
Flickr and PHP
Cal Henderson

What’s Flickr

• Photo sharing
• Open APIs

Logical Architecture

Page Logic

Application Logic

DatabasePhoto Storage

API

EndpointsTemplates

3rd Party Apps Flickr Apps

Node Service

Flickr.comEmail

Users

Physical Architecture

Static Servers Database Servers Node Servers

Web Servers

Users

Where is PHP?

Page Logic

Application Logic

DatabasePhoto Storage

API

EndpointsTemplates

3rd Party Apps Flickr Apps

Node Service

Flickr.comEmail

Users

Other than PHP?

• Smarty for templating
• PEAR for XML and Email parsing
• Perl for controlling…
• ImageMagick, for image processing
• MySQL (4.0 / InnoDb)
• Java, for the node service
• Apache 2, Redhat, etc. etc.

Big Application?

• One programmer, one designer, etc.
• ~60,000 lines of PHP code
• ~60,000 lines of templates
• ~70 custom smarty functions/modifiers
• ~25,000 DB transactions/second at peak
• ~1000 pages per second at peak

Thinking outside the web app

• Services
– Atom/RSS/RDF Feeds
– APIs

• SOAP
• XML-RPC
• REST
• PEAR::XML::Tree

More cool stuff

• Email interface
– Postfix
– PHP
– PEAR::Mail::mimeDecode

• FTP
• Uploading API
• Authentication API
• Unicode

Even more stuff

• Real time application
• Cool flash apps
• Blogging

– Blogger API (1 & 2)
– Metaweblog API
– Atom
– LiveJournal

APIs are simple!

• Modeled on XML-RPC (Sort of)
• Method calls with XML responses
• SOAP, XML-RPC and REST are just transports
• PHP endpoints mean we can use the same application

logic as the website

XML isn’t simple :(

• PHP 4 doesn’t have good a XML parser
• Expat is cool though (PEAR::XML::Parser)
• Why doesn’t PEAR have XPath?

– Because PEAR is stupid!
– PHP 4 sucks!

I love XPath

if ($tree->root->name == 'methodResponse'){
if (($tree->root->children[0]->name == 'params')
&& ($tree->root->children[0]->children[0]->name == 'param')
&& ($tree->root->children[0]->children[0]->children[0]->name == 'value')
&& ($tree->root->children[0]->children[0]->children[0]->children[0]->name == 'array')
&& ($tree->root->children[0]->children[0]->children[0]->children[0]->children[0]->name == 'data')){

$rsp = $tree->root->children[0]->children[0]->children[0]->children[0]->children[0];
}
if ($tree->root->children[0]->name == 'fault'){

$fault = $tree->root->children[0];
return $fault;

}
}

$nodes = $tree->select_nodes('/methodResponse/params/param[1]/value[1]/array[1]/data[1]/text()');

if (count($nodes)){
$rsp = array_pop($nodes);

}else{
list($fault) = $tree->select_nodes('/methodResponse/fault');
return $fault;

}

Creating API methods

• Stateless method-call APIs are easy to extend
• Adding a method requires no knowledge of the transport
• Adding a method once makes it available to all the

interfaces
• Self documenting

Red Hot Unicode Action

• UTF-8 pages
• CJKV support
• It’s really cool

Unicode for all

• It’s really easy
– Don’t need PHP support
– Don’t need MySQL support
– Just need the right headers
– UTF-8 is 7-bit transparent
– (Just don’t mess with high characters)

• Don’t use HtmlEntities()!

• But bear in mind…
• JavaScript has patchy Unicode support
• People using your APIs might be stupid

Scaling the beast

• Why PHP is great
• MySQL scaling
• Search scaling
• Horizontal scaling

Why PHP is great

• Stateless
– We can bounce people around servers
– Everything is stored in the database
– Even the smarty cache
– “Shared nothing”
– (so long as we avoid PHP sessions)

MySQL Scaling

• Our database server started to slow
• Load of 200
• Replication!

MySQL Replication

• But it only gives you more SELECT’s
• Else you need to partition vertically
• Re-architecting sucks :(

Looking at usage

• Snapshot of db1.flickr.com
– SELECT’s 44,220,588
– INSERT’s 1,349,234
– UPDATE’s 1,755,503
– DELETE’s 318,439
– 13 SELECT’s per I/U/D

Replication is really cool

• A bunch of slave servers handle all the SELECT’s
• A single master just handles I/U/D’s
• It can scale horizontally, at least for a while.

Searching

• A simple text search
• We were using RLIKE
• Then switched to LIKE
• Then disabled it all together

FULLTEXT Indexes

• MySQL saves the day!
• But they’re only supported my MyISAM tables
• We use InnoDb, because it’s a lot faster
• We’re doomed

But wait!

• Partial replication saves the day
• Replicate the portion of the database we want to search.
• But change the table types on the slave to MyISAM
• It can keep up because it’s only handling I/U/D’s on a

couple of tables
• And we can reduce the I/U/D’s with a little bit of vertical

partitioning

JOIN’s are slow

• Normalised data is for sissies
• Keep multiple copies of data around
• Makes searching faster
• Have to ensure consistency in the application logic

Our current setup

Slave Farm

DB1
Master I/U/D’s

SELECT’s

Search Slave
Farm

Search
SELECT’s

DB3
Main Search

slave

DB2
Main Slave

Horizontal scaling

• At the core of our design
• Just add hardware!
• Inexpensive
• Not exponential
• Avoid redesigns

Talking to the Node Service

• Everyone speaks XML (badly)
• Just TCP/IP - fsockopen()
• We’re issuing commands, not requesting data, so we

don’t bother to parse the response
– Just substring search for state=“ok”

• Don’t rely on it!

RSS / Atom / RDF

• Different formats
• All quite bad
• We’re generating a lot of different feeds
• Abstract the difference away using templates
• No good way to do private feeds. Why is nobody working

on this? (WSSE maybe?)

Receiving email

• Want users to be able to email photos to Flickr
• Just get postfix to pipe each mail to a PHP script
• Parse the mail and find any photos
• Cellular phone companies hate you
• Lots of mailers are retarded

– Photos as text/plain attachments :/

Upload via FTP

• PHP isn’t so great at being a daemon
• Leaks memory like a sieve
• No threads
• Java to the rescue
• Java just acts as an FTPd and passes all uploaded files

to PHP for processing
• (This isn’t actually public)
• Bricolage does this I think. Maybe Zope?

Blogs

• Why does everyone loves blogs so much?
• Only a few APIs really

– Blogger
– Metaweblog
– Blogger2
– Movable Type
– Atom
– Live Journal

It’s all broken

• Lots of blog software has broken interfaces
• It’s a support nightmare
• Manila is tricky
• But it all works, more or less
• Abstracted in the application logic
• We just call blogs_post_message();

Back to those APIs

• We opened up the Flickr APIs a few weeks ago
• Programmers mainly build tools for other programmers
• We have Perl, python, PHP, ActionScript, XMLHTTP and

.NET interface libraries
• But also a few actual applications

Flickr Rainbow

Tag Wallpaper

So what next?

• Much more scaling
• PHP 5?
• MySQL 5?
• Taking over the world

Flickr and PHP
Cal Henderson

Any Questions?

	Flickr and PHP
	What’s Flickr
	Logical Architecture
	Physical Architecture
	Where is PHP?
	Other than PHP?
	Big Application?
	Thinking outside the web app
	More cool stuff
	Even more stuff
	APIs are simple!
	XML isn’t simple :(
	I love XPath
	Creating API methods
	Red Hot Unicode Action
	Unicode for all
	Scaling the beast
	Why PHP is great
	MySQL Scaling
	MySQL Replication
	Looking at usage
	Replication is really cool
	Searching
	FULLTEXT Indexes
	But wait!
	JOIN’s are slow
	Our current setup
	Horizontal scaling
	Talking to the Node Service
	RSS / Atom / RDF
	Receiving email
	Upload via FTP
	Blogs
	It’s all broken
	Back to those APIs
	Flickr Rainbow
	Tag Wallpaper
	So what next?
	Any Questions?

