powers of member lengths) and the independent
variables.

b is a vector with zeros everywhere except for a 1 in the iõth position and represents a unit
change in the second power of the length of the iõth member. x is the vector corresponding
to the solution of the linear equation system. Its ith component is the response of the ith
dependent variable to a unit change in the second power of the length of the iõth member.

Having obtained x, its inner product (also called dot product) is taken with the vector y
whose ith component is the partial derivative of the objective function with respect to the
ith dependent variable. The result is the sought after value of ∂o

∂(l
2
iõ

)
, which is multiplied by

liõ (the length of the member) to get the relative force on this constrained member.

Application of these operations to the first solution to the four-frequency diamond
t-tetrahedron problem yielded the values in Table 7.1.

The first tendon is slightly in compression which is not an appropriate force for a tendon.
Excluding that tendon constraint resulted in a new model in which the relative forces were
correct (the relative force for the excluded tendon being zero). As expected, the resultant
length of the excluded tendon was less than its permitted maximum value; so, all
constraints were satisfied.

Eliminating a tendon is not the best way to deal with an inappropriate force since it tends
to make the structure less rigid.
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Member Member Relative
# ID Force
1 t12 -0.075081
2 t13 1.193570
3 t23 0.647498
4 t47 0.492239
5 sab -1.452650
6 sbb -1.089917
7 tab1 0.940409
8 tab2 0.448489
9 tbb1 0.455651
10 tbb2 0.601166

Table 7.1: 4ν Diamond T-Tetrahedron: Preliminary Relative Forces

7.2.5 Endogenous Force Analysis: Calculations for the Penalty
Formulation

Calculating endogenous forces is simpler when the penalty formulation is being used. In
this case, Luenberger’s proposition regarding Lagrange multipliers8 provides a simple
formula for calculating ∂o

∂(l
2
iõ

)
. Since in the penalty formulation used here (see Section 3.2)

µ(l2iõ − l
2

iõ
)2 appears in the penalty function, that proposition yields:

∂o

∂(l
2

iõ
)

= −2µ(l2iõ − l
2

iõ
)

where µ is the penalty value. As with the exact formulation, multiplying this value by the
length of the iõth constrained member yields the relative force for that member.

7.2.6 Generality of Weighted Models

These results on endogenous forces can be used to illustrate the generality of weighted
models in tensegrity design. Namely, it can be demonstrated that, with an appropriate
selection of weights, any valid tensegrity structure can be obtained as the solution of a
weighted model.

Let l1, . . . , lnm be a valid tensegrity solution. For a valid solution, any tension member must
be at its minimum length given the lengths of all the other members and any compression

8Luenberger73, pp. 284-285.
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member must be at its maximum length given the lengths of all the other members.
Therefore, for the jth tension member, the model must be a solution to the problem:

minimize o ≡ l2j
P1, ..., Pnh , V1, ..., Vnv

subject to Member constraints:

±l21 ≥ ±l21
· · ·

±l2j−1 ≥ ±l2j−1

±l2j+1 ≥ ±l2j+1

· · ·
±l2nm ≥ ±l2nm

Symmetry constraints:

s1 = s1(· · ·)
· · ·

sns = sns(· · ·)

Point constraints:

d1 = W 1 · Pd1

· · ·
dnd = W nd · Pdnd

Vector constraints:

c1 = c1(· · ·)
· · ·

cnc = cnc(· · ·)

Let ∂o
∂(l

2
1)
, . . . , ∂o

∂(l
2
j−1)

, ∂o
∂(l

2
j+1)

, . . . , ∂o
∂(l

2
nm )

be the values for ∂o
∂(l

2
1)
, . . . , ∂o

∂(l
2
j−1)

, ∂o
∂(l

2
j+1)

, . . . , ∂o
∂(l

2
nm )

for

this solution.

Now look at the problem:
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minimize o ≡ w1l
2
1 + · · ·+ wnml

2
nm

P1, ..., Pnh , V1, ..., Vnv

subject to Symmetry constraints:

s1 = s1(· · ·)
· · ·

sns = sns(· · ·)

Point constraints:

d1 = W 1 · Pd1

· · ·
dnd = W nd · Pdnd

Vector constraints:

c1 = c1(· · ·)
· · ·

cnc = cnc(· · ·)

If wj is chosen to be 1 and wim is chosen to be − ∂o
∂(l

2
im )

for im 6= j, l1, . . . , lnm will also be a

solution to this problem. This is so since for any feasible change in the lim ’s, a minimizing
solution must have lj correspondingly at the minimizing value it would have taken on in
the first problem with the lim ’s constrained at these values. With the chosen weights, the
effect to the objective function of the change of the lim ’s will be exactly offset by the effect
of the change in the corresponding minimizing value of lj. So, with the chosen weights,
there is no feasible change at that point which can improve the objective function. So it
must be a minimum point.

This shows that any valid tensegrity structure can be viewed as a solution to a weighted
model. This is not to say that a given weighted model has only one tensegrity structure as
a solution. Some models have more than one solution, each of which is a valid tensegrity
structure. In some situations, it may be of interest to probe a given weighted model with
different initial values to find alternative solutions.

7.3 Exogenous Member Forces

7.3.1 Exogenous Force Analysis: Method

The analysis of the response of a tensegrity structure to exogenous forces is achieved with a
change of conceptual framework. A structure is now viewed as a flexibly-jointed set of
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elastic and fixed-length members: the tendons being the elastic components, and the struts
being the fixed-length components. Initially it will be assumed that the hub is a single
point. Later, in Section 7.3.5, this last assumption will be relaxed.

The solution of the tensegrity programming problem and the subsequent endogenous force
analysis provide a valid initial unloaded configuration for these members, a valid
configuration being one in which the net force at each hub is zero. The unloaded forces at
each hub are tendons pulling in various directions, a single pushing strut and pulling or
pushing reactions due to any point constraints. The reaction due to a point constraint is in
the direction of the determining vector of the constraint.

An exogenous load is introduced at selected hubs by adding an independent force vector to
the forces present at a hub. In the initial configuration, the net force at these hubs is no
longer zero, and a new configuration of the structure must now be found in which the net
force at each hub is again restored to zero. A new configuration is derived by solving a
system of equations rather than by solving an extremal problem as before. There is one
equation each for the x, y and z component of the net force at each hub. This value must
be equated to zero. Then there is one equation each for the length of each fixed-length
member. This length must not change in the new configuration.

These equations are non-linear in their variables. The variables are the coordinate values,
the forces in the fixed-length members and the scalings for the reactions due to the point
constraints. (The force in an elastic member is determined by the coordinates of its end
points and the elasticity equations which govern the member; so, it is not an equation
variable.) The system is solved using the standard Newton method. The exogenous load
forces may need to be introduced in an incremental way in order for the Newton method to
converge.

7.3.2 Exogenous Force Analysis: Mathematical Framework

Two sets of equations must be satisfied for any tensegrity configuration. The first set of
equations constrains the forces at the hubs to balance to zero. The net force at a hub is the
sum of the forces in the members that meet at that hub, plus the sum of the reactions due
to point constraints which impact the hub plus any exogenous force at the hub. The force
due to a member will have a magnitude corresponding to the force in the member and a
direction corresponding to the orientation of the member. The reaction force due to a point
constraint will be the determining vector of the constraint multiplied by a scaling factor
which is a variable of the analysis. For a strut, the force will be into the hub along the
length of the member; for a tendon, the force will be out of the hub along the length of the
member. So the first set of equations is:
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0

0

0

 =
mi∑
j=1

Fm
ij +

qi∑
j=1

F d
ij + F

e
i

i = 1, . . . , nh

where

nh = number of hubs
mi = number of members meeting at hub i
qi = number of point constraints impacting hub i
Fm
ij = force at hub i due to member mij (vector)
mij = index of the jth member meeting at hub i
F d
ij = force at hub i due to point constraint dij (vector)
dij = index of the jth point constraint impacting hub i
F
e
i = exogenous force at hub i (fixed vector)

The formula for Fm
ij is:

Fm
ij = fmij

Dij

|Dij|

where

fmij = signed magnitude of force at hub i due to member mij

Dij = P̃ij − Pi (vector)
Pi = point corresponding to hub i
P̃ij = end point of member mij away from hub i

If member mij is fixed-length (i.e. a strut), then fmij is a negative variable whose value is
adjusted to obtain a solution. If member mij is elastic (i.e. a tendon), then

fmij = εmij
|Dij| − lmij

lmij

when |Dij| > lmij and fmij = 0 otherwise, where

εmij = proportional elasticity coefficient for member mij
9

9If the member is of uniform cross section along its length, then εmij is Young’s modulus of elasticity
of the material composing the member multiplied by the cross-sectional area of the member. See Vilnay90,
p. 27. For materials where Young’s modulus is variable, a more complex equation, or lookup table, for
determining fmij as a function of deviation of the member length, |Dij |, from the reference length, lmij , may
be necessary.



7.3. EXOGENOUS MEMBER FORCES 157

lmij = reference length for member mij

The formula for F d
ij is:

F d
ij = βijW ij

where

βij = scaling value for reaction force at hub i due to point constraint dij
W ij = determining vector for point constraint dij

βij is a variable whose value is adjusted to obtain a solution.

The second set of equations is just the point constraints.

The third and last set of equations constrains the lengths of the struts to remain constant:

|Di| = lfi

i = 1, . . . , nf

where

nf = total number of struts = nh
2

fi = index of the ith strut
Di = difference vector for the endpoints of member fi (order of subtraction not important)

Thus, there are 3nh + nd + nf equations which must be solved for the coordinate values of
the hub points, the scaling values for the reaction forces corresponding to the point
constraints and the magnitudes of the forces in the struts.

7.3.3 Exogenous Force Analysis: Initialization

An initial solution for these equations in the absence of exogenous loads can be obtained
from coordinate values and endogenous forces computed using the methods described in
Sections 7.2.3 and 7.2.4. The hubs are positioned according to the coordinate values. For
the struts and point constraints, the force values obtained from the endogenous analysis
are used to initialize fmij and βij. For each tendon, a value for εmij is chosen in accordance

with the material being used for the tendon. lmij is then chosen to be sufficiently smaller
than the minimizing length of the tendon so that the value of fmij is equal to the force for
the tendon obtained from the endogenous analysis. Once this initial solution is obtained,
values for F e

i are incrementally introduced at the appropriate hubs, and the system is
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solved using Newton’s method at each increment. If the Newton iterations diverge at any
point, a smaller increment can be chosen until the iterations converge.

7.3.4 Exogenous Force Analysis: A Sample Calculation

This methodology can be used to analyze the response of the 6ν t-octahedron dome
(designed in Section 6.2) to an exogenous load. To reduce the computation required, the
load will be applied symmetrically to the structure. The hub corresponding to P2 and the
two hubs symmetric to it will be loaded with a relative value of (-3, -3, -3). This is a force
vector pointed toward the base of the structure. It is diagrammed in Figure 7.1.

The first step is to choose suitable values for the εmij and lmij parameters. εmij is chosen to
be the same for all tendons, and so that, when an average-valued force is applied to a
tendon, it elongates by 2%. The average value for the force over all the tendons is 3.1294.
This is computed from Tables 6.27 to 6.29. Therefore, ε (the common value of all the εmij
parameters) was chosen to be 3.1294

0.02
or 156.47.

Note that, for this sample calculation, all forces are posed in relative terms. To get real
values, everything would need to be scaled. For example, if the tendons for the 6ν
t-octahedron dome were composed of a material such that a force of 20 pounds
(89 Newtons) was required to elongate a tendon by 2%, all force values would be scaled by

20
3.1294

= 6.391. This would make the magnitude of the exogenous load
6.391·(32 + 32 + 32)0.5 = 33.21 pounds (147.7 Newtons). The scale factor would also be
applied to Tables 7.6 to 7.10 to get values in pounds.

Given the value for ε, the values for the lmij parameters are chosen so the initial tendon
forces match those from the unloaded length computation model. Tables 7.2 to 7.5
summarize the values used. As always, excluded members are marked with ‡.

The system is solved using the numerical version of the Newton method with a value of
0.001 for the double-sided numerical differentiation differential. Iterations were done until
equations were solved within 10−8. This required 21 iterations.

Figure 7.1 shows the positions and effect of the exogenous loads on the dome. Table 7.6
summarizes the resultant forces in the struts. Tables 7.7 to 7.10 summarize the resultant
lengths and forces for the tendons. Tables 7.11 and 7.12 summarize the resultant
coordinate values. Tables 7.13 and 7.14 summarize the resultant force vectors at the fixed
base hubs before and after the load is applied. For the guy attachment points (P ′30, P ′31 and
P ′32), the sum of the component values of the force vectors at each point is positive. This
means a force upward from the base is being exerted at those points. This is as expected
since only tendons from above the base are attached at those points. P2 descends by
0.66659 model units from 5.60914 units above the base of the structure to 4.94255 units as
a result of the exogenous load. Notice also that in Table 7.9 a number of the binding
tendons have gone slack. It might also be worthwhile to check clearances to see if any of
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Member Member
# l # l
25 2.15428 49 1.99907
26 2.15461 50 2.00880
27 2.16971 51 2.01560
28 2.27822 52 2.07598
29 2.31555 53 2.04503
30 2.41331 54 2.10521
31 2.21302 55 2.01211
32 2.22800 56 2.00000
33 2.25652 57 1.64203
34 2.31157 58 2.02851
35 2.42218 59 2.11034
36 2.30228 60 2.07282
37 2.20050 61 1.99776
38 2.23024 62 1.62387
39 2.20572 63 1.99957
40 2.19539 64‡ N/A
41 2.18635 65 1.99624
42 2.17335 66 2.01033
43 2.19548 67‡ N/A
44 2.17859 68 2.00619
45 2.18847 69 1.99802
46 2.15907 70‡ N/A
47 2.17250 71 2.00545
48 2.15821 72 1.99592

Table 7.2: 6ν T-Octahedron Dome: Primary and Secondary Interlayer Tendon Reference
Lengths
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Member Member
# l # l
73 0.96937 97 0.97019
74 0.96743 98 0.96821
75 0.96803 99 0.96542
76 0.96904 100 0.97406
77 0.97113 101 0.96959
78 0.97664 102 0.97495
79 0.96791 103 0.96903
80 0.96884 104 0.96996
81 1.45412 105 0.96742
82 0.96814 106 0.96982
83 0.97680 107 0.97578
84 0.96977 108 0.97363
85 0.96880 109 0.96743
86 1.45285 110 0.96706
87 0.96804 111 0.96947
88‡ N/A 112 0.97145
89 0.96895 113 0.96856
90 0.96624 114 0.96435
91‡ N/A 115 0.96848
92 0.97332 116 0.97020
93 0.97148 117 0.96738
94‡ N/A 118 0.97068
95 0.97088 119 0.96875
96 0.96946 120 0.96645

Table 7.3: 6ν T-Octahedron Dome: Inner and Outer Convergence Tendon Reference Lengths
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Member Member
# l # l

121 2.70032 145 1.87898
122 2.61972 146 1.82018
123 2.64847 147 1.99391
124 1.82857 148 1.20838
125 2.45745 149 1.27578
126 2.28837 150 1.27547
127 2.53689 151 1.28003
128 2.60341 152 1.64465
129 2.57646 153 1.27623
130 2.55666 154 1.24420
131 2.17235 155 1.26135
132 1.84061 156 1.21316
133 2.61640 157 1.73770
134 2.59125 158 1.31872
135 2.71977 159 1.38787
136‡ N/A 160 2.88421
137 2.68053 161 2.52592
138 2.70945 162 1.83510
139‡ N/A 163 2.93217
140 2.52263 164 2.51409
141 2.67634 165 1.78025
142‡ N/A 166 2.85398
143 2.65028 167 2.66071
144 2.66690 168 1.88192

Table 7.4: 6ν T-Octahedron Dome: Outer and Inner Binding Tendon Reference Lengths

Member
# l

175 2.12793
176 2.02718
177 2.19077
178 2.05342
179 2.22276
180 1.99197

Table 7.5: 6ν T-Octahedron Dome: Guy Reference Lengths
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Figure 7.1: 6ν T-Octahedron Dome: Positions and Effect of Exogenous Loads

them have been affected adversely by the load. The assumptions of these calculations
would be violated if the load drove one member into or through another.

7.3.5 Exogenous Force Analysis: Complex Hubs

The previously-outlined technique for exogenous force analysis works when vector
constraints are not being used and the simple assumption that the hubs of the tensegrity
are single points is being made. When hubs are complex and thus vector constraints are
introduced, torque considerations must also be introduced. For this latter situation, the
model which follows is proposed.

In the new model, corresponding to every strut is a strut envelope. The strut envelope is a
single rigid body to which tendons are attached and which also may be impacted by point
constraints and exogenous forces. Tendons, point constraints and exogenous forces are all
assumed to impact the strut envelope at single points distributed over the envelope. These
points are referred to as attachment points. The shape of the strut envelope is determined
by the strut equations and the vector constraints. The strut equations are incorporated as
constraints which maintain the struts at fixed lengths. There must be a sufficient number
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Member Relative Member Relative
# Force # Force
1 -10.7566 13 -10.9204
2 -11.7166 14 -9.8635
3 -14.1718 15 -12.2574
4 -13.4791 16 -6.6828
5 -11.3231 17 -9.8881
6 -13.1420 18 -11.2389
7 -11.8063 19 -7.0818
8 -11.3412 20 -10.0929
9 -9.7997 21 -10.5841
10 -10.2812 22 -6.5853
11 -11.3834 23 -9.0954
12 -12.8010 24 -10.5933

Table 7.6: 6ν T-Octahedron Dome: Strut Loaded Forces

of strut and vector constraints so that the strut envelope is rigidly determined.

In contrast to the previous model where tendons were only attached at one of two points
on the strut, now each tendon can have a unique attachment point on the strut envelope.
It is possible that tendons share attachment points, but they don’t need to. All the
attachment points, including those for point constraints and exogenous forces, are assumed
to cluster at two hubs. Each hub has a corresponding reference point which is referred to
as an end point of the strut though the physical strut may extend considerably past it and
perhaps not even through it. There must be more than one attachment point at each hub.
Joints are still assumed to be flexible, so torque must only be considered for the strut
envelope and can be neglected as far as the tendons are concerned.

Forces must still sum to zero in this new model, but only for the strut envelope as a whole
rather than for each of the two hubs. In addition, the sum of the torque moments on the
strut envelope exerted by all the forces must be zero.10 A force and a torque moment
vector can be derived for each strut envelope from the results of the exogenous analysis.
These vectors will most likely approximate the axis of the strut, but in many cases will not
coincide with it.

The equations representing the requirement that forces sum to zero are now:

10See, for example, Hibbeler98, pp. 193-194, for a statement of the conditions for rigid-body equilibrium.
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Member Relative Member Relative
# Length Force # Length Force
25 2.20326 3.55741 49 2.03415 2.74632
26 2.20680 3.78963 50 2.07711 5.32121
27 2.24049 5.10497 51 2.10845 7.20793
28 2.35786 5.47004 52 2.10820 2.42796
29 2.43895 8.33865 53 2.09795 4.04919
30 2.51493 6.58847 54 2.14628 3.05190
31 2.29341 5.68381 55 2.04701 2.71396
32 2.29322 4.58086 56 2.03510 2.74633
33 2.34671 6.25362 57 1.66710 2.38867
34 2.38640 5.06486 58 2.05984 2.41664
35 2.51846 6.21956 59 2.15698 3.45785
36 2.38028 5.30160 60 2.11407 3.11398
37 2.27067 4.98962 61 2.03192 2.67516
38 2.31398 5.87477 62 1.64568 2.10171
39 2.27982 5.25673 63 2.03915 3.09712
40 2.27003 5.31957 64‡ N/A N/A
41 2.24545 4.22960 65 2.02524 2.27278
42 2.23093 4.14557 66 2.04974 3.06680
43 2.27054 5.34933 67‡ N/A N/A
44 2.23906 4.34314 68 2.03455 2.21201
45 2.25109 4.47740 69 2.03970 3.26448
46 2.22165 4.53522 70‡ N/A N/A
47 2.23087 4.20444 71 2.03829 2.56217
48 2.21661 4.23362 72 2.03720 3.23582

Table 7.7: 6ν T-Octahedron Dome: Primary and Secondary Interlayer Tendon Loaded
Lengths and Forces
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Member Relative Member Relative
# Length Force # Length Force
73 0.99329 3.85972 97 0.99965 4.75017
74 1.01663 7.95780 98 0.99331 4.05643
75 1.01540 7.65689 99 1.00173 5.88465
76 0.99478 4.15546 100 0.99955 4.09540
77 0.99376 3.64598 101 1.00137 5.12947
78 0.99695 3.25321 102 1.01283 6.07944
79 0.99017 3.59783 103 1.00467 5.75433
80 1.00933 6.54029 104 1.00218 5.19817
81 1.50361 5.32548 105 0.99971 5.22217
82 0.99082 3.66633 106 1.00556 5.76645
83 1.00948 5.23566 107 1.00406 4.53408
84 0.99642 4.29989 108 1.00088 4.37907
85 0.98806 3.11137 109 0.99816 4.97036
86 1.51233 6.40604 110 1.00551 6.22156
87 1.00441 5.87963 111 1.00612 5.91662
88‡ N/A N/A 112 0.99576 3.91605
89 1.00637 6.04386 113 1.00470 5.83896
90 1.00765 6.70593 114 1.00230 6.15694
91‡ N/A N/A 115 1.00015 5.11714
92 1.00464 5.03427 116 1.00086 4.94495
93 1.00265 5.02001 117 1.00334 5.81591
94‡ N/A N/A 118 0.99407 3.77070
95 1.00567 5.60734 119 1.00398 5.69160
96 1.00674 6.01624 120 0.99996 5.42603

Table 7.8: 6ν T-Octahedron Dome: Inner and Outer Convergence Tendon Loaded Lengths
and Forces
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Member Relative Member Relative
# Length Force # Length Force

121 2.70947 0.52980 145 1.87496 0.00000
122 2.53218 0.00000 146 1.83291 1.09459
123 2.44184 0.00000 147 2.01356 1.54175
124 1.84404 1.32367 148 1.23443 3.37263
125 2.30039 0.00000 149 1.08359 0.00000
126 2.30359 1.04060 150 1.14127 0.00000
127 2.54516 0.51011 151 1.28069 0.08096
128 2.62350 1.20781 152 1.62424 0.00000
129 2.57895 0.15158 153 1.29686 2.52944
130 2.57928 1.38453 154 1.14619 0.00000
131 2.17666 0.31057 155 1.27222 1.34780
132 1.86323 1.92369 156 1.24194 3.71146
133 2.64081 1.45944 157 1.64919 0.00000
134 2.59995 0.52518 158 1.31804 0.00000
135 2.73317 0.77089 159 1.40527 1.96143
136‡ N/A N/A 160 2.88836 0.22524
137 2.70689 1.53865 161 2.51456 0.00000
138 2.72797 1.06931 162 1.86892 2.88352
139‡ N/A N/A 163 2.90433 0.00000
140 2.55151 1.79147 164 2.50274 0.00000
141 2.70008 1.38773 165 1.80955 2.57487
142‡ N/A N/A 166 2.86090 0.37926
143 2.66620 0.94011 167 2.65589 0.00000
144 2.67084 0.23110 168 1.91684 2.90318

Table 7.9: 6ν T-Octahedron Dome: Outer and Inner Binding Tendon Loaded Lengths and
Forces

Member Relative
# Length Force

175 2.13419 0.459938
176 2.02801 0.064638
177 2.19309 0.165828
178 2.06349 0.767356
179 2.22285 0.005841
180 1.99408 0.165191

Table 7.10: 6ν T-Octahedron Dome: Guy Loaded Lengths and Forces
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Coordinates
Point x y z
P1 1.50456 0.40995 2.85399
P2 1.00233 1.23867 2.55063
P3 -0.59661 2.16366 2.87199
P4 0.66472 0.72576 3.33198
P5 0.96159 -0.35998 3.52049
P6 -0.09865 0.17065 3.86423
P7 -1.58666 2.20740 2.80497
P8 -1.12115 1.20549 3.48417
P9 -1.07951 0.22167 3.70649
P10 0.03607 -0.29452 3.88378
P11 1.01184 -1.34989 3.41346
P12 2.24377 -1.01815 2.82434
P13 -2.26128 0.76098 3.10646
P14 -0.83994 -1.02583 3.77637
P15 1.37853 -2.41936 2.73598
P16 -2.70685 1.28850 2.37261
P17 -2.88612 0.30664 2.48711
P18 -1.72821 -0.71532 3.43013
P19 -1.34254 -1.59864 3.14311
P20 0.38935 -2.38946 2.92076
P21 0.76841 -2.98729 2.20544
P22 -3.73094 -0.08603 0.04784
P23 -3.10232 -1.76219 1.09539
P24 -1.60996 -3.20168 1.04252

Table 7.11: 6ν T-Octahedron Dome: Loaded Inner Coordinate Values
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Coordinates
Point x y z
P ′1 2.87120 0.70422 3.30117
P ′2 1.35842 2.61844 3.20190
P ′3 0.43034 2.65244 3.57177
P ′4 1.05048 1.20289 4.98885
P ′5 1.50968 0.32968 5.21792
P ′6 0.53617 0.45294 5.40814
P ′7 -2.19505 2.29874 4.14049
P ′8 -1.55397 1.79921 4.72264
P ′9 -1.19245 -0.16017 5.59900
P ′10 -0.20174 -0.30239 5.59633
P ′11 1.58750 -1.87493 4.55447
P ′12 2.46471 -1.52851 4.20406
P ′13 -2.42845 1.37874 4.46217
P ′14 -0.82003 -1.07359 5.41164
P ′15 2.14157 -2.43112 3.92621
P ′16 -4.02302 1.86969 2.30391
P ′17 -3.74810 -0.46244 3.30181
P ′18 -3.07624 -0.83364 3.94795
P ′19 -1.41976 -2.90815 3.70067
P ′20 -0.44273 -3.09431 3.80405
P ′21 1.38238 -4.26313 2.18230
P ′22 -4.52297 1.26281 1.69294
P ′23 -3.53726 -1.44084 3.30058
P ′24 -0.97004 -3.60258 3.13190
P ′30 -4.79594 -0.71196 1.73878
P ′31 -3.05833 -3.26445 2.55366
P ′32 -0.47757 -4.87734 1.58579

Table 7.12: 6ν T-Octahedron Dome: Loaded Outer Coordinate Values

Force Vector
Point x y z
P22 -0.23825 -0.44848 -0.74095
P23 -0.47160 -0.56638 -1.08428
P24 -0.63563 -0.30815 -0.89948
P ′30 0.64444 0.50802 0.60475
P ′31 0.66222 0.60749 0.52500
P ′32 0.67850 0.67438 0.48840

Table 7.13: 6ν T-Octahedron Dome: Base Point Unloaded Force Vectors
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Force Vector
Point x y z
P22 -1.12554 -1.08852 -0.98920
P23 -1.08628 -1.43482 -1.53837
P24 -0.99081 -0.94641 -1.54760
P ′30 0.29387 0.00651 0.33279
P ′31 0.14264 0.03256 0.06753
P ′32 -0.17743 0.47498 0.57411

Table 7.14: 6ν T-Octahedron Dome: Base Point Loaded Force Vectors
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where

nf = number of struts = nh
2

mi = number of tendons attached to strut envelope i
qi = number of point constraints impacting strut envelope i
ui = number of exogenous forces impacting strut envelope i
Fm
ij = force at strut envelope i due to tendon mij (vector)
mij = index of the jth tendon attached to strut envelope i
F d
ij = force at strut envelope i due to point constraint dij (vector)
dij = index of the jth point constraint impacting strut envelope i
F
e
ij = jth exogenous force impacting strut envelope i (fixed vector)

The formula for Fm
ij is:

Fm
ij = fmij

Dij

|Dij|

where

fmij = signed magnitude of force at strut envelope i due to tendon mij

Dij = P̃m
ij − Pm

ij (vector)
Pm
ij = point where tendon mij is attached to strut envelope i

P̃m
ij = far attachment point of tendon mij

The value of fmij for tendons is derived as before. The value for struts is not relevant since
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they are not included here. The formula for F d
ij remains the same and the βij values are

again one portion of the values which are adjusted to solve the system of equations.

The equations representing the requirement that torques sum to zero are:


0

0

0

 =
mi∑
j=1

Fm
ij × (Pm

ij − P c
i ) +

qi∑
j=1

F d
ij × (P d

ij − P c
i ) +

ui∑
j=1

F
e

ij × (P e
ij − P c

i )

i = 1, . . . , nf

where

P d
ij = point on strut envelope i constrained by point constraint dij
P e
ij = point on strut envelope i where the jth exogenous force is applied

P c
i = 1

mi+qi
(
mi∑
j=1

Pm
ij +

qi∑
j=1

P d
ij) = center point of strut envelope i

The point constraints must also be met and are now joined by the vector constraints. The
the set of equations constraining the lengths of the struts to remain constant are retained
as well. Thus, there are 6nf + nd + nc + nf equations which must be solved for the
coordinate values of P1, ..., Pnh , V1, ..., Vnv and the scaling values, βij, for the reaction forces
corresponding to the point constraints. A necessary condition for this to be possible is that
6nf + nd + nc + nf = 3(nh + nv) + nd. Since 2nf = nh, this necessary condition can be
expressed as nc + nf = 3nv.

Actually, it is more pertinent to examine this last condition for each strut envelope. For an
individual strut envelope, the condition can be expressed as nci + 1 = 3nvi where nci is the
number of vector constraints pertaining to strut i and nvi is the number of vectors used to
model its hubs. If there are sufficient vector constraints to rigidly determine the strut
envelope, this condition should obtain; otherwise, additional vector constraints will need to
be added. It is possible that some vector constraints will only be used for the analysis of
exogenous loads and will be ignored during the solution of the mathematical programming
problem corresponding to the structure.

Once the equations have been solved, characteristic member forces can be computed for the
strut envelopes. For each strut envelope, the attachments are separated into two groups
corresponding to the two hubs. This is done using the center point of the strut envelope.
First, the dot product of the center point is taken with the vector corresponding to the
difference of the end points of the strut. Then, the dot product of the strut vector with
each attachment point is taken. If the dot product for an attachment point is less than the
dot product for the center point, then the attachments corresponding to the point go in
one group; if not, they go in the other group. The characteristic member force for the strut
envelope is found by summing the forces for one of the two groups of attachments. Since
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the sum of the forces for all the attachments to the strut envelope is zero, the sum for one
group will be the additive inverse of the other group.

In addition, a torque moment can be computed for each strut to estimate the twisting force
it is subjected to. This computation uses the standard procedures for computing the
moment of forces about a specified axis.11 Using the same procedure as that described for
the characteristic member-force computation for the strut envelopes, the attachments are
separated into groups corresponding to the hubs. The signed magnitude of the moments
corresponding to each hub are then computed using the following triple scalar products:

Di
|Di| · (

mi∑
j=1

Fm
ij × (Pm

ij − Pm
i ) +

qi∑
j=1

F d
ij × (P d

ij − Pm
i ) +

ui∑
j=1

F
e
ij × (P e

ij − Pm
i ))

i = 1, . . . , nh

where

Di = P̃m
i − Pm

i (vector)
Pm
i = point where strut is attached to hub i
P̃m
i = far attachment point of strut attached to hub i
mi = number of tendons attached to hub i
qi = number of point constraints impacting hub i
ui = number of exogenous forces impacting hub i
Fm
ij = force at hub i due to tendon mij (vector)
mij = index of the jth tendon attached to hub i
Pm
ij = point where tendon mij is attached to hub i
F d
ij = force at hub i due to point constraint dij (vector)
dij = index of the jth point constraint impacting hub i
P d
ij = point on hub i constrained by point constraint dij
F
e
ij = jth exogenous force impacting hub i (fixed vector)

P e
ij = point on hub i where the jth exogenous force is applied

Since for the strut as a whole the sum of the moments is zero, the moments for each of the
two hubs of a strut will be equal.

7.3.6 Exogenous Force Analysis: Another Sample Calculation

For an example of exogenous force analysis with non-point hubs, it is useful to turn back to
the tensegrity prism of Section 2.2. In the course of the example, meta-constraints are also
illustrated. Meta-constraints are a design tool which allow a tensegrity to meet certain
geometric specifications which would be illegitimate if they appeared in the mathematical
programming problem. In this case, the meta-constraint will be that the struts of the

11See, for example, Hibbeler98, pp. 138-141.
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prism are at 90◦ to each other. This allows the prism to be used as a joint in a cubic
lattice. If this constraint were imposed in the mathematical programming problem it would
be illegitimate and lead to a structure with loose tendons most of the time; however, the
desired geometry can be achieved if the constraint is applied at a higher level.

Since eventually an exogenous load will be applied asymmetrically, symmetry
transformations will not be used in the model. For the struts, 14-inch (356 mm) lengths of
one-inch (25 mm) square wood stock will be used. Holes for attaching the tendons to the
strut will be drilled at one inch (25 mm) from either end of the strut, so these attachment
points will be 12 inches (305 mm) apart. So, the model is:

minimize t2a + t2b + t2c
A,B,C,A′, B′, C ′

Va, Vb, Vc

subject to Member constraints:
s2 = s2

a = s2
b = s2

c

u2 = u2
a = u2

b = u2
c

u2 = ũ2
a = ũ2

b = ũ2
c

Point constraints:
0 = xA = yA = zA
0 = yB = zB = zC

Vector constraints:
v2 = |Va|2 = |Vb|2 = |Vc|2
0 = Va · (A′ − A) = Vb · (B′ −B) = Vc · (C ′ − C)

where

sa = |AA′|; sb = |BB′|; sc = |CC ′|
ta = |ȦC̈ ′|; tb = |ḂÄ′|; tc = |ĊB̈′|
ua = |ÄB̈|; ub = |B̈C̈|; uc = |C̈Ä|
ũa = |Ȧ′Ḃ′|; ũb = |Ḃ′Ċ ′|; ũc = |Ċ ′Ȧ′|
Ȧ = A+ Va; Ḃ = B + Vb; Ċ = C + Vc
Ä = A− Va; B̈ = B − Vb; C̈ = C − Vc
Ȧ′ = A′ + Va; Ḃ

′ = B′ + Vb; Ċ
′ = C ′ + Vc

Ä′ = A′ − Va; B̈′ = B′ − Vb; C̈ ′ = C ′ − Vc

v = 0.5 inches (13 mm) since it represents half the length of the holes drilled through the
wooden struts. The vectors used to construct the offsets from the strut end points to where
the tendons are connected to the strut are restricted to be orthogonal to their
corresponding struts since the holes are drilled orthogonal to the strut. Note that for each
strut the same vector is used to construct all four offsets at the two hubs. This is
appropriate since the holes drilled through the struts are aligned with each other. In
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another situation, a different independently-adjustable vector might be used to construct
each offset.

s = 12 inches (305 mm) since it represents the distance between the two holes drilled
through each wooden strut. u will start out at 3·12

7
= 5.14 inches (130 mm) and will be

adjusted between successive solutions to the mathematical programming problem to obtain
a structure with orthogonal struts. It is scaled up from the value of 3 used in Section 2.2.2
to account for the fact that the strut length is now 12 inches (305 mm) rather than 7
inches (178 mm).

Though the model used is more in the vein of the Cartesian version of the tensegrity prism
presented in Section 2.2.3, initial data for the mathematical programming problem can be
obtained from the results of Section 2.2.2. First the base triangle is placed in a way to
satisfy the point constraints. The other end triangle is obtained by rotating the first by
150◦ about its center and raising it by the appropriate height. The height, which represents
the value for z in this model, is found by solving the formula for s2 of Section 2.2.2 for h
and using the fact that r2 = 3(12

7
)2:

h = (s2− 2r2 + 2r2cosθ)
1
2 = (122− 2·3(

12

7
)2 + 2·3(

12

7
)2 cos(150◦))

1
2 = 10.54 inches (268 mm)

Table 7.15 summarizes the initial values. The initial data fit the constraints closely enough
that no penalty iterations were necessary to reach a point so that the equation system
could be solved for the dependent in terms of the independent variables. The initial
iterations were rough in that the step size and the partitioning had to constantly be
adjusted to make progress. Initially eight steepest-descent iterations were done and the
variables were repartitioned at each step. Then eight Fletcher-Reeves iterations were done
with no repartitioning necessary. Finally a Newton iteration was done to enhance the
accuracy of the solution.

To track the angle between adjacent struts, a dot product was taken of their corresponding
vectors. A value of zero would indicate that the desired orthogonality was reached. For this
first solution, the value was 80.7266. Increasing the value of u by 0.01 decreased the dot
product to 80.5217. Using the usual Newton technique, this result was used to extrapolate
the increase to 0.01 · 80.7266

80.7266−80.5217
= 3.93980 which added to the original value of u yielded

9.08266.

This new value for u was a large enough change that the equation system could no longer
be solved for the dependent variables in terms of the independent ones, so ten
Fletcher-Reeves iterations were done using the penalty method. This resulted in a solvable
system, but again one in which the initial iterations were rough. A solution was reached
which yielded a value of -20.2664 for the dot product of the struts. The Newton
meta-iterations were continued until a dot product close to zero was reached. Table 7.16
summarizes the sequence of values. None of the changes after the first large one was large
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Point/ Coordinates (inches)
Vector x y z
A 0 0 0
B 5.14 0 0
C 2.57 4.45 0
A′ 5.54 1.48 10.54
B′ 1.09 4.06 10.54
C ′ 1.09 -1.09 10.54
Va 0 0.5 0
Vb 0 0.5 0
Vc 0 0.5 0

Table 7.15: T-Prism: Initial Cartesian Coordinates

Strut Dot
u Product

5.14286 80.7266
5.15286 80.5217
9.08266 -20.2664
9.07266 -19.9746
8.38813 -0.150138
8.37813 0.135670
8.38288 -0.000073
8.38287 0.000213

Table 7.16: T-Prism: Meta-Iteration Values

enough that the equation system became unsolvable, so the exact technique could be used
throughout rather than resorting to the penalty method. The final value for u was 8.38288,
and that for ta, tb and tc was 6.65618.

The meta-solution values for the control variables are summarized in Table 7.17, and the
resulting structure is shown in Figure 7.2. The orthogonal configuration gives the struts
their maximum clearance per unit length with respect to each other. Each strut has an
edge which is exactly flush with the supporting surface, though this is not peculiar to the
orthogonal configuration.

Table 7.18 summarizes the prestress forces. The prestress forces are scaled so the average
tendon force is 20 pounds (89 Newtons). This results in a torque on the strut of
0.75 foot-pounds (1.01 Newton-meters).

As an example of an exogenous load, a sign weighing 10 pounds (44 Newtons) is suspended
from two corners of the prism, A′ − Va + 1

12
(A′ − A)− Va × 1

12
(A′ − A) and
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Point/ Coordinates (inches)
Vector x y z
A 0 0 0
B 8.86046 0 0
C 4.43023 7.67339 0
A′ 9.53646 2.24850 6.92821
B′ 2.14498 7.13457 6.92821
C ′ 1.60925 -1.70968 6.92821
Va -0.280971 -0.066247 0.408248
Vb 0.197857 -0.210205 0.408248
Vc 0.083114 0.276452 0.408248

Table 7.17: Orthogonal T-Prism: Cartesian Coordinates

Figure 7.2: Orthogonal Tensegrity Prism

Member Member
Labels Force

(pounds)
sa, sb, sc -41
ta, tb, tc 26
ua, ub, uc 17
ũa, ũb, ũc 17

Table 7.18: Orthogonal T-Prism: Prestress Member Forces
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Figure 7.3: Orthogonal T-Prism: Positions and Effect of Exogenous Loads

Displacement (z difference)
Point (inches)

A′ − Va + 1
12

(A′ − A)− Va × 1
12

(A′ − A) -0.205
C ′ − Vc + 1

12
(C ′ − C) + Vc × 1

12
(C ′ − C) -0.280

B̈′ -0.207

Table 7.19: Orthogonal T-Prism: Displacements due to Exogenous Loads

C ′ − Vc + 1
12

(C ′ −C) + Vc × 1
12

(C ′ −C). Along with the sign, a counterweight of 10 pounds

(44 Newtons) is suspended from the tendon attachment point B̈′. This load and its effect
on the prism are diagrammed in Figure 7.3. The tendons of the prism are linearly elastic,
and a load of 20 pounds (89 Newtons) extends a tendon by 2%. The prism is supported at
five of the six strut corners it rests on. One corner is excluded since it pulls away from the
support surface by about 0.01 inch (250 µm) when the load is applied.

A two-sided numerical differentiation differential of 0.00001 (inches or pounds as
appropriate) resulted in convergence in four iterations to a solution with a tolerance of
0.0001 (again inches or pounds as appropriate). Table 7.19 gives the displacements of the
points where the exogenous loads are applied. Table 7.20 gives the reaction forces
corresponding to the five corners where the prism is supported. Table 7.21 gives the forces
and torques corresponding to each strut. Table 7.22 gives the forces and lengths
corresponding to each tendon. And Table 7.23 gives the new coordinate values for the strut
end points and the vector offsets to the tendon attachment points.
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Reaction Force
Point (pounds)

A− Va − 1
12

(A′ − A) + Va × 1
12

(A′ − A) 2.43649
A− Va − 1

12
(A′ − A)− Va × 1

12
(A′ − A) 4.76605

B − Vb − 1
12

(B′ −B) + Vb × 1
12

(B′ −B) Excluded
B − Vb − 1

12
(B′ −B)− Vb × 1

12
(B′ −B) 4.05988

C − Vc − 1
12

(C ′ − C) + Vc × 1
12

(C ′ − C) 8.34852
C − Vc − 1

12
(C ′ − C)− Vc × 1

12
(C ′ − C) 0.389018

Sum 20.0000

Table 7.20: Orthogonal T-Prism: Support Reaction Forces due to Exogenous Loads

Force Torque
Strut (pounds) (foot-pounds)
sa -50.5422 0.704414
sb -48.5601 0.707202
sc -47.0621 0.963006

Table 7.21: Orthogonal T-Prism: Strut Forces and Torques with Exogenous Loads

Force Length
Tendon (pounds) (inches)
ta 24.0531 6.64310
tb 26.3338 6.65790
tc 20.3017 6.61877
ua 21.8590 8.42320
ub 19.0996 8.40046
uc 21.3238 8.41879
ũa 22.2399 8.42634
ũb 19.3835 8.40280
ũc 20.7480 8.41405

Table 7.22: Orthogonal T-Prism: Tendon Forces and Lengths with Exogenous Loads
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Point/ Coordinates (inches)
Vector x y z
A 0.0318724 0.0318693 -0.00958155
B 8.92941 0.0256662 -0.00839036
C 4.51264 7.71161 -0.00965609
A′ 9.58138 2.71797 6.74258
B′ 1.77471 6.98253 6.65587
C ′ 1.97666 -1.87981 6.74115
Va -0.27083 -0.0761796 0.413337
Vb 0.204166 -0.188303 0.415762
Vc 0.0719009 0.271939 0.413376

Table 7.23: Orthogonal T-Prism: Coordinates with Exogenous Loads



Chapter 8

Analyzing Clearances in Tensegrities

8.1 Clearance Analysis: Introduction

A practical factor which must be taken into account in analyzing the outcome of a
tensegrity mathematical programming problem is the clearance between (in other words,
the distance separating) one member and another. Especially with truss tensegrities,
solutions to a problem can very easily have clearances which would result in one member
inadvertently intersecting another if the model were implemented. If this is the case,
adjustments must be made using length constraints, objective function weights and/or
model configuration until satisfactory clearances are obtained.

8.2 Clearance Analysis: Formulas

Two members can be modeled mathematically as two line segments in space. When neither
endpoint of the two line segments coincides, the parameter of interest is the minimum
distance between the two line segments. The position of the points on the two segments
where this minimum is attained may also be of interest. When the two segments coincide
at one endpoint, the angle between the two segments may be of concern.

8.2.1 Clearance Formulas: Distance Between Two Line Segments

Let AB and CD be two line segments. An arbitrary point, call it PAB, on the line obtained
by extending the segment AB can be generated as a function of a scalar multiplier, call it
λAB, using the formula

179
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PAB ≡ A+ λAB(B − A).

If λAB is between 0 and 1, this point will lie on the segment AB. Similarly, a point on the
line coinciding with CD can be generated using the formula

PCD ≡ C + λCD(D − C).

To find the minimum distance between these two lines (which is not necessarily the
distance between the two line segments), values for λAB and λCD can be found which
minimize the distance between PAB and PCD. Thus, the following unconstrained
programming problem is arrived at:

minimize |PAB − PCD|2 ≡ (PAB − PCD) · (PAB − PCD)
λAB, λCD

This problem can be solved by differentiating the objective function with respect to λAB
and λCD, setting the two resulting equations equal to zero and solving the implied system
for λAB and λCD.

Substituting using

PAB − PCD = A+ λAB(B − A)− (C + λCD(D − C))

= (A− C) + λAB(B − A)− λCD(D − C)

and differentiating results in the system:

2λAB|AB|2 − 2λCD(B − A) · (D − C) + 2(A− C) · (B − A) = 0

−2λAB(B − A) · (D − C) + 2λCD|CD|2 − 2(A− C) · (D − C) = 0

Since

(B − A) · (PAB − PCD) = λAB|AB|2 − λCD(B − A) · (D − C) + (B − A) · (A− C)

and

(D − C) · (PAB − PCD) = −λCD|CD|2 + λAB(D − C) · (B − A) + (D − C) · (A− C)
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this system implies

0 = (B − A) · (PAB − PCD)

0 = (D − C) · (PAB − PCD)

In other words, the line segment connecting the two closest points on the lines is
orthogonal to both lines.

This system can be solved to find values for λAB and λCD. If either of these values is
outside the range [0.0, 1.0], then this solution is not valid as the distance between the two
line segments and boundary solutions must be searched.

The first sort of boundary solution which can be investigated is one in which the minimum
distance is attained at one endpoint of one of the segments with the other minimum point
being an interior point of the other segment. Calculating this distance involves another
minimization problem. For example, to calculate the distance between A and CD the
following minimization problem would need to be solved:

minimize |A− PCD|2 ≡ (A− PCD) · (A− PCD)
λCD

This problem can be solved by differentiating the objective function with respect to λCD,
setting the resulting equation equal to zero and solving the implied system for λCD.

Substituting using

A− PCD = A− (C + λCD(D − C))

= (A− C)− λCD(D − C))

and differentiating results in the equation

2λCD|CD|2 − 2(A− C) · (D − C) = 0

or

λCD =
(A− C) · (D − C)

|CD|2

Since
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(D − C) · (A− PCD) = −λCD|CD|2 + (D − C) · (A− C)

the solution equation implies

(D − C) · (A− PCD) = 0

In other words, the line segment connecting A with the closest point on CD is orthogonal
to CD.

If λCD is outside the range [0.0, 1.0], then again the value is not valid as a minimum
distance to the line segment from the point, and the minimum of |AC| and |AD| should be
selected as the value. |AC| is calculated using the Pythagorean distance formula

|AC| =
√

(A− C) · (A− C) and |AD| is computed similarly.

In searching for a boundary value for the minimum length between the two segments, all
four boundary possibilities should be examined (A and CD, B and CD, AB and C, AB
and D) and the minimum of these taken to be the solution.

8.2.2 Clearance Formulas: Angle Between Two Line Segments

The formula for the angle between two line segments coincident at a point is derived from
the Schwarz inequality (see Lang71, p. 22). For example, the angle between the two line
segments AB and AC is equal to

arccos (
(A−B) · (A− C)

|AB||AC|
).

8.2.3 Clearance Formulas: A Sample Application

The line segment formulas were used to look at the clearances of the struts and interlayer
tendons of the 4ν t-octahedron spherical truss of Section 5.3. The planned realization in
mind was a structure at a scale of 1 model unit = 90 mm using 8-mm-diameter wooden
dowels for struts and fishing line for tendons. The clearance goal was one strut diameter
between the outer surfaces of any two members. This reduced to 2 strut diameters between
two strut center lines, 1.5 strut diameters between a strut center line and a tendon center
line, and 0.5 strut diameter between two tendon center lines. The diameter of the tendon
was regarded as negligible. In model units, these thresholds were 2·8

90
= 0.18, 1.5·8

90
= 0.13

and 1·8
90

= 0.09 respectively.

It was found strut member #3 and a transformed1 version of tendon member #5 had a

1The transformation was (x, y, z)⇒ (−x,−y, z).
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poor clearance of 0.081 model units. In addition, at 0.17 model units the clearance between
the two strut members #1 and #3 was marginally a problem. Increasing the constrained
length of the highly-tensioned tendon member #28 from 1 to 1.4 model units increased the
first clearance to 0.16 model units and the second clearance to 0.20 model units without
creating clearance problems between other members. Table 8.1 shows the values for the
lengths and relative member forces of the revised model. Table 8.2 shows the revised values
for the coordinates of the basic points.



184 CHAPTER 8. ANALYZING CLEARANCES IN TENSEGRITIES

Member Relative
# Length Force
1 3.000000 -12.309
2 3.000000 -11.701
3 3.000000 -11.604
4 3.000000 -11.265
5 2.357656 4.715
6 2.389582 4.779
7 2.437046 4.874
8 2.365863 4.732
9 2.030353 4.061
10 2.047569 4.095
11 2.040178 4.080
12 1.640244 3.280
13 1.000000 3.950
14 1.000000 5.618
15 1.000000 4.330
16 1.000000 5.030
17 2.498276 0.999
18 2.732085 1.093
19 2.745418 1.098
20 2.924998 1.170
21 1.382591 1.383
22 1.427206 1.427
23 1.500065 1.500
24 0.943181 0.943
25 1.000000 6.055
26 1.000000 6.400
27 1.000000 5.535
28 1.400000 6.260

Table 8.1: 4ν T-Octahedron: Revised Member Lengths and Forces
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Coordinates
Point x y z
P1 1.092297 -0.280953 2.035248
P2 -0.128883 0.310054 2.301681
P3 0.820711 1.137818 1.630864
P4 -1.029370 1.245104 1.777463
P ′1 1.578759 0.504378 3.382666
P ′2 0.618364 0.662396 3.612169
P ′3 1.160445 1.393792 3.198396
P ′4 -1.675120 2.090616 2.491573

Table 8.2: 4ν T-Octahedron: Revised Basic Point Coordinates
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Appendix A

Other Double-Layer Technologies

Another approach to planar tensegrity truss design similar to Snelson’s approach outlined
in Chapter 5 has been independently developed by Georges David Emmerich,1

Ariel Hanaor2 and René Motro.3 For the most part, the tendon network for the outer and
inner layers of these structures is identical with the double-layer truss described in
Chapter 5. However, the way the struts and tendons are connected between the layers is
very different.

The starting point of Emmerich et al.’s system is a planar assembly of t-prisms.4

Figure A.1 shows how such a planar assembly would appear.5 As is evident in comparing
Figures 2.1 and 5.1, the topological difference between a t-prism and a t-tripod is not
great: the t-prism is topologically equivalent to a t-tripod with a tendon triangle
connecting the struts at the t-tripod’s base.6 While the manner of Emmerich et al.’s
assembly retains triangulation in the outer and inner tendon layers, the interlayer
triangulation exhibited by individual prisms is broken up by the arrangement. In this
situation a dome is induced by introducing curvature in the planar assembly of prisms
transforming them into truncated pyramids.

To emphasize the contrast between the two systems, Figure A.2 shows how t-tripods would
be arranged in a planar context. As seen in Chapter 5, the outer layer has been completed
by interconnecting the t-tripod apexes with tendon triangles to yield an outer layer which
is identical with that obtained in Emmerich et al.’s arrangement.

Each inner tendon triangle where the struts of three t-tripods converge is viewed as the

1Emmerich88, “reseaux antiprismatiques”, p. 281.
2Hanaor87 and Hanaor92.
3Motro87 and Motro92.
4This is a typical application of the technique. It has various ways it can be applied, and is not limited

to t-prisms.
5cf. Hanaor87, Figure 9.
6Hanaor might call the t-tripod a truncated pyramid with its larger end triangle removed. See Hanaor92,

Fig. 3(f).
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Figure A.1: Planar Assembly of T-Prisms
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Figure A.2: Planar Assembly of T-Tripods
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apex of an inward-pointing t-tripod. Adding the corresponding interlayer tendons to
complete these t-tripods (the secondary interlayer tendons of Chapter 5) provides more
interlayer triangulation, and thus more reinforcement of the structure. In this
configuration, each strut is secured by 12 tendons. It is worth noting that this is precisely
the minimum number of tendons Fuller has experimentally found to be necessary to rigidly
fix one system in its relationship to a surrounding system.7

Hanaor’s articles also present computations and models for several structures.
Computations for both member lengths and forces are presented. All computations are
based on a methodology presented in Argyris72. The relative performance of that
methodology and the ones presented in this work is unknown.

7Fuller75, pp. 105-107.



Appendix B

Proof that the Constraint Region is
Non-convex

In Section 3.2, the claim is made that the constraint region in the general tensegrity
mathematical programming problem is not convex. A proof is given here.

The non-convexity is due to the strut constraints. To demonstrate this, let Pa and Pb be
one set of endpoints for a strut which meet its length constraint with equality, and let Pa′
and Pb′ be another such set. Let ln be the value of the corresponding constraint constant.
By assumption:

|Pa − Pb|2 = l
2

n

|Pa′ − Pb′|2 = l
2

n

Let Pa′′ and Pb′′ be a convex combination of these two point sets. This means:

Pa′′ ≡ λPa + (1− λ)Pa′

Pb′′ ≡ λPb + (1− λ)Pb′

where λ ∈ (0, 1). Therefore:

|Pa′′ − Pb′′|2 = |λ(Pa − Pb) + (1− λ)(Pa′ − Pb′)|2

= λ2|Pa − Pb|2 + 2λ(1− λ)(Pa − Pb) · (Pa′ − Pb′) + (1− λ)2|Pa′ − Pb′|2

By the Schwarz inequality (see Lang71, p. 22):

(Pa − Pb) · (Pa′ − Pb′) < |Pa − Pb||Pa′ − Pb′|

So:

|Pa′′ − Pb′′|2 < λ2|Pa − Pb|2 + 2λ(1− λ)|Pa − Pb||Pa′ − Pb′|+ (1− λ)2|Pa′ − Pb′|2

= (λ|Pa − Pb|+ (1− λ)|Pa′ − Pb′|)2

= (λln + (1− λ)ln)2

= l
2

n

191
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In summary:

l
2

n > |Pa′′ − Pb′′|2

This means the constraint is violated; hence, the constraint region is not convex.
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