
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 23(4), 369–382 (APRIL 1993)

An Evaluation of Self-adjusting Binary
Search Tree Techniques

jim bell and gopal gupta
Department of Computer Science, James Cook University, Townsville, Queensland 4811,

Australia

SUMMARY

Much has been said in praise of self-adjusting data structures, particularly self-adjusting binary
search trees. Self-adjusting trees are most suited to skewed key-access distributions as the
techniques attempt to place the most commonly accessed keys near the root of the tree. Theoretical
bounds on worst-case and amortized performance (i.e. performance over a sequence of operations)
have been derived which compare well with those for optimal binary search trees. In this paper,
we compare the performance of three different techniques for self-adjusting trees with that of
AVL and random binary search trees. Comparisons are made for various tree sizes, levels of
key-access-frequency skewness and ratios of insertions and deletions to searches. The results show
that, because of the high cost of maintaining self-adjusting trees, in almost all cases the AVL tree
outperforms all the self-adjusting trees and in many cases even a random binary search tree has
better performance, in terms of CPU time, than any of the self-adjusting trees. Self-adjusting
trees seem to perform best in a highly dynamic environment, contrary to intuition.

key words: Binary trees Splay trees AVL trees Self-adjusting trees

INTRODUCTION

The binary search tree (BST) is a commonly-used data structure for storing and
retrieving records in main memory because it guarantees logarithmic cost for various
operations as long as the tree is balanced. It is therefore not surprising that techniques
that maintain balance in BSTs have received considerable attention over the years.
The most popular balancing technique is the AVL or height-balancing technique1

which performs local balancing whenever the height-balance is violated. Other local
balancing techniques such as bounded balance2 and weight balance3 have also been
suggested. It is of course possible to balance the entire tree at one time and obtain
a complete tree or a tree that is close to being complete.1,4,5

The above balancing techniques are designed to be efficient when all keys in the
tree are expected to be searched with equal probability. For skewed key-access
distributions, one may build an optimal binary search tree if the access frequencies
are fixed and known in advance. Building an optimal tree requiresO(n2) time and
space, and, although a near-optimal tree can be constructed inO(n) time,6 the
technique becomes quite inefficient if used every time an insertion or deletion is
made to the tree. Furthermore, access frequencies are usually not known in advance,

0038–0644/93/040369–14$12.00 Received 3 August 1991
 1993 by John Wiley & Sons, Ltd. Revised 14 October 1992

370 j. bell and g. gupta

and are sometimes not fixed. In such situations, it has been suggested that a self-
adjusting technique for binary search trees is likely to be most efficient. Several
such techniques have been suggested in the literature. In this paper we consider
three techniques that are called splaying, exchange and ‘move to root’, which all
promote frequently-accessed keys either directly or indirectly to the root. The methods
are described in the next section.

The primary aim of this paper is to compare these three self-adjusting binary
search tree structures with the classical AVL tree and the random BST.

The rest of the paper is organized as follows. The three self-adjusting binary
search trees to be compared are introduced. This is followed by a description of the
methodology used in the comparison of the techniques. Finally, we present our
results, and the conclusions drawn from these.

SELF-ADJUSTING BINARY SEARCH TREES

The self-adjusting BST structures promote frequently-accessed keys toward (or to)
the root by modifying the tree at every access, and usually at every insertion
and deletion.

Some of the early work on self-adjusting binary trees was reported by Bitner8

and Allen and Munro.7 These works examined a technique that exchanged an
accessed key with its parent by performing a single rotation. Two symmetric rotations
are possible, as shown inFigure 1(a). We refer to this method asexchange.
Figure 2(a)shows a binary search tree before accessing 25.Figure 2(b)shows the
tree after accessing 25 using the exchange method. Note that the number of
comparisons required to find the key 25 after accessing that key has been reduced
by one.

Early research also examined a strategy that moved the key being accessed to the
root by a series of rotations as above. We shall refer to this technique asmove to
root (MTR). Figure 2(c) shows the resulting tree when key 25 is accessed in the
tree of Figure 2(a)using MTR. Allen and Munro7 have analysed the performance

Figure 1. Rotation operations: (a) single rotations; (b) and (c) rotation sequences used for MTR; (c)
and (d) rotations pairs used in splaying

371self-adjusting binary search tree techniques

Figure 2. Accessing key 25 using self-adjusting tree methods

of simple exchange and the MTR technique, and have shown that if there aren
keys with search probabilities that are uniformly distributed, the average search cost
for the exchange algorithm approaches√(pn) and for MTR technique the cost is
approximately 1·3863lg(n).* Allen and Munro suggest that the exchange method
should never be used because of its poor performance in the above case.

Sleator and Tarjan9 introduced the splay tree. We shall discuss two different
methods of splaying,top-down splaying(TDS) andbottom-up splaying(BUS) both of
which move an accessed key to the root as with MTR, but using different techniques.

Sleator and Tarjan presented an amortized analysis which showed that insertions,
deletions and searches have a cost bound ofO(lg(n)) over a sequence of worst-case
operations. It is shown that over a sufficiently long sequence of accesses, the
performance of splay trees is within a constant factor of the performance of an
optimal tree.

Splay trees perform rotations during all operations. Each accessed or inserted key
is moved to the root, and the predecessor/successor of a deleted or unsuccessfully-
searched key is promoted to the root. In the case of the exchange method and the
MTR, References7 and 8 do not specify what should be done at insertion or
deletion. To be consistent, we have assumed that rotations are carried out in a
similar way to that for the splay tree at each insertion and deletion.

Bottom-up splaying promotes a key to the root by pairs of rotations that consider
the position of the accessed node relative to its parent and grandparent. Two pairs

* Throughout this paper, lg stands for the logarithm to base 2.

372 j. bell and g. gupta

of symmetric rotations are used in BUS. The rotation inFigure 1(c)is performed if
the accessed node,b, is the left (right) child of the right (left) child of its
grandparent. This is the same sequence of rotations as would be performed if MTR
were used. The difference between MTR and BUS is seen by comparingFigures 1(b)
and 1(d).Figure 1(d)shows the rotations performed if the accessed node,a, is the
left (right) child of the left (right) child of its grandparent.

Figure 1(b)shows the corresponding sequence of rotations which would have been
performed using MTR. If the node is a child of the root node, the appropriate single
rotation (Figure 1(a)) is performed to makex the root. Figure 2(d) shows the effect
of accessing 25 in the tree ofFigure 2(a) using splaying. The first splay operation
causes the splayed tree ofFigure 2(d) to differ from the MTR tree inFigure 2(c).

Top-down splaying effectively splits the tree along the search path from the root
to the accessed key. During the splitting process two temporary trees are formed.L
contains all keys less than the search key andR contains all keys greater than the
search key. As we proceed along the search path to the required key, the following
steps are performed repeatedly:

1. If the accessed key is the left (right) child of the current node then the
current node and its right (left) subtree is appended toR (L) as the leftmost
(rightmost) subtree.

2. If the accessed key is in the left-left (right-right) subtree of the current node
then a right (left) single rotation is performed at the current node. Then the
new current node and its right (left) subtree is appended toR (L) as the
leftmost (rightmost) subtree.

3. If the accessed key is in the left-right (right-left) subtree of the current node
we proceed in two steps. First, remove the current node and its right (left)
subtree, appending these to the far left (right) of theR (L). This leaves the
left subtree of the current node remaining. Secondly, remove the root and left
(right) subtree of that tree and append them to the far right (left) ofL (R).
What remains is the subtree containing the accessed key.

4. If the current node contains the accessed key, then append its left and right
subtrees as the rightmost and leftmost subtrees ofL and R respectively. Make
L and R the left and right subtrees of the current node and stop.

A full description of top-down splaying is provided by Sleator and Tarjan.9 TDS
has the same amortized performance bounds as BUS; however, no link to parent
nodes (either explicit or implicit) is required and fewer rotations are performed (as
shown later). Sleator and Tarjan comment that TDS performs better than BUS for
basic tree update and search operations, but provide no evidence.

To evaluate the effectiveness of the three self-adjusting BST structures, we compare
them with the random BST and the AVL tree. Insertions, deletions and retrievals
on a random BST do not require any rebalancing transformations, as no attempt is
made to keep the tree balanced. The average cost of searching a randomly built tree
of size n is approximately 1·38lg(n), although such trees can have a worst-case
height of n.1 This tree structure is seldom used in practice, due to its poor worst-
case performance.

The AVL or height-balanced BST was introduced by Adel’son-Vel’skii and Landis
in 1962.1 AVL trees perform rotations when necessary during insertions and deletions
to maintain the constraint that the heights of the left and right sub-trees of any node

373self-adjusting binary search tree techniques

differ by at most 1. This constraint ensures that the height of the tree never exceeds
1·44lg(n), and hence limits the worst-case search cost. Empirical evidence indicates
that the AVL tree has a mean search cost of lg(n) + O(1) under a uniform access
distribution.1 Two different rotation operations are used to maintain the height-
balance in an AVL tree (as shown inFigures 1(a)and 1(c)).

We now summarize the characteristics of the five methods inTable I. An entry
in the table indicating that rotations always occur excludes the case in which the
key is located at the root.

COMPARISON METHODOLOGY

As far as possible, the techniques were coded in an unbiased fashion using pointer
reversal when needed instead of recursion during tree operations. Pointer reversal is
often used for two reasons. First, pointer reversal requires only a constant memory
overhead, whereas recursion requires memory proportional to the length of the access
path to the key. Secondly, as some of the techniques require a node to access its
parent, pointer reversal allows this to happen without having an explicit parent
pointer for each node. Sleator and Tarjan comment that splay trees require no
additional storage. We have therefore used a technique that does not call on additional
storage for the bottom-up splaying. Top-down splaying never needs to access parent
nodes. This study does not compare the storage utilization of the five methods, as
all the methods discussed have essentially the same memory requirements.

The trees were compared for a number of tree sizes, activity ratios (ratios of
updates to searches) and degree of skewness of key access. We shall present results
only for trees of size 4095 nodes (212 − 1, to ensure that the trees are of height at
least 12) but results for other tree sizes were similar. Four different activity ratios
were used. These were 0:100, 20:80, 50:50 and 80:20. The first gives a comparison
of the methods in a static environment. The second, i.e. 20 per cent updates to 80
per cent searches, is probably most representative of realistic situations.

To carry out the evaluation, it was necessary to generate probability distributions
with prespecified skewness. A common probability distribution that is used for
skewed distributions is Zipf’s law.1 Zipf’s law specifies that theith most commonly
accessed key out of a total ofn possible keys will be accessed with a probability
pi inversely proportional toi. That is,

Table I. BST data structures and operations requiring rotations
(A = always; S= sometimes; N= never)

Method Insert Delete Search

Random N N N
AVL S S N
MTR A A A
Splay A A A
Exchange A A A

374 j. bell and g. gupta

pi =
C
i

, i = 1,%,n

where

C−1 = On
i=1

1
i

Zipf’s law unfortunately does not allow us to generate a number of distributions
with various degrees of skewness. It is however possible to generalize Zipf’s law,
and a number of such modifications are suggested by Knuth.1 We present another
such modification.

If the probability of access of keyki is pi, then pi is given by

pi =
C
ia , i = 1,%,n

where

C−1 = On
i=1

1
i a

and a $ 0

For a = 0, the probability distribution is uniform, and fora = 1 the distribution
becomes Zipf’s distribution. For larger values ofa, we obtain more highly-skewed
probability distributions. Unfortunately, however, it is difficult to relate skewness to
the parametera in the above distribution.

We therefore define another parameter, called theskew factor, denoted byb,
which is the sum of the probabilities of the most-frequently-accessed 1 per cent of
keys. That is,

b = On/100

i=1

pi .

b gives us the probability of access of the most-frequently-accessed 1 per cent of
keys. We have introduced the skew factor,b, as it provides a more intuitive measure
than doesa of the degree to which the access distribution is skewed. It can be seen
from the above equation thatb is a function of n and a, although fora $ 1 the
dependence ofb on n becomes less significant ifn is large. For alln, when a = 0,
we obtain b = 0·01, which indicates that the most-frequently-accessed 1 per cent of
the keys are accessed 1 per cent of the time (i.e. the distribution is uniform). For
Zipf’s distribution, the value ofb grows slowly with n but is approximately 0·5 if
n is not small. Forn = 10,000, we obtainb = 0·53. Also, the 80–20 rule (that is,
80 per cent of accesses deal with the most active 20 per cent of the nodes) also
leads to ab value of approximately 0·5.

In our evaluation, we have usedb values of 0·01, 0·10, 0·20, 0·40, 0·50, 0·60,

375self-adjusting binary search tree techniques

0·80 and 0·90 (with correspondinga values of 0, 0·516, 0·687, 0·892, 0·975, 1·058,
1·257 and 1·420, respectively), although only representative results will be presented.

We now describe the evaluation procedure in detail. The evaluation consisted of

1. Building a binary tree of 4095 keys by selecting 4095 unique integer keys
randomly from a uniform distribution. No rotations were carried out during
this building of the tree except if an AVL tree was being built. The reasons
for this are discussed later.

2. Each key inserted in the tree was given a unique randomly-selected position in
a table of size 4095. This table will be called theaccess probability table, since
the position of the key in this table determines the access probability of that
key. The first key in the table is the most-frequently-accessed key and the last
key is the least-frequently-accessed. The access probability of thei th key in the
table ispi defined using the modified Zipf’s distribution discussed above.

3. Carrying out 100,000 insert, delete and search operations in the appropriate
ratios specified by the activity ratio. For example, if the activity ratio is 2u:
100− 2u, then 2u updates during each 100 operations were assumed to consist
of u deletions andu insertions. To carry out the 100,000 operations, we perform
1000 cycles of 100 operations each. During each cycle the following sequence
of operations occurred. Unless there were no updates (i.e.u = 0), a keyki from
the access-probability table was randomly selected using a uniform distribution.
This key ki was deleted from the tree. Another key (not already in the tree)
was then selected uniformly from a large key-space for insertion. This key was
inserted aski in the access-probability table to replace the deleted key. The
process of deleting and inserting keys was repeatedu times followed by 100− 2u
search operations using keys selected from the modified Zipf’s distribution. The
key to be searched was obtained by selecting a random number between 0 and
1 and then finding the index of the corresponding key in the access-probability
table using the cumulative probability distribution curve. This completed one
cycle. Selecting keys in this manner guaranteed that only successful operations
were performed and that the tree size during search was always 4095.

4. Recording the numbers of comparisons and rotations for each type of operation
as well as the CPU time during the 100,000 operations. The number of
comparisons is assumed to be equal to the number of nodes visited.

It is clear that the above methodology is only one possible model of building,
updating and searching a tree to evaluate the performance of the three methods.
Many variations of this model are obviously possible, and we considered a number
of different models before selecting the present one. We believe that the present
choice is a reasonable model of realistic tree activity given that we did not wish to
change the access probabilities of the keys in the tree significantly even when some
update activity was going on. We wished to keep the access frequencies relatively
stable because if the access probabilities changed significantly during the 100,000
operations, we believe that the self-adjusting trees would have performed worse than
they did in the present investigation since there would have been significant additional
costs due to more drastic restructuring of the tree as a result of dynamically-changing
access probabilities.

As noted earlier, when the tree was being built initially, no rotations were
performed when a self-adjusting tree was being evaluated. Although the splay tree

376 j. bell and g. gupta

requires splaying during insertion, we believe no benefit would have been gained as
the keys were inserted randomly from a uniform distribution. We considered the
possibility of building the initial tree inserting keys such that the keys that were
likely to be searched frequently would have had a high probability of getting inserted
before those that were searched less frequently. Although we thought this was not
realistic, we nevertheless attempted this methodology and found that building trees
in this way did not change the results significantly, since the AVL and random trees
thus built also had the most-frequently-accessed keys near the root.

During initial building of the tree, rotations were performed in the AVL tree in
order to maintain height-balance. Again, to be fair to the self-adjusting trees, we
decided to take into account the cost of these rotations by including the cost of
building the initial trees in the CPU times that we present.

RESULTS

Table II summarizes the results of the performance evaluation of the six methods
when building the initial tree of 4095 nodes was followed by 100,000 operations
on the tree in the ratio of 20 per cent updates to 80 per cent searches. The process
was repeated for the eight search-key distributions, from uniform to extremely
skewed, as listed above.

The table presents average costs of insertions, deletions and searches in terms of
numbers of comparisons and rotations as well as the total CPU time for a DECsystem
5100 in megacycles for the 100,000 operations. It should be noted that the number
of rotations for the MTR and splay tree are high, since every time a key is updated
or searched, a number of rotations are needed to move the key to the root. The
average number of rotations for these two methods is therefore almost equal to the
average number of comparisons that are needed for each of the operations.

Top-down splaying performs approximately one-fourth the number of rotations
that bottom-up splaying and MTR perform. This is due to the fact that: (a) no
rotation is performed in the cases when the accessed key is in the left-right or right-
left subtree (although splitting involves some small amount of work) and (b) when
a rotation is performed we advance two levels down the tree since the root and one
of the subtrees is removed. In contrast, the average number of rotations for the
exchange method is much smaller, since only one rotation is carried out every time.

We make the following observations about the results inTable II:

1. For a uniform distribution, the exchange method performs poorly. As noted
earlier, this performance has been analysed by Allen and Munro,7 and the mean
search cost after one million searches was found to approach the theoretical
asymptote cost of√(pn) that they have derived. This result can also be seen
in Figure 3, which shows how the performance of the exchange method deterio-
rates with the number of searches under a uniform access distribution. The
performance of the other methods does not change significantly with the number
of searches.

2. Using the average number of comparisons as a measure of cost (ignoring the
not-insignificant cost of rotations, for the moment), the AVL tree clearly has
the lowest cost per operation for insertion, and deletion, as well as search
when the search-key distribution is uniform. Also, at uniform access distribution,
splay, MTR and random trees all have approximately the same mean search

377self-adjusting binary search tree techniques

Table II. Mean numbers of comparisons (Comp) and rotations (Rot) and CPU times, for
an activity ratio of 20 per cent updates and 80 per cent searches

Skew Method Insert Deletion Search CPU
factor used Comp Rot Comp Rot Comp Rot time

0·01 Random 15·5 0·0 15·4 0·0 14·7 0·0 24·3
AVL 12·2 0·6 12·2 0·4 11·2 0·0 24·5
MTR 15·7 15·7 15·6 13·9 14·8 13·8 104·9
Exchange 51·9 1·0 51·4 0·9 51·2 1·0 198·0
BU-splay 17·3 16·3 16·1 14·4 15·4 14·4 138·0
TD-splay 17·8 4·1 15·8 3·6 15·8 3·6 41·4

0·1 Random 15·5 0·0 15·4 0·0 14·7 0·0 24·4
AVL 12·2 0·6 12·2 0·4 11·3 0·0 24·6
MTR 15·7 15·7 15·6 13·9 14·2 13·2 101·6
Exchange 23·0 1·0 22·7 0·9 20·5 1·0 83·1
BU-splay 17·3 16·3 16·1 14·5 14·8 13·8 133·7
TD-splay 17·7 4·1 15·8 3·6 15·2 3·5 40·3

0·4 Random 15·5 0·0 15·4 0·0 14·8 0·0 24·5
AVL 12·2 0·6 12·2 0·4 11·3 0·0 24·7
MTR 15·7 15·7 15·5 13·9 11·6 10·6 87·0
Exchange 19·4 1·0 19·0 0·9 12·6 1·0 55·3
BU-splay 17·3 16·3 16·1 14·4 12·0 11·0 114·1
TD-splay 17·7 4·1 15·8 3·6 12·5 2·8 35·2

0·6 Random 15·5 0·0 15·4 0·0 14·9 0·0 24·6
AVL 12·2 0·6 12·2 0·4 11·3 0·0 24·7
MTR 15·7 15·7 15·6 13·9 9·6 8·6 76·1
Exchange 18·7 1·0 18·4 0·9 9·6 0·9 44·7
BU-splay 17·2 16·2 16·1 14·5 10·0 9·0 99·4
TD-splay 17·7 4·2 15·8 3·7 10·5 2·3 31·4

0·9 Random 15·5 0·0 15·4 0·0 15·4 0·0 25·1
AVL 12·2 0·6 12·2 0·4 11·4 0·0 24·8
MTR 15·6 15·6 15·5 13·9 5·6 4·6 53·8
Exchange 18·3 1·0 18·0 0·9 4·9 0·8 28·5
BU-splay 17·2 16·2 16·1 14·4 5·8 4·8 69·6
TD-splay 17·6 4·1 15·8 3·6 6·3 1·3 23·6

cost in terms of number of comparisons performed, but in terms of CPU time,
the randomly-built and AVL trees outperform the self-adjusting trees due to
their low maintenance cost.

3. Using the CPU time as a measure of cost, the random tree continues to perform
better than the self-adjusting trees even when the skewness is as high asb = 0·6
(that is, 1 per cent of the keys being accessed 60 per cent of the time).

4. If we consider the cost of a rotation carried out during a search of one of the
self-adjusting trees to be equal to the cost of one comparison (a rotation would
normally be more costly than a comparison), the AVL tree is almost always
better if the skewness factorb is less than or equal to 0·6. If we compare the
CPU times, the AVL tree is almost 25 per cent faster than the best self-
adjusting BST technique (top-down splaying) at this highly-skewed key access.

5. In the case of an extremely-skewed key-access distribution where the skewness

378 j. bell and g. gupta

Figure 3. Comparison of asymptotic mean search cost for equiprobable keys

factor is 0·9, the self-adjusting methods all perform well in terms of the average
number of comparisons required to access a key. Using average number of
comparisons as a measure of cost, the exchange method is best, but if we
consider the CPU times, top-down splaying turns out to be the best with the
AVL tree not far behind. It should be noted here that the CPU times were
obtained on a DECsystem 5100; a RISC machine. The results may vary
somewhat on different sequential architectures. We also carried out the evalu-
ation on a CISC architecture machine and found that the ratios of some CPU
times were different by as much as 20 per cent, but the basic conclusions were
still the same. Results may also vary depending on the compiler technology
available, in particular due to the level of optimization performed.

At extremely-skewed access-probability distributions, the AVL tree carries
out 2–3 times as many comparisons during search operations as each of the
self-adjusting methods, but the performance of the AVL tree in terms of CPU
time is still at worst only slightly poorer than that of the self-adjusting trees,
in particular top-down splaying.

Note that execution times may be affected by the type of key comparison being
performed. A string comparison will generally take much longer than an integer
comparison. This may have some effect on relative results. Consider the number of
comparisons and CPU times for AVL and TD-splay trees when the skew factor is
0·01 (uniform distribution). Since the TD-splay tree performs more comparisons on
average, we might well expect its performance to deteriorate faster than that of the
AVL tree if string keys were used. Consider now the situation when the skew factor
is 0·90 (highly skewed). We now find that the AVL tree is performing more
comparisons than each of the self-adjusting trees. If the cost of a comparison were

379self-adjusting binary search tree techniques

to increase (due to using string keys), then we might well find the exchange method
to be best, since it performs the least comparisons on average.

In Figure 4, we present a summary of mean search costs in terms of number of
comparisons for the various methods as the skew factor varies from 0 to 0·9 for an
activity ratio of 0:100 (that is, all searches). We also present the theoretical minimum
cost of searching a tree with 4095 nodes with search probabilities distributed
according to the modified Zipf’s distribution for each value ofb. This cost was
computed as

Minimum cost= O4095

i=1

pili + 1

where l i is the non-decreasing sequence 0, 1, 1, 2, 2, 2, 2, 3, . . . being the level
numbers of the nodes of a complete tree of size 4095. It is clear that no tree with
4095 nodes with the given distribution can have a cost lower than this computed
minimum cost. Rather than compute the cost for an optimal tree in each case, we
decided to use this minimum cost for comparison purposes since the optimal tree
was somewhat different every time a tree was built.

Figure 4shows that the self-adjusting trees do approach the minimum cost as the
skew factor approaches 1, whereas (as expected) the costs of AVL and random
trees remain relatively unchanged as the skew factor increases. Unfortunately, though,
once the cost of rotations is added to the cost of searching in terms of number of
comparisons, the self-adjusting trees are not as attractive as they appear in this
Figure even at high values of the skew factor.

Figure 4. Effect of skew factor on comparisons per search

380 j. bell and g. gupta

The effect of changing the activity ratio on the performance of the five methods
is shown inTable III. In addition, the performance of the six methods in terms of
CPU time needed for 100,000 searches and an activity ratio of 0:100 is displayed
graphically in Figure 5. We now make the following observations about the results:

1. When we consider the CPU time as a measure of cost, in all cases where the
update ratio is less than 50 per cent, an extremely-skewed distribution is
required before any method performs better than AVL.

2. Even when there are no updates and the access probabilities are highly-skewed
but fixed (a situation that should be ideal for using self-adjusting trees), the
self-adjusting structures perform worse than the AVL tree and are not much
better than the random trees.

3. In a highly-dynamic situation where 80 per cent of the operations are updates
and only 20 per cent are searches, the random tree performs better than any
other method. However top-down splaying performs better than the AVL tree
in this case. Since both these methods guarantee logarithmic performance (in
an amortized sense) we consider top-down splaying to be preferable in this
case. Such highly-dynamic situations are relatively rare, however.

4. Top-down splaying is approximately three times as fast as bottom-up splaying.
Sleator and Tarjan9 presented two different top-down algorithms. One was
simpler to code; the other (which we use) was supposedly the faster of the two.

The poor performance of the self-adjusting trees was rather surprising. We note that

Table III. CPU time in megacycles per 100,000 operations. Tree size= 4095 (times
include time to build the initial tree)

Activity Skew Method used
ratio factor Random AVL MTR Exchange BU splay TD splay

0:100 0·01 21·3 15·8 101·6 171·5 135·0 39·4
0·10 21·1 15·6 96·7 86·0 128·5 37·6
0·40 20·5 15·4 76·9 53·6 101·9 30·7
0·60 20·2 15·2 62·5 41·7 82·3 25·6
0·90 19·6 14·8 34·0 22·3 44·2 15·7

20:80 0·01 24·4 24·6 104·9 198·0 138·1 41·5
0·10 24·4 24·6 101·6 83·1 133·7 40·3
0·40 24·5 24·7 87·0 55·3 114·1 35·2
0·60 24·6 24·7 76·1 44·7 99·4 31·4
0·90 25·1 24·8 53·8 28·6 69·6 23·6

50:50 0·01 28·7 37·8 109·7 131·7 142·6 44·7
0·10 28·7 37·8 108·1 76·2 140·5 44·1
0·40 28·8 37·8 100·3 56·7 129·9 41·3
0·60 29·0 37·8 93·8 49·8 121·3 39·1
0·90 29·4 37·8 79·9 38·2 102·8 34·3

80:20 0·01 33·3 51·1 114·5 92·8 147·1 47·9
0·10 33·3 51·1 114·1 73·4 146·5 47·8
0·40 33·3 51·1 111·8 58·0 143·5 47·0
0·60 33·4 51·1 109·5 54·4 140·5 46·2
0·90 33·5 51·1 104·2 48·1 133·4 44·3

381self-adjusting binary search tree techniques

Figure 5. CPU times versus skewness for 100,000 searches

top-down splaying is quite a lot better than other self-adjusting techniques, primarily
because it performs fewer rotations and does not require pointer reversal. The primary
reason for the poor performance appears to be that the self-adjusting trees perform
rotations and accompanying pointer reversals during each search unless the key being
accessed is the root. For example, for highly-skewed distributions, say a skewness
factor of 0·90, the self-adjusting methods will move all the frequently-accessed keys
close to the root, but every time one of these keys is accessed, even if it is close
to root, say at level 2, it must be moved to the root. Therefore all the frequently-
accessed keys will be moving around continually in the upper levels of the tree.
This shuffling represents a waste of time, since promoting one key to the root will
in part undo previous work without much saving in the future. This moving to the
root has a cost associated with it that almost cancels the benefits that are derived
by having the frequently-accessed keys close to the root. An obvious improvement
would be to splay only for (say) 10 per cent of key accesses. Another modification
to the splay tree (and the other self-adjusting trees) would be to perform no splaying
on insertion or deletion. The splay tree that we have evaluated itself is a modification
of the splay tree that was proposed by Sleator and Tarjan9 in that we carried out
no splaying on insertions while the initial tree was being built. This was done to
improve the performance of the splay tree as compared to the AVL and random
trees. The splay tree of Sleator and Tarjan splays on insertion to bring the inserted
key to the root and on deletion to bring the predecessor or the successor of the
deleted node to the root, assuming that frequently-accessed keys occur in groups.
The evaluated implementation of the splay tree carried out splaying after each
insertion and deletion that takes place after the initial tree is built. We could further
modify the present implementation and eliminate splaying during all insertions and

382 j. bell and g. gupta

deletions. If deletions/insertions are carried out without splaying then the cost of
these operations in a splay tree would be the same as that for a random tree. This
modification should help significantly in a dynamic environment where
insertions/deletions are occurring frequently.

CONCLUSIONS

We have evaluated the performance of three self-adjusting binary search tree struc-
tures and have compared their performance with that of the random BST and the
AVL tree. We have found that the search performance of the AVL tree is almost
always better than that of any of the self-adjusting BSTs even when the skew factor
is close to 1. Of the self-adjusting techniques examined, top-down splaying is easily
the best in most situations. Self-adjusting trees perform best in a highly-dynamic
environment—which is counter-intuitive. One would expect the best performance to
be obtained with a static key set where the trees could adjust properly to the key-
access probabilities.

acknowledgements

An earlier version of this paper was presented at the 14th Australian Computer
Science Conference held at the University of New South Wales in February 1991.
We would like to thank Dr Alistair Moffat of the Department of Computer Science,
University of Melbourne for a very careful reading of an earlier version of this
paper. His insightful comments have improved this paper considerably.

REFERENCES

1. D. E. Knuth,The Art of Computer Programming, Vol. 3: Sorting and Searching, Addision-Wesley 1973.
2. J. Nievergelt and E. M. Reingold, ‘Binary search trees of bounded balance’,SIAM J. Computing, 2, 33–

43 (1973).
3. J. L. Baer, ‘Weight-balanced trees’,Proceedings AFIPS 1975 NCC, 44, 467–472 (1975).
4. H. Chang and S. S. Iyengar, ‘Efficient algorithms to globally balance a binary search tree’,Comm. ACM,

27, 695–702 (1984).
5. Q. F. Stout and B. L. Warren, ‘Tree rebalancing in optimal time and space’,Comm. ACM, 29, 902–

908 (1986).
6. E. M. Reingold and W. J. Hansen,Data Structures, Little Brown and Company, Boston, 1983.
7. B. Allen and and I. Munro, ‘Self-organising binary search trees’,JACM, 25, 526–535 (1978).
8. J. R. Bitner, ‘Heuristics that dynamically organise data structures’,SIAM J. Computing, 8, 82–110 (1979).
9. D. D. Sleator and R. E. Tarjan, ‘Self-adjusting binary search trees’,JACM, 32, 652–686 (1985).

	SUMMARY
	INTRODUCTION
	SELF-ADJUSTING BINARY SEARCH TREES
	COMPARISON METHODOLOGY
	RESULTS
	CONCLUSIONS

