
Seeking to demonstrate increased programmer productivity, a
functional organization of specialists led by a chief program-
mer has combined and applied known techniques into a un$ed
methodology.

Combined are a program production library, general-to-detail
implementation, and structured programming. The overall
methodology has been applied to an information storage and
retrieval system.

Experimental results suggest signijicantly increased productivity
and decreased system integration dificulties.

Chief programmer team management of production
programming

by F. T. Baker

Production programming projects today are often staffed by rel-
atively junior programmers with at most a few years of experi-
ence. This condition is primarily the result of the rapid develop-
ment of the computer and the burgeoning of its applications.
Although understandable, such staffing has at least two negative
effects on the costs of projects. First, the low average level of
experience and knowledge frequently results in less-than-opti-
mum efficiency in programming design, coding, and testing. Con-
currently, the more experienced programmers, who have both
the insight and knowledge needed to improve this situation, are
frequently in second- or third-level management positions where
they cannot effectively or economically do the required detailed
work of programming.

Another kind of ineffectiveness appears on many projects,
which derives from the typical project structure wherein each
programmer has complete responsibility for all aspects of one or
a small set of modules. This means that, in addition to normal pro-
gramming activities such as design, coding, and unit testing, the
programmer maintains his own decks and listings, punches his
own corrections, sets up his own runs, and writes reports on the
status of all aspects of his subsystem. Furthermore, since there
are few if any guidelines (let alone standards) for doing any of
these essentially clerical tasks, the results are highly individual-

56 BAKER I B M SYST J

ized. This frequently leads to serious problems in subsystem in-
tegration, system testing, documentation, and inevitably to a lack
of concentration and a general loss of effectiveness throughout
the project. Because such clerical work is added to that of pro-
gramming, more programmers are required for a given size sys-
tem than would be necessary if the programming and clerical
work were separated. There are also many more opportunities for
misunderstanding when there is a larger number of interpersonal
interfaces. This approach to multiprogrammer projects appears
to have evolved naturally, beginning in the days when one-pro-
grammer projects were the rule rather than the exception. With
the intervening advances in methods and technology, this is not
a necessary, desirable, or efficient way to do programming today.

H. D. Mills has studied the present large, undifferentiated, and
relatively inexperienced team approach to programming projects
and suggests that it could be supplemented-perhaps eventually
replaced - by a smaller, functionally specialized, and skilled
team.' The proposed organization is compared with a surgical
team in which chief programmers are analogous to chief sur-
geons, and the chief programmer is supported by a team of spe-
cialists (as in a surgical team) whose members assist the chief,
rather than write parts of the program independently.

A chief programmer is a senior level programmer who is respon-
sible for the detailed development of a programming system.
The chief programmer produces a critical nucleus of the pro-
gramming system in full, and he specifies and integrates all other
programming for the system as well. If the system is sufficiently
monolithic in function or small enough, he may produce it en-
tirely.

Permanent members of a team consist of the chief programmer,
his backup programmer, and a programming librarian. The back-
up programmer is also a senior-level programmer. The librarian
may be either a programmer technician or a secretary with addi-
tional technical training. Depending on the size and character of
the system under development, other programmers, analysts,
and technicians may be required.

The chief programmer, backup programmer, and librarian pro-
duce the central processing capabilities of the system. This pro-
gramming nucleus includes job control, linkage editing, and
some fraction of source-language programming for the system-
including the executive and, usually, the data management sub-
systems.

Specific functional capabilities of the system may be provided
by other programmers and integrated into the system by the
chief programmer. Functional capabilities might involve very

NO. 1 1972 CHIEF PROGRAMMER TEAM

complex mathematical or logical considerations and require a
variety of programmers and other specialists to produce them.

Thus the team organization directly attacks the problems pre-
viously described. By organizing the team around a skilled and
experienced programmer who performs critical parts of the
programming work, better performance can be expected. Also,
because of the separation of the clerical and the programming
activities, fewer programmers are needed, and the number of
interfaces is reduced. The results are more efficient implementa-
tion and a more reliable product.

a team Programming for The New York Times information bank was
experiment selected as a project suitable for testing the validity of the chief

programmer team principles. Since the programming had to
interface with non-IBM programs and non-IBM hardware, this
experiment involved most of the types of problems generally
encountered in large system development. Besides serving as
a proving ground for chief programmer team operational tech-
niques, the project sheds light on three key questions bearing on
the utility of the approach: (1) Is the team a feasible organiza-
tion for production programming?, (2) What are the implications
of the wide deployment of teams?, and (3) How can a realistic
evolution be made? The main theme of this paper is a discussion
of these questions. Before beginning, however, we present a
technical description of the project, which was performed under
a contract between The New York Times Company and the IBM
Federal Systems Division.

Information bank system

The heart of the information bank system is a conversational
subsystem that uses a data base consisting of indexing data, ab-
stracts, and full articles from The New York Times and other
periodicals. Although a primary object of the system is to bring
the clipping file (morgue) to the editorial staff through terminals,
the system may also be made available to remote users. This is a
dedicated, time-sharing system that provides document retrieval
services to 64 local terminals (IBM 4279/4506 digital TV display
subsystems) and up to one hundred twenty remote lines with
display or typewriter terminals.

Figure 1 is a diagram of the data flow in the conversational sub-
system, which occupies a 200 to 240K byte partition of a Sys-
tem/360 (depending on the remote line configuration) under the
System/360 Disk Operating System (DOS/360). Most of the in-
dexing data and all of the system control data are stored on an
IBM 2314 disk storage facility. Abstracts of all articles are stored
on an IBM 2321. The full text of all articles is photographed and

58 BAKER IBM SYST J

Figure 1 Conversational subsystem data flow

- - - - - - - - - -
- - - - - - - _" PRINTERS

I I

I I

I STORAGE 1-1 SYSTEM/360 I_
I f 4: HIGH-SPEED

"""---"- -

- - - - - - - - " - -- DTV KEYBOARDS

CAMERA CONTROLS

1

placed on microfiche, and is accessible to the system through
four TV cameras contained in a microfiche retrieval device
called the RISAR that was developed by Foto-Mem. A video
switch allows the digital TV display consoles to receive either
computer-generated character data from the control unit or arti-
cle images from the RISAR. Users have manual scan and zoom
controls to assist in studying articles and can alternate between
abstract and article viewing through interaction with the CPU.

Users scan the data base via a thesaurus of all descriptors (index
terms) that have been used in indexing the articles. This thesau-
rus contains complete information about each descriptor, often
including scope notes and suggested cross references. Descrip-
tors of interest may be selected and saved for later use in com-
posing an inquiry. Experienced users, who are familiar with the
thesaurus, may key in precise descriptors directly. When the
descriptor specification is complete, inquirers supply any of the
following known bibliographic data that further limits the range
of each article in which they are interested:

Date or date range
Publication in which the articles appeared
Sources other than staff reporters from which an article has

Types of article (e.g., editorial or obituary)
Articles with specific types of illustrations (e.g., maps and

been prepared

graphs)

NO. 1 . 1972 CHIEF PROGRAMMER TEAM

Section number where an article was published
Pages (e.g., front-page articles)
Columns
Relative importance of the article desired (on an eight-point
scale)

Users may further specify their retrieval by combining descrip-
tors that must appear in eligible articles by relating them in AND,
OR, and NOT Boolean logic expressions.

The article search is performed in two phases. An inverted in-
dex derives an initial list of articles that satisfy the Boolean in-
quiry statement. Articles on this list are then looked up in a file
of bibliographic data and further culled on the basis of any other
specified data. When the search is complete, the inquirer may
elect to sort the article references into ascending or descending
chronological order before he begins viewing.

Because there are only four cameras available in the RISAR, the
system limits article viewing to reduce contention. Thus the in-
quirer views abstracts of the retrieved articles and selects the
most relevant ones for full viewing when a camera becomes
available. Inquirers may also request hard copies of specified
abstracts and articles. Remote users cannot view the full articles
directly. The references in displayed abstracts, however, identi-
fy the corresponding articles for off-line retrieval from other
sources or through the mail.

A few other significant features of the conversational subsystem
may be of interest. It incorporates several authorization features
that inhibit unauthorized access to the system and fulfill the
conditions of copyright law and other legal agreements. Inquir-
ers who need assistance may key a special code and be placed in
keyboard communication with an expert on system files and
operations. This expert may also broadcast messages of general
interest to all users. Several priority categories exist to allocate
resources to inquirers and to control response time. In addition
to inquirer facilities, the conversational subsystem allows index-
ers using the digital TV terminals to compose and edit indexing
data for articles being entered into the system data base.

Figure 2 shows the relationship of the conversational subsystem
to the supporting subsystems. The indexing data previously
mentioned is processed by the data entry edit subsystem and
produces transactions for entering data into or modifying the
system files. Also produced is a separate set of transactions for
preparing a published index. The file maintenance subsystem
modifies the six interrelated files that constitute the system data
base, and also prepares file backups. Security data used by the
conversational subsystem to identify users and determine their

60 BAKER IBM SYST J

Figure 2 Information bank system

1
MAINTENANCE
TRANSACTIONS

DATA ENTRY

SUBSYSTEM
EDIT

t rJ 1 pym FILE SUBSYSTEM

+ I +
FILE MAINTENANCE

SUBSYSTEM
INDEXING SECURITY MESSAGE

DATA DATA TEXT

AUDIT AND
FILE LISTINGS SUBSYSTEM

DEFERRED
PRINT

SUBSYSTEM ADDRESSES

LOG AND
STATISTICS STATISTICS

ABSTRACT AND
FULL TEXT
ADDRESS

LOGlSTATlSTlCS
FILE PROCESSING

SUBSYSTEM
BILLING

DATA

COMMUNICATIONS
LOG LISTING

SAMPLE
STATISTICS

REPORTING

LISTINGS

authority is prepared by the authorization file subsystem. The
conversational subsystem interacts with users by presenting
messages on one of three levels ranging from concise to tutorial,
and the message file subsystem prepares and maintains the mes-
sage file. During operation of the conversational subsystem,
users may request hard copy of abstracts and/or articles. The
abstracts and the microfiche addresses of the designated articles
are printed by the deferred print subsystem. The conversational
subsystem also transmits a variety of data on its operation to the
log/statistics file, and the corresponding subsystem. A log con-
taining a summary of operations is printed. Billing data for sub-
scribers are passed to billing programs written by The Times.
Usage data are passed back to be added to the data base. Usage
statistics are passed to the statistics reporting subsystem, which
produces detailed reports on overall system usage, descriptor
(index term) usage, abstract usage, and full article usage.

NO. 1 . 1972 CHIEF PROGRAMMER TEAM

Team organization and methodology

The methods discussed in this paper have been individually tried
in other projects. What we have done is to integrate, consis-
tently apply, and evaluate the following four programming man-
agement techniques that constitute the methodology of chief
programmer teams:

Functional organization
Program production library
Top-down programming
Structured programming

functional Since our contracts have more legal, financial, administrative,
organization and reporting requirements associated with them than internal

projects of corresponding size, a project manager coordinates
these activities in all except the smallest contracts. Administra-
tive and technical problems are jointly handled by the chief pro-
grammer and the project manager, thereby permitting the team
and especially the chief programmer to concentrate on the tech-
nical aspects of the project.

A functional organization also segregates the creative from the
clerical work of programming. Because the clerical work is simi-
lar in all programming projects, standard procedures can be easi-
ly created so that a secretary performs the duties of program
maintenance and computer scheduling.

program We have developed a program library system to isolate clerical
production work from programming and thereby enhance programmer pro-

library ductivity. The system currently in use is the Programming Pro-
duction Library (PPL). The PPL, shown in Figure 3 , includes
both machine and office procedures for defining the clerical du-
ties of a programming project. The PPL procedures promote ef-
ficiency and visibility during the program development stages.

The PPL comprises four parts. The machine-readable internal
library is a group of sublibraries, each of which is a data set con-
taining all current project programming data. These data may be
source code, relocatable modules, linkage-editing statements,
object modules, job control statements, or test information. The
status of the internal library is reflected in the human-readable
external library binders that contain current listings of all library
members and archives consisting of recently superseded listings.
The machine procedures consist of standard computer steps for
such procedures as the following:

Updating libraries
Retrieving modules for compilations and storing results
Linkage editing of jobs and test runs

62 BAKER IBM SYST J

Figure 3 Programming production library

,[PROBLEM]

.
MARKED-UP NOTEBOOKS

CODING SHEETS

RUN REQUESTS

PROJECT NOTEBOOKS:
STATUS, ARCHIVES, 1 RUN I

COMPUTER

PROCEDURES

Backing up and restoring libraries
Producing library status listings

Ofice procedures are clerical rules used by librarians to perform
the following duties:

Accepting directions marked in the external library
Using machine procedures
Filing updated status listings in the external library
Filing and replacing pages in the archives

A programmer using the PPL works only with the external li-
brary. Using standard conventions, he enters directly into the
external library binders the changes to be made or work to be
done. He then gives these changes to the librarian. Later he re-
ceives the updated external library binders, which reflect the
new status of the internal library. The external library is always
current and is organized to facilitate use by programmers. A
chronological history of recent runs contained in the archive
binders is retained to assist in disaster recovery. The program-
mers are thus freed from handling decks, filing listings, key-
punching, and spending unnecessary time in the machine area.

The PPL procedures are similar to other library maintenance
systems and consist solely of Job Control Language (JCL) state-

NO. 1 * 1972 CHIEF PROGRAMMER TEAM 63

A WRITE JCLAND EXECUTE B ADD LINKAGE EDITOR C. ADD P L l I PROGRAM SEGMENT
LANGUAGE AND EXECUTE WITH STUBS.EXECUTE, AND

CONTINUE PROGRAMMING

I MAIN PROGRAM I

hr-ll-l SUBPROGRAM A SUBPROGRAM B SUBPROGRAM C

ments and standard utility control statements. By combining
standard machine procedures, standard office procedures, and
project libraries, the trained librarians provide a versatile pro-
gramming service that allows a team to make more effective use
of its time. The PPL also assists in improving productivity and
quality by providing visibility of the work, thereby allowing
team members to be aware of the status of modules that they are
integrating. Such visibility also permits members to be certain
of interface requirements. The internal working languages of a
team are the code and statements in the libraries, rather than a
separate set of documents that lag behind actual status. Pro-
grammers read each other’s code in order to communicate defi-
nitions, interfaces, and details of operation. Only when a ques-
tion arises that cannot be resolved by reading code, is it necessary
to consult another programmer directly.

top-down The third technique implemented and tested is that of top-down
programming programming. Although most programming system design is

done from the top down, most implementations are done from
the bottom up. That is, units are typically written and integrated
into subsystems that are in turn integrated at higher and higher
levels into the final system. The top-down approach inverts the
order of the development process. Figure 4 depicts the essence
of the top-down approach. Following system design, all JCL and
link-edit statements are written together with a base system. The
second-level modules are then written while the base system is
being checked out with dummy second-level modules and dum-
my files where necessary. Third-level modules are then written
while the second-level modules are being integrated with the
base system. This development cycle is repeated for as many
levels as necessary. Even within a module, the top-down ap-
proach is used by writing and running a nucleus of control code

64 BAKER IBM SYST J

first. Then functional code is added to the control code in an in-
cremental fashion.

Structured programming, also used in the information bank pro-
ject, is a method of programming according to a set of rules that
enhance a program’s readability and maintainability. The rules
are a consequence of a structure theorem in computer science
described by Bohm and JacopinL2 The rules state that any prop-
er program- a program with one entry and one exit - can be
written using only the following programming progressions that
are also illustrated in Figure 5.

A. Sequence
B. IF THEN ELSE
c. DO WHILE

Although these rules may seem restrictive and may require a
programmer to exercise more thought when first using them,
several advantages ensue. With the elimination of GO TOS, one
can read a program from top to bottom with no jumps and one can
see at a glance the conditions required for modifying a block of
code. For the same reason, tests are easier to specify. Further,
the rules assist in allowing a program unit to be written using the
top-down approach by writing control statements first and then
function statements. The use of CALLS to dummy subroutines or
INCLUDES of empty members permits compilation and debugging
at a much earlier stage of programming. Finally, if meaningful
identifiers are used, a program becomes self-documenting and the
need for lengthy comments and flow charts is reduced.

Conventions to support the use of structured programming are
required. A set of rules has been developed to format source
code so that indentation corresponds to logical depth. If exten-
sive change is necessary, a program is available to reformat the
source code.3 To make minor changes such as moving some
code a few columns, a utility program may be written or an ex-
isting one modified. Also, the lengths of individual blocks of
source code are small to enhance readability and encourage a
top-down approach. The objective is to have no block exceed a
single listed page, or about fifty lines. Finally, by extending the
range of structured programming progressions, efficiency of ob-
ject code can be significantly improved, and source code read-
ability is not impaired. Thus, iterative DOS with or without a
WHILE clause and a simulated ALGOL-like CASE statement based
on a subscripted GO TO statement and a LABEL array were per-
mitted in our project.

Structured programming has been described in terms of lan-
guages with block structures such as PL/I, ALGOL, or JOVIAL. It
is possible to introduce a simulated block structure into other

NO. 1 1972 CHIEF PROGRAMMER TEAM

types of languages and then to develop structuring rules for
them also. This has been done for System/360 Assembler Lan-
guage, a low level language, through a set of macros that intro-
duce and delimit blocks and provide DO WHILE, IF THEN ELSE
and CASE-type figures. Further, if the long identifiers permitted
by Assembler H are used, the source code is even more readable.

System development

This section discusses how the previously described techniques
have been used in developing the information bank. The project
was originally staffed with a chief programmer, a backup pro-
grammer, a system analyst (who was also a programmer), and a
project manager. Since a project requirement was that the infor-
mation bank operate under the System/360 Disk Operating Sys-
tem (D O S ~ ~ O) , the backup programmer began developing a ver-
sion of the programming production library (PPL) that would
operate under DOS/360. In parallel, the chief programmer and the
system analyst began developing a detailed set of functional
specifications. The first product of the team was a book of speci-
fications that served as a detailed statement of the project objec-
tives.

The team, at this point, reoriented itself from an analysis group
into a development group, and a programmer technician was
added to serve as a librarian. The system analyst began detailed
design of system externals, such as the messages, communica-
tion log, and statistics reports. The chief programmer and back-
up programmer worked together on designing the various sub-
systems and their interfaces.

file Since the system is heavily file oriented, efficient retrieval and
maintenance the capability of adding large volumes of new material daily

subsystem were requirements. Therefore, the chief and backup program-
mers initially emphasized the development of an interrelated set
of six files that provide the necessary file attributes. Declara-
tions of structures for these files were the first members placed
in the library. Detailed file maintenance and retrieval algorithms
were developed before any further design was done.

A substantial amount of data already existed on magnetic tape.
Therefore, to begin building files for debugging and testing the
system, it was desirable that the file maintenance subsystem be
developed. This subsystem was designed to consist of two major
programs and several minor ones. The chief programmer and
backup programmer each began work on one of the major pro-
grams. Working in top-down fashion, control nuclei for each
major program were developed. Functional code was gradually
added to these nuclei to handle different types of file mainte-

~

66 BAKER IBM SYST J

nance transactions until the programs were complete. The minor
programs were then produced similarly.

Because of the early need for the file maintenance programs, an
independent acceptance test was held for this subsystem. One of
the functions performed by the backup programmer was the
development of a test plan that specified all functions of the sub-
system requiring testing and an orderly sequence for performing
the test using actual data and transactions. An indication of the
quality achievable by the chief programmer team is afforded by
the fact that no errors were detected during the subsystem test.
In fact, no errors have been detected during fifteen months of
operation subsequent to the test.

While the file maintenance subsystem was being developed, the
chief programmer and system analyst designed an on-line sys-
tem for keying and correcting indexing data destined for infor-
mation bank files and for The New York Times Index. This in-
dexing system became the data entry subsystem and additions to
the conversational subsystem. The Index had previously been
prepared by a programming system from data obtained by key-
ing a complex free-form indexing language onto paper tape. The
existing language was, therefore, extended to include the fields
needed by the conversational subsystem and formalized by ex-
pressing it in Backus-Naur form. Because it was likely that the
language would be modified as the project evolved, we decided
to perform the editing of indexing data using syntax-direct tech-
niques. (Another programmer was added to the team to develop
the data entry subsystem around the syntax-directed editor.)

After the file maintenance subsystem had been delivered and the
externals of the system specified, the system analyst pro-
grammed the authorization file subsystem, the message file sub-
system, the log/statistics file processing subsystem, and the de-
ferred print subsystem. (Another programmer was added, who
wrote the statistics reporting subsystem.)

The chief programmer and backup programmer developed the
conversational subsystem. Again, operating in top-down fashion,
first programmed was the nucleus consisting of a time-sharing
supervisor and the part of the terminal-handling package re-
quired to support the digital TV terminals. This nucleus was
debugged with a simple function module that echoed back to a
display material that was typed on the keyboard. After the nu-
cleus was operational, development of the functions of the re-
trieval system itself commenced. System functions were pro-
grammed in retrieval order, so that new functions could be de-
bugged and tested using existing operational functions, and an
inquiry could proceed as far as programming existed to support
it. All debugging was done in the framework of the conversa-

NO. 1 * 1972 CHIEF PROGRAMMER TEAM

tional subsystem itself, and because of the time-sharing aspects
of the system, several programmers could debug their programs
simultaneously. The ability to modify tests as results were dis-
played at a terminal was helpful in checking out new code. Two
programmers were added to the team to write functional code. A
third programmer was added to extend the terminal-handling
package for the 2260 and 2265 display terminals, and for the 2740
communication terminal. These programmers rapidly acquired
sufficient knowledge of the interface with the time-sharing super-
visor to write functional code despite their short participation on
the team.

system During this development process, the backup programmer pre-
testing pared a test plan for the rest of the system to be used with realis-

tic inquiries for the test. Although some errors were found dur-
ing a five-week period of functional and performance testing, all
were relatively small, and did not involve the basic logic of the
system. Most errors were found in the functional code that had
been most recently added to the system and had been the least
exercised. The performance parts of the testing measured both
sustained load handling and peak load handling. In spite of the
fact that the performance tests were run on a System/360 Model
40 with three 2314 disk storage facilities as files, instead of on the
System/360 Model 50 with seven disk storage facilities for
which the performance objectives had been developed, perfor-
mance objectives were successfully met.

Productivity

A key objective of the chief programmer team approach was to
demonstrate increased productivity of the team over an equal
number of conventionally organized programmers. This section
discusses data on the productivity of the team and their strategy
for using their time. Typical productivity measures are computed
to facilitate comparison with other projects. Table 1 breaks down
the staff months applied on the project, and Table 2 displays mea-
sures of amounts of source code produced.

Standardized definitions have been used in preparing these ta-
bles and achieving comparable measures of productivity. Source
lines are eighty-character records in the library that have been
incorporated into the information bank and consist of the follow-
ing kinds of statements:

Programming language
Linkage-editor control
Job control

Source coding has been broken into the following three levels of
difficulty, which are summarized in Table 2:

68 BAKER IBM SYST J

Table 1 Analysis of project staffing by time and type of work

Work type

Requirements
Analysis
System design
Unit design,
programming,
debugging,
and testing
Documentation
Secretarial
Librarian
Manager
Total

Staff time
(man months)

Programmer
Chief Backup Analyst 1 2 3 4 5 Technician
_ _ _ ~

2.5 1 .o 8.0 0.5 - - - -

4.0 4.0 4.5 1.0 - - - -

-

-

12.0 14.0 10.0 13.0 4.5 2.8 3.7 4.5 -
2.0 2.0 4.5 1.5 0.2 0.2 0.3 0.3 -

5.5

24.0 23.0 27.0 16.0 4.7 3.0 4.0 4.8 5.5

- - - " - " -
- - - - " "
3.5 2.0 - " " - -

Table 2 lines of source coding by difficulty and level

Level
Dificulty High Low Total

Hard 5034 - 5034
Standard 44247 4513 48760
Easy 27897 1633 29530
Total 71178 6146 83324

Easy coding has few interactions with other system elements.
(Most of the support programs are in this category.)
Standard coding has some interactions with other system
elements. (Examples are the functional parts of the conversa-
tional subsystem and the data entry edit subsystem.)
Dificult coding has many interactions with other system
elements. (This category is limited to the control elements of
the conversational subsystem.)

Source coding types have been categorized as one of the fol-
lowing:

High-level coding in a language such as PL/I, COBOL, or JCL
Low-level coding such as assembler language and linkage-
editor control statements

Table 3 presents some simple measures of programmer produc-
tivity based on the same coding used for producing Tables 1 and
2. The first row includes work done on unit design, coding, de-
bugging, and acceptance testing. The second row summarizes

Manager Sec'y

- -
- -
- 7.0
- 2.0

11.0 -
11.0 9.0

Total

12.0

13.5

64.5
11.0
7.0
7.5

16.5
132.0

NO. 1 * 1912 CHIEF PROGRAMMER TEAM 69

1 visible and understandable. This knowledge allowed both him
~ and his management to react to problems sooner and more effec-
i tively than might have been the case had they been more de-
l tached from the work.

The relatively small size of the team made it highly responsive
to change. The original functional specification went through six
revisions, yet it was possible to adapt readily to major changes,
even those occurring after programming was well along. Im-
proved communication achieved through the consistent applica-
tion of top-down programming, structured programming, and the
PPL all contributed to team adaptability.

A functional organization was applied both within the team and
to the project organization as a whole. Within the team, the
functional distribution of work allowed team members to con-
centrate on those aspects of the job for which they were best
equipped and most productive. At the project level, the func-
tional organization allowed the chief programmer to concentrate
on technical progress of the programming, both internally and in
his relations with the system users. A very effective relationship
was established between the chief programmer and the project
manager, and no problems arose from the dual interface with the
users- who fully understood the responsibilities of each of the
managers. During a period when the chief programmer was off
of the project, the backup programmer successfully ran the pro-
ject.

The functional organization effectively broadened the range of
career opportunities in the programming field by allowing senior
programmers to continue to be productive in a technical capaci-
ty. Downward, the team approach offers programming related
clerical opportunities to nonprogramming personnel. The team,
as originally constituted, included a programmer technician for
the clerical function, but two problems arose with this approach.
The work did not require a programmer technician because the
PPL procedures were well enough defined that no programming
knowledge was required to operate it. Also, neither librarian
support nor secretarial support became full-time jobs on the
project. We, therefore, combined the two functions and trained
a secretary to perform them. With two weeks of on-the-job train-
ing, the secretary was capable of acting as librarian by using the
PPL. Combining the two jobs also worked well from a work load
standpoint because when programming work was heavy then
documentation was light, and vice versa.

The programming techniques and standards used by the team to
enhance productivity and visibility also worked as planned. Top-
down programming was similarly successful. System logic for
one of the major programs ran correctly the first time and never

required a change as the program was expanded to its full size.
This was helpful in debugging, since programs usually ran to
completion, and the rare failures were readily traceable to newly
added functions. Top-down programming also alleviated the in-
terface problems normally associated with multiprogrammer
projects, because interfaces were always defined and coded be-
fore any coding functions that made use of the interfaces.

The Programming Production Library run by the librarian-sec-
retary achieved its objectives of removing many of the clerical
aspects of programming from the programmer and of making the
project more visible and, hence, more manageable. It also en-
couraged modularity of the programs and made top-down pro-
gramming practical and effective.

Whereas the experiment was successful, there are still some
unanswered questions and unsolved problems. Most obvious,
perhaps, is whether the approach can be extended to larger pro-
jects. The best estimate at this time is that it probably can, but it
needs to be tried. The general approach would be to begin a pro-
ject with a single high-level team to do overall system design and
nucleus development. After the nucleus is functioning, program-
mers on the original team could become chief programmers on
teams developing major subsystems. The original team would
assume control, review, validation, and testing duties and per-
form integration of the subsystems into the overall system. The
process could be repeated at lower levels if necessary. It might
appear that such a top-down evolution of the development pro-
cess would increase the project time vis-&-vis the bottom-up ap-
proach. This is not necessarily true because of parallel develop-
ment and integration, and it may take even less time. In any
case, the risk should be substantially reduced because of the bet-
ter visibility and management control in the team methodology.

A second major question concerns team composition and train-
ing. Because the team is a close-knit unit producing a large sys-
tem at a faster-than-usual pace, close cooperation and good
communication are essential. It is, therefore, desirable that team
members be experienced professionals trained in the techniques
described. Although a team may include one or possibly two
less experienced programmers, larger teams would force the
chief programmer to spend too high a percentage of his time in
detailed training and supervision thereby reducing his own pro-
ductivity. One solution may be to place newly trained program-
mers in program maintenance or in projects that are extending
existing systems before placing them on teams that are develop-
ing new systems.

The selection of the chief programmer from among several can-
didates may be more difficult than was at first anticipated. The

72 BAKER IBM SYST J

chief programmer is responsible for team management and for
technical representation of the project to a customer and to his
own management. Therefore, management ability and experi-
ence are necessary qualifications. A chief programmer must also
possess the creativity and drive to make significant technical
contributions of his own and to assist other team members in
making their contributions. This essential combination of skills
rarely appears in the same individual. Thus the use of aptitude
testing should probably be considered as part of the selection
process. Potential chief programmers should of course first
serve as backup programmers to obtain first-hand experience
before taking on their own projects.

One final question that has frequently been asked is whether
chief programmers are willing to accept the technical and mana-
gerial challenges of large projects with few people. Experienced
chief programmers have responded to the challenges and have
found that it leads to a degree of satisfaction that is hard to
match.

To summarize, there is little in the chief p.rogrammer team or-
ganization and methodology that has not been previously tried.
Laid bare, it is basically a functional organization of program-
ming projects coupled with the use of tried and true tools to
improve productivity and quality. It works well when it all fits
snugly together and is applied in a consistent fashion over an
entire project. Continuing evolution shows promise of making
the programming production process more economical and more
manageable.

CITED REFERENCES
1. Chief Programmer Teams: Principles and Procedures, Report No. FSC 71-

5108, may be obtained from International Business Machines Corporation,
Federal Systems Division, Gaithersburg, Maryland 20760.

2. C. Bohm and G. Jacopini, “Flow diagrams, Turing machines and languages
with only two formation rules,” Communications of the ACM 9, No. 3, 366-
371 (May 1966).

3. K. Conrow and R. G . Smith, “NEATER2: a PL/I source statement refor-
matter,” Communications of the ACM 13, No. 11 (November 1970).

NO. 1 * 1972 CHIEF PROGRAMMER TEAM 73

