
ABSTRACT

The DNA microarray technology has arguably caught the attention of
the worldwide life science community and is now systematically supporting
major discoveries in many fields of study. The majority of the initial techni-
cal challenges of conducting experiments are being resolved, only to be re-
placed with new informatics hurdles, including statistical analysis, data vi-
sualization, interpretation, and storage. Two systems of databases, one
containing expression data and one containing annotation data are quick-
ly becoming essential knowledge repositories of the research community. This
present paper surveys several databases, which are considered “pillars” of re-
search and important nodes in the network. This paper focuses on a gener-
alized workflow scheme typical for microarray experiments using two ex-
amples related to cancer research. The workflow is used to reference
appropriate databases and tools for each step in the process of array experi-
mentation. Additionally, benefits and drawbacks of current array databas-
es are addressed, and suggestions are made for their improvement.

INTRODUCTION

Microarray studies, through the application of genetic and
molecular biology information, have allowed biologists to study
global gene expression in cells and tissues, over different temporal
and experimental conditions, to discover key players in metabol-
ic pathways and to assign probable function to genes. Other ge-
nomic scale technology aimed at capturing gene expression in-
formation includes serial analysis of gene expression (SAGE) and
expressed sequence tag (EST) library sequencing. The common
trait among these technologies is their capability to capture com-
prehensive biological information, in which all endpoints are
measured simultaneously. In general, these global approaches for
studying gene transcription have proven to be highly versatile
with applications developing in basic research, high-throughput
expression profiling in drug discovery, clinical diagnostics, and
many others (1–3). In turn, these advances have triggered a con-
ceptual shift in the scientific study, from single object (e.g., a
gene, a protein) to system studies, aimed at capturing the true
complexity of biological systems through global analysis. 

A generalized workflow for microarray experimentation is
depicted in Figure 1. Although initially restricted because of
cost, nearly every molecular biology laboratory in the world will
have access in the near future to high-throughput functional-ge-
nomic technology and be involved in capturing data sets con-
sisting of tens of thousands of gene expression data points per
sample measured. In fact, it is likely that the amount of expres-
sion data will soon surpass the amount of sequence data, since
an organism can be characterized by a single sequencing effort
but be represented by multiple expression profiles correspond-
ing to any number of variables, such as tissue or cell type, age,
sex, nutrition, disease status, etc. Therefore, there is an urgent
need to update both the laboratory IT system architecture and
the database management procedures in order to cope with such
large and frequent additions of data. In this context, database
repositories for gene expression become essential knowledge re-
sources able to store data in a safe and yet easily retrievable man-
ner. Finally, it is important that this information be archived
according to standards, e.g., minimum information about a mi-
croarray experiment (MIAME) (http://www.mged.org/
Workgroups/MIAME), which will then allow scientists to share
common information and make valid comparisons among ex-
periments. While availability of public and private data reposi-
tories has given individual scientists a potential wealth of infor-
mation, it has also made it very difficult to find the answer to
specific questions. More than 500 life science databases have
been reported in the literature (4), which is exemplary of the dif-
ficulty related to where and how to query for information in a
fast and efficient manner (5). 

In an effort to guide the individual researcher approaching a
global gene expression experiment, the following review walks
through a generalized workflow of a typical microarray experi-
ment, making reference to the databases and tools that are avail-
able for each step in the process. The paper will use two studies
that have been published as examples of how our proposed
workflow could be applied. One study identifies genes that are
differently expressed in breast cancer using microarrays and
SAGE (6). The other study uses gene expression profiles to pre-
dict the clinical outcome of breast cancer (7). While we use the
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former to illustrate how deposited data could be used for the
planning of a microarray study, we use the latter to illustrate
how the obtained microarray data could be integrated in pub-
licly available databases. The work flow is seen from a database
perspective according to the following logic of a typical microar-
ray research project: (i ) screen existing data prior to the experi-
ment (a search of microarray data repositories for experiments
involving breast cancer-specific genes and breast cancer tissue);
(ii ) generate the experimental data (a high-density microarray
experiment comparing nontumor tissue and/or a pool of refer-
ence tissues vs. tumor tissue); (iii ) collect and manage data (mi-
croarray data management systems to analyze and compare the
data); (iv) analyze interesting sequences (gene annotation
through database references); and (v) deposit and/or archive new
data into repositories. The data analysis and annotation step, so
crucial to the interpretation of the experiments, is expanded
upon in Figure 2. The paper principally discusses microarray
databases, but also includes SAGE and EST libraries in order to
give a review of database science generally applied to global gene
expression studies.

TECHNOLOGY REVIEW FOR GLOBAL GENE
EXPRESSION ANALYSIS

Two approaches have been proposed for large-scale analysis
of mRNA expression levels: (i ) analog methods, such as cDNA
chips (8) and oligonucleotide chips (9,10), which provide a con-

tinuous analytical signal based on hybridization; and (ii ) digital
methods that are based on the generation of ESTs from non-
normalized cDNA libraries, which provide a specific count of
the number of sequences for each gene and/or transcript. DNA-
microarray technology for gene expression analysis can be fur-
ther broken down into additional subcategories, such as cDNA
vs. oligonucleotide probes spotted onto a planar surface of either
glass, silicon, or membranes with either single or dual-color de-
tection by either fluorescent or autoradiographic detection
methods. Digital sequencing technologies include complete li-
brary sequencing, SAGE (11), massively parallel signature se-
quencing (MPSS) from Lynx Supply (Oak Ridge, TN, USA)
(12), and others, which are only now emerging. It is important
to note that microarray platforms tend to provide information
about relative expression levels, whereas the EST sequencing
methods provide information on absolute expression levels. This
difference needs to be taken into account when comparing re-
sults in silico.

In brief, data from different technological platforms may be
compared to develop confidence in measured differential gene
expression. All of the different experimental platforms eventual-
ly return data sets consisting of pairs (gene identifier: expression
value), which must be stored in databases in order to enable all
the processes shown in Figures 1 and 2 to be performed proper-
ly. The appropriate presentation of this information must be
carefully done so as to make comparisons both accurate, intu-
itive, and respective of the limitations and advantages of each
technology.
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Figure 1. Microarray data analysis workflow. Existing data (repository) (1) → generate data (2) → collect and manage data (microarray data management systems) (3)
→ analyze interesting sequences (4) → depositing into repositories (5).
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In the study by Nacht et al., SAGE data was obtained from
independent primary cultures derived from normal mammary
epithelial cell lines and breast cancer cell lines (6). Alternatively,
one could extract this information from publicly available
SAGE and EST library data, such as the Cancer Genome
Anatomy Project (13). Secondly, a cDNA microarray experi-
ment was performed comparing the same cell lines, but in addi-
tion, also comparing them to breast cancer tissue. In this case,
the researcher would have two very different sets of data that
both seek to answer the same question, “Which gene transcripts
are differently regulated in a breast tumor compared to healthy
tissue?”. Clearly, many databases and gene analysis tools will be
needed to answer this fairly simple experimental comparison
that now involves tens of thousands of genes, none of which the
principal investigator is an expert on and which are derived from
different technologies in different laboratories at different times.

DATABASE REQUIREMENTS

The core function of a data management system is to store,
process, and allow for data visualization. The first prerequisite of
the system is its storage and archival capability.  However, using
a simple flat file system makes it difficult to maintain and link
biological annotations that are essential for the interpretation of
the data. Therefore, the second prerequisite is the development
of a relational database.  A microarray laboratory is usually run
with several people participating in the common experimental
workflow of array hybridization, scanning, data processing, and
analysis. All members of the team will eventually need to visual-
ize the data.  Saving flat files at different locations after each step
of the workflow breaks the information stream. Therefore, the
third prerequisite is a system that centralizes the data, with an
administration system that allows different users to act upon the
data at different levels.  The inference power of high-throughput

expression data systems relies on comparing as many expression
profiles as possible with each other and with other sources of in-
formation. Therefore, the fourth prerequisite is to be able to
store the new data in a compatible format that allows such com-
parisons. Finally, the fifth prerequisite is a system that imple-
ments different protocols of data treatment, giving the investi-
gators maximum flexibility to analyze data from different
experimental designs. The final choice of which application to
adopt may rely on the current system architecture of the labora-
tory. Specifications of current IT solutions to microarray data
management are detailed in Table 1.

DATA REPOSITORIES FOR MICROARRAY, SAGE, AND
EST DATA

Table 2 shows a few databases that can store, retrieve, and
compare global gene expression information data (for a review
of some of these see Reference 14). One emerging feature of
such data repositories is the use of accepted scientific standards
specific to microarray data. This capability is critical to import
data from different sources, to quickly add gene annotation
data, and to allow complex queries of the data using standard
language or controlled vocabulary. This conceptual framework
has been formalized by the Microarray Gene Expression Data
Consortium (MGED) (http://www.mged.org/Workgroups/
MIAME/miame.html) and has currently been adopted by
prominent journals (15,16). Many data repositories are expected
to follow soon. Another standard to emerge is microarray gene
expression markup language (MAGE-ML) (16). This is a de-
scriptive language widely adopted by several microarary database
systems and applications. Both ArrayExpress (17) and the Gene-
Expression Omnibus (GEO) (18), which are two of the most
prominent microarray data repositories, intend to support the
MIAME and MAGE-ML standards. These data, independent

Figure 2. Bioinformatics processing of differentially expressed genes utilizing commercial software. Public and private databases are the sources of information to
supply annotations of chromosomal location, GO, metabolic pathway assignment, and promoter binding sites.
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Name Minimum Hardware Requirements Server OS DBMS, Server Applications GUI

Acuity Single processor minimum 500 MHz, Windows® 2000 or Windows MicroSoft® SQL Server Internet Explorer
1024 MB RAM, 10 GB hard disk space 2000 Server operating system

ArrayDB Single processor minimum 1.0 GHz, Unix® (Linux or Irix) Sybase®; Sybase client CGI scripts and Java® applets:
512 MB RAM, 40 GB hard disk space environment, Perl modules multi-experiment viewer

ArrayInformatics Pentium® III 1GHz processor, Windows 2000 Professional MicroSoft SQL Server Internet Explorer
512 MB RAM, 40 GB hard disk space,
10/100 MB 

BASE Single processor minimum 500 MHz, Unix (Solaris, Linux), MacOSX MySql Web browser
256 MB RAM, 100 GB hard disk space

Expressionist 512 MB RAM Unix Oracle8i, Web server Expressionist GUI

GeneDirector Single processor minimum 1.5 GHz, Unix Oracle8i X-Windows-based GUI
1024 MB RAM, 10 GB hard disk space

GeNet Pentium III processor or equivalent Windows 2000, XP or Unix Oracle8i Web browser
or faster, 1 GB RAM recommended, (Linux or Solaris recommended)
80 GB hard disk space 

GeneTraffic(Multi) Biprocessor Pentium III, 4 or Xeon, Unix (Linux Red Hat PostgreSQL, Apache Web, GeneTraffic GUI
512 MB RAM, 2 GB hard disk space recommended) R statistical language

GeneX Single processor minimum 500 MHz, Unix (Linux) PostgreSQL Client-side Java application,
256 MB RAM, 20 GB hard disk space X-Windows-based explorer 

(e.g., IBM data explorer), 
Web browser

maxdSQL Single processor minimum 1.0 GHz, Unix (Solaris recommended) MySql, Oracle8i, MaxdView in the ISYS
512 MB RAM, 40 GB hard disk space PostgreSQL  environment

NOMAD Single processor minimum 500 MHz, Unix (Linux recommended), MySql, Perl Web browser
256 MB RAM, 20 GB hard disk space MacOSX

PartisanarrayLIMS Single processor minimum 500 MHz, Unix (Linux recommended) Oracle8i or Sybase Web browser
256 MB RAM

Resolver 2 UltraSPARC III Cu processors, Unix (Solaris) Oracle8i Enterprise Rosetta Resolver system
2 GB hard disk space Image Viewer

SMD Single processor minimum 500 MHz, Unix (Solaris recommended, Oracle, Perl, and various Web browser
256 MB RAM, 10 GB hard disk space Linux) modules, Java RTE

Table 1. Microarray Software Specifications
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Name Data Type Tissue Type Description Web address

GEO Microarray/SAGE Normal and tumor Gene expression and hybridization array data repository. http://www.ncbi.nlm.nih.gov/geo/
RAD Microarray/SAGE Normal and tumor The ultimate goal is to allow comparative analysis of http://www.cbil.upenn.edu/RAD2/

experiments performed by different laboratories using 
different platforms and investigating different biological 
systems.

ExpressDB Microarray/SAGE Yeast Collection of yeast RNA expression data sets. http://arep.med.harvard.edu/cgi-bin/
ExpressDByeast/EXDStart

CleanEx Microarray/EST Normal and tumor Gene expression and hybirdization array data repository. http://www.epd.isb-sib.ch/cleanex/
libraries SAGE will be added.

Gene Expression Microarray Tumor Data from 60 cancer cell lines based on Affymetrix http://discover.nci.nih.gov/arraytools
Database (Santa Clara, CA, USA) and cDNA technology.
SMD Microarray Normal and tumor Extensive collection of cDNA microarray data. http://genome-www.stanford.edu/

microarray
SAGEmap SAGE Normal and tumor Data from one hundred SAGE Cancer Genome http://www.ncbi.nlm.nih.gov/SAGE/

Anatomy Project (CGAP) libraries.
SAGE SAGE Normal and tumor SAGE data from over 600 000 transcripts, including http://www.sagenet.org/SAGEData/

SAGE data from human, mouse, and yeast transcripts. sagedata.htm
UniGene EST libraries Normal and tumor Collection of EST libraries from different species. http://www.ncbi.nlm.nih.gov/UniGene/
CGAP/Tissue EST libraries Normal and tumor Information on CGAP and other cDNA libraries. http://cgap.nci.nih.gov/Tissues/xProfiler
BodyMap EST libraries Normal and tumor Database of expression information of human and http://bodymap.ims.u-tokyo.ac.jp

mouse genes in various tissues and cell types.
TissueInfo EST libraries Normal Information on tissue expression profile of a sequence http://icb.mssm.edu/services/

by comparing the given sequence against the EST tissueinfo/query
database. Each EST comes from a library derived from 
a specific tissue type.

Table 2. GeneExpression Repositories for Publicly Available SAGE Data and EST Library Data
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Name Supplier License Type Web Address

Acuity3.0 Axon Instruments Commercial, perpetual license. http://www.axon.com/GN_Acuity.html
ArrayDB National Human Genome Public domain. http://genome.nhgri.nih.gov/arraydb/

Research Institute (NHGRI)
ArrayInformatics PerkinElmer Life Sciences Commercial, perpetual license agreement. http://lifesciences.perkinelmer.com/areas/microarray/

arrayinfo1.asp
BASE Lund University GNU General Public License. http://base.thep.lu.se/
Expressionist GeneData Commercial. http://www.genedata.com/products/expressionist/
GeneDirector BioDiscovery Commercial, annual license, Per Seat http://www.biodiscovery.com/genedirector.asp

Client Access License, with respect to 
modules use.

GeNet Silicon Genetics Commercial, one off installation cost, http://www.silicongenetics.com/cgi/SiG.cgi/Products/
including technical support and five Per GeNet/index.smf
Seat Client Access License.

GeneTraffic Iobion Informatics LLC Commercial perpetual license, per seat http://www.iobion.com/products/products.html
client access license.

GeneX National Center for Genome 1. GNU Lesser General Public License. http://www.ncgr.org/genex/
Research (NCGR) 2. Commercial license for commercial 

purposes.
maxdSQL University of Manchester End-User License Agreement (EULA). http://bioinf.man.ac.uk/microarray/maxd/maxdSQL/
NOMAD UCSF, UCLA, Lawrence Berkeley GNU General Public License. http://ucsf-nomad.sourceforge.net/help/

National Laboratory
PartisanarrayLIMS Clondiag Commercial, perpetual license, Per Seat http://www.clondiag.com/products/sw/partisan/

Client Access License.
Resolver Rosetta Inpharmatics, Inc. Commercial, perpetual or annual licenses, http://www.rosettabio.com/products/resolver/default.htm

floating seat license.
SMD Stanford University Royalty-free, nonexclusive, and http://genome-www5.Stanford.EDU/MicroArray/SMD/

nontransferable license, upon terms set download/
by Stanford University.

GNU General Public License means that the source code is freely distributed and available to the general public. The EULA entitles the licensee to a royalty-free
nonexclusive nontransferable end-user license to use the software solely for academic research and no other purposes.

Table 3. Microarray Database Management Systems
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Data Normalization Protocols 
Name Archival Treatment Visualization and Data Analyses Modules

Acuity Dual-color cDNA/oligo Dual-color cDNA/oligo Dual-color cDNA/oligo. Dendrograms, Global normalization, normalization on
2-D interactive plots, animated control spots, spike controls, or subset
interactive 3-D plots, line graphs, of spots. Hierarchical clustering,
scatter plots. k-means, principal component analysis 

(PCA), self-organizing map (SOM).
ArrayDB Dual-color cDNA/oligo Dual-color cDNA/oligo Dual-color cDNA/oligo. Global mean or median ratio based 

normalization.
ArrayInformatics Dual-color cDNA/oligo Dual-color cDNA/oligo Dual-color cDNA/oligo, Affymetrix, Normalization to Lowess, total intensity,

Scatter, line and series plots and a median ratio or to a user generated
cluster image map is not supporting gene list, graphing data trends after
XML as of yet. normalization enabling examination of 

data variability.
BASE Dual-color cDNA/oligo, Dual-color cDNA/oligo, Dual-color cDNA/oligo, Global mean or median ratio based

Affymetrix, SAGE Affymetrix, SAGE Affymetrix, SAGE. normalization, Lowess, MDS module.
Expressionist Affymetrix Affymetrix Affymetrix, dual-color cDNA/oligo. Standard data processing and clustering.
GeneDirector Dual-color cDNA/oligo Dual-color cDNA/oligo Dual-color cDNA/oligo, Affymetrix. ImaGene and GeneSight packages.
GeNet Dual-color cDNA/oligo, Dual-color cDNA/oligo, Dual-color cDNA/oligo, Affymetrix. GeneSpring package.

Affymetrix Affymetrix
GeneTraffic(Multi) Filters, dual-color Filters, dual-color cDNA/ Filters, dual-color cDNA/oligo, Global normalization, z-score, Lowess

cDNA/oligo, Affymetrix oligo, Affymetrix Affymetrix. normalization, full and sub-grid, for 
Affymetrix, alternative probe based 
protocol.

GeneX Dual-color cDNA/oligo, Dual-color cDNA/oligo Dual-color cDNA/oligo, Affymetrix. R routines are available to manipulate
Affymetrix the data (normalization, clustering, etc.).

maxdSQL Dual-color cDNA/oligo, Dual-color cDNA/oligo, Dual-color cDNA/oligo, Affymetrix, Filtering based on numerical values.
Affymetrix Affymetrix maxdView, expression data class 2-D correlation plot with overlay of

which represents results from one or cluster data, multidimensional plots.
more hybridizations and any associated 
clusters of genes. Profiles viewers.

NOMAD Dual-color cDNA/oligo, Dual-color cDNA/oligo, Dual-color cDNA/oligo, Axon scanner ScanAlyse package: global
Axon scanner outcome Axon scanner outcome outcome. normalization.

PartisanarrayLIMS Filters, dual-color cDNA/ Filters, dual-color cDNA/ Filters, dual-color cDNA/oligo, Global mean or median ratio based
oligo, Affymetrix oligo, Affymetrix Affymetrix. normalization.

Resolver Affymetrix, Nylon filters, Affymetrix, Nylon filters, Affymetrix, Nylon filters. Table Viewer: Error models with any experimental
dual-color cDNA/oligo dual-color cDNA/oligo k-means, k-medians clustering, replicates performed, P-values computed 

and SOM algorithms. and error bars for every gene expression
measurement, analysis of variance (ANOVA).

SMD Dual-color cDNA/oligo Dual-color cDNA/oligo Dual-color cDNA/oligo. ScanAlyse package: global normalization.

Table 4. A Technical Comparison of Commercially Available Microarray Storage and Analysis Packages
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for entries that are present in all queries output. Even the initial
data collection, independent of technology platform, can be au-
tomated in an integrated system through LIMS. Many LIMS op-
tions are supported by BioArray Software Environment (BASE)
(20), PartisanarrayLIMS, and ArrayInformatics.

In the present example, the database and analysis tools listed
in Tables 3 and 4 would be used to scale, normalize, cluster, ma-
nipulate, and visualize the global data sets to fairly compare gene
expression between probe sets and to group genes with similar
gene expression patterns across the distinct conditions. It might
be discovered, here, that a new transcription factor has an oppo-
site pattern of regulation with a tightly clustered set of 20 genes
composed mainly of known or proposed oncogenes. This analy-
sis might then lead to the hypothesis that the transcription fac-
tor is directly involved in the inhibition of oncogenes. Secondly,
these same tools could also attempt to correlate the EST library
data with those from the microarray. Finally, the database tools
would track, archive, and backup all of the analysis and visual-
ization steps for future reference.

ANNOTATION OF RESULTS USING DATABASE
REFERENCES

Independently of the platform and the analysis methods
used, the result of most microarray experiments is a list of differ-
entially expressed genes. Most data analysis methods available in
the tools surveyed concentrate on this aspect (21). Many re-
searchers parse such lists of genes manually, using literature
searches and browsing several public databases in an attempt to
extract the relevant biological processes and pathways. This is an
extremely tedious and error-prone process that usually takes
many months. Thus, a major challenge is to translate these lists
of differentially regulated genes into a better understanding of
the underlying biological phenomena in an automated fashion. 

Commonly, gene expression information is interpreted in the
context of annotation information from a variety of sources. As
shown in Figure 2, common sources of annotated information
added in the BioIT (i.e., analysis process) include: (i ) updated
molecular information from databases such as SwissProt and
Ensembl; (ii ) Gene Ontology (GO) classification; (iii ) metabol-
ic pathway assignment; (iv) assignment of chromosomal loca-
tion of genes; and (v) transcription factor activation, among oth-
ers. The most common data sources and references shown in
this scheme will be discussed below.

Gene annotation is one of the major efforts of the bioinfor-
matics community today. Ensembl is a public project developed
at the EBI that has managed to integrate resources from differ-
ent databases such as SwissProt, Interpro, GO, Refseq, Lo-
cuslink, and other interesting annotation sources (22). A very
interesting feature of Ensembl is the distributed annotation sys-
tems (DAS) server, which facilitates the integration of annota-
tion from different sources (23). For example, two laboratories
can share annotations and map them to Ensembl. In gene ex-
pression, one can map the probes to Ensembl and retrieve all the
annotations for this specific probe. Although Ensembl is already
widely used, much work is yet to be done to integrate other im-
portant data sources.

The study of genomics is contributing to a better under-

standing of diverse organisms through a unification of biology
through comparative sequence analysis. This has led to progress
in the way that biologists describe and conceptualize the shared
biological elements, but has not kept pace with the growth of
primary data. The exponential growth in the volume of accessi-
ble biological information has generated a confusion of voices
surrounding the annotation of molecular information about
genes and their products. Based on a number of model organ-
isms, which constantly grows, a dynamic, structured, precisely
defined, controlled vocabulary for describing the roles of genes
and their products in any organism was formed under the GO
Consortium. The goal of this effort is to address the deficits of
the current, rather divergent, nomenclature schemes (24,25). To
this end, three independent ontologies are being constructed,
which are used as attributes for gene products, namely biological
process, molecular function, and cellular component.

Until very recently, there were no tools available to classify
genes according to the GO structure in an automated fashion.
Onto-Express (OE) has been recently made available as a tool de-
signed to mine the available functional annotation data and help
the researcher find relevant biological processes (26). The result of
this analysis is a functional profile of the condition studied. In the
latest version of the OE software, this functional profile is accom-
panied by the computation of significance values for each func-
tional category (27). Such values allow the user to distinguish be-
tween significant biological processes and biological processes
affected by random events. OE’s utility has been demonstrated by
analyzing data from two recent breast cancer studies. In our sec-
ond example (7), the functional annotation of genes provided in-
sights into the biological mechanisms leading to rapid metastasis.
The authors of the original paper showed that genes involved in
the cell cycle, invasion and metastasis, angiogenesis, and signal
transduction were significantly up-regulated in the poor diagno-
sis signature. The original work required many months of analy-
sis. A tool such as OE is able to retrieve these processes in a few
minutes. This tool and this sample dataset are available on line at
(http://vortex.cs.wayne.edu/Projects.html).

Metabolic pathway information is also extremely important
for gene expression profiling but has been highly under utilized.
Although the primary causative factors in disease are altered pro-
tein activities or altered biochemical composition of cells and
tissues, changes at the genetic level might be the ultimate cause
for the disease. Thus, the link between the gene regulatory con-
trol and the primary causative factors will be crucial for applica-
tion in drug development, medicine, nutrition, and other thera-
peutic courses of action. The identification of relationships
between genes, transcripts, proteins, and metabolites are essen-
tial components to understand integrative metabolism (28,29).
The annotation of genes with such information has been at-
tempted by a number of public efforts, most notably from Ky-
oto Encyclopedia of Genes and Genomes (KEGG) (30–32).
Software is now available to superimpose gene expression data
onto said pathways, providing a powerful means to identify bio-
logical regulation of metabolism through the co-expression of
gene data obtained from microarrays. GenMAPP is a useful tool
for such purpose, allowing the user to link pathway information
to gene expression data (33).

Lastly, as it is typically beyond the average researcher to be an
expert on the functions of what may potentially be hundreds of
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co-regulated genes, it will be important to annotate those genes
with GO or keyword searches in the literature or link them di-
rectly to top literature hits themselves (34). This basic example
points out that, by going through expectations in a systematic
fashion, one will quickly be pointed to the appropriate database
sources of information, i.e., Ensembl for molecular annotation,
GO for cross-gene functionality, and PubMed for literature in-
formation. The intelligence and efficiency of viewing and un-
derstanding this information is the subject of modern database
science and the various analytical tools being developed to sort
through this information.

CONCLUSIONS

The ability to store and query genetic data has become crucial
to the progress of scientific research in the life sciences. This paper
reviewed a number of databases and tools addressing this vital is-
sue. A number of requirements for such databases have been iden-
tified and discussed in the context of existing tools. The paper also
reviewed a number of related tools able to analyze the vast amount
of data stored in currently available repositories to better under-
stand the results of the experiments undertaken.
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