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What’s Flickr

• Photo sharing
• Open APIs
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Where is PHP?
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Other than PHP?

• Smarty for templating
• PEAR for XML and Email parsing
• Perl for controlling…
• ImageMagick, for image processing
• MySQL (4.0 / InnoDb)
• Java, for the node service
• Apache 2, Redhat, etc. etc.



Big Application?

• One programmer, one designer, etc.
• ~60,000 lines of PHP code
• ~60,000 lines of templates
• ~70 custom smarty functions/modifiers
• ~25,000 DB transactions/second at peak
• ~1000 pages per second at peak



Thinking outside the web app

• Services
– Atom/RSS/RDF Feeds
– APIs

• SOAP
• XML-RPC
• REST
• PEAR::XML::Tree



More cool stuff

• Email interface
– Postfix
– PHP
– PEAR::Mail::mimeDecode

• FTP
• Uploading API
• Authentication API
• Unicode



Even more stuff

• Real time application
• Cool flash apps
• Blogging

– Blogger API (1 & 2)
– Metaweblog API
– Atom
– LiveJournal



APIs are simple!

• Modeled on XML-RPC (Sort of)
• Method calls with XML responses
• SOAP, XML-RPC and REST are just transports
• PHP endpoints mean we can use the same application 

logic as the website



XML isn’t simple :(

• PHP 4 doesn’t have good a XML parser
• Expat is cool though (PEAR::XML::Parser)
• Why doesn’t PEAR have XPath?

– Because PEAR is stupid!
– PHP 4 sucks!



I love XPath

if ($tree->root->name == 'methodResponse'){
if (($tree->root->children[0]->name == 'params')
&& ($tree->root->children[0]->children[0]->name == 'param')
&& ($tree->root->children[0]->children[0]->children[0]->name == 'value')
&& ($tree->root->children[0]->children[0]->children[0]->children[0]->name == 'array')
&& ($tree->root->children[0]->children[0]->children[0]->children[0]->children[0]->name == 'data')){

$rsp = $tree->root->children[0]->children[0]->children[0]->children[0]->children[0];
}
if ($tree->root->children[0]->name == 'fault'){

$fault = $tree->root->children[0];
return $fault;

}
}

$nodes = $tree->select_nodes('/methodResponse/params/param[1]/value[1]/array[1]/data[1]/text()');

if (count($nodes)){
$rsp = array_pop($nodes);

}else{
list($fault) = $tree->select_nodes('/methodResponse/fault');
return $fault;

}



Creating API methods

• Stateless method-call APIs are easy to extend
• Adding a method requires no knowledge of the transport
• Adding a method once makes it available to all the 

interfaces
• Self documenting



Red Hot Unicode Action

• UTF-8 pages
• CJKV support
• It’s really cool





Unicode for all

• It’s really easy
– Don’t need PHP support
– Don’t need MySQL support
– Just need the right headers
– UTF-8 is 7-bit transparent
– (Just don’t mess with high characters)

• Don’t use HtmlEntities()!

• But bear in mind…
• JavaScript has patchy Unicode support
• People using your APIs might be stupid



Scaling the beast

• Why PHP is great
• MySQL scaling
• Search scaling
• Horizontal scaling



Why PHP is great

• Stateless
– We can bounce people around servers
– Everything is stored in the database
– Even the smarty cache
– “Shared nothing”
– (so long as we avoid PHP sessions)



MySQL Scaling

• Our database server started to slow
• Load of 200
• Replication!



MySQL Replication

• But it only gives you more SELECT’s
• Else you need to partition vertically
• Re-architecting sucks :(



Looking at usage

• Snapshot of db1.flickr.com
– SELECT’s 44,220,588
– INSERT’s 1,349,234
– UPDATE’s 1,755,503
– DELETE’s 318,439
– 13 SELECT’s per I/U/D



Replication is really cool

• A bunch of slave servers handle all the SELECT’s
• A single master just handles I/U/D’s
• It can scale horizontally, at least for a while.



Searching

• A simple text search
• We were using RLIKE
• Then switched to LIKE
• Then disabled it all together



FULLTEXT Indexes

• MySQL saves the day!
• But they’re only supported my MyISAM tables
• We use InnoDb, because it’s a lot faster
• We’re doomed



But wait!

• Partial replication saves the day
• Replicate the portion of the database we want to search. 
• But change the table types on the slave to MyISAM
• It can keep up because it’s only handling I/U/D’s on a 

couple of tables
• And we can reduce the I/U/D’s with a little bit of vertical 

partitioning



JOIN’s are slow

• Normalised data is for sissies
• Keep multiple copies of data around
• Makes searching faster
• Have to ensure consistency in the application logic



Our current setup
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Horizontal scaling

• At the core of our design
• Just add hardware!
• Inexpensive
• Not exponential
• Avoid redesigns



Talking to the Node Service

• Everyone speaks XML (badly)
• Just TCP/IP - fsockopen()
• We’re issuing commands, not requesting data, so we 

don’t bother to parse the response
– Just substring search for state=“ok”

• Don’t rely on it!



RSS / Atom / RDF

• Different formats
• All quite bad
• We’re generating a lot of different feeds
• Abstract the difference away using templates
• No good way to do private feeds. Why is nobody working 

on this? (WSSE maybe?)



Receiving email

• Want users to be able to email photos to Flickr
• Just get postfix to pipe each mail to a PHP script
• Parse the mail and find any photos
• Cellular phone companies hate you
• Lots of mailers are retarded

– Photos as text/plain attachments :/



Upload via FTP

• PHP isn’t so great at being a daemon
• Leaks memory like a sieve
• No threads
• Java to the rescue
• Java just acts as an FTPd and passes all uploaded files 

to PHP for processing
• (This isn’t actually public)
• Bricolage does this I think. Maybe Zope?



Blogs

• Why does everyone loves blogs so much?
• Only a few APIs really

– Blogger
– Metaweblog
– Blogger2
– Movable Type
– Atom
– Live Journal



It’s all broken

• Lots of blog software has broken interfaces
• It’s a support nightmare
• Manila is tricky
• But it all works, more or less
• Abstracted in the application logic
• We just call blogs_post_message();



Back to those APIs

• We opened up the Flickr APIs a few weeks ago
• Programmers mainly build tools for other programmers
• We have Perl, python, PHP, ActionScript, XMLHTTP and 

.NET interface libraries
• But also a few actual applications



Flickr Rainbow



Tag Wallpaper



So what next?

• Much more scaling
• PHP 5?
• MySQL 5?
• Taking over the world



Flickr and PHP
Cal Henderson



Any Questions?
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