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The  “high-end”  water-cooled  processors in the 
IBM Enterprise  System/9000m product  family 
use  a CPU organization  and  cache  structure 
which  depart significantly from previous 
designs.  The  CPU organization  includes 
multiple execution  elements  which  execute 
Instructions out  of  sequence,  and  uses a new 
virtual register  management  algorithm to 
control them. It also  contains  a  branch history 
table to remember  recent  branches  and  their 
target  addresses so that instruction fetching 
and  decoding  can  be  directed  more  accurately. 
These  models  also  use  a  two-level  cache 
structure  which  provides  a  level 1 cache 
associated with each  processor  and  a  level 2 
cache  associated with central storage.  The 
level 1 cache  uses  a  store-through 
organization,  and is split into two separate 
caches,  one  used for instruction fetching  and 
the  other for operand  references.  The  level 2 
cache  uses a  store-in  method to handle  stores. 

Introduction 
As the circuit and packaging technology for implementing 
large mainframe processors has advanced and new  design 
techniques have evolved, it has become possible to build 
more complex processors. The advantage gained  from this 
complexity is an increase in performance well beyond the 
performance gained by increased circuit speed. Many such 
techniques have been introduced over the years, and two 
of the major ones, out-of-sequence execution and cache 
storage, have had an interesting interaction. 

About 25 years ago, before caches had been invented, 
one of the major  limiting factors in processor performance 
was the time needed to access main storage, perhaps ten 
times greater than the cycle time of a processor. The major 
approach of that era in  dealing with this problem was to 
increase the number of instructions being processed at any 
given  time, and to allow operations to take place as soon 
as the required data were available, which implies  allowing 
operations to occur out of their logical sequence. During 
that period, IBM designed and introduced the System/360m 
Model 91, which had exactly those characteristics [l]. 
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Physical  layout of ES/9000 Model 520-based processors. 

Immediately after the Model 91 was designed, a new 
idea was conceived: cache storage. A cache is a high- 
speed buffer which lies between the processor and  main 
storage and holds recently accessed main storage data. 
This reduces the average access time for main-storage data 
by a large factor. Cache storage on a mainframe processor 
was introduced by IBM on the Systed360 Model 85  in 
1968  [2], although the particular cache organization used 
on the Model 85 was abandoned on subsequent IBM 
processors in favor of the organization described in this 
paper. 

Since a cache is a much  more  effective technique for 
dealing with the disparity between main-storage access 
time  and processor speeds than out-of-sequence operation, 
all  large  IBM processors since the Model 85 have had 
caches, and until now, out-of-sequence execution has not 
been used again. These processors, of which the IBM 
3090m [3] was typical, have processed a number of 
instructions at the same time,  using  logic which is 
specialized for particular stages of processing, but always 
keeping the instructions in sequence. This is usually called 
a pipelined  design. 

(ES/900Om) Models 520,640, 660, 740,820, 860, and 900 
Now, with the high-end Enterprise System/9000m 
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using out-of-sequence execution, and has also enhanced 
the cache structure  by introducing a two-level cache to 
better match the speed of  main storage and the processor. 
These and other enhancements to the design have been 
made possible by the higher density of the technology 
available to implement the system, and have been made 
necessary by the need for higher performance. 

The physical packaging of a processor is illustrated in 
Figure 1, which depicts a single board containing six 
thermal conduction modules  (TCMs). Four of the modules 
are standard, and the other two are for optional features. 
Both optional positions are used when the Vector Facility 
(VF) is installed, and one of them is used when the 
Integrated Cryptographic Feature (ICF) is installed. 
Because of their common usage of one of these TCM 
positions, the VF and ICF cannot be installed at the same 
time on a processor. 

The four standard TCMs provide the logic  which 
processes the instructions, and a portion of the cache 
structure. These TCMs, the board on which they are 
placed, and their associated power supplies compose what 
is generally referred to  as a processor. However, designers 
of this logic  will often make a distinction, using the term 
processor or CPU to mean only the logic  which processes 
the instructions, distinguishing  it from the logic which 
implements the cache; that is the way the term CPU is 
used in this paper. 

The purpose of this paper is to describe the CPU and 
the cache on a logical level. No attention is given to the 
technology, the physical package, multiprocessing 
considerations, the vector or cryptographic features, or 
the rest of the system, except to the extent needed to 
understand the logical operation of the CPU and cache. 
Figure 1 identifies where particular elements are located, 
and Table 1 defines the meaning of the acronyms used in 
this paper. 

General  comments  on  cache  structure 
A cache is a hardware mechanism for holding data from 
central storage so that the data can be retrieved quickly. 
This is done because most programs make repeated 
references to the same area in storage within a relatively 
short time. A cache allows all of these references, except 
the first one, to be satisfied by a quick reference to the 
cache rather than a more time-consuming central storage 
reference. 

The type of cache organization described in this section 
has been in use for about 20 years. It is used for the 
caches in these models, and is also the basis for the 
translation lookaside buffer (TLB) and branch history table 
(BHT)  in these models. 

The basic element of central storage which is  managed 
is  called a line (or sometimes a block), and consists of a 
contiguous set of bytes which begin at an address which is 
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an integral multiple of the line size. The line size is always 
a power of two. For example, if the line size is 128 bytes, 
then lines begin at addresses 0, 128,  256,  384, etc. In 
binary, these addresses have in common that their low- 
order bits (25-31) are all zero. Also, all bytes within a 
particular line have addresses with the same value in their 
high-order bits (1-24), which is referred to as the line 
number. 

The lines in a cache are divided  among a number of 
partitions, each of which contains the same number of 
lines. The number of partitions is a power of 2, but the 
number of lines per partition, called the associativity, may 
be any integer. Typical numbers might be for a cache to 
contain 131 072 bytes, divided into 1024 lines of 128 bytes 
each, which are organized into 256 partitions with four 
lines each. These are the numbers that apply to the 
L1 D-cache and L1 I-cache described later, and are used 
as an example in the rest of this section. 

A rule is established that each line of data from central 
storage is only allowed to be present in a single partition, 
although it may be in any of the cache lines within that 
partition. Each partition is assigned a binary number, and 
the lines that are allowed to occupy that partition are those 
for which the low-order bits of the line  number match the 
partition number. In the example, the line  number consists 
of bits 1-24 of the address, and there are eight bits in 
the partition number because there are 256 partitions; 
therefore, bits 17-24 of the address define the partition a 
line  may occupy. Lines with 00000000 in those bits go to 
partition 0, lines with 00000001 go to partition 1, and so 
forth. 

There are two main elements which implement a cache: 
a directory and a data array. The directory records which 
central storage lines are in the cache, and the data array 
holds the actual data. The directory is implemented using 
an array which has a word for each cache partition, with 
each word long enough to contain an entry for each line  in 
the partition. In the example, the directory contains 256 
words, each long enough to hold four line entries. The 
contents of a line entry are a valid bit  and those bits  from 
the central storage address of the line which are above the 
partition bits. When  it is desired to fetch a doubleword, 
the partition bits in the address (17-24) are used to read 
the line entries for that partition from the directory, and 
the high-order bits of the address (1-16) are compared to 
each of the line entries. If none of the entries matches, the 
line is not in the cache. If one of them matches (and is 
valid), that cache line contains the desired line  from 
central storage. The address of the doubleword in the 
cache data array is then formed by encoding the outputs 
of the comparators into two bits, and concatenating the 
address bits which define the partition and the doubleword 
(17-28). This address is then used to read the doubleword 
from the data array on the following CPU cycle. 
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Table 1 Nomenclature  and  definitions. 

ABC 
ACE 
ACL 
BHT 
BRAL 
BXE 
CPU 

D-ACE 

DRAL 
FR 
FXE 
GR 
GXE 
I-ACE 

I-reg 
ICF 
IID 
L1 D-cache 
L1 I-cache 
LRU 
SXE 
TCM 
TLB 
VF 
VXE 

A and B conditional  path  flags 
address  computation  element 
array  control  list 
branch  history  table 
backup  register  assignment  list 
branch  execution  element 
central  processing unit, exclusive of cache 

implementation logic 
data address  computation  element 

(a subsection of the ACE) 
decode-time  register  assignment  list 
floating-point  register 
floating-point  execution  element 
general  register 
general  execution  element 
instruction  address  computation  element 

instruction  register 
Integrated  Cryptographic  Feature 
instruction  identification  number 
level 1 data cache 
level 1 instruction cache 
least  recently  used  replacement  algorithm 
system  execution  element 
thermal  conduction  module 
translation  lookaside  buffer 
Vector  Facility 
vector  execution  element 

(a subsection of the ACE) 

Another method, illustrated in Figure 2, allows faster 
access to the data in the cache. Notice that in the method 
described above, all except two  of the bits needed to 
address the data array come from the original address; 
therefore, it is possible to determine which doubleword to 
read from the data array to within four possibilities just 
using those bits (17-28). In particular, the four possibilities 
are the addressed doublewords in each of the four lines in 
the partition. The faster method of accessing the cache is 
to read all four of those doublewords at the same time 
the directory is being read; then, when the cache line 
containing the desired data is determined, the appropriate 
doubleword is selected. This often makes it possible to 
complete a cache access in a single CPU cycle. 

When a line  is  not found in the cache, it  is  loaded  from 
central storage, and the directory is changed to reflect the 
address of the new  line. The new  line is placed in the 
appropriate partition, taking the place of one of the lines 
already there. The method of selecting a line to be 
replaced is known as the replacement algorithm;  an 
algorithm commonly used for this procedure is the least 
recently used (LRU) algorithm. This algorithm maintains a 
list for each partition, with the most recently used line at 
the top, followed by the next most recently used line,  and 
with the least recently used one at the bottom. This list is 
updated whenever a line is referenced, and when a line  is 
replaced, the least recently used line is selected. The LRU 
algorithm can be implemented by using one bit to reflect 
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Diagram of typical  cache  structure. 

the relative position in the list of each unique pair of lines. 
For an associativity of 4, 6 bits are required, and for an 
associativity of 2, only a single  bit is required. Other 
replacement algorithms are also used which require fewer 
bits and work approximately as well as  the LRU 
algorithm. 

Cache implementations can be divided into two 
categories on the basis of the way in which stores are 
handled: one is called a store-through cache, and the other 
is called a store-in cache. In a store-through cache, every 
time a store occurs, in addition to updating the cache, the 
store is also passed to the next level of storage. Then, 
when a line is replaced in the cache, it need only be 
overwritten by the new  line.  In a store-in cache, stores 
only update the line  in the cache, and the next level of 
storage is left with  old values. In this case, when a line 

71 6 which has been changed is replaced, it must be written to 

the next level of storage before it may be overwritten by 
the new  line. Both methods have been used by computer 
designers, and there are a variety of considerations in 
making the decision between the two methods. Some of 
these considerations relate to how cache integrity is 
maintained in a multiprocessing system, others relate to 
performance, and still others relate to the specific 
characteristics of the technologies available for building 
the system. Neither method is best in  all cases, and the 
discussion of the considerations involved is beyond the 
scope of this paper. 

There are two other elements in  high-end ES/9000 
processors which are structured similarly to caches: the 
translation lookaside buffer (TLB) and the branch history 
table (BHT). Instead of caching lines of storage, they 
cache information about a portion of storage-in 
particular, about how addresses translate, and about the 
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A 

ES/9000 Model 900 system  diagram. 

presence of branches. They do not have data arrays, but 
instead have larger directory entries which hold this 
additional information. Otherwise they are the same. 

System  and L2 cache  structure 
The high-end  ES/9000  models contain a two-level cache 
system. The two cache levels are referred to as L1 
(level 1) and L2 (level 2). The L1 cache is closer to the 
CPU, and each processor contains its own L1 cache. The 
L2 cache is (conceptually) a single cache which serves all 
of the processors. These two caches provide two levels of 
speed matching between the CPUs and central storage for 
high performance. 

showing a two-sided structure with three processors, half 
of central storage, and half of the L2 cache on each side. 
Each half of the L2 cache operates independently, and 
serves to buffer lines from the central storage on its side. 
Central storage is interleaved between the two sides on 
four-megabyte boundaries; that is, the first four megabytes 

Figure 3 illustrates the ES/9000  Model 900 system, 

are on one side, the next four megabytes are on the other 
side, and so forth. When a processor needs to access a 
piece of data, it determines from the central storage 
address which side has the data, and directs its request to 
that side of the system. Each processor has a full set of 
control signals and data buses connecting it to each side, 
and can access data through each side  with equal speed. 
Since there is no performance bias based on which side of 
the system contains a piece of data, the performance of the 
system is essentially the same as if it contained only a 
single L2 cache. 

megabytes. Each side contains 8192 lines of 256 bytes 
each, and is four-way associative. The replacement 
algorithm uses only three bits and is a variant of the LRU 
algorithm. The buses between the L2 cache and central 
storage operate at a rate of a quadword (16 bytes) per 
cycle. The L2 cache data arrays are four-way interleaved 
by quadword, thus allowing a high rate of data transfer 
both between L2 and central storage and between the L2 

The L2 is a store-in cache which contains a total of four 
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and L1 caches. As just one example, it is possible for an 
L2 cache to be reading four different lines and transferring 
them to L1 caches in four different processors at the same 
time. 

data transfers to the L2 cache originate in the CPU and 
consist of individual store operations. Stores can occur at 
a rate of one per cycle from each CPU, and their size is a 
doubleword (except that the vector execution element can 
store a quadword per cycle, subject to certain restrictions). 
Because of the potentially high rate of store traffic to the 
L2 cache, it includes a 16-quadword store buffer for each 
processor connected to it. When  an instruction creates 
stores to successive doublewords, the CPU tags those 
stores appropriately, and they are organized into quadword 
stores  as they are put into the L2 store buffer. 

consist of L1 lines (128 bytes), with the transfer occurring 
at a quadword per cycle. 

By contrast, the L1 cache is a store-through cache; thus, 

Data transfers from the L2 cache to the L1 cache 

L1 cache  structure 
The L1 cache actually consists of two separate and 
independent caches, as depicted in Figure 4: an instruction 
cache (L1 I-cache) devoted to holding lines from which 
instruction fetches have been made, and a data cache 
(L1 D-cache) devoted to holding lines for operand 
references. Several motivations led to a split-cache design, 
all centered on improved CPU performance. It  was desired 
to reduce the number of cache misses, because each one 
requires a relatively lengthy access to fetch a new  line. 
Although the CPU does not have to stop operation on a 
cache miss, there is usually a sequence of dependencies 
on the data which result in the CPU losing a significant 
portion of the time required for the line fetch. The way to 
reduce the number of cache misses is to make the cache 
larger so that it can hold  more data. The desired design 
point was a 256KB cache, but the technology available 
limited the cache size to 128 KB on a single  TCM when 
the associated control and data path circuitry was 
considered. While  not as good as a single  256KB cache 
from a cache-miss point of view, two 128KB caches are 
nevertheless considerably better than a single one. 

Another consideration was a desire to improve the cache 
fetch bandwidth-the amount of data which can be fetched 
in a given amount of time. On previous large  IBM 
processors with only a single cache, only one fetch could 
be made each cycle, either for instructions or for data. 
It  was the practice on those processors to give operand 
fetches priority over instruction fetches, and there were 
times when the CPU was unable to decode instructions 
because it had been unable to make the needed instruction 
fetches. By implementing two caches, one devoted to each 
type of request, two requests can be made each cycle, and 
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requests. This  is of particular value in a CPU which has a 
relatively high-performance  design point, and needs to 
make more requests within a given number of CPU cycles. 

A further consideration was the number of places in 
the CPU which need to connect to the cache, and their 
distance from the cache. If there is only a single cache, all 
requests must have priority determined among  them,  all 
addresses must come together in one place, and the data 
output from the cache must be powered up with  enough 
copies to go to all of the places that need storage data. 
With two caches that are specialized in their usage, fewer 
requests go to each cache, and the output from each cache 
goes to fewer places. Moreover, there is a potential for 
placement of the caches such that the distances involved 
are shorter. Without doing two complete designs, it  is 
difficult to measure the value of this, but the designers 
believe that having two caches has reduced the time 
required for paths that might  limit CPU cycle time. 

each cache as large as would fit on a TCM (that is, 128 
KB). Both caches have lines of 128 bytes, are four-way 
associative, and use the LRU replacement algorithm. The 
same central storage line can be in both L1 caches if it has 
been accessed both for an operand and an instruction. 

The data array in the L1 D-cache is two-way interleaved 
by doubleword. This permits a store and a fetch operation 
to occur at the same time,  and  it permits a quadword to be 
fetched or stored (by accessing the same address in both 
interleaves), which is useful when lines are loaded from 
the L2 cache, and for accesses by the vector execution 
element. It is not possible for the processor to fetch two 
doublewords from the cache at the same time because only 
one address can be looked up in the cache directory on 
each cycle, and because data paths to return two 
independent pieces of data are not provided. 

receives lines that are being loaded from the L2 cache and 
holds them until cycles are available to write the data into 
the cache without interfering with CPU fetches. This 
improves performance by eliminating a potential source of 
interference, and does not introduce any performance 
penalty because a piece of data in the line-fetch buffer can 
be fetched by the CPU as fast as if it were in the cache. 

The addressing structure associated with the L1 caches 
is considerably more complicated than that associated with 
the L2 cache. In the L2 cache, a piece of data is  identified 
by its address in central storage, and that is the only 
address that need be considered. However, the 
System/390@ architecture (ESA/39OW) includes a rich 
address-translation structure which  allows the physical 
central storage address at which a piece of data is located 
to be different  from the address generated by the program 
(the logical address). Relocation of data is done in units of 
4096 bytes called pages, based on entries in a set of tables 

For these reasons a split-cache design was chosen, with 

The L1 D-cache includes a line-fetch  buffer which 
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in central storage. This address translation is carried out performance if it were used for every storage reference, 
by the logic associated with the L1 caches. First, there there is also a translation lookaside buffer (TLB) which 
is a mechanism called a translator which takes a logical remembers recently performed translations, so that the 
address and carries out the required operations to result can be found quickly if it is needed  again. The TLB 
determine its central storage address. Because this process is structured similarly to a cache, contains 512 entries, and 
takes a number of cycles and  would greatly degrade is two-way associative. Each entry contains the logical 71 9 
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address of a page, the central storage address to which it 
translates, the storage protection key associated with that 
page,  and some control information. 

The CPU places its fetch requests and their associated 
logical addresses into an eight-position fetch queue 
between the CPU and the L1 D-cache in the logical order 
of the instructions with  which they are associated, and 
they are taken from the queue in the same order. When 
the L1 D-cache processes one of these requests, it reads 
the two entries from the TLB partition addressed by bits 
12-19, reads the four entries from the cache directory 
partition addressed by bits 17-24, and reads the 
doubleword within each of those cache lines defined by 
address bits 25-28. The L1 D-cache control logic examines 
the TLB output and the addresses of the lines in the cache 
to determine whether an entry in each matches the address 
being looked for. If so, the data can be accessed, and the 
appropriate doubleword of data is gated to the output bus. 
All of this occurs in one processor cycle. If neither logical 
address from the TLB matches, the logical address is sent 
to the translator, and after the central storage address is 
determined, a new entry is made in the TLB. If none of 
the four addresses from the cache directory matches, a line 
is loaded from the L2 cache. 

The first step in processing stores is  to make a test 
request to the store address. This request is the same as a 
fetch except that no data are returned from the L1 D-cache 
to the CPU, data are loaded into the cache in a special 
store mode, and the checking for access exceptions is 
based on the requirements for storing. The result of this 
fetch is that it is known whether the address can be 
accessed for storing, where the data are in the cache, 
and what the central storage address is. This and other 
information, such as the number of bytes to be stored and 
the store buffers which are assigned to the data, are placed 
into one of the six positions in the  store queue. When a 
store-type instruction changes multiple doublewords, but 
all  of them are within a single L1 D-cache line, only a 
single test request is made, and only a single store-queue 
position is used, although multiple doublewords of store 
buffering are assigned. If the stores extend across multiple 
L1 D-cache lines, a test fetch is made and a store-queue 
position is assigned for each line  affected. Later,  as the 
instruction executes, the data to be stored are placed in 
the appropriate store buffers. Still later, after completion of 
the instruction, the data from the store buffers are written 
into the L1 D-cache, and sent to the L2 cache. Writing 
into the L1 D-cache does not require another access to the 
TLB or the cache directory because this information is 
already in the  store queue. This is what allows stores to 
take advantage of the interleaving of the data arrays and to 
operate at the same time as another fetch. 

The size, line size, and partition structure of the L1 
720 I-cache are the same as the L1 D-cache. Also, the L1 

I-cache has a line-fetch buffer, can receive a quadword 
each cycle during a line fetch, and provides a doubleword 
in response to a fetch. There are two areas of significant 
difference-the  handling of stores and the TLB structure. 
Stores are never performed to the L1 I-cache; if a line in 
the L1 I-cache is changed by a store, it  is  invalidated 
rather than updated. The TLB associated with the L1 
I-cache has two levels, referred to as a primary TLB and a 
secondary TLB. The primary TLB contains 32 entries and 
is one-way associative, and the secondary TLB contains 
256 entries and is four-way associative. If a desired fetch 
address is found in the primary TLB, the access requires 
only a single cycle. If an address is not in the primary 
TLB but is in the secondary TLB, two extra cycles are 
required for the access, and the address is moved into the 
primary TLB. If  an address is not found in the secondary 
TLB, the L1 I-cache logic is not able to translate the 
address because it does not contain a translator. Instead, 
the address is sent to the L1 D-cache translator for 
processing, and before translating it the L1 D-cache 
looks first in its own  TLB. Therefore, logical addresses 
presented to the L1 I-cache have the benefit of being 
looked up in three TLBs before they are translated by the 
translator. This rather different TLB structure is used 
because of the different patterns of addresses presented to 
an instruction cache, and for other reasons related to 
dealing with some special cases, which are beyond the 
scope of this paper. 

Instruction  decoding  and  branch  processing 
Figure 5 depicts the main elements involved in instruction 
fetching, instruction decoding,  and branch processing. 
Most of the connections between the elements in Figure 5 
are control signals, and only the major ones are shown. 

is fetched from the L1 I-cache as doublewords and  is 
buffered  in a five-doubleword instruction buffer. From 
there instructions are gated to the instruction registers 
(I-regs) and decoded. Decoding consists of examining  an 
instruction, determining what resources it needs, and 
breaking it into parts which are sent to the appropriate 
places to have their required operations performed. The 
processor contains two I-regs to hold instructions being 
decoded; it  can decode two instructions at a time, subject 
to some restrictions. Decoding  is always in order; only 
consecutive instructions are considered for simultaneous 
decoding, and if the first one cannot decode, the second 
one is  not permitted to decode either. Certain instructions 
must decode by themselves:  all six-byte-long instructions, 
and those requiring more complicated and unusual 
processing. A branch may decode at the same time as its 
preceding instruction, but the following instruction may 
not decode with the branch. There are limits on the data 
paths available to transmit instructions to various parts of 

The instruction stream which  is expected to be executed 
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the processor which impose restrictions on decoding, and 
instructions may not decode if needed resources are 
unavailable. 

When a branch occurs, the processor makes a judgment 
as  to which way it is most likely to go, and both 
instruction fetching and instruction decoding proceed 
according to that judgment. The processor does not fetch 
instructions along the alternate path. To improve branch 
processing, the CPU has a branch history table (BHT) 
which remembers branches recently taken, and the address 
to which they branched. The BHT is structured similarly 
to a cache, contains 4096 entries, and is two-way 
associative. Each entry can record information about one 
branch. Each time a branch is executed, a decision is 
made about whether it should be in the BHT. The criterion 
is simple: If the branch should be judged taken when 
encountered again, it should be in the BHT; if it should be 
judged not taken, it should not be in the BHT. If it  is 
decided that a branch which is in the BHT should not be 
there, its entry is marked invalid; if it is decided that a 
branch which is not in the BHT should be there, it is 
written into the appropriate partition. 

To discuss how this criterion is applied to particular 
branch instructions, it is useful to divide them into three 

categories: those that are always taken, BRANCH ON 
CONDITION, and the rest. Using the criterion given, 
those branches which are always taken obviously belong  in 
the BHT. On the other hand, BRANCH ON CONDITION 
instructions are variable in  how they are used, and when 
looked at as a group, roughly half are taken, and half are 
not taken. However, when individual BRANCH ON 
CONDITION instructions are examined, there is a greater 
degree of consistency, with many taken most of the time 
and many not taken most of the time. Therefore, a good 
predictor of what a BRANCH ON CONDITION will do 
on its next execution is what it did  on its last execution; 
consequently, if one is taken, it is kept (or placed) in the 
BHT,  and if one is not taken, it is left out of (or removed 
from) the BHT. The remaining branches, BRANCH ON 
COUNT and BRANCH ON INDEX, are used in a more 
regular way, almost always to close a loop. Therefore, it is 
a good guess that one of these branches will be taken on 
its next execution, even if it was not taken on its last 
execution; consequently, they  are always kept (or placed) 
in the BHT. That is, they are treated the same as branches 
that are always taken. 

To understand the criterion for placing branches in the 
BHT,  it is worth noting that the BHT serves two purposes, 721 
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first to improve the judgment of the CPU about which 
branches are taken, and second to make the target address 
of the branch available sooner so that fetching of the target 
instruction stream can begin sooner. In the case of 
branches which are always judged to be taken, that 
judgment could be made by examining the branch, with no 
need for it to take up space in the BHT. However, that 
examination could not occur until the branch reaches the 
I-register, and the target address would not be known 
until  it is calculated. By  being recorded in the BHT, the 
instruction-fetching controls are alerted to the presence of 
a branch several cycles earlier, during the instruction- 
fetching process, and are provided with the address to 
which  it branched the last time; this address is used to 
redirect instruction fetching. This often makes it possible 
for the target instruction of a branch to be available for 
decoding on the cycle immediately after the branch 
decodes, thus avoiding the discontinuity in processor 
operation that is usually associated with branches. 

information-the address of a branch and its target address 
from the last time  it executed. The address of the branch is 
used to determine where the branch entry is placed in the 
BHT and to identify it in the manner that was described 
for caches, except that bits 1-11 are not implemented 
because simulation indicates that just assuming that they 
match would  not  significantly  affect performance. As 
discussed above, the target address is used to redirect 
instruction fetching. 

Although the BHT works well to improve branch 
processing, there is no guarantee that it is  right, and there 
are a number of reasons why it can be wrong. A branch 
may be erroneously recognized because bits 1-11 of the 
branch address are not recorded in the BHT.  The 
instruction stream in storage may have changed since a 
branch was found there. A branch may go to a different 
address than it did the last time  it executed, or it  may  not 
be taken at all. A taken branch may be found in the 
instruction stream that was not recorded in the BHT. 
The processor contains logic which checks that all of the 
decisions based on information from the BHT were 
correct, and, if not, takes corrective action. Primarily, this 
involves canceling instructions decoded along a wrong path 
that have been sent throughout the processor for 
execution. 

When a branch decodes, the instructions which follow 
it are said to be part of a conditional path. If a second 
branch decodes, the instructions following  it are still part 
of the original conditional path, and are also part of a new 
conditional path. Two conditional paths, designated A and 
B, can be active at one time. A two-bit ABC  (A and B 
conditional path) field  is maintained to reflect the 
conditional status of each instruction decoded. The first bit 

722 is  on if the instruction is part of path A, and the second bit 

Fundamentally, a BHT entry contains two pieces of 
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is on if it  is part of path B; this information is carried with 
all operations performed for the instruction. At some 
point, for each branch, it is decided either that all  ,of the 
decisions were made correctly, or that something was 
wrong and the path must be canceled. If all of the 
decisions were correct, a path-correct signal is sent out, 
and  in  all of the ABC fields the bit associated with that 
path is turned off. That path may then be used for another 
branch. If something was wrong, a path-wrong  signal is 
sent, all operations which are part of that path are 
canceled, and instruction fetching and decoding are 
restarted at the correct instruction address. The control 
logic for the A and B conditional paths, and some other 
branch-resolution logic, are collectively referred to as the 
branch execution element (BXE). 

Execution  elements 
The phrase “executing an instruction” means performing 
the principal operation called for by the instruction. In the 
case of  ADD, it means adding the two operands together, 
as distinguished  from other operations such as fetching the 
instruction, decoding it, calculating its address, fetching its 
operand, and putting the result away.  Most instructions are 
executed in one of three execution elements containing 
specialized logic. They are  the general execution element 
(GXE), the floating-point execution element (FXE), and 
the system execution element (SXE). A vector execution 
element (VXE) is added when the optional Vector Facility 
(VF) is installed. Also, there are other places in the CPU 
where a few instructions are executed. One of these is the 
address computation element (ACE), whose principal 
purpose is to compute addresses and make storage 
requests, but which also executes a few instructions such 
as LOAD ADDRESS. The branch execution element 
(BXE) controls conditional execution, resolves whether 
branches are taken, and operates with other execution 
elements to execute most branches; for example, for 
BRANCH ON COUNT the BXE controls the conditional 
path and resolution, but the GXE performs the necessary 
processing and testing of the general register involved. 
Only one instruction, BRANCH ON CONDITION, is 
executed by the BXE operating alone. The data flow 
diagram  in Figure 6 shows the execution elements. 

The GXE executes most instructions which perform 
operations on the GRs, and most of the other simple 
instructions. Its instructions typically take only a single 
cycle to execute. Some examples are ADD  (A, AR), 
EXCLUSIVE OR (X, XR, XI), STORE (ST), and 
COMPARE  (C,  CR). Some of the longer instructions 
executed in the GXE are MULTIPLY (M,  MR) and 
COMPARE AND SWAP  (CS,  CSD). In some respects the 
GXE is a single execution element, and in other respects it 
is two separate but closely related execution elements. It 
has a single six-position queue to hold instructions 
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Timing for a typical GXE instruction. 
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awaiting execution, but it has two sets of execution logic 
which operate in parallel and independently. The division 
of work between these two sets of execution logic  is 
determined by where the result is placed.  One set is for 
instructions which put their result in a  GR, and the other 
set is for instructions which put their result in storage. A 
few instructions (such as COMPARE) do not put a result 
in either place and can execute in either set of execution 
logic.  COMPARE AND SWAP, which puts a  result in both 
places, requires both sets of execution  logic. It is  possible  for 
two instructions to be taken out of the instruction queue at 
the same time,  with one going to each set of execution 
logic, and producing results at the same time  (which  go to 
different places). Since most instructions require only a 
single cycle to execute, an instruction execution rate of 
two instructions per cycle can be maintained for a period 
of time. Instructions in the queue can execute as soon as 
their input operands are ready, and thus may be executed 
out of sequence with respect to their order in the program. 
If two instructions are eligible for execution at the same 
time, the older one gets priority. The GXE includes a 
32-word array to hold GR values and to buffer operands 
fetched from storage. It also contains 16 doubleword store 
buffers to hold results until the proper time for them to be 
stored. These, along  with others associated with the FXE 
and SXE, constitute the store buffers previously described. 

Timing for a typical GXE instruction is illustrated in 
Figure 7. On the cycle before its execution, the instruction 
is selected as having the highest priority among those 
which are ready, and its operands are read from the 
register array. An instruction using an operand from 
storage is considered ready for execution the cycle before 
the operand returns, so that it can execute as soon as the 
operand arrives. Then, during the execution cycle the 

724 required operation is performed, and on the following 

cycle the result is written into the GR array or store 
buffers. If there are two instructions awaiting execution, 
one of which needs the result produced by the other, they 
may execute on successive cycles because data paths are 
available to take a result from the output of the execution 
logic and return it directly to its input for use by another 
instruction on the next cycle. Because the execution of 
GXE instructions does not involve complicated sequences 
of operations, the GXE is controlled with combinatorial 
logic circuits. 

The FXE executes the floating-point instructions. It also 
has a six-position instruction queue, and instructions may 
execute out of sequence, but only a  single instruction may 
be selected for execution each cycle. The execution logic 
in the FXE has a  pipeline structure for multiply, add, and 
subtract. The pipeline is two cycles long, and when a 
result is produced it can be gated directly to the input 
registers for use in another operation. In the case of the 
add  and subtract, if postnormalization is not required, the 
result is available as an input to a  new operation after a 
single cycle. In addition to this pipelined execution logic, 
there is separate logic to perform  divide  and square root, 
which iterate for a  number of cycles, and special logic to 
control extended-precision operations. The FXE contains a 
16-doubleword array to hold the floating-point registers 
(FRs) and to buffer storage operands, and 32 doublewords 
of store buffers to hold store data until the proper time for 
storing. The timing  of FXE instructions is similar to that of 
GXE instructions, except that the execution time  is two 
cycles long. The FXE is controlled by combinatorial logic 
circuits. 

The SXE executes the storage-to-storage instructions 
(including decimal) and the instructions which  deal with 
system control functions, such as the timers, the program 
status word, and the control registers. These instructions 
take multiple cycles to execute and involve  a richer set 
of control sequences than those executed in the other 
elements. Accordingly, the S X E  contains a  16  384-word 
control storage which controls several arithmetic and 
logical elements and  a number of registers. The SXE also 
contains a working storage of 32 doublewords to hold 
architected status information and provide a work area for 
some instructions, and eight doublewords to buffer storage 
operands. Their implementation and  timing are similar 
to those of the GRs and FRs. The SXE contains 64 
doublewords of store buffering. 

logic, known as the I-ACE, the D-ACE, and the SXE- 
ACE, which collectively have the responsibility for the 
calculation of addresses and for manipulations that must 
be performed on  them. The I-ACE and the D-ACE each 
contain a three-input adder which is used to perform 
address computations; each is capable of calculating an 
address each cycle. Each has a queue which holds 

The ACE is composed of three independent sections of 
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operations waiting to be performed; the queue for the 
I-ACE is two positions deep, and that for the D-ACE is 
four positions deep. They share access to a copy of the 
GR array from which each can read two GR values 
each cycle. This copy of the GR array is kept exactly 
synchronized with the copy used by the GXE. The 
distinction between the I-ACE and the D-ACE is that the 
I-ACE calculates addresses used to access the L1 I-cache 
(branch target addresses), and the D-ACE calculates 
addresses used to access that L1 D-cache. The I-ACE also 
calculates the address for LOAD ADDRESS and the shift 
instructions which are not used to reference storage at all. 

Because instructions which are executed in the GXE 
and FXE have their storage operands accessed by the 
D-ACE, the GXE and FXE do not contain any logic to 
make accesses themselves. On the other hand, the SXE 
deals with some instructions of sufficient complexity that 
decisions about storage accesses and the calculation of 
addresses must  be  handled during the course of execution; 
therefore, the SXE needs the ability to access the L1 
D-cache itself. From a conceptual point of view, the 
D-ACE must stop  its normal operation and allow the SXE 
to control it during the execution of such instructions. 
However, there is a problem  with this because the SXE, 
the D-ACE, and the L1 D-cache are located on  different 
modules, and there would be excessively long delays in the 
control paths. Therefore, the SXE contains an SXE-ACE 
with the necessary logic to manipulate addresses and  make 
access requests directly to the L1 D-cache. Usually the 
SXE-ACE is  initialized  with addresses computed in the 
D-ACE, which then stops making requests, allowing the 
SXE-ACE to make the requests needed for the instruction. 
When the instruction finishes, the D-ACE resumes 
operation. In this way, at any given  moment the L1 
D-cache is receiving requests from only a single source. 

Controlling  out-of-sequence  operation 
To give a clear explanation of  how out-of-sequence 
operation is controlled, it is necessary to define two words 
which by dictionary definition are synonyms, but to which 
specific and distinct meanings are ascribed. One of these 
words is finished, which means that the execution of an 
instruction has finished everything which needs to be done, 
and all  of its results have been placed in their proper 
places. The other word is completed, which means that all 
of the actions carried out by the instruction have become 
irrevocable. Before  an instruction is completed, it is in a 
tentative state, and  sufficient status must be retained in the 
processor to make it disappear if that is required. After  an 
instruction is completed, it becomes part of the amorphous 
past which brought the processor to its present state, and 
any specific information about it  can be forgotten. An 
instruction is always finished before it is completed, and 
whereas the finishing of instructions can happen in any 
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sequence, their completion must always occur in their 
logical sequence. 

The essential first step in controlling a processor with 
out-of-sequence operation is to keep a record of the 
logical sequence of the instructions. To do this, a five-bit 
instruction identification number (IID) is assigned to each 
instruction when it is decoded. IIDs are assigned in 
numerical order, wrapping around from 31 to 0; a limit is 
placed on instruction decoding so that a newly decoded 
instruction is not assigned  an IID which is still in  use. 
When a branch is found to have been guessed wrong, the 
IIDs assigned to instructions along the wrong path cease to 
be in use and are reused for the next instructions that are 
decoded. For example, if IIDs 4-20 are in use, and IIDs 
11-20 are for instructions along a conditional path which is 
canceled, IIDs 11-20 cease to be in use, and the next 
instruction decoded is assigned an IID of 11. The IID of an 
instruction is carried with the instruction, and with most 
operations done on its behalf, as it passes through the 
processor. 

The completion control logic uses these IIDs to bring 
order to the out-of-sequence operations taking place in the 
processor. These controls receive “finished reports” from 
the parts of the processor which execute instructions. 
These are reports that everything required for an 
instruction has been done, and include the condition code 
produced (if any) and any interruption conditions 
generated. An instruction is identified in a finished report 
by its IID. The completion controls record the status of 
the 32 possible outstanding instructions in the processor, 
they know whether a particular IID is in use, and they 
record the information received in the finished reports. 
They continually monitor the oldest outstanding 
instruction, and when  it is finished they generate a 
completion report for it. This completion report, which is 
distributed through the processor, identifies the instruction 
by its IID and causes the processor to finalize the results 
generated by the instruction. If an instruction creates an 
interruption condition, the interruption is processed at 
completion time, and no further instructions are allowed to 
complete. The completion controls can complete two 
instructions in each machine cycle. 

A number of pieces of data may be changed by an 
instruction, and  all values of these pieces of data become 
final  when the instruction completes. These data can be 
divided into two categories: those that change frequently 
as a program executes, and those that change infrequently. 
Those pieces of data which are considered to change 
frequently are the instruction address, the condition code, 
storage, the general registers, and the floating-point 
registers. These are the principal object of the design 
described here, and the purpose of this design  is to control 
changes to these data items without restricting operation of 
the CPU. Changes to other data items are controlled in 
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Decode-time  register  assignment list (DRAL). 

less dynamic ways, often by processing the instructions 
which change them with overlap disabled or restricted. 

the length of the instruction(s) being completed, and the 
condition code is updated with the value (if any) from the 
finished report which has been saved in the completion 
controls. 

Storage updating is handled by buffering the results 
generated until completion time; this is the primary 
purpose of the store buffers described earlier, and is the 
reason why they are large enough to hold the largest result 
that can be generated by an instruction. At completion 
time, the buffered data are released for storing, and 
although it requires several cycles to carry out, the 
transfer of the data to storage becomes irrevocable. In this 
way, storage retains its old value until completion, and is 
updated only after the instruction completes. Although this 
entails some delay in updating storage, it is normally  not a 
problem, because there are usually a moderate to large 
number of instructions between one which changes a 
storage location and the next one which fetches from that 
same location. However, when only a few instructions 
intervene, the one which fetches from the location incurs a 
delay while  it waits for the one that stores to complete and 

The instruction address is updated at completion time by 

726 for the store to actually take place. MOVE LONG 

(MVCL) is a special case because it can store arbitrarily 
long results and is handled in segments with overlap 
disabled. 

To understand the mechanism used for the GRs and 
FRs, it is necessary to understand that the underlying 
objective of the mechanism is to minimize the number of 
times data are moved. It is desired that an instruction 
result be placed in its final location as soon as it is 
generated; however, it is also necessary that the old 
contents of a register be preserved until completion in case 
the instruction is canceled, and it is desired to accomplish 
this without moving the data. This creates a conflict. If 
there is one piece of circuitry in the processor which 
always holds, for example, GR 5, it is desired to keep the 
old contents of  GR 5 in that place  until completion, and 
also to put the new value there as soon as it  is generated, 
which is before completion. 

relationship between a register and a specific piece of 
circuitry. Instead, arrays are used which contain more 
locations than there are GRs and FRs, array positions are 
assigned to hold particular GRs and FRs, and those 
assignments change dynamically as execution proceeds. 
For example, if an instruction changes GR 5, the old value 
of  GR 5 is found in the array position which has been 
assigned to it, and a different, unused, array position  is 
assigned to receive the result generated by the instruction. 
Until completion, the array position with the old value of 
GR 5 continues to hold it, and as part of the completion 
process that array position becomes unused and the one 
with the new value becomes the one that represents GR 5. 
Thus, for a period of time two array positions represent 
GR 5, but at different  logical points in the execution 
process. If multiple instructions which change GR 5 were 
being processed, different array positions would  hold each 
of the possible values GR 5 can have. In summary, instead 
of  moving data around to save needed values, the data are 
left in one place and status information is updated. The 
way this is done is referred to as the virtual register 
management algorithm. 

The 16  GRs are supported by a 32-position array, and 
the four FRs are supported by a 16-position array; these 
two arrays are physically and logically separate. In the 
remainder of this paper, only the GRs are described, but 
most of what is said applies to the FRs also. 

Figure 8 illustrates a table called the decode-time 
register assignment list (DRAL) and its relationship to 
the register array. The DRAL has 16 entries, each 
corresponding to a GR and containing a pointer to the 
array location which contains that GR. For example, 
position 2 in the DRAL contains a 6; this means that GR 2 
is in array position 6. The DRAL contains the phrase 
“decode-time” in its name because its contents correspond 
to the point  in the program which has been reached by 

This  conflict is resolved by breaking the k e d  
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instruction decoding; its contents do not correspond to the 
array positions assigned to various GRs as of completion. 

During decoding, the GRs referenced by an instruction 
are looked up in the DRAL, and the register numbers in 
the instruction are replaced by the number of the array 
position containing the GR. When  an unused array position 
is assigned to receive a new value of a GR, the DRAL is 
updated to point to the newly  assigned array position. 
Figure 9 illustrates this process. The RX  ADD instruction 
at the top is shown as it appears in storage. In this case, 
GR 3 and GR 4 are the index and base registers which are 
added to the displacement, X'408',  to form  an address. A 
word fetched from this address is added to the contents of 
GR 1, and the sum is placed in  GR 1. During decoding, 
these GR references are replaced by  array positions 1, 2, 
and 7, which are found by looking  in the DRAL.  In this 
case, the unused array position selected to receive the new 
value of GR 1 is array position 3, which is added to the 
instruction as a new  field. This forms the conceptual 
internal instruction shown at the bottom which says to add 
array positions 1, 2, and the displacement together to form 
an address, fetch a word from that location, add it to array 
position 7, and put the sum  in array position 3. Also, the 
DRAL is updated so that GR 1 is shown as being  in array 
position 3; in this way, a subsequent instruction which 
uses GR 1 will use array position 3, which is the place to 
find the value generated by this instruction. This internal 
instruction is only conceptual because other things are also 
happening to it. It is being  divided into two parts, of which 
one goes to the ACE to cause the address computation and 
fetch, and the  other goes to the GXE to cause the required 
execution. In addition, fields such as the IID and  ABC 
fields are being added to it, and the operation code is being 
changed to an internal form. There are also (though not 
described here) status bits and control logic  in the 
processor which prevent operations from taking place 
until the required data are available. 

(BRAL-A and BRAL-B) and their relationship to the 
DRAL. Their structure is identical to that of the DRAL, 
and each has the capability of having the entire DRAL 
copied into it  in a single machine cycle, or of having its 
entire contents copied into the DRAL in a single  machine 
cycle. One BRAL is associated with each conditional path; 
when the path is started the BRAL copies the contents of 
the DRAL, and if the path is canceled, the BRAL is 
copied back to the DRAL. Thus, when a path is canceled 
the DRAL is restored to the value it  had when the path 
was started. To provide the capability of copying an entire 
DRAL or BRAL into one another, it is necessary to 
implement the DRAL and BRALs using  logic circuits 
instead of arrays. 

Figure 11 illustrates a table called the array control list 
(ACL) which contains 32 entries, one for each position in 

Figure 10 illustrates two backup register assignment lists 
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Array control list. 

the array, of which  a representative one is shown in detail. 
The CTL field contains two bits which record the status of 
the array position. They have the following  meanings: 

00: Available. 
01: Pending but not loaded. 
11: Pending  and  loaded. 
10: Assigned. 

If  an array position is in the “assigned” state, it is holding 
the architecturally official copy of the GR identified in its 
REG field. There are always 16 array positions in the 
assigned state, with one assigned to each GR. 

If  an array position is in the ‘‘available’’ state, it is not 
being  used  for  anything.  When  an array position is needed 
to receive a  new value, it is selected from these available 
array positions. To simplify the logic  which makes this 
selection, even-numbered array positions are assigned to 
even-numbered GRs,  and odd-numbered array positions 
to odd-numbered  GRs. If the CPU is not processing any 
instructions which  change  GRs,  all array positions not in 
the assigned state are available. 

The two pending states are for array positions assigned 
to hold values generated by instructions which have not 
yet completed. The “pending-but-not-loaded” state 
signifies that the final value has not yet been placed in the 

728 array, whereas the “pending-and-loaded” state sighifies 
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that it has.  Only  in these two states  do the IID, ABC,  and 
PREV  fields have significance. The IID identifies the 
instruction which  is  generating the value for this array 
position,  and the ABC  field  reflects the conditional status 
of that instruction. The PREV field  implements  a  chained 
list of the array positions assigned to a particular GR by 
pointing to the one which holds the logically  preceding 
value. It is set at decode time  by  using the value in the 
DRAL  which is replaced  when  the  number of this array 
position is written into the DRAL. 

states in which  an ACL entry can be,  and the state 
changes which are possible. An ACL entry normally 
cycles from the available state to the pending-but-not- 
loaded state, to the pending-and-loaded state, to the 
assigned state, and  back to the available state, that is, 
transitions A, B, C,  and  D. 

Transition A  from the available state  to the pending- 
but-not-loaded state occurs when the array position is 
selected to receive a  new GR value to be generated by an 
instruction which  is  decoding. The next transition, B, to 
the pending-and-loaded state, occurs when the instruction 
has executed and the value is written into the array. For 
most instructions this coincides with the generation of its 
finished report. Transition C, to the assigned state, occurs 
when the instruction completes. This state change  is 
accomplished  by  comparing the completion report IID with 
the IID in each ACL entry, and  changing  all ACL entries 
with  matching IIDs to the assigned state. Multiple entries 
may  be  changed to the assigned state at the same time 
because some instructions change  multiple  GRs,  and 
because two instructions can complete each cycle. 

The ACL entry may then remain in the assigned state 
for  an extended period of  time. Transition D, back to the 
available state, occurs when a  new instruction, one which 
changes the GR to which this array position is assigned, 
completes execution. The way in which this happens is 
that whenever an array position makes transition C into 
the assigned state, the array position  pointed to by its 
PREV field  (which  must be in the assigned state) is 
changed to the available state (transition D).  In this way, 
there is always exactly one array position  in the assigned 
state associated with each GR. 

Transition E, from either of the pending states directly 
back to the available state, occurs when instructions which 
have been decoded are canceled without being  allowed to 
complete. There are two circumstances in which this 
occurs: wrongly  judged branches and interruptions. Array 
positions which are in a  pending state and are associated 
with  a conditional path are marked by a  bit in the ABC 
field.  If a  path-wrong  signal is received, all array positions 
associated with that path return to the available state. 

When the completion controls reach  an instruction 
which has had  an interruption reported, they take the 

Figure 12 is  a state transition diagram  which shows the 
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appropriate action for the type of interruption reported and 
then cancel all instructions which are still  in progress. As 
part of that process, all array positions which are in either 
pending state return to the available state (transition E). 
When this happens, the DRAL reflects the state of the 
array at the point decoding had reached, which no longer 
has any meaning. It must have its contents reconstructed 
through a search of the ACL to find the array position 
associated with each GR. This takes a number of cycles 
but is overlapped with the initial interruption processing 
when no  GRs are referenced, and therefore effectively 
takes no time. 

As was mentioned earlier, the GR array also provides 
buffering for operands which have been prefetched from 
storage. This is accomplished by using the array position 
which has been assigned to receive the result of an 
instruction to also buffer its storage operand. Since that 
array position is  assigned at the time the instruction 
decodes, but does not receive any value until the 
instruction executes, it is available for use during the time 
in which an operand buffer  would be needed. To do this, it 
is necessary to provide an independent port for writing 
into the GR array from the L1 D-cache data bus; this is 
easy to do because the technology used to implement the 
GR array includes that capability. When the operand is 
needed for execution, it  is read from the GR array using 
the same data paths used for reading register values. 

Using the GR array for operand buffering presents a 
minor  problem  with those instructions, such as RX 
COMPARE,  which do not need an array position assigned 
to receive their result (because there is no result) but 
which do fetch operands from storage and therefore may 
need  an operand buffer. For those instructions, an array 
position is assigned anyway. Then, at completion time, 
instead of the array position entering the assigned state, 
it goes directly back to the available state (transition F 
in Figure 12). From a control point of view, this is 
accomplished by setting its PREV field  in the ACL to 
point to itself; then the natural operation of the controls at 
completion will cause it to move directly to the available 
state. 

The way in which operand buffering is done also 
presents an opportunity for the implementation of  RX 
LOAD. On many previous processors, LOAD fetches its 
operand from storage to an operand buffer and then takes 
an execution cycle to move  it  from the operand buffer to 
the register. In this design, when the operand is fetched 
from storage it is placed in the array position selected to 
receive the final result. Since a LOAD instruction does not 
change the value from storage, and since the operand has 
already been placed in the correct place, there is nothing 
further that could be done during an execution cycle. 
Therefore, LOAD is not executed by any execution 
element, reducing interference with other operations and 

State transition diagram for an entry in the  array control list 
(ACL). 

Timing  example  for  a  sequence of instructions. 

making its result available a cycle sooner than would 
otherwise be the case. The finished report for LOAD 
instructions is created by the L1 D-cache. LOAD 
MULTIPLE and floating-point  LOAD  (long) operate 
similarly. 

Because of the number of changes which can occur at 
one time, and their relatively complex relationships, the 
ACL is  built  with  logic circuitry rather than an array. 

Timing example 
Figure 13 is a timing  diagram which shows the interaction 
of several instructions. The code which  is  timed does not 
represent any useful computation and is not meant to be 729 
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representative of code which runs on the CPU; rather, it is 
an example which was constructed to illustrate some 
common aspects of CPU operation for discussion 
purposes. It is assumed that nothing is happening in the 
CPU at the beginning of the example, and that needed 
operands are found in the cache. The instructions are 
designated by the letters A-G, and are considered 
one at a time. 

Instruction A is an RX ADD instruction. On cycle 1 it 
decodes and has its address calculated in the D-ACE. 
When nothing is queued up for the D-ACE, it can take a 
request from the decoding logic,  give  it immediate priority, 
read the required general registers, and calculate the 
address, all  in the same cycle that the instruction decodes. 
At the beginning of cycle 2, the address goes to the L1 
D-cache. Because the L1 D-cache is on a different  TCM, 
it takes a little less than a half cycle for the address to get 
to it, and the same time for the data to get back. For that 
reason, the L1 D-cache operates on a clock which is 
displaced by about a half cycle from the clock that 
controls the decoding and execution logic. The  data are 
read from the cache during cycles 2-3, and are available 
for use by the GXE during cycle 4. Cycle 4 is the 
execution cycle, during which the addition takes place. 
During cycle 5, the result is written into the GR array, and 
the finished report is sent to the completion controls. 

Instruction B is an RR  ADD instruction, and does not 
use an operand from storage. The operands it uses are 
independent of those used by instruction A, and there is 
nothing to prevent it  from decoding on cycle 1 also. On 
cycle 3 it executes, and on cycle 4 it writes its result to the 
GR array and creates a finished report. It does not execute 
on cycle 2, because that cycle is required for it to get 
priority in the GXE queue and to have its operands read 
out of the GR array. This is an example of two instructions 
decoding on the same cycle, of two instructions going to 
the GXE queue at the same time, and of out-of-sequence 
execution. 

has its address calculated in the I-ACE and written from 
there into the GR array. It decodes on cycle 2 and goes 
to the I-ACE queue. If the required GR values were 
available, it would be able to have its address calculated 
on cycle 2 also; however, one of its operands is GR 5, 
whose value is  being calculated by instruction B. 
Instruction B executes on cycle 3, and its result can go 
directly from the GXE output to the I-ACE; therefore, the 
value can be used in  an address calculation on cycle 4 at 
the same time the operand is being written into the GR 
array. Following the address calculation, there is a one- 
cycle delay before the result can be written into the GR 
array, which takes place on cycle 6. 

Instruction C is an RX LOAD ADDRESS instruction. It 

Instruction D is an SI AND IMMEDIATE, which sets 
730 the high-order four bits of the byte at location ADDR2 to 
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Os. It can decode on cycle 2 along with instruction Cy and 
also has its address calculation performed on that cycle in 
the D-ACE. A request to ADDR2  on cycles 3-4 serves to 
fetch the data, to test whether a store access to the 
location is possible, and to assign a store queue and store 
buffer position. The instruction executes on the store side 
of the GXE on cycle 5, and on cycle 6 the value is written 
into the appropriate GXE store buffer and a finished report 
is created. 

Instruction E is an RR SUBTRACT instruction. On 
cycle 3 it decodes, on cycle 5 it executes, and on cycle 6 it 
writes its result into the GR array and creates a finished 
report. It should be noted that one of its operands, GR 4, 
is generated by instruction A on cycle 4. This is  an 
example of the result of an instruction being  gated  from 
the output of the GXE right back to its input so that it can 
be used by another instruction while it is being written into 
the GR array. 

Instruction F is an RX LOAD instruction. On cycle 3 it 
decodes and has its address calculated, and on cycles 4-5 
its operand is fetched from the L1 D-cache. Because no 
operation is required on the data, and because there is a 
data path from the L1 D-cache directly into the GR array, 
on cycle 6 the operand is written into the GR array and a 
finished report is created. The instruction never goes to the 
GXE queue and never takes a GXE execution cycle. 

It is worth noting that on cycle 6 three different values 
are written into the GR array. This is possible because 
they come from three different sources, and each of those 
sources has an independent write capability into the GR 
array. The operand for instruction C comes from the 
I-ACE, that for instruction E comes from the GXE,  and 
that for instruction F comes from the L1 D-cache. 

Also on cycle 6, four different  finished reports are 
created. This is possible because each one comes from a 
different source which has an independent capability to 
generate finished reports. Instruction C is reported finished 
by the I-ACE, instruction D by the store side of the GXE, 
instruction E by the GR side of the GXE, and instruction 
F by the L1 D-cache. 

Instruction G is an RR  ADD instruction. On cycle 4 it 
decodes, on cycle 6 it executes, and on cycle 7 it writes its 
result to the GR array and creates a finished report. It 
should be noted that one of its operands is the value 
loaded by instruction F, and that instruction G is able to 
make use of the value as soon as it comes from the L1 
D-cache. 

Summary 
The  ES/9000  520-based models reflect a number of 
advances in processor organization. They implement a 
two-level cache to better buffer the cycle time  difference 
between the CPU and central storage, with one level 
associated primarily with central storage and the other 
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with the CPU. The cache associated with the CPU is split 
into two separate caches which allow two pieces of data to 
be obtained each cycle. The CPU employs an organization 
which involves a substantially greater degree of parallel 
operation than its predecessors. Different instructions can 
be executing at the same time in different parts of the 
CPU, and instructions can execute out of sequence. This 
requires a substantially more complex control structure 
than has been used previously, and the use of a virtual 
register management  algorithm  which breaks the 
relationship between an architected register and a specific 
piece of hardware. 
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