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Abstract

This paper gives an overview of methods used for Design Space Exploration (DSE)
at the system- and micro-architecture levels. The DSE problem is considered to be
two orthogonal issues: (I) How could a single design point be evaluated, (II) how
could the design space be covered during the exploration process? The latter ques-
tion arises since an exhaustive exploration of the design space by evaluating every
possible design point is usually prohibitive due to the sheer size of the design space.
We therefore reveal trade-offs linked to the choice of appropriate evaluation and cov-
erage methods. The designer has to balance the following issues: the accuracy of the
evaluation, the time it takes to evaluate one design point (including the implementa-
tion of the evaluation model), the precision/granularity of the design space coverage,
and last but not least the possibilities for automating the exploration process. We
also list common representations of the design space and compare current system
and micro-architecture level design frameworks. This review thus eases the choice
of a decent exploration policy by providing a comprehensive survey and classifica-
tion of recent related work. It is focused on System-on-a-Chip designs, particularly
those used for network processors. These systems are heterogeneous in nature using
multiple computation, communication, memory, and peripheral resources.
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1 Motivation

Having a look at today’s common practice to design an integrated circuit or
a whole system we recognize the impact of the designer’s experience gained
in prior design projects on the final system architecture. Indeed, taking the
application domain of network processing as a prominent example, we see
quite a diversity of available architectures in order to implement the same
kind of application [1]. This variety of designs can rather be explained by the
knowledge gained in recently completed, prior designs in each of the design
teams than by application-driven architecture decisions. That means, given
a specification of the application and system requirements, the design team
shrinks the range of feasible designs to a small number of possible designs by
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falling back on earlier, beneficial design decisions which might be sub-optimal
for the current design problem and biased towards the designers’ favored design
style. The relative quality of the final design as a result of this ad-hoc system
design approach compared to an optimal design will become even worse in the
future due to the following trends:

• Increasing complexity of the design: The complexity of integrated circuits
continues to follow Moore’s law, thus doubling every 18 months. This in
particular motivates to reuse prior design knowledge at higher levels of ab-
straction in order to cope with the sheer size of the design.

• Heterogeneous architectures: We see more and more heterogeneous architec-
tures combining application-specific with general-purpose computing, dif-
ferent kinds of peripherals, and memory hierarchies. In addition, designers
increasingly tend to use existing designs in parallel in order to fill the avail-
able area rather than to develop new and larger designs. Recognizing and
exploiting the concurrency of applications therefore becomes a significant
part of the design process. Besides this architectural diversity, more and
more different technologies are being integrated onto a single chip, such as
on-chip memory, analog interfaces, and high-frequency parts. It is therefore
increasingly unlikely that a design team will be able to come up with an
optimal solution by hand. Although a single designer could find an optimal
subdesign of the overall system for his/her area of expertise (such as mem-
ories), näıvely putting optimal parts together does not necessarily lead to
an optimal heterogeneous system.

• Deep submicron effects: A couple of effects which have been neglected dur-
ing the design process in the past make the design quality worse, such as
increasing interconnect delays and decreasing signal integrity. Again, this
point underpins the growing dependency among different aspects of the de-
sign.

• Decreasing time to market: Last but not least the design window for success
becomes smaller and smaller, thus increasing the pressure to reuse prior
designs rather than developing new, optimized designs.

As a result of these tendencies we in addition discover that the development
of software is often decoupled from the development of the hardware part if
programmable parts are employed. A heterogeneous architecture as a result
of ad-hoc integration of optimal subdesigns might therefore turn out to be
virtually impossible to program and configure. The performance of the soft-
ware on the final hardware might thus not meet the requirements on the final
hardware as expected.

We see the following approaches to partly release the designer from the con-
straints imposed by the mentioned trends:

• Programmable, application-specific architecture building blocks are increas-
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ingly used to replace ASICs, thus allowing their reuse for different applica-
tion domains without sacrificing too much efficiency.

• Correct-by-construction methods, such as the automatic generation of a
compiler from an architecture description language description, are em-
ployed to reduce the time needed for verification whether a design meets
the specification.

• The development of software is introduced in an earlier phase of the over-
all design process. For instance, system-level design frameworks allow the
modeling of the behavior of the software even at very abstract levels and
retargetable compilers ease the evaluation of the actual software on the
intended hardware at low levels of abstraction.

Although these techniques are able to relief the designer from complexity and
time to market concerns to some extend, they are not sufficient to address
increasing heterogeneity and a growing number of dependencies between sub-
designs due to, for instance, deep submicron effects. As complexity increases, it
is becoming more and more unlikely that an optimal design represents an ’intu-
itive’ solution to the design challenge and it is therefore questionable whether
an experienced designer could come up with a decent solution following the
current ad-hoc design approach of pruning the design space by applying prior,
favored design decisions. Consequently, a disciplined approach to design space
exploration is needed in order to be able to evaluate large design spaces with a
high number of potential designs. This includes algorithms to prune and cover
the design space in a systematic way on different levels of abstraction and
refinement. The goal of this paper therefore is to give a comprehensive survey
and classification of recent work in the area of design space exploration of
integrated circuits and systems to ease the choice of a problem-specific explo-
ration policy. We compare the characteristics of different exploration methods
and existing design tools. We also reveal areas of further research in order to
improve the quantitative comparability of exploration techniques.

The paper is structured as follows. In the next section, we give an introduc-
tion to the problem of design space exploration. Section 3 continues with a
discussion of methods for evaluating a single design point. In Section 4, a
survey of approaches for traversing and covering the design space is given.
In addition, techniques for design space pruning and automated exploration
are reviewed. We give an overview of design representations used for DSE
in Section 5 and summarize the properties of available frameworks in Sec-
tion 6. Section 7 continues with a qualitative discussion of trade-offs involved
by choosing appropriate evaluation and exploration methods. In Section 8 we
suggest further steps to enable a more quantitative comparison of design space
exploration algorithms. Section 9 concludes this paper.
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2 Introduction

The term “design space exploration” has its origins in the context of logic
synthesis. Clearly, a circuit can be made faster by spending more parallel
gates for a given problem description (providing that the description offers
enough parallelism) at the expense of area overhead. By extensively playing
around with synthesis constraints, designer have been able to generate a delay-
area trade-off curve in the design space defined by speed and area costs. This
process of systematically altering design parameters has been recognized as
an exploration of the design space.

Scheme for automated design space exploration: Y-Chart. Design
space exploration tasks today often deal with high-level synthesis problems,
such as the automation of resource allocation, binding of computation and
communication to resources, and scheduling of operations, for varying design
constraints, given a fixed problem description. In order to support early de-
sign decisions and due to increasing design complexity, exploration tasks are
more and more performed on the system level. A systematic exploration often
follows the Y-chart approach [2], see Fig. 1, where one or several descrip-
tions of the application (including workload, computation and communica-
tion tasks) and one architecture specification are kept separately. An explicit
mapping step binds application tasks to architecture building blocks. The
following evaluation of the mapping, e.g., in terms of performance, area, or
power consumption may require synthesis steps of the architecture descrip-
tion, rewriting/adapting application code, and dedicated compilation phases
of the application onto the architecture in order to evaluate the design and
perform (possibly simulated) test runs. Constraints from the architecture, ap-
plication, and workload descriptions may influence the evaluation. Results
from the evaluation may trigger further iterations of the mapping by adapting
the description of the application and workload, the specification and alloca-
tion (meaning the selection of architecture building blocks) of the architecture,
or the mapping strategy itself.

In this paper we will in particular focus on two kinds of methods:

• Methods that deal with the evaluation of a single design, represented by the
performance analysis step in the Y-chart.

• Methods for the coverage of the design space by (more or less) systemati-
cally modifying the mapping and the allocation of resources, corresponding
to the feedback paths from the analysis to the mapping and architecture
representations in the Y-chart.

Methods for covering the design space only alter the description of the ap-
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Fig. 1. Y-Chart approach to design space exploration.

plication to adapt or refine the description according to the facilities of the
allocated architecture building blocks in order to ease a feasible mapping. Dur-
ing a design space exploration run, the functionality of the application usually
remains unchanged and only the workload imposed by the application may
vary.

Evaluating designs. Methods for evaluating a single design range from
purely analytical methods, which can be processed symbolically, to cycle-
accurate and RTL-level simulations which need complex executable models
of the design under evaluation. Before a design can be evaluated, compilation
and synthesis steps may be required, e.g. the hardware part of the design may
be synthesized on an FPGA-based prototype. The complexity of validation
phases can be reduced by correct-by-construction synthesis steps that guaran-
tee correct implementations of the specification, thus avoiding validation by,
for instance, simulation of test stimuli. In this case, the system evaluation us-
ing stimuli can focus on extracting design characteristics only, such as resource
utilization.

Complexity of the exploration process. The solution space for a system-
level design space exploration will quickly become large if arbitrary allocations
and mappings are allowed. As a simple example, assume that b distinct hard-
ware building blocks have been allocated and communication between these
blocks is not a bottleneck. The application description may consist of t com-
putation tasks. The building blocks are of a general-purpose type, such as
CPUs with different micro-architectures. As a consequence, each task could
potentially be mapped onto every hardware resource, leading to bt feasible
mapping choices. Thus, an exhaustive evaluation of all possible mappings
quickly becomes intractable. Consequently, there is the need for automated
and disciplined approaches to reveal a representative characterization of the
design space without searching the design space extensively.
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The complexity increases even further if multiple objectives are subject to the
search. In order to evaluate one design whether it is Pareto-optimal (see Def. 4
in section 4.1) with respect to a set of solutions, all objective values of the
design must exhaustively be compared with the corresponding objective values
of every other design in the set. Fortunately, multi-objective explorations are
usually bound to two or three objectives only, such as speed, costs, and power
dissipation. The highest number of objectives that we found in related work
is six [3].

It should be noted that exploration methods can work either on the prob-
lem space or the solution/objective space of the design. A system based on
pre-designed IP-blocks can be optimized by, e.g., searching all possible com-
binations of parameters exported to the designer in the problem space, such
as cache sizes and the clock frequency. Those parameters are part of the ini-
tial problem specification. In contrast to that, high-level synthesis methods
are driven by constraints in the solution space, such as overall latency, power
dissipation, and chip area.

Definition 1 (Problem space) The problem space is defined by properties
of the system that do not represent immediate design objectives but rather nat-
ural characteristics of the design space. In the context of DSE, the dimensions
of the problem space often coincide with the axes of the architecture design
space and may additionally include properties of the workload.

A memory architecture, for instance, could be described by the required num-
ber of cache levels, the sizes of each level, and the caching algorithm used.
An application could be represented by a task graph and an event model that
triggers the tasks. All these specifications are part of the problem description
and do not give any insights into primary objectives, such as the speed of
the system. An exploration algorithm working on the problem space thus sys-
tematically chooses a system configuration, evaluates it, and decides whether
this configuration is feasible or not. Finally, an optimal solution is selected in
terms of one or more primary objectives, such as speed.

Definition 2 (Solution/objective space) The solution space is defined by
the primary objectives of the design space exploration, such as system cost,
speed, and power dissipation.

An exploration algorithm working on the solution space systematically con-
strains feasible designs in terms of primary objectives (see Section 4.2), i.e.,
the algorithm has to determine whether a suitable design can be found that
fulfills the constraints while optimizing other objectives. Design parameters in
the problem space are chosen accordingly, e.g. by logic synthesis algorithms.

In the following sections, methods for evaluating and exploring the design
space are reviewed in more detail.
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3 Methods for evaluating a single design point

In this section methods used to evaluate a single design point are discussed. Re-
lated work shows a variety of different approaches from detailed cycle-accurate
and RTL-level simulations to purely analytical methods on relatively high ab-
straction levels. Depending on the chosen evaluation method, the mapping
step in the Y-chart [2] (see Fig. 1) to determine performance values can be
fairly complex involving explicit compiling or synthesis phases, whereas other
methods represent mapping decisions implicitly by varying parameter sets.
The orthogonal problem how to traverse the design space, given performance
results for individual design points, will be discussed in the subsequent section.

Simulation-based evaluation can only estimate a single stimulus setting at a
time, representing one particular implementation of a problem specification.
The simulated workload must be chosen by the designer in a way that it rep-
resents a variety of typical working scenarios to avoid the optimization of the
design for a special case. Analytical methods can help here since they are able
to evaluate a design for a class of workloads (representing a range of stim-
uli for simulation-based tools) in a single pass. One drawback of analytical
approaches however is that they often provide less precise results than simula-
tion. Both evaluation techniques require a defined set of ’experimental’ setups
in order to produce performance-indicative, representative, reproducible, and
comparable results during an exploration run. This procedure is often called
benchmarking and is elaborated in the next subsection. Simulation-based and
analytical methods for evaluating a design point are summarized in the fol-
lowing subsections.

3.1 Established benchmarks

In order to determine meaningful and comparable performance values, all
evaluation methods need defined benchmarks of some kind to describe the
workload imposed on the design under evaluation. In order to determine re-
producible results, a benchmark includes a description of the application, a
description of the architecture under test, constraints on the workload (e.g.
defined by the working environment of the (embedded) system), a feasible
mapping of the application onto the architecture, and defined metrics and
cost functions. Available benchmarks can be classified according to their ap-
plication domain. Examples are:

• Network processing: Related work on defining benchmarks for network pro-
cessors include CommBench [4], NetBench [5], and activities of the Network
Processor Forum (NPF, http://www.npforum.org). Related work on disci-
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plined approaches for evaluating network processors can be found in [6,7].
The Internet Engineering Task Force (IETF) has a work group on bench-
marking methodologies (BMWG) of internetworking technologies.

• General purpose computing: Benchmarks for general-purpose and scientific
computing are published by the Standard Performance Evaluation Corp.
(SPEC, http://www.spec.org). The Business Applications Performance Cor-
poration (BAPCo, http://www.bapco.com) focuses on benchmarks for per-
sonal computers and notebooks.

• Embedded systems: Benchmarks for embedded systems including automo-
tive, telecommunication, consumer, and control systems can be found in
MiBench [8] and are also defined by the Embedded Microprocessor Bench-
mark Consortium (EEMBC, http://www.eembc.org).

• Multimedia-centric computing: Benchmarks focusing on multi-media pro-
cessing can be found in MediaBench [9] and in the DSP-centric BDTI bench-
marks from Berkeley Design Technology, Inc.

• Database and transaction processing: Business-oriented transactional server
benchmarks are defined by the Transaction Processing Performance Council
(TPC, http://www.tpc.org). SPECjAppServer2002 is a client/server bench-
mark from SPEC for measuring the performance of Java enterprise appli-
cation servers in end-to-end web applications.

• Parallel Computing: Examples of benchmarks for parallel computing and
multi-processing are SPEC OMP (OpenMP Benchmark Suite), Stanford
Parallel Applications for Shared Memory (SPLASH2 [10]), and PARallel
Kernels and BENCHmarks (Parkbench, http://www.netlib.org/parkbench).

3.2 Simulation-based evaluation

Simulation means to execute a model of the system under evaluation with a
defined set of stimuli. A simulation can therefore only trace certain execu-
tion paths in the state space of the system that (hopefully) represent typical
working modes of the design. Simulations are particularly well suited to in-
vestigate dynamic and sporadic, unforeseeable effects in the system, whereas
formally verifiable systems require a deterministic behavior, given any stimuli.
Results from analytical models can be too pessimistic since these models of-
ten consider the worst-case only. Simulations may reveal more realistic results
for average-case optimization. One drawback of simulations is the need for an
executable model. In an early phase of the design providing such a model may
impose an unsubstantiated burden for evaluating early design decisions.

System-level simulation. The Ptolemy framework [11] can be used to
model and simulate the interaction of concurrent system components by using
different models of computation (MoC). Through hierarchical composition and
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refinement the designer is able to specify software and hardware behavior at
various levels of abstraction using different MoCs which are most suitable for
the corresponding application domains.

Lieverse et al. [12] present an architecture exploration method based on a
single MoC, namely Kahn process networks. The functional behavior of an
application is kept separately from models describing the timing behavior of
the architecture (e.g. CPU cores and buses). Applications are annotated with
the computational requirement of one event. On the appearance of a com-
putation event, the corresponding computation demand can be recorded in
an execution trace. In the actual implementation of the tool traces are not
recorded, but event demands are directly passed on to architecture models
that associate a defined latency with each of these events. The actual assign-
ment of computation events to architectural models determines a mapping of
application processes to architecture components. The Artemis work described
in [13,14] refines the work described in [12] in order to resolve deadlocks in
Kahn process networks by introducing the concept of virtual processors and
bounded buffers. One drawback of restricting the designer to using Kahn pro-
cess networks is the inability to model time-dependent behavior. Moreover,
since all scheduling decisions are implicitly taken following the organization of
FIFO buffers, all resources are assumed to use FCFS schedulers on the event
granularity level.

Thus, a natural alteration is used in [15] to model time-dependent workloads of
network processors. Here, process networks with a notion of time are employed
not only to model backlog in packet queues due to limited capacity of resources
and the burstiness of packet arrivals, but also to implement time-dependent
schedulers, such as Weighted Fair Queueing (WFQ). One further benefit of a
notion of time is the option to investigate trading off the response time of a
network processor versus the processing capabilities (i.e. resource load) of its
computing resources by varying the length of loss-free event queues in front
of schedulers.

Computation demands used as annotations for events could be determined by
estimation, pseudo-code analysis, or even by isolated, fine-grained simulations
of individual tasks to increase the accuracy at the system-level as, for instance,
described in [16] and [17].

Cycle-accurate simulation. In order to increase the accuracy of evaluat-
ing a design, an often used level of refinement is defined by the precision of
a single clock cycle. Cycle-accurate evaluation means that the timing is accu-
rately modeled on a clock cycle basis. It does not necessarily imply an accurate
replication of the behavior of the system. In order to emphasize accurate mod-
eling of timing and behavior, we find the category of cycle-accurate, bit-true

10



simulation in literature. It means that at any given clock cycle, the state of the
simulator is identical with the state of an actual implementation. Hardware
models at this level of abstraction can either be based on software, modeling
the timing and behavior of the hardware, or actual hardware descriptions in
a hardware description language, enabling rapid prototyping on, for instance,
an FPGA. The corresponding application under evaluation often is the actual
application itself, i.e., it is described in a high level programming language
or assembler, and not by a functional or behavioral model of the software. A
cycle-accurate evaluation thus comprises either a co-simulation of the appli-
cation together with the hardware description on a hardware simulator or an
integrated simulation of the application on a software model of the hardware.

The Open SystemC [18] Initiative (OSCI, http://www.systemc.org) tries to
leverage design knowledge in the C and C++ programming languages for
system level modeling and evaluation. The goal is to provide an executable
specification of hardware, software, and communication parts of a design early
in the design process and to establish a path of refinements towards imple-
mentation, thus bridging the gap in current design practice between high-level
models and hardware description languages. SystemC allows several layers of
refinement and introduces notions of components (called modules), commu-
nication channels, hierarchical composition, processes, events and signals, as
well as hardware-oriented data types – for instance bit level and logic types –
in order to express concurrency, structural descriptions, communication, and
synchronization. Future versions of SystemC will also incorporate primitives
to express real-time operating system functionality and schedulers. SystemC’s
simulation library supports cycle-accurate evaluation. SpecC [19] also supports
the iterative refinement of a design and is based on the C language. SpecC is
an extension of C with additional hardware and software modeling constructs,
whereas SystemC is a C++ class library. A detailed comparison of the capa-
bilities of SystemC and SpecC can be found in [20]. Together with the richness
of the C and C++ languages however also comes the potential drawback of
versatility of implementations. That means, for instance, that SystemC mod-
els are not necessarily synthesizable. Support for SystemC has been integrated
into a variety of tool flows, such as Synopsys’ CoCentric System Studio, Axys
Design’s MaxSim Developer Suite, CoWare’s N2C, and CoWare/Cadence’s
Signal Processing Worksystem (SPW). SystemC is increasingly being used to
enable heterogeneous multiprocessor simulation by encapsulating proprietary
simulators with modules and using bus wrappers for coupling the modules.
SystemC-based tool flows are thus particularly well-suited for exploring inter-
connect structures and technologies, see [21–24].

Micro-architecture features of programmable processors are often investigated
using cycle-accurate software models. Simulators, such as SimpleScalar [25]
and SimOS [26], are specialized in certain classes of CPUs, such as MIPS-based
cores. Variations of the micro-architecture that only affect run-time mecha-
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nisms, such as caches, branch predictors, and issue widths, can be explored
without the need of recompiling the application. Such a simulator therefore re-
models a fixed IP-core, where only a small set of design parameters is exported
to the user, such as the cache size. Modifications that affect the instruction
set or variations of the data path however require a retargetable compiler
that needs to compile every application to all potential micro-architectures.
These mapping and modification steps may be eased and automated using
architecture description languages (ADLs). One of these ADL-based design
environments is being developed in the Mescal project [27,28]. Another exam-
ple of ADL-based architecture exploration is described in the work of Mishra
et al. [29–31] based on the EXPRESSION language [32]. Further examples
of ADLs are LISA [33], nML [34], MIMOLA [35], and Facile [36]. ADLs can
be distinguished according to the family of architectures they are able to ex-
press (e.g. single vs. multi-threaded), the ability to integrate effects of the
micro-architecture (e.g. pipelining), and their options to support automated
design space exploration by, for instance, an explicit mapping step and sup-
port for retargetable code, simulators, and synthesizable hardware generation.
ADL-based frameworks often allow the automatic generation of cycle-accurate
software models of the hardware and also partly support the automatic cre-
ation of synthesizable hardware descriptions. Surveys of ADLs can be found
in [37,38].

The automatic generation of efficient micro-architecture simulators has re-
cently been covered by several papers. ADL-based simulator generation is
described in, e.g., [39,40] for LISA, in [41] for Expression, and in [36] for
Facile. Techniques vary from interpretative simulation, interpretative simula-
tion with caching of previous evaluations, to compiled simulation, where for
each benchmark a separate simulator must be generated. Compiled simula-
tion is the fastest but also most inflexible technique, which requires a large
memory footprint, since all instructions of the benchmark are predecoded and
part of the simulator. Interpretative simulators, which decode instructions
during run-time of the simulation, are most flexible since one simulator can
be reused for multiple benchmarks. The drawback is of course slow simulation
speed compared to compiled simulation. A simulation technique in between
these two extremes is interpretative simulation with caching, sometimes also
called just-in-time compiled simulation. Here, the simulator keeps a cache of
the results/effects of recently evaluated expressions in order to accelerate the
execution of following appearances of these expressions. In the Facile-based
tool flow [36], the so-called action cache works on the granularity of a sim-
ulation step. Entries of the cache are indexed by run-time static input, such
as pipeline state and the instructions being simulated. In the LISA case [40],
cache entries are indexed by program address and represent whole instructions.
Cache-based simulation speed of course depends on the size and organization
of the cache, trading off memory footprint and performance.
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Examples of retargetable compilers – a prerequisite for automatic, cycle-accurate
design space exploration of processor micro-architectures – targeted at embed-
ded systems [42] and ASIPs are CoWare’s LISATek (http://www.coware.com)
[43], Chess/Checkers (http://www.retarget.com) [44], FlexWare [45], and Ten-
silica’s XCC (http://www.tensilica.com). These compilers in particular spe-
cialize on code density, power issues, and reliability.

3.3 Combination of simulation-based and analytical methods

In order to reduce the overhead involved with the simulation of a complete
system under evaluation, the following methods try to reduce simulation time
by gathering all characteristics, which are common between designs being
evaluated and which are not subject to the design space exploration, into a
single initial simulation. Information extracted from the initial simulation run
can be reused by all evaluations. The evaluation time narrows to the time it
takes to evaluate distinctive features.

Trace-based performance analysis. This kind of performance estimation
is in particular common for evaluating cache and memory structures, see the
survey in [46]. An initial program run extracts all memory accesses and stores
them in a trace. Given a cache model, the trace can then be used to calculate
hit and miss statistics as well as overall performance estimates. The aim of this
procedure is to save evaluation time by only doing an expensive simulation
once. Different cache structures can be evaluated by reusing the same trace
data collected from the initial simulation. Exemplary studies and tools that
use this method for performance and energy analysis driving the design space
exploration of a memory subsystem are by Fornaciari et al. [47,48] and Givargis
et al. [49].

In the work presented by Lahiri et al. [50–52] this technique is applied to the
design of on-chip communication structures. An initial system-level simula-
tion of communicating components representing the workload environment,
i.e. HW and SW components surrounding the communication structure under
investigation, is performed to collect traces of communications going on be-
tween components. Traces are compressed by generating a communication
analysis graph (CAG) that accumulates burst transfers and computations
into single events. Given a communication substructure template consisting
of point-to-point and shared connections as well as bridges, the CAG is modi-
fied to incorporate effects of synchronization, arbitration, and block transfers.
Modifications include adding nodes and adjusting time stamps of nodes, which
enables the estimation of performance and resource utilization.
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Zivkovic et al. [53] augment traditional traces, that usually contain informa-
tion on data transfers and task executions only, with control information in
order to evaluate the cost of control as well.

Analytical models with initial, calibrating simulation. The analytical
approach described by Franklin and Wolf [54] requires an initial characteri-
zation of benchmarks using exhaustive simulation runs for a range of cache
organizations. Extracted information from these runs like miss rates and load
and store instruction shares are fed into analytical models which allow rea-
soning about resource utilization, area requirements, and performance. The
approach has been extended in [55] to include power requirements.

3.4 Purely analytical approaches

Analytical methods come into play if deterministic or worst-case behavior is a
reasonable assumption for the system under evaluation. In addition, building
an executable model of the system as well as simulations might be too costly
or even impossible at the time of the evaluation. Analytical models thus in
particular ease early design decisions by identifying corner cases of potential
designs.

Static profiling. Well established methods for static program analysis, such
as the complexity analysis of algorithms, the dependency analysis of a static
schedule of a task or function call graph to extract worst-case behavior, or
simply counting of operations appearing in pseudo code, can be used for per-
formance estimations of an application mapped onto an architecture, as for
instance performed in [56]. The reader is referred to standard literature in
Computer Science, such as books by Knuth [57] and Sedgewick [58], to learn
more about complexity analysis and common data structures for established
sorting and searching algorithms. Analytical approaches that take certain el-
ements of the micro-architecture of a programmable processing core into ac-
count can be found in the domain of worst-case execution time (WCET) es-
timation for embedded systems. The application models usually require the
absence of sporadic and non-deterministic effects, such as the presence of in-
terrupts, recursion, and operating systems. The analysis works on assembler,
pseudo-code, or a high-level programming language description and therefore
often has to neglect the impact of certain compiler optimizations. The archi-
tecture description is bounded to a single processor with simple pipeline and
cache models. The formulation as an integer linear program often constitutes
the core of the analysis as, for instance, described in the papers by Li et al. [59]
and Theiling et al. [60].
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Event stream-based analytical models. For certain application domains
dedicated calculi, task, and workload models exist which allow symbolic eval-
uation of a design. Richter et al. [61] (and the references therein) give an
overview of mature analytical techniques for evaluating the task execution
on shared resources for event streams, such as periodic events, periodic with
jitter, and sporadic preemptions. They extend these techniques by coupling
the analytical models using event model interfaces, thus enabling system-level
evaluations of platform-based designs. If coupling existing analytical models is
not a concern, calculi provide a generalized approach to real-time embedded
system design, potentially providing tighter bounds to end-to-end delays and
storage bounds of shared memory implementations. One example is the net-
work calculus [62] which has been applied to network processor design [63–65]
and used for evaluating real designs [66,67]. Its applicability has also been
shown for real-time embedded systems in general [68]. Recent extensions in-
clude the distinction of event types and dependencies within and among event
streams [69] and variable execution demands per event [70]. The more details
are included into analytical models, the more the borderline between simu-
lation and analysis is blurred, since additional characteristics on the level of
discrete events might be required. That means, analytical evaluation can trade
off the complexity of the evaluation with the accuracy and general applicabil-
ity of the model. Although the analytical evaluation of a system might become
more computational demanding than a simulation, the main advantage of a
simplified specification remains, since an executable model is not required.
Analytical models are thus well suited for early design decisions, where cor-
ner cases have to be identified quickly, maybe even automatically by using
parameterized models.

High-level synthesis. The evaluation of an application-specific architec-
ture given a task graph may require an explicit synthesis step in order to
extract area requirements and detailed timing information. The classical high-
level synthesis problems of allocating resources, binding computations to re-
sources, and scheduling operations under timing and/or resource constraints
are either solved by exact methods, such as integer/mixed linear program
formulations [71,72], or by heuristics, such as ASAP and ALAP [73,74], list-
[75–77], force-directed scheduling [78,79], or evolutionary algorithms [75,79]
(mainly used for allocation and binding problems).

In conclusion, the trade-offs involved by choosing an appropriate evaluation
method are shown in Fig. 2. Analytical models allow a fast evaluation of a
relatively large fraction of the design space, thus enabling the identification
of corner cases of the design. Over several possible steps of refinement with
increasing effort for evaluation and implementation the design space can be
bound to one particular design point. This funnel representation resembles

15



the upper part of the platform-based design double pyramid [80], i.e., the final
design point could also represent a whole platform. Methods for systematically
exploring the design space on one of the layers of abstraction are discussed in
the following section.
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Fig. 2. Design funnel model. Refinements of the evaluation method narrow the
reachable design space (vertical direction), whereas covering algorithms explore the
size of the design space (horizontal direction).

4 Methods for exploring the design space

After having discussed methods used to evaluate a single design point, this
section provides a survey of algorithms used to walk through and reasonably
cover the design space. Exploring the design space is an iterative process which
is usually based on the Y-chart [2] approach. Here, application and architec-
ture descriptions are explicitly associated to each other in a mapping step
and evaluated afterwards. The mapping could include compile and synthesis
phases to enable the performance analysis. Results from the evaluation of that
particular design point could then be used to further guide the exploration by
varying application and architecture descriptions as well as the mapping be-
tween the two.

In the following sections we provide a coarse classification of search strategies
depending on the number of objectives that are active during the exploration,
a review of common cost functions and metrics, a survey of recent work on
search strategies and design space pruning techniques, and a list of support-
ing functions for automated exploration in the area of computer architecture
design.
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4.1 Optimization strategy

For the classification of methods we need the term of Pareto optimality [81]
which is introduced next. This property only has a meaning if a multi-objective
search of the design space is performed. In the area of micro-architecture
design, objectives could be the minimization of costs, power consumption, or
the maximization of the speed. These objectives may show tight connections
between each other. Thus, optimizing with a single objective in mind may
reveal severe trade-offs with respect to the other objectives.

Definition 3 (Pareto criterion for dominance) Given k objectives to be
minimized without loss of generality and two solutions (designs) A and B with
values (a0, a1, . . . , ak−1) and (b0, b1, . . . , bk−1) for all objectives, respectively,
solution A dominates solution B if and only if

∀0≤i<ki : ai ≤ bi and ∃j : aj < bj .

That means, a superior solution is at least better in one objective while being
at least the same in all other objectives. A more rigorous definition of strict
dominance requires A to be better in all objectives compared to B, whereas the
less strong definition of weak dominance only requires the condition ∀0≤i<ki :
ai ≤ bi.

Definition 4 (Pareto-optimal solution) A solution is called Pareto-optimal
if it is not dominated by any other solution. Non-dominated solutions form a
Pareto-optimal set in which neither of the solutions is dominated by any other
solution in the set.

That means, designs in the Pareto-optimal set cannot be ordered using Def. 3.
Thus, all elements in the set define reasonable solutions and they are subject
to further decision constraints in order to choose a design for a given prob-
lem. An example is visualized in Fig. 3. The two-dimensional design space is
defined by cost and execution time of a design, both to be minimized. Six
designs are marked together with the region of the design space that they
dominate. Designs 1, 4, 5, and 6 are Pareto-optimal designs, whereas design 2
is dominated by design 4 and design 3 by all other designs, respectively. With-
out further insights into the design problem all designs in the set {1,4,5,6}
represent reasonable solutions.

Optimization methods can now be classified according to the following criteria
(see [82] and the references therein):

• Decision making before search: The designer decides how to aggregate differ-
ent objectives into a single objective (cost) function before the actual search
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Fig. 3. Two-dimensional design space with Pareto-optimal designs 1, 4, 5, and 6.

is performed. In this way, well-established optimization methods can be ap-
plied. However, e.g. by using a weighted sum of objectives, certain regions
of the design space may no longer be reachable by the search method (see
the example below). Another procedure would be to convert certain objec-
tives into constraints for an optimization problem with a reduced number of
objectives. A non-arbitrary aggregation of objectives requires some knowl-
edge about the design space to find a solution which is not sub-optimal.
This might be inconsistent with one of the major goals of DSE, i.e. the
determination of characteristics of the design space.

• Search before decision making: The search for optimal solutions is performed
with multiple objectives in mind which are kept separate during the search.
The result of the search is a set of Pareto-optimal solutions. Only after
the search additional criteria or preferences are applied to find an optimal
solution for a given problem. In this way an unbiased search can be done
and problem-specific decisions only require the set of solutions. Hence, a
single search may serve several problem-specific decisions (no rerun of the
search required).

• Decision making during search: This category is a mixture of the two pre-
ceding groups. Here, initial search steps may be used to further constrain the
design space and/or guide the search to certain regions of the design space.
These steps may be repeated iteratively. Constraints and/ or guidance can
be derived automatically or interactively by presenting intermediate search
results to the designer.

Thus, the choice of a single- or a multi-objective search algorithm not only
influences the point of time when design objectives are defined, but also affects
the whole exploration process. Using a single-objective search, the result of the
optimization is a single design point. That means, searches must be repeated
with, for instance, varying weights or constraints on the objective function
in order to explore the design space and generate a set of Pareto-optimal
solutions. Depending on the shape of the objective function that aggregates
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several objectives, certain regions of the design space might not be reachable
at all. In the example in Fig. 4 the region of feasible solutions in the design
space defined by cost and latency is shaded. Designs one, two, and three
represent possible Pareto-optimal solutions. Assume that a weighted sum of
the objectives x and y is used as the objective function f , i.e.

f(x, y) = a · x + b · y a, b ∈ R
+
0 (1)

with some weights a and b. The overall goal is to minimize f , i.e.

c
!
= f(x, y)|min

Equation 1 can be transformed to

y =
c

b
−

a

b
· x =: c′ − a′ · x

and describes a straight line in x − y space. As we can see in Fig. 4, the
ratio of the weights a and b therefore defines the constant slope of the line,
whereas the optimization goal to minimize f moves the line towards the origin.
Two different optimization runs are shown where we were able to find the
solutions one and three. It is clear from the picture that we will never be able
to reach solution two with any combination of the weights a and b since the
straight line will always hit the solutions one or three in order to minimize
f (represented by c). In a similar fashion one can also graphically show that
the reduction of objectives by converting objectives into constraints in fact
reduces the reachable space of solutions.

Contrary to that, multi-objective searches are potentially able to find all three
Pareto-optimal solutions in a single optimization run. The actual choice for
one of the solutions depends on further constraints or objective functions that
apply combinations of the objectives used for the search. A typical applica-
tion scenario could be the exploration of an IP-core library in terms of, for
instance, cost and performance for a certain application domain. Suitable so-
lutions depending on the actual application could be the fastest solution, the
cheapest solution or the solution with the best cost/performance ratio. All
three solutions can be derived from the set of Pareto-optimal solutions with-
out rerunning the search.

4.2 Objective/ cost functions and metrics

In the following, widely-used objectives for design space exploration are pointed
out. Single-objective optimizers tend to use a weighted sum, ratio, or product
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Fig. 4. Finding Pareto-optimal designs using a weighted sum of objectives.

of several objectives in order to consider conflicting criteria, whereas multi-
objective algorithms can keep objectives separately so that the results of the
search are not biased towards a certain region of the design space.

4.2.1 Primary objectives

Primary objectives concern the properties of the overall system and are typi-
cally used directly as optimization goal, i.e., they do not represent an interme-
diate, supportive cost metric, but drive the optimization process directly. The
objectives listed in this category can universally be applied to design space
exploration and are not domain-specific.

• Cost: The cost of a design could be measured as the sum of all component
costs integrated in the system, e.g., based on the wholesale prices from dif-
ferent component manufacturers or based on the own manufacturing costs
which could, for instance, be determined by the area consumption in the
target technology and the packaging costs. Fixed costs, such as the fabrica-
tion costs (e.g. mask sets) or the engineering costs for designing the system,
cannot drive the optimization process and are therefore often not included.

• Power dissipation: Optimization for power more and more becomes the
focus for design space exploration. On the one hand, high-end systems opti-
mized for speed have to cope with the generation of heat within the system
that degrades the life-time of the components. On the other hand, embed-
ded systems not only focus on the minimization of the worst-case power
dissipation, but also on the power leakage during idle periods of the sys-
tem in order to decrease the costs for maintenance, e.g., by extending the
life-time of batteries.

20



• Speed: The speed of a design can be expressed by different metrics, such as
the throughput achieved for computations and communications, the overall
amount of data processed or transferred, the latency/ response time for
certain events (whether deadlines are met), the period length of a schedule
of computations and communications, or the bare clock speed supported by
the design.

• Flexibility: The flexibility of a design can be seen as a meta-objective since it
is difficult to express this metric quantitatively. However, many fundamen-
tal design decisions are based on the need of programmability or dynamic
reconfigurability in order to extend the life-time of a design, to be able to
incorporate late fixes due to, for instance, changes in communication stan-
dards, or to ease the remote maintenance of an embedded system. A first
step towards defining quantitative metrics for flexibility can be found in the
work by Haubelt et al. [83]. An application is described as a hierarchical
DAG where hierarchy levels represent different options (algorithms) to im-
plement the same functionality denoted by the parent node in the graph.
An architecture is supposed to be more flexible the more options described
in the application DAG it can implement, given timing and cost constraints.
This definition of flexibility however requires that all possible functionality
of the application can be enumerated in advance. Often, flexible architec-
tures are however used in order to be able to implement functionality un-
known at design time. In order to determine an upper bound on flexibility
with this definition, the flexibility of a programmable architecture would
only be bounded by the memory space restricting the number of possible
programs.

4.2.2 Secondary objectives

Metrics in this category are either focused on the properties of only a part
of the overall design or provide supportive information on the design, i.e.,
they reveal characteristics of the design that influence primary goals. The
utilization of resources, for instance, could be seen as one component of the
primary cost or power dissipation objectives. Secondary objectives are often
problem-specific and facilitate the analysis of the overall design, pointing the
designer to bottlenecks of the design. Metrics listed under primary objectives
could, of course, also be applied to only parts of the design in order to support
the analysis of the system. It should be noted that there are also optimizer-
specific metrics that guide the search, such as the steepness to surrounding
solutions in the case of hill climbing or the number of dominated solutions
in the case of some multi-objective, evolutionary algorithms. The discussion
of optimizer-specific metrics is beyond the scope of this paper. Common sec-
ondary objectives are:

• Utilization of computation and communication resources: The utilization of
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a resource determines the fraction of the overall execution time of a bench-
mark during which the resource is busy with processing the benchmark.
Depending on the primary goal and the application domain, the goal of the
optimization could be to maximize the utilization in order to exploit the
silicon area as much as possible. Reducing the utilization however could
lead to more power-efficient solutions that could also provide headroom on
flexible architectures for further extensions of the application.

• Static/ dynamic profiling results: Given an executable specification of the
application, different kinds of profiling information could be extracted to
guide further design decisions. An example is generating a histogram of the
instructions used, e.g. data transfer vs. control vs. computation vs. bit level
operations, that could indicate further exploration steps towards certain
architectures supporting the most frequent operations in hardware. Profiling
results could therefore be used as an affinity metrics towards certain design
decisions.

• Affinity metrics: Affinity metrics defined by Sciuto et al. [84] determine
whether an executable specification of the application favors DSP-, ASIC-
, or general purpose-like computing solutions as architecture component.
Exemplary metrics are the multiply-accumulate degree, I/O ratio, and bit
manipulation rate of the reference application.

• HW-SW partitioning specific metrics: Metrics in the domain of hardware-
software partitioning can be seen as a special case of affinity metrics with
two design choices only. For a given problem description it must be de-
cided which parts of the specification should be implemented in software
and which in hardware. Indicators, such as potential speedups, area- and
communication overheads, locality and regularity of computations as, for
instance, defined in [85,76], are used for guiding the decision towards hard-
ware or software.

• I/O- and communication-specific metrics: Apart from primary speed ob-
jectives, such as throughput, latency, and the number of transactions, I/O-
specific metrics include the number of I/O stall cycles and arbitration penal-
ties which affect the primary speed metrics.

• Memory-specific metrics: Cache characteristics that in particular represent
the speed of the memory subsystem for a given application include the num-
ber of conflict and capacity misses, cache hit and miss ratios, as well as the
locality of accesses extracted from the application. Metrics reflecting cost
and power dissipation properties are the code size and the memory con-
sumption of the application, e.g., generated from the maximum processing
backlog of a task graph.

• Reliability: In the domain of embedded systems reliability may become as
important as cost and power dissipation objectives since it might be virtually
impossible to service the remote system or since hard real-time functionality
must be preserved under all circumstances. Reliability comes at the price of
over-provisioned and/or redundant designs.

• Deterministic behavior: In the domain of hard real-time systems, determin-
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istic behavior might be a primary objective in order to fulfill safety require-
ments. Deterministic behavior is achieved by dimensioning the design for
the worst-case behavior of the system. All dynamic and sporadic events
must only have bounded effects on the design, i.e., the behavior must be
predictable.

• Physical size: The physical size and weight of a design may be of primary
importance for embedded systems in, for instance, the automotive domain
and particularly affects the cost of the design.

• Compatibility: In order to partly retain the investment in previous designs,
the compatibility of software, or the computing infrastructure to the new
design becomes important. For the hardware part of the new design this
could mean to maintain a constant interface to the surrounding computing
environment, whereas compatible software requires a constant programming
model for the user. That means, compatibility usually comes at the price of
suboptimal cost and/ or power dissipation objectives.

• Usability: Usability describes the ability of a design to ease its initializa-
tion, configuration, and programming towards the deployment in a certain
application domain. Usability could also include the properties of the user
interface.

• Testability: The support for testing a circuit can be a considerable cost
factor of the design. Hardware building blocks must be included or adapted
to allow a test of the circuit using externally generated test vectors. Partial
or full scans must be supported by test points and scanable registers and
might also require the support of certain standardized test modes, such as
JTAG boundary scan. A system can also provide circuitry to generate test
vectors internally, which is called built-in self test.

4.2.3 Combined metrics

In particular single-objective optimizers combine several objectives in order to
consider conflicting criteria. Multi-objective algorithms could essentially also
use combined objectives in order to reduce the number of dimensions to the
problem, i.e., it could make sense to only consider the speed-cost and the
flexibility-cost ratios for a certain design and not speed, cost, and flexibility
as separate optimization goals. The most prevalent combined objectives are:

• Energy-delay product: The energy-delay product is in particular used to
assess embedded systems. The power requirements are trade off against the
speed of the design with the overall objective to reduce the product.

• Computations-power ratio: This objective can be interpreted as a compu-
tational density related to power dissipation. Designs are supposed to be
better than others if they achieve more computations for a given power
budget or consume less power for a given speed. The ratio between the
number of computations and the power dissipation for a defined benchmark
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reflects this.
• Speed-cost ratio: This combined objective represents a computational den-

sity related to the costs of the design. A design is better than other designs
if it achieves higher speed at the same price or the same speed at a lower
price. The ratio between the speed of a design and its cost combines this
behavior in a single objective.

• Flexibility-related: In the same way the performance of a design has been
combined with cost and power objectives in the preceding combined objec-
tives, ratios and products can be defined to express the trade-off between
flexibility and cost, speed, or power. Examples are the flexibility-power ra-
tio, the flexibility-cost ratio or the flexibility-delay product.

In the following, we review methods for exploring the design space that can
be employed having a single or multiple primary objectives in mind.

4.3 Strategies for covering the design space

In this subsection, related work concerning the question how one could cover
the design space is discussed. The mentioned categories are not strictly or-
thogonal to each other. In the following Subsection 4.4 methods for reducing
the size of the design space are revealed that can be used in combination with
any of the approaches presented in this subsection in order to decrease the
exploration time.

Exhaustively evaluating every possible design point. This straight-
forward approach evaluates every possible combination of design parameters
and therefore is prohibitive for large design spaces. The design space can be re-
duced by limiting the range of parameters and/or by parameter quantization.
Multiple objectives can easily be maintained. The search process is completely
unguided and unbiased towards preferences of the designer. Examples of de-
sign systems and case studies based on exhaustive search include system-level
simulation [15,16,86], high-level synthesis [87,73,88,89,78,90,72], ADL-driven
approaches [30,91], cycle-accurate simulations [92,93], instruction set simu-
lators [49], code parallelization and partitioning onto multi-processors [94],
trace-based analysis [50], and last but not least static analysis [56].

Randomly sampling the design space. Evaluating only random samples
is the obvious choice for coping with large design spaces. It also has the advan-
tage of revealing an unbiased view of the characteristics of the design space.
In [95], a Monte Carlo-based system is described where random samples of the
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solution space are generated by randomly creating constraints for logic syn-
thesis. Another approach is to apply simulated annealing techniques. Starting
from an initial design, changes to the design become more and more unlikely
with advancing search time. In [96], Srinivasan et al. compare explorations
driven by simulated annealing with results using an evolutionary approach.
Gajski et al. [97] combine an exhaustive search over all possible architecture
allocations with a simulated annealing-based exploration of mappings for each
allocation.

One could also think of combining the mentioned random walks with princi-
ples from Tabu search [98] in order to avoid evaluating the same design twice.
Tabu search thus enforces diversification into unexplored regions of the de-
sign space and also incorporates mechanisms to explore around interesting
design points found so far (the so-called intensification phase of the search).
Tabu search however would require additional, possibly computational inten-
sive maintenance operations in order to keep track of recent moves and bad
strategic choices. Tabu search has its roots in operations research and has
only seldom been applied to electronics design so far. We are not aware of any
related work using Tabu search in the context of electronics design. Moya et
al. [99] compare Tabu search with simulated annealing for an artificial, two
dimensional optimization scenario. Tabu search appears to be more robust
against discontinuities and errors in the cost function and more effectively
covers “bumpy” terrain than simulated annealing. Tabu search is also the
more promising search strategy compared with simulated annealing in the
architecture allocation problem investigated in [100].

Incorporating knowledge of the design space. Search strategies in this
category try to improve the convergence behavior towards (Pareto-) optimal
solutions by incorporating knowledge of characteristics of the design space into
the search process. The knowledge may be updated with every iteration of the
search process or may be an inherent characteristic of the search algorithm
itself. All mentioned methods are heuristics.

Hill climbing, for instance, evaluates the neighborhood of the current design
to determine the steepest next step towards the optimization goal. In order to
avoid being trapped on top of a local maximum, hill climbing requires back-
tracking mechanisms which might be expensive in “bumpy terrains”. More-
over, the search becomes aimless on plains and is not able to recognize diagonal
ridges since the probe directions would always lead to lower quality solutions.
In [51], hill climbing is used to explore the mapping of communication onto
channels. In [101], a kind of hill climbing is one of the investigated techniques
to explore VLIW micro-architectures.

Evolutionary search algorithms combine random walk with survival-of-the-
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fittest ideas while constructing new generations of a set (population) of so-
lutions. Better solutions are more likely to survive from generation to gen-
eration and new solutions can be either created by mutation (random walk)
or crossover of existing solutions. Crossover tries to combine features from
two good solutions to generate even better solutions. In the way the designer
chooses a representation of the problem and implements the mutation and
crossover operations (working on those representations) already guides the
search. For instance, mutation and crossover operations may generate new
solutions that are not feasible. A repair mechanism could then prefer cer-
tain features of the solution over others. Thus, domain knowledge may in-
herently guide the search. Näıve implementations of those operations may
however also avoid certain regions of the design space to be reached. More-
over, problem-specific representations require recoding of the evolutionary op-
erations for other problem domains. Single-objective evolutionary algorithms
have been used in [96,77] and multi-objective evolutionary searches are de-
scribed in [63,75,102–104,3,79,105]. Dick et al. [79] combine an evolutionary
search with simulated annealing so that allocation and binding changes are
less likely to happen with an increasing number of iterations.

Searches may also iteratively be guided by distance measures or other means
of affinity towards certain regions of the design space. Sciuto et al. [84] de-
fine affinity metrics for applications towards mappings onto DSPs, ASICs, and
general-purpose processors. Peixoto et al. [85] define metrics which favor re-
source sharing. Those metrics guide optimizations towards clusters of similar
computations that show high locality. In this way, the communication between
clusters is minimized, whereas resource sharing is maximized.

Path-oriented versus unguided search. This distinction emphasizes how
the search progresses from iteration to iteration. Path-oriented searches are, for
instance, hill climbing and evolutionary algorithms (implementing crossover).
Exhaustive searches and random samples like unsupervised Monte Carlo meth-
ods belong to the class of unguided searches. Again, the latter class aims to give
an unbiased view of the design space, whereas algorithms from the former class
use domain knowledge of the design space to guide the search. Path-oriented
walks may have the advantage of potentially reusing intermediate results of
earlier design evaluations along the path. The underlying assumption here is
that a design only slightly changes from one step to the next so that most
of the evaluation experience from the previous design can be reused for the
evaluation of the current design.

Single design at a time versus set-oriented search. This property dif-
ferentiates between the number of designs that must be kept available in each
iteration to perform the search. Exhaustive searches and random walks only
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look at one solution at a time, whereas methods exploiting domain-specific
knowledge tend to use several designs at a time to find an improved design.
Hill climbing and evolutionary algorithms thus belong to the latter category.

In summary, Fig. 5 graphically describes different search strategies for covering
the design space. A discrete design space defined by two design parameters (in
problem space) or two design constraints (in solution space) P1, P2 is assumed.
Otherwise, an exhaustive search would already constitute a subsampling of the
design space in this figure, since the parameters would have been quantized
before the search.

random sampling

P1 P1

knowledge−based,
e.g. guided search

P1

P2P2 P2

exhaustive search

infeasible solutions

feasible solutions

Fig. 5. Common approaches for covering the design space. A discrete,
two-dimensional design space defined by two design parameters/ constraints P1

and P2 is shown.

4.4 Pruning the design space

All mentioned exploration methods can employ further techniques to reduce
the complexity of the search by pruning the design space. Several practical
approaches have been described in the literature, as will be described next.

Hierarchical exploration. Starting with a coarse problem statement in-
teresting regions of the design space are identified and ranked. Refined models
are used to explore those regions. The higher-level models could also be back-
annotated with results from the refined explorations to improve the high-level
characterization of the design space. The search thus switches back and forth
between high- and low-level explorations.

Hekstra et al. [93] use a single simulation and profiling run of an exemplary
VLIW architecture to extract timing information for all possible VLIW de-
signs of their architecture library. Corner cases of the design are simulated
to determine bounds on specific design parameters. This procedure is called
probing. Results from probing and profiling are used to determine the design
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parameters which influence the solution most. Only those parameters are ex-
plored exhaustively, whereas the remaining parameters are considered with a
sensitivity analysis which will be introduced later.

Mohanty et al. [17] use an analytical step first to prune the design space by
symbolic constraint satisfaction. This information is used to limit the design
space for trace-driven system-level simulations. Cycle and power accurate sim-
ulators may be used on the lowest level of abstraction. Results from accurate
single component simulations can also be back-annotated to elements of the
system simulation to improve results on a higher layer of abstraction.

In [74], different solutions of logic synthesis are explored. The problem de-
scription, e.g. a flow graph, is subdivided into templates of apparent regular
structures, i.e. clusters of operations which can be found again and again in
the graph. Results from exploring those templates can then be applied to all
instances of the corresponding template. A further step searches the design
space at the granularity of the supergraph consisting only of templates.

Baghdadi et al. [16] use a few individual building blocks which are synthesized
to RT level in order to extract timing information for possible mappings on a
higher level of abstraction, i.e., this information is back-annotated to a higher
level of abstraction.

Subsampling of the design space. Subsampling the design space is a rea-
sonable choice if the designer is interested in an unbiased exploration where
an exhaustive search would be prohibitive. The subsampling pattern could
be completely random, based on some regular grid, or biased by some ex-
pected shape of the design space and/or objective function(s). Monte-Carlo
based searches, simulated annealing, and evolutionary optimizers (implement-
ing mutation) use random subsampling patterns. All approaches which quan-
tize design parameters to reduce the design space, e.g. by allowing only a set
of fixed bit widths for architecture building blocks, apply a regular sampling
pattern. This property translates, for instance, to the length of one step us-
ing hill climbing. In [101], defined sweeps across the design space of VLIW
architectures are used to explore the design space. Fig. 6 shows some common
sampling patterns.

Subdividing the design space into independent parts for optimiza-
tion. The goal of this approach is to reduce the number of possible designs
by dividing the optimization problem into independent subproblems. In this
way, we do not need to consider all possible combinations of design parame-
ters but rather all combinations of Pareto solutions found for the subsystems
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Fig. 6. Common approaches for subsampling the design space.

(Fig. 7). Although the dimensions of the solution spaces for the different sub-
systems could be similar, e.g. cost and speed, the problem space of each of
the subsystems usually comprises quite different, domain-specific parameters.
A cache could be described by its size and organization, a VLIW core by its
issue width and operator bit width, etc.

cycles

area

cycles

area

cache misses cycles

areaarea

cache Pareto solutions co−processor Pareto solutions VLIW core Pareto solutions system Pareto solutions

Fig. 7. Subdividing the design space into independent parts for optimization.

Kathail et al. [106] divide the optimization of an embedded computing system
into separate optimizations of the cache memory hierarchy, a customized sys-
tolic array used as a co-processor, and a VLIW processor. The exploration of
memory subsystems described in [107,108] separates optimizations concern-
ing power consumption (by determining the cache size), main memory size
(by varying the data layout), and speed (by optimizing address calculations).
Givargis et al. [109] describe a method where the designer initially defines
clusters of design parameters which affect and depend on each other. Separate
clusters can be explored independently. Then, Pareto-optimal configurations
from clusters are merged.

Sensitivity analysis of design parameters. The underlying assumption
of this approach is the independence of design parameters. A sensitivity analy-
sis of the design space is done using a set of reference benchmarks. In separate
calibration runs only a single parameter is varied at a time, whereas all the
other parameters are set to (fixed) arbitrary values. With each calibration
step, the dynamic range of solution properties, such as power consumption
and speed, is recorded.
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Formally, given n design parameters Pi, 0 ≤ i < n with Ci possible configura-
tions each, the number of possible configurations C for the overall system is
the product of all parameter configurations

C =
n−1∏

i=0

Ci.

In order to reduce the number of configurations for evaluation, we perform the
following experiments for each parameter Pi for all r reference benchmarks bj,
0 ≤ j < r:

• Set all other parameters Pk, 0 ≤ k < n, k 6= i to arbitrary (fixed) values
Pk := Pk0

.
• Evaluate the system for all possible configurations Ci of parameter Pi and

note the results of interest, for instance, in terms of speed.
• The system’s sensitivity Si to parameter Pi is then defined as the difference

between the maximum and the minimum result in the series of results for all
configurations of parameter Pi, i.e. in this example the difference between
the maximum and the minimum achievable speed by varying Pi.

Given these results for the set of reference benchmarks, the sensitivities could
be averaged among all benchmarks for each parameter. The design parameters
Pi can then be sorted in decreasing order of sensitivity {PSn−1

, PSn−2
, . . . , PS0

},
where PSn−1

denotes the parameter with highest sensitivity and PS0
the pa-

rameter with lowest sensitivity, respectively. The complexity of the design
space exploration using these parameters can now be reduced by evaluating
only designs defined by the sum of all parameter variations (versus multiplying
all parameter variations in the exhaustive case) and by dropping parameters
with small influence on the solution space from the exploration. For example,
assuming that we stop evaluating the design space at parameter PSq

, the re-
sulting number of evaluations C ′ to perform for an unknown setup is given
by

C ′ =
Sn−1∑

i′=Sq

Ci′.

Work described in [103,104,48,93] uses sensitivity analysis to prune the design
space. Ascia et al. [103] show one approach to extend sensitivity analysis to
multiple objectives.

Constraining the design space. This straightforward task is listed as a
separate point since the identification of design space constraints can form a
significant initial step of a DSE run. The identification of corner cases of the
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design space could be done, for instance, by probing the design space or by
worst-case analytical methods, such as the network calculus [62,63] for the
network processing domain and event-stream based methods for the real-time
embedded domain [61].

4.5 Supporting functionality for automated DSE

The following approaches address practical issues that arise when dealing with
implementing automated DSE, i.e. integrating legacy tools, working on several
layers of abstraction, and reducing the resource requirements of the evaluation
host computer.

Hierarchical simulator integration. The evaluation of IP-core based de-
signs may require the integration of simulation frameworks from different man-
ufacturers which may work on different levels of abstraction, e.g. functional
versus cycle-accurate levels. In [110], a framework is presented that integrates
different simulators. Problems that are specific to this integration are ad-
dressed, such as a description of how stimuli at low abstraction levels could
be generated from high-level stimuli and how the state of low-level simulators
can be maintained between simulation runs that are triggered by higher level
simulators.

Validation: Equivalence check. A DSE run aimed to explore implementa-
tions for a tightly defined specification requires automated validations whether
an implementation still meets the requirements of the specification. In the
general case, formal verification tools address this problem. There also exist
less complex approaches for well defined subproblems. For instance, in [111] a
procedure is described to check two designs for equivalence of output traces.
Searching the state space of both designs is avoided. Another partial verifi-
cation technique is symbolic simulation (see [112] and the references therein)
where the state space is subsampled by verifying system properties for de-
fined symbolic inputs only. The effort spent for validation and verification
can be reduced by employing correct-by-construction techniques. Architec-
ture description languages, for instance, keep a central description of the
micro-architecture of a processor to automatically derive correct compilers,
simulators, and hardware descriptions from it.

Automatic refinement of the task graph. Given a DSE problem which
should be solved using the Y-chart [2] approach, specifications for applications
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may not necessarily match the features exported by the architecture descrip-
tion. Thus, in order to perform the mapping step, automatic adaptations of
the specifications are required. In [113], automatic task graph refinements to
cope, e.g., with synchronization and serialization of accesses are described.
The same kind of problem is addressed in the work by Lieverse et al. [114] for
trace-based simulation. In [50,52], automatic refinements of communication
traces are described to consider DMA block lengths and bus protocols. This
principle is sketched in Fig. 8a.

Trace compression. Trace-driven simulations may require a large number
of long traces. This is why research efforts also focus on compression and
abstraction techniques for traces. Lahiri et al. [50,52] show how communication
traces could be abstracted from, e.g., burst transfers to only reveal abstract
communication events as sketched in Fig. 8b.

b) Automatic trace compression

transfer of 20 Bytes

a) Automatic task graph refinement

task graph specifies

time

events

read read data

trace compression since
only timing of overall 
burst is important

automatic refinement

only 8 Byte transfers
since architecture supports

events

time
read read data

fine−grained trace file

8 Byte 8 Byte 4 Byte

20 Bytes

Fig. 8. Supporting functionality for automated DSE.

Synthetic trace generation. In order to relief the designer from managing
and recording traces for trace-based simulation, the synthetic generation of
traces according to profiling information is described in [115] in order to use
(legacy) trace-based tools.

Coupling of incompatible building blocks. While designing a heteroge-
neous multi-processor system the designer faces the problem that he/she has
to use architecture building blocks from different manufacturers and sources.
As a consequence, the blocks might have been modeled at different levels of ab-
straction and provide different communication interfaces. So-called wrappers/
adapters [116,117] are needed for simulation and synthesis to fit components
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together, which can affect hardware and software parts of the system. Knowl-
edge from interface synthesis [118–121] can be reused for the hardware part of
a wrapper, whereas following the approach of Networks-on-Chip [117] based
on standard network interfaces affects protocol stacks on programmable cores.
A theory of adapters for event-stream models can also be used for analyzing
heterogeneous systems [122].

Operating system customization. If operating systems are used on pro-
grammable cores to relieve the application programmer from details of the
hardware and provide services at run-time, the problem arises that tradi-
tional general-purpose operating systems offer too much functionality, do not
meet hard real-time constraints, and have large resource requirements. Apart
from porting an existing third party real-time operating system to the system
under development and leveraging knowledge from systematic device driver
generation [123,124], the generation/synthesis of a lean operating system, e.g.
starting from a primary kernel of an open-source OS, could also be an op-
tion [125,126].

User-assisted DSE. This point is in conflict with the preceding points since
it assumes that completely automated DSE cannot effectively be performed
but requires regular interaction with the designer to guide the search to certain
regions of the design space. This is why Hu et al. [127] deal with the projection
and visualization of a multi-objective design space to a three dimensional
representation to ease interactive design decisions by the designer.

5 Representing the design space

Numerous representations at different abstraction levels are used to model
applications and architectures for enabling design space exploration follow-
ing the Y-chart. For each category, the following subsections review the most
prominent examples. A couple of these representations have already been in-
troduced in preceding sections. This section mainly serves as a summary of
available representations for the sake of completeness of this DSE survey.

5.1 Architecture models

The listed architecture models mostly focus on performance perspectives of
the modeled hardware. The same kind of representations could also be used to
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model or enable the analysis of properties like power, memory, and area con-
sumption. Models can also be classified as abstract or executable descriptions.
Abstract models only represent performance symbolically by, for instance, as-
sociating the required latency in clock cycles with each operation without
actually executing any hardware description. Executable specifications on the
other hand allow to more precisely model state-dependent behavior, such as
the timing of caches and pipelines.

Abstract, instruction-accurate performance models. The timing be-
havior of a resource is described by a list of symbolic instructions and their
associated latencies. Traces of symbolic instructions are generated by anno-
tated application models during execution and handed to the architecture
models to determine the overall execution time of an application. This kind
of performance model is used in the SPADE [12,53] framework and in the
case study presented in [15]. A special case of this kind of performance model
is often used by logic synthesis-based methods. Here, functional units, that
support a set of operations, are represented by their fixed execution delay
and, for instance, by their area consumptions using a particular technology
for synthesis. Blythe et al. [73] use this representation.

Abstract, task-accurate performance models. The timing behavior of
a resource is described by a list of supported tasks and their worst-case or
average (estimated) execution times on this resource. This abstraction level
is often used to characterize System-on-a-Chip designs which are subject to
system-level design space exploration where the granularity of interest is on the
level of computation cores, memories, and buses. The abstraction could further
be increased by associating execution times with complete platforms. Abstract
performance models at the task level are, for instance, used in [79,75,72].

Abstract, non-linear, accumulative service descriptions. Service curves
(see [62] and the references therein) describe a non-linear worst-case envelope
for the computation or communication capabilities of system-level components
for all possible time intervals. They are therefore able to express properties
like stalls, batch processing, and arbitration policies. Service curves are mea-
sured in units of, for instance, cycles, instructions, bytes, or service time per
second. Service curves are used in EXPO [128] to model building blocks of
SoC designs. Service curves can be used together with arrival curves, that will
be introduced in the next subsection, to determine system properties analyt-
ically, such as the utilization of resources and the response time to certain
events under a defined workload.
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Micro-architecture templates. On the one hand, micro-architecture tem-
plates constrain the design to a certain class of architectures, e.g. VLIW-style
computation for general processing cores. On the other hand, templates al-
low a more specialized generation of compiler and simulator tools and thus
potentially enable more optimized soft- and hardware code generation. The
PICO framework [106] uses templates for caches, programmable computing
cores, and coprocessors. Other examples in the area of micro-processor archi-
tecture simulators include SimpleScalar [25] and SimOS [26] which are focused
on defined micro-architecture classes. Lahiri et al. [50] use templates for in-
terconnect structures on SoCs. Preconfigured IP-blocks can also be seen as
architecture templates, revealing only design parameters to the designer that
lead to feasible designs.

Specification in a hardware description language (HDL). HDLs offer
different levels of abstraction in order to describe functionality and behavior of
an architecture, including the levels of abstraction mentioned earlier. SystemC,
for instance, enables functional, transaction level, and cycle-accurate models,
whereas other HDLs, such as Verilog and VHDL, are in particular used to
describe the actual structure of the underlying hardware in the form of RTL
netlists.

Specification in an architecture description language (ADL). ADLs
allow modeling of computing architectures on higher levels of abstraction than
HDLs, e.g. on the pipeline- or instruction-level, while preserving paths to cycle-
accurate simulators and synthesizable hardware models. ADLs usually focus
on a certain class of architectures that they are able to express in order to en-
able the efficient generation of software compilers for that architecture class.
ADLs can be distinguished according to the family of architectures they are
able to express (e.g. single vs. multi-threaded), the ability to consider effects of
the micro-architecture structure (e.g. pipelining), and their options to support
design space exploration by, for instance, providing retargetable code, simula-
tor, and synthesizable hardware generation. Examples of ADLs are LISA [33],
EXPRESSION [32], nML [34], MIMOLA [35], and the languages used within
the Mescal framework [27,28] and for the Liberty simulator generator [129].
Surveys of ADLs can be found in [37,38].

5.2 Application models

Application models offer different levels of abstraction in the same way as ar-
chitecture models do. The specification could again be abstract, i.e., the model
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defines a workload without executing the specification. Executable specifica-
tions could use different abstraction levels: they could represent the actual
application or , e.g., a discrete-event performance model of the application.

Kahn process networks (KPN, [130]). Concurrent processes communi-
cate through FIFO-organized, unbounded, uni-directional point-to-point chan-
nels. Each process itself performs sequential computations on local data. Com-
putations are interleaved with read and write requests from / to channels.
Read requests are blocking, i.e., the process stalls until sufficient data is avail-
able on the channel, whereas write requests are non-blocking due to unlim-
ited channels. Given an input stream of data the result after executing the
KPN is deterministic, i.e., the result does not depend on the order of exe-
cution of processes. The YAPI model [131] extends KPNs by associating a
data type with each channel and by introducing non-determinism by allowing
dynamic decisions on selecting the next channel communication so that, for
instance, scheduling on shared resources can be modeled. KPNs are used in
SPADE [12,53,114] and Artemis [14]. In [15], process networks with a notion
of time are used to describe packet processing workloads and to enable the
analysis of time-dependent behavior, such as traffic managers and dynamic
deadline-based schedulers. Finally, the Compaan framework [132] enables the
automatic transformation from nested loop programs written in Matlab to
Kahn-like process networks that are especially suitable for FPGA implemen-
tations.

Directed acyclic graphs (DAGs). DAGs are often used in the context of
logic synthesis. Nodes represent atomic operations (or whole non-preemptive
tasks) and directed edges data dependencies between operations, respectively.
A DAG thus represents the data flow of an application. The work by Blythe et
al. [73] uses DAGs on the granularity of logic operations, whereas in [96,76,72]
tasks are used as nodes in the DAG. In the work by Blickle et al. [75] the
nodes of a DAG represent computation and communication tasks. The EXPO
framework [128] uses DAGs to represent packet processing applications for
network traffic flows at the granularity of tasks.

DAGs with periods and deadlines. Directed acyclic graphs (DAGs) rep-
resenting computation tasks are annotated with execution deadlines and pe-
riods for each DAG. A multi-rate system thus comprises several DAGs with
different associated periods. This application description is used by Dick et
al. [79].
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Synchronous data flow (SDF) In an SDF graph, nodes represent atomic
operations/ tasks and directed edges data dependencies between nodes. In
addition to a DAG, each SDF node is annotated with produce and consume
numbers that represent the number of data tokens produced and consumed by
the computation of the node. This information is static, which is why feasible
schedules for the execution order of the nodes and memory requirements for
buffering tokens (if a bounded schedule exists) can be derived at compile time.

Control data flow graphs (CDFG) and dynamic data flow (DDF).
CDFGs can be extracted from the source code description of a program, i.e.,
they reveal all options the control flow could take at run-time of the appli-
cation. The data flow part of the graph shows the underlying concurrency
of the application, whereas the control flow part determines synchronization
points of the data flow and dynamic decision points at run-time. Control flow
nodes are branch and loop constructs. CDFG representations are used in the
comparison in [53]. A similar model with the same expressiveness as CDFGs
is a dynamic data flow (DDF) graph. A DDF graph contains SDF nodes and
nodes with data-dependent dynamic behavior. The additional node types are
switch, selection, and repeat. Each of these nodes has a special input. The
value of a token arriving at this input determines, to which of several outputs
an incoming data token should be handed over (switch node), from which of
several inputs a token should be handed over to the output (select node), and
how many times an incoming token should be replicated on the output (repeat
node), respectively. DDF is a generalization of boolean data flow (BDF). BDF
only contains switch and select nodes as dynamic nodes that offer two choices
only, represented by a boolean value at the special input. Integer-controlled
DDFs are used by Artemis [14].

Non-linear, accumulative workload/ event stream descriptions. Ar-
rival curves (see [62] and the references therein) describe a non-linear worst-
case envelope for event streams, such as network traffic for all possible time
intervals. They are therefore able to express properties like periods, bursts,
sporadic events, and jitter. An example is shown in Fig. 9 d). Note that in the
domain of real-time systems separate event models exist for the mentioned
properties (see [61] and the references therein). Arrival curves can be used to
model the workload imposed on an application or system as well as the output
generated by the system (black box view). Arrival curves together with DAGs
are used in the EXPO tool [128].

High-level programming language descriptions. Algorithms are usu-
ally specified in high level procedural or object-oriented programming lan-
guages, such as C, C++, and Java, or more application-specific languages,
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such as Matlab for signal processing. It is therefore often essential to support
the application specification in these languages in order to be able to use com-
mon benchmarks, although the capabilities of those languages to express con-
currency are limited. Frameworks using high-level programming language de-
scriptions as application description are, for instance, Milan [17], PICO [106],
and ASIP-Meister [133].

Transaction Level Modeling (TLM). TLM is a discrete-event model
of computation used by SystemC, where modules interchange events with
time stamps. TLM is used to model the interaction between software and
hardware modules and communication through shared buses. The modules
themselves can be specified at different levels of abstraction. The application
might be specified as a functional, un-timed state machine model, whereas
the architecture might represent an instruction-accurate performance model.
A transaction aggregates several ’traditional’ events, that usually represent
features of an implementation, and thus raises the level of abstraction in order
to improve evaluation speed. As an example, an application model may issue
a read access request as a transaction to a memory architecture model. Inside
the memory model, this transaction represents a sequence of activation, read,
and precharge events.

Communication analysis graphs (CAG). In the work by Lahiri et al. [50]
a CAG is used as an intermediate representation which is input to perfor-
mance analysis. The CAG represents a compressed version of communication
and computation traces extracted from system-level simulations. It is there-
fore a DAG containing communication and computation nodes, which includes
timing information. A CAG can thus also be seen as an abstract task level
performance model of the application that includes a schedule.

Co-Design Finite State Machines (CFSM) [134]. The communication
between CFSM components is asynchronous, whereas within a finite state ma-
chine (FSM) the execution is synchronous, based on events. The FSM com-
ponent models sequential behavior, whereas the asynchronous communication
between components allows the expression of concurrency. Communication
takes place over buffers with a single element only that can potentially be
overwritten. That means, the transmission of new data has precedence over
the transfer of older data and the loss of old data can be tolerated. This appli-
cation model is motivated by characteristics of the automotive domain, where
the processing of recent sensor data has high priority and a component may
ignore certain events.
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Click model of computation [135]. Click is a representation especially
suited for describing packet processing applications. Nodes represent compu-
tation on packets, whereas edges represent packet flow between computations.
The packet flow is driven by push and pull semantics. Push transfers are ini-
tiated by traffic sources and pull transfers are driven by traffic sinks. Queue
elements terminate both push and pull transfers. The StepNP framework [24]
uses Click as application description and in Mescal [27] Click is one possible
domain where applications can be specified.

Hierarchical and heterogeneous models of computation. The Ptolemy
framework [11] allows to combine various models of computation hierarchically
in order to model and evaluate concurrent components. Metropolis’ [136] meta-
model language also allows to express different kinds of models of computation,
such as transaction-level modeling and process networks.

Fig. 9 shows a couple of common representations that are used to describe
applications and their workload. Kahn processes communicate through un-
bounded FIFOs, whereas in DAGs – in this example a node represents a
one-clock arithmetic function – a connector implies one register. In the Click
model, buffers synchronize between push and pull paths. Representations a)-c)
are used to describe the application and could be combined with arrival curves
shown in d) to model the overall workload; e.g., an event stream bounded by
the curves in d) could trigger push paths in Click or the inputs of a DAG.
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5.3 Programming models

Although methods for simplifying the deployment of designs is beyond the
scope of this paper, we want to shortly mention the problem field of defining
a suitable programming model for a configurable design, since the definition
of a programming model may strongly depend on the chosen application and
architecture representation.

A programming model should provide an abstraction from the underlying
hardware, so that applications can be specified in a convenient way for the
application domain of the design. A good programming model supports an
intuitive abstraction of the architecture while providing the necessary expres-
siveness to achieve efficient implementations. That means, given an application
described by the constructs of a programming model, an efficient implementa-
tion on the hardware can be derived by (possibly a series of) transformations
from the model down to the representation of the programmable hardware.

In the domain of general-purpose computing, we are used to high-level pro-
gramming languages that provide us, e.g., with constructs to express loops and
object-oriented program flows. We rely on the fact that the underlying CPU
has a program counter and hardware building blocks to ease and accelerate
the processing, such as caches and pipelines. We, however, do not explicitly
address these features on the abstraction level of the high-level programming
language, unless it is required to implement the desired program flow by, e.g.,
implicitly modifying the program counter with a conditional branch construct.
The transformation from a program down to the representation of the hard-
ware (registers, functional units, instructions) is automated and performed by
a compiler.

When we think about developing a programming model for domain-specific
processors or whole SoC designs with multiple cores, the application mod-
els described in the preceding subsection might already represent a decent
programming model for the underlying architecture. They could also be used
as an intermediate representation, comparable to the intermediate represen-
tation of a front-end/back-end compiler. Finally, they could be augmented
with additional constructs to explicitly represent hardware building blocks.
An example of the latter case is NP-Click [137], where the Click application
model has been extended to export hardware threads and the data layout to
the programmer while hiding specific resource sharing mechanisms. In Intel’s
programming model [138] for network processors, the programmer specifies
the functionality of the application with a kind of process network. The pro-
grammer annotates each process with worst-case critical path information and
performance requirements. The data layout between several memories must
be done explicitly. Examples for further application domains are Synchronous
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Data Flow (SDF) models for signal processors [139] and computations orga-
nized in streams for media processors [140]. Gropp et al. [141] summarize
common programming model abstractions for parallel computing, such as
threads of control, message passing, and shared memory computations. Fi-
nally, in [142], a set of rules is described that should be followed in order to
develop a programming model for heterogeneous SoCs consisting of multiple
programmable cores.

6 Available Design frameworks for DSE

Various design environments have been developed in academia and industry
supporting design space exploration of applications and architectures of sys-
tem and micro-architecture designs. Frameworks mentioned in preceding sec-
tions are summarized here to give an overview of existing tools and integrated
approaches. A review of tools that are no longer under active development but
still cited frequently, such as Polis and VCC, is part of the survey in [143].

We distinguish between tools that are mainly focused on micro-architecture
exploration and tools that allow to evaluate a platform on the system level. The
former group is mainly based on architecture description languages (ADLs)
to ease the generation of retargetable compilers and simulators, whereas the
latter group mostly incorporates different design styles and evaluation tools to
allow the exploration on the system level. We often find support for SystemC
in this group of tools. That means, the system-level centric frameworks can be
used to incorporate tools generated by the ADL-centric frameworks with other
simulators and models to enable the evaluation of heterogeneous platforms on
the system level. Apart from these two classes, we also give examples of other
tool flows that may be based on analytical models, architecture templates, or
are memory-centric.

6.1 System-level frameworks

Tools in this category allow to model and evaluate architectures and applica-
tions on different levels of abstraction using various model descriptions. They
therefore often also allow to couple evaluation tools from different sources and
vendors to enable the evaluation of heterogeneous architectures on the system
level. We often find support for SystemC in these tools to incorporate algo-
rithms and tools written in C and C++. We only list a couple of examples
of SystemC-based commercial tools and refer to the Open SystemC Initia-
tive website (http://www.systemc.org/ ) in order to get a comprehensive list
of SystemC-based frameworks.
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Metropolis [136]. University of California at Berkeley, Politecnico di Torino,
and Cadence Berkeley Labs. Metropolis is a framework which allows the de-
scription and refinement of a design at different levels of abstraction and in-
tegrates modeling, simulation, synthesis, and verification tools. The function
of a system, such as the application, is modeled as a set of processes that
communicate through media. Non-deterministic behavior can be modeled and
constraints can restrict the set of possible executions. Architecture building
blocks are represented by performance models where events are annotated with
the costs of interest. Further annotations could include arbitrary information,
such as a request to access a shared resource, which is subject to centralized
control by a corresponding quantity manager. A mapping between functional
and architecture models is determined by a third network that correlates the
two models by synchronizing events (using constraints) between them.

Mescal [27]. University of California at Berkeley. Mescal is aimed at the de-
sign of heterogeneous, application-specific, programmable (multi-) processors.
The goal is, on the one hand, to allow the programmer to describe the appli-
cation in any combination of models of computation that is natural for the
application domain, whereas, on the other hand, a disciplined and correct-by-
construction abstraction path from the underlying micro-architecture allows
an efficient mapping between application and architecture. The architecture
development system in Mescal is based on an architecture description lan-
guage.

StepNP [24]. ST Microelectronics. StepNP is a system-level exploration
framework based on SystemC targeted at network processors. It provides well-
defined interfaces between processing cores, co-processors, and communication
channels to enable the usage of component models at different levels of ab-
straction. Existing instruction set simulators can be integrated via wrappers
that incorporate multi-threaded and pipelined behavior to the overall system
simulation. Applications are described in the Click [135] model of computa-
tion.

SPADE [12]. Delft University, Leiden University, NL and Philips Research.
SPADE implements a trace-driven, system-level co-simulation of application
and architecture. Symbolic instruction traces generated by the application are
interpreted by architecture models to reveal timing behavior. The application
is described by Kahn process networks as provided by YAPI [131]. Abstract,
instruction-accurate performance models are used for describing architectures.
SPADE is also used in the following work [53][114].
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Artemis [14]. Amsterdam, Delft, Leiden Universities, NL, and Philips Re-
search. Artemis is based on a Kahn process network description of the applica-
tion and incorporates the ideas from SPADE, i.e., system-level co-simulation
is performed by using symbolic instruction traces generated and interpreted
at run-time by abstract performance models. It adds facilities to explore re-
configurable architectures and for refining architecture models. In [13], an
additional layer of virtual processors is introduced between applications and
architectures in order to resolve possible deadlocks due to mapping decisions.
Artemis is extended to use integer-controlled DDFs in [144] and multiobjective
search in [105].

MILAN [17]. University of Southern California and Vanderbilt University.
MILAN is a hierarchical design space exploration framework that combines
tools for design space pruning with simulators at different levels of abstraction.
At the highest level, the design space is expressed symbolically and pruned
by constraint satisfaction. Simulators include trace-driven, task-level perfor-
mance evaluation tools as well as cycle-accurate third-party simulators, such
as SimpleScalar [25]. The coarse-level application description follows a kind
of hierarchical data flow graph where the behavior of individual nodes is de-
scribed according to the simulation target, e.g. in Matlab, C, or SystemC.

MESH [145]. Carnegie Mellon University. In MESH, resources (hardware
building blocks), software, and schedulers/protocols are seen as three abstrac-
tion levels that are modeled by software threads on the evaluation host. Hard-
ware is represented by continuously activated, i.e. rate-based, threads, whereas
threads for software and schedulers have no guaranteed activation patterns.
The software threads contain annotations describing the hardware require-
ments, so-called time budgets, that are arbitrated by scheduler threads. Soft-
ware time budgets are derived beforehand by estimation or profiling. The res-
olution of a time budget is a design parameter and can thus vary from, e.g.,
single compute cycles to task-level periods. The advance of simulation time is
driven by the periodic hardware threads. The scheduler threads synchronize
the available time budgets with the requirements of the software threads.

SEAS [146]. IBM, Corp. The SEAS framework allows the composition of
virtual components in order to estimate the performance, area, and power
dissipation of the resulting SoC at a high level of abstraction. Each virtual
component is associated with a real design component (e.g., specified in VHDL
or as a fixed design in a given technology), a performance model described by
communicating FSMs, a power state machine describing the transitions be-
tween different power states of the architecture, and an area image for floor-
planing, representing the size and shape of the design. The software behavior
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is described as timed stimuli to the performance and power models, where
processing delays are determined by estimation or profiling beforehand. The
evaluation in terms of speed and power is done by simulation in System-C. In
addition, floorplaning and timing analysis can be done using the abstraction
of virtual components.

Incisive-SPW. Coware and Cadence, Inc. The Signal Processing Worksys-
tem (SPW) allows the hierarchical composition of components, supporting
synchronous and dynamic data flow models of computation. Components can
be taken from Cadence’s optimized design library, specified as a state ma-
chine, or imported from Matlab, C++, Verilog, VHDL, or SystemC sources.
The suggested design flow is based on the iterative refinement of modeling
and simulation at multiple levels of abstraction. There is no explicit mapping
between application and architecture models 1 .

CoCentric System Studio. Synopsys, Inc. System Studio is based on Sys-
temC and thus supports all abstraction levels and models of computation sup-
ported by SystemC, such as the hierarchical composition of static and dynamic
data flow models, state machines, KPN and TLM models, timed cycle-accurate
models, etc. Code import in addition allows to co-simulate HDL descriptions
with SystemC models as well as, for instance, Matlab algorithms. Hardware
synthesis from SystemC is also supported. Like other SystemC-based tools,
System Studio has no explicit mapping step between applications and archi-
tectures. The designer implicitly takes mapping decisions by the way he/she
interconnects and refines SystemC models which could, for instance, either
lead to co-simulation in SystemC or co-simulation of the application and the
architecture on a proprietary simulator provided by the manufacturer of the
architecture building block.

6.2 Micro-architecture centric frameworks

Tools in this category are mainly focused on the micro-architecture of pro-
grammable systems. This is why they are mainly based on architecture de-
scription languages (ADLs) in order to describe single processor systems. The
ADL descriptions then allow the efficient generation of retargetable tools, such

1 Cadence’s former Virtual Component Co-Design (VCC) framework supported an
explicit mapping step where behavioral, executable descriptions were mapped onto
architecture building blocks. Depending on the mapping target a binding of a be-
havior to a certain block could imply a software or hardware implementation. VCC
supported different performance model abstractions to accelerate the evaluation of
the design under development.
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as compiler and simulator. Tools generated by ADL-based frameworks could
be coupled and combined with third party tools in one of the system-level
frameworks in order to enable the evaluation of a heterogeneous system archi-
tecture.

Mescal/Tipi [27,28]. University of California at Berkeley and Infineon
Technologies AG. In the architecture development system of Mescal called
’Tipi’, the designer only needs to think about the data path of the design.
All possible primitive operations that the data path supports are extracted
automatically, i.e., the designer does not have to specify any op-codes or con-
trol logic elements. The designer can then restrict the set of operations and
define more complex instructions from the set of primitive instructions. Cycle-
accurate simulators and synthesizable verilog descriptions of the architecture
can be generated. The optimization of the memory subsystem can be per-
formed automatically using different optional optimizers and independently
of the exploration of the micro-architecture. The micro-architecture descrip-
tion including the memory subsystem is based on an architecture description
language.

ASIP-Meister/ PEAS-III [133]. Osaka University. This framework fo-
cuses on the development of single programmable processors. Functionality
and behavior of the processor and the instruction set are defined in an ar-
chitecture description language. The language supports traditional micro-
architectures by, for instance, having constructs for pipeline stages, delay
branch slots, and interrupts. Given an ADL description, simulator, compiler,
and VHDL descriptions of the processor are output. Applications can be writ-
ten in C. The compiler generation is based on the CoSy compiler development
system from ACE Associated Compiler Experts bv.

EXPRESSION [32]. University of California at Irvine. EXPRESSION is
an architecture description language which enables the modeling of a single
programmable processor with its memory subsystem. Simulator, compiler, and
VHDL descriptions of the processor can be generated from the EXPRESSION
specification of the processor. The application is specified in C++. The de-
scription of the micro-architecture is pipeline-centric and the designer specifies
all possible, valid data transfers between registers, ALUs, and buses.

LisaTek. CoWare, Inc. Based on a further developed version of the LISA [33]
architecture description language for programmable processors, a cycle-accurate
simulator, assembler, C-compiler, and debugger can be generated. The feasi-
bility of HDL generation from LISA has been shown in [147]. Possible paths
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to multi-processor evaluation are given by CoWare’s SystemC-based Conver-
genSC System Designer tool, which could potentially couple LISA-generated
simulators, or CoWare’s LISATek HUB System Integrator multi-processor de-
bugger.

Chess/Checkers. Target Compiler Technologies n.v. Chess/Checkers is an
architecture description language-based development system for programmable
processors. The processor and the instruction set are described in the nML [34]
ADL and the specification may contain multiple memories. Applications are
specified in C. Retargetable compilers and instruction set simulators are pro-
vided. Synthesizable VHDL models can be generated from the nML descrip-
tion.

MaxCore & MaxSim. Axys Design Automation, Inc. MaxCore is based on
the LISA [33] architecture description language and supports the automatic
generation of a simulator and an assembler from a LISA processor descrip-
tion. Multi-processor systems can be evaluated by co-simulation of several
MaxCore-generated simulators using Axys’ MaxSim SoC modeling environ-
ment that supports SystemC/C++.

6.3 Related frameworks

In the last category we give examples of other frameworks that integrate fur-
ther ideas into the exploration process. EXPO is an example for an analytical
exploration framework, PICO uses architecture templates to enable the effi-
cient generation of tools, such as the compiler, and lastly Atomium shows a
memory-centric exploration method incorporating domain-specific knowledge.

EXPO [128]. Swiss Federal Institute of Technology (ETH) Zurich. EXPO is
a system-level, analytical design space exploration tool targeted at applications
and SoC architectures in the domain of packet processing. The SoC architec-
ture can be composed of different computation cores, memories, and buses.
Each architecture building block is characterized by a non-linear worst-case
service curve which represents the capabilities of the resource in, for instance,
units of cycles or instructions per second, for all possible time intervals. The
application description is an abstract task graph where a sequence of tasks is
defined for each traffic flow. Mapping information includes the scheduling poli-
cies implemented by each architecture block. In the Intel IXP-specific version
of the tool [66], mapping decisions imply certain behavior; e.g., if several tasks
within a flow are mapped to the same computation resource, these tasks are
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implemented in the same thread of execution and therefore only one of these
tasks can be active at a time, etc. Stimuli are described with non-linear ar-
rival curves which are worst-case envelops for all possible traffic patterns. Case
studies using EXPO can be found in [65,67,63,64]. The exploration process can
be automated using a combination of binary search for the optimization of a
single design and multi-objective evolutionary search for the covering of the
design space.

PICO [106]. Hewlett-Packard Laboratories. Architectures supported by PICO
are composed of one VLIW processing core, a cache hierarchy, and one or
several coprocessors. A coprocessor contains a number of functional units or-
ganized as a systolic array to accelerate compute-intense loop nests of the
original application description. The application input is described in a subset
of C. Computing core, caches, and coprocessors are explored independently
and Pareto-optimal designs are combined from optimal designs of these sub-
spaces. Architectural choices are bound to configurable templates. The VLIW
template, for instance, allows to vary the allocation of functional units and
the number of registers. Finally, compiler and simulator as well as synthesiz-
able hardware descriptions can be generated from a PICO design description.
Heuristics used in order to explore the design space of the VLIW part of the
design are compared in [101] that resemble hill climbing, regular subsampling,
and probing with refinement.

Atomium. IMEC, Belgium. Atomium is an exploration tool set for memory
subsystems. Given a specification in C, the power consumption of the memory
system, the memory size, and the memory speed can be traded-off against each
other by code transformations and data layout changes. The techniques used
are described in [107] and the references therein.

6.4 Comparison

The features of the mentioned tools are summarized in Table 1 to 3. Tools
focused on system-level design allow to express heterogeneous multi-processor
systems. The emphasis is put in particular on supporting different abstrac-
tion levels and refinement paths. It also often means that SystemC is sup-
ported and tools, such as simulators, from different sources can be combined
for system-level evaluation. Micro-architecture centric tools usually focus on
single, programmable processor systems, where the automatic generation of
optimized compilers and simulators becomes important. The following cate-
gories are distinguished:
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• Application description: Representation of the application used by the tool,
such as Kahn process networks (KPN), models of computation (MoC), pro-
gramming languages like C, C++, synchronous or dynamic data flow (SDF
and DDF), and finite state machines (FSM).

• Architecture description: Architecture representation used, such as perfor-
mance models, micro-architecture descriptions using architecture descrip-
tion languages (ADL), or hardware description language (HDL) descrip-
tions. The notation ’abstract to HDL’ means that the designer has several
options and, depending on the chosen architecture representation, the ab-
straction level could vary from abstract performance models to fine-grained
HDL descriptions. ISS stands for instruction set simulation.

• Exploration modes: Options for exploring the design space, e.g. automatic
vs. manual search in order to evaluate more than one design. ’Script’-based
exploration in this context means that the corresponding tools are able to
automatically explore designs exhaustively by evaluating all possible per-
mutations of design parameters. Design parameters are exported by, for
instance, SystemC modules and represent design decisions, such as clock
speed, cache size, and operation bit width. The interconnects, i.e. the topol-
ogy of the design, cannot be changed automatically by these scripts.

• Path to hardware: Here we state whether (synthesizable) models in a hard-
ware description language (HDL) can be introduced into the evaluation.
A system-level tool can often combine HDL and other models in a system
description so that the whole design can be co-simulated. The HDL models
are designed off-line in another tool and imported into the system-level tool.
An architecture description language (ADL) based tool however potentially
supports the automatic generation of HDL code from the ADL model.

• Generated tools: ADL-based tools support the automatic generation of eval-
uation and development tools, such as simulators (’sim’), assemblers (’asm’),
and compilers (’comp’).

Please note that we do not distinguish tools regarding their evaluation method.
Apart from EXPO [128], which is an analytical framework, all tools are based
on simulation and mainly focus on performance. Usually, the precision of
the used architecture models determines the precision of the evaluation, e.g.
instruction-accurate vs. cycle-accurate. If HDL models can be integrated into
the evaluation, further results from synthesis, such as the area consumption,
are available.

7 Trade-off analysis

This section discusses trade-offs involved by choosing methods for evaluating
a design and for walking through the design space. Information related to this
topic can only sparsely be found in related work that deals with automated
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Table 1
Feature comparison of design space exploration tools: System-level frameworks.

Name Application
model

Architecture
model

Exploration
mode

Path to
hardware

Tool
generation

Notes

Artemis KPN, DDF abstract
perf. model

scripts,
evolutionary
optimizer

no no Based on
SPADE.

CoCentric FSM, PN,
SDF, DDF,
Matlab,
SystemC

abstract
to HDL

manual,
scripts

yes no

Mescal mixed MoC MoC, Tipi manual yes
(Tipi)

sim

MESH threads abstract
perf. model

manual no no

Metropolis mixed MoC
(Meta Model
language)

abstract
perf. model

manual (planned) sim

MILAN C, Matlab,
Java, SDF

abstract
to HDL

manual yes no

SEAS discrete
events, traces

FSMs,
abstract to
HDL

manual yes no

SPADE KPN abstract,
instr.-
accurate

manual no no

SPW FSM, C++,
Matlab,
SystemC

abstract
to HDL

manual,
scripts

yes no

StepNP Click abstract, ISS manual yes
(SystemC)

no Focus on
packet
flows.

design space exploration. Most of the argument is therefore based on intuition.

The dimensions of interest are the time to process a single design, the ac-
curacy of the evaluation, and the quality of the design space coverage. More
precisely, the time it takes to process one design not only comprises the time
required to evaluate (e.g. simulate) it, but also initial efforts to write/program
specifications and update requirements of the models and specifications while
traversing the design space and remapping applications to architectures.

Quantitative statements on the trade-off concerning evaluation time versus
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Table 2
Feature comparison of design space exploration tools: Micro-architecture.

Name Application
model

Architecture
model

Exploration
mode

Path to
hardware

Tool
generation

Notes

ASIP-Meister ’C’ ADL manual yes
(generated)

sim, comp Uses CoSy
compiler
from ACE.

Chess/Check. ’C’ nML ADL manual yes
(generated)

sim, comp

Expression C++ Expr. ADL manual yes
(generated)

sim, comp

LisaTek ’C’ Lisa ADL manual (possible) sim, comp

MaxCore assembler Lisa ADL manual no sim, asm

Mescal/Tipi assembler ADL-like partly
automatic
(memory)

yes
(generated)

sim, asm

Table 3
Feature comparison of design space exploration tools: related frameworks.

Name Application
model

Architecture
model

Exploration
mode

Path to
hardware

Tool
generation

Notes

Atomium ’C’ N/A manual no no Optimization
of memory
subsystem.

EXPO DAG,
task-level

abstract,
accumu-
lated

evolutionary
optimizer

no no Based on
analytical
evaluation,
system-level.

PICO ’C’ micro-arch.
templates

automatic,
heuristics

yes
(generated)

comp, sim Templates
for VLIW,
cache,
co-processor.

accuracy can be found in [50] for trace-based analysis. A case study shows a
reduction of the evaluation time by two orders of magnitude at the expense of
an error of 3.5% in performance compared with a simulation of the complete
system.

Quantitative results concerning the quality of covering methods can be found
in [101] and [48]. Snider [101] compares three kinds of exploration methods
according to the walking/execution time and the area of the design space
covered during the walk. The covering methods under investigation resemble
hill climbing, probing of the design space with refined exploration around
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probes, and regular subsampling of the design space. Fornaciari et al. [48]
employ a sensitivity analysis of six design parameters to reduce the number
of designs to be evaluated. A case study reveals an exploration demand which
is two orders of magnitude smaller than the demand of an exhaustive search.
The resulting design shows a energy-delay product that is worse by only 2%.

When we extrapolate those findings to other evaluation methods and deter-
mine accuracy versus evaluation time trade-offs, a coarse visualization can
be derived in Fig. 10. The figure only considers the evaluation time for one

evaluation time
single design

1 s

1 min

1 h

1 day

1 mo.

10 ms

accuracy
lower

design complexity

more details

Navigation

10 %0 % error5 %

static profiling

synthesis

analysis
trace−based

simulator
instruction set

simulation
system−level

calculus

simulation
cycle−accurate

higher abstraction,
automation

Fig. 10. Evaluation time versus accuracy trade-off for choosing an evaluation
method.

design. Initial modeling efforts and updates for exploring the design space
are not included. We have chosen cycle-accurate simulation as the reference
for DSE evaluation methods. Less accurate evaluation techniques working on
higher levels of abstraction consequently allow faster evaluation of a design.
We could also walk the sketched trade-off space towards lower accuracy (higher
error) by using complexity hiding techniques, such as hierarchical composition.
Moreover, the evaluation time increases with increasing design complexity, i.e.
higher workloads. Finally, different aspects of the design, such as computation,
communication, or control parts, may be modeled on different abstraction lev-
els, effectively blurring the regions in Fig. 10.

The high-level/logic synthesis area in the figure only takes the actual process-
ing time for synthesis into account. Since as a result of the synthesis param-
eters, such as area consumption or the delay of a schedule, can immediately
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be determined, no further simulation runs are required. A co-simulation on
the RTL-level would of course require even more time than cycle-accurate
simulations. All simulation based approaches include the time for compiling
the benchmarks onto the given simulated hardware model. System-level sim-
ulation may not require any compilation steps at all. The trade-off area for
static profiling is quite stretched, since it includes automated methods, such
as function call graph extraction, as well as purely manual profiling phases,
such as complexity analysis.

Finally, a qualitative overview of tasks that need to be done in order to initial-
ize an evaluation setup as well as to update a design point from one evaluation
to the next during a design space exploration run is shown in Table 4. The

Table 4
Comparison of initialization and update costs for different evaluation methods.

Evaluation method Initialization effort Update effort

Simulation, compiler

available

Write application in
high-level language.

ADL-based: recompile
application.

Simulation, no compiler Write application in as-
sembler.

Rewrite/update appli-
cation in assembler.

System-level simulation Model application and
architecture.

Reconfigure model.

Trace-based analysis Setup and run initial
simulation for trace col-
lection.

Trace might require
modifications to reflect
new setup.

Static profiling Write application in any
language / pseudo-code
for analysis.

Rewrite/ update appli-
cation.

Calculus-based analysis Specify application and
architecture with ab-
stract models.

Modify specification.

work required to initialize and update an evaluation setup could be quite
diverse. Some approaches allow automatic updates to the specification, e.g.
ADL-, trace-, or calculus-based methods, whereas others require manual op-
erations to be done by the designer. The costs for initialization and update are
virtually equal for simulation (no compiler) and static profiling, whereas other
methods require a more complex initialization step to ease simple updates, e.g.
trace-based analysis. On the one hand, updating a calculus-based analysis can
be as simple as running the analysis with a new set of parameters, whereas
simulation-based methods might need complete assembler programs adapted
to the corresponding architecture.
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8 Benchmarking DSE approaches

Although the number of published design space exploration case studies is
high, it is difficult to find a common ground among the studies since they
often represent isolated results for a particular application domain which lack
general comparability and are therefore not indicative of results for other
application scenarios. We believe that a systematic benchmarking discipline is
required to establish a well-reasoned, quantitative comparison of the quality
of design space exploration algorithms. The aim of this section therefore is to
point out a possible path to such a benchmarking methodology.

8.1 Indicators for comparing exploration algorithms

We have distinguished algorithms that are used to evaluate a single design
point from methods that are employed to walk through the design space.
The quality and performance of these algorithms can be assessed by different
metrics, as described next.

Algorithms for evaluating a single design point. In this category we
are in particular interested in the accuracy of the used evaluation method
compared to a reference method and the required computational complexity
to perform the evaluation.

• The accuracy could be measured by the deviation from an evaluation of a
reference design in terms of primary objectives such as power dissipation
and speed.

• The computational complexity could be expressed by the time it takes to
evaluate a design on a defined evaluation host. This time period should
ideally be subdivided into the time spent for specifying and modeling the
system under evaluation and the actual evaluation time by, for instance,
simulation.

Algorithms for covering the design space. Algorithms for traversing the
design space can only meaningfully be assessed in combination with a reference
method for evaluating a single design point, e.g. cycle-accurate simulation.
In this way, we can be sure to be potentially able to accurately evaluate a
reference design if the walking algorithm is capable to discover it. In other
words, if a particular covering algorithm cannot find an optimal reference
design in the design space, it is due to the properties of the covering algorithm
itself and not because of an inferior evaluation method.
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The metrics for assessing the quality of a covering algorithm could be quite
different depending on the designer’s motivation for exploration. On the one
hand, if the designer is mainly interested in an unbiased view of the design
space so that different regions of the design space could be ranked and the sen-
sitivity on certain design decisions could be figured out, the exposed solutions
to the designer are not necessarily Pareto-optimal but represent the variety
of possible designs in the problem space. Particularly the following indicators
thus become important:

• The diversity of found designs in the problem space.
• The size of the covered space, be it the problem space or the solution space.

On the other hand, if the designer is mainly interested in quickly finding
Pareto-optimal designs, the quality of the set of solutions found by the al-
gorithm under investigation must be compared with the set of solutions of a
reference exploration. This comparison of sets is not trivial (see [148] and the
references therein). In order to rank different covering algorithms according
to their closeness to the reference set of solutions, the assessment metric must
carefully be chosen so that the ranking is unambiguous. Zitzler et al. [148]
suggest the following two indicators for the pair-wise assessment of sets:

• The number of solutions weakly dominated (see Def. 3) by solutions of the
other set.

• The minimum distance between corresponding objectives of all solutions in
both sets (i.e., this is not the Euclidean distance between multiple objec-
tives). The smaller the distance is, the closer the results of the covering
algorithm are to the reference set of solutions.

Last but not least, additional computations are required to traverse the design
space and decide, which design should be evaluated next. For instance, in the
case of evolutionary algorithms, computations are required to calculate the
fitness of a solution, to perform mutation and crossover, and to select the
next population. Hill-climbing needs to calculate the gradients to neighboring
solutions. These computations should therefore also be considered, apart from
the computations of the evaluation:

• The computational complexity required to decide which design to evaluate
next.

Combined evaluation and covering. In order to evaluate the quality of
results for a certain combination of an evaluation method with a covering
method, additional metrics must be recorded apart from the metrics men-
tioned before:

• The overall computational complexity required to perform the exploration,
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e.g. expressed in the execution time on a reference host, includes the eval-
uation time of all visited designs (including initialization and update costs
from one design to the next) and the time it takes to guide the search of
the design space.

• The size of the maximum memory footprint during the exploration might
be one of the interesting properties of the exploration host computer.

Note that the update costs for the evaluation method from one design to the
next might tightly depend on the chosen covering algorithm. A guided search
may enable the reuse of intermediate evaluation results since the current and
the next design could be quite similar, whereas a random search would need
to completely remodel the system under evaluation from one design point to
the next.

8.2 Defining DSE benchmarks

The purpose of a benchmark is to enable the construction of a repository of
comparable, representative, and indicative performance evaluation results. In
Section 3.1, we have already listed established benchmarks for evaluating the
processing performance of computers and embedded systems. The main goal
of those benchmarks is to compare the performance of real systems under a
defined environment and a reasonable workload. Part of the benchmark’s spec-
ification is the application which the architecture under test is supposed to
run. Benchmarking reports contain the architecture under evaluation and the
maximum achieved performance. We can leverage parts of these established
benchmarks to define benchmarks for evaluating design space exploration al-
gorithms.

Since we are primarily interested in comparing DSE algorithms and not the
final performance of different designs, not only the application is fixed and part
of the specification (like in traditional benchmarks), but also the architecture
and the workload must be defined by the benchmark to produce comparable
and reproducible results. In concrete terms, the following points need to be
considered in order to characterize DSE benchmarks:

• Specification: Looking at a particular application domain, such as network
processing, a DSE benchmark must contain a description of the application,
such as IPv4 forwarding, the constant workload, e.g. 16 bi-directional traffic
ports with 100Mb/s throughput and a defined packet length distribution,
and one or several descriptions of optimal/reference architectures in the
design space, e.g. different micro-architectures of a network processor, as
well as a description of the architecture design space to explore, e.g. the
number and kind of available memories, buses, peripherals, and processing
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elements. The specification of optimal (or at least reference) architectures
allows one to reproducibly assess the properties of evaluation methods and
the quality of covering algorithms relatively to the set of reference solutions.

• Representative and reference setups: For each of the application domains
shown in Section 3.1 a representative benchmark should be chosen and
adapted to the needs of a DSE benchmark. For embedded systems this
could, for instance, mean that an ARM-based architecture is selected to
perform a control-dominant application with a defined input from sensors.
A couple of ARM-based architectures must be evaluated using a reference
evaluation method, such as cycle-accurate simulation, and the performance
must be reported. The reference evaluation method as well as the specifica-
tion and results of the reference architectures now become part of the DSE
benchmark.

• Diversity of exploration domains: Apart from the application domain DSE
benchmarks could also be distinguished according to the main focus of the
exploration. A micro-architecture centric exploration should specify dif-
ferent computation styles as reference architectures, such as RISC, DSP,
VLIW, ASIP, or even ASIC, in order to investigate whether a certain ex-
ploration approach is able to express and exploit this diversity of choices.
A system-level centric DSE benchmark should hence focus on different het-
erogeneous compositions of architecture building blocks.

Constraints on the DSE algorithms themselves, such as bounds on the execu-
tion time on a reference evaluation host computer or the size of the memory
footprint, should be included in the specification of a DSE benchmark in or-
der to be able to finally answer the following questions for the DSE algorithm
under test:

• Are we able to find the reference architectures or even better solutions with
respect to defined primary objectives in the ideal case, which does not have
any time or resource constraints on the DSE host machine? The quality
of the solutions should be reported using the indicators mentioned in the
preceding subsection.

• How long does it take/ how much computation is required to find these
solutions? What is the maximum memory footprint?

• Given a memory and/or time budget, how good are the achievable results in
this case? A series of experiments could trade off the memory consumption
against the evaluation time.

The more application domains and abstraction levels are supported by a par-
ticular DSE algorithm, the better the confidence in that algorithm should be-
come. This is why it is important to have fundamentally different exploration
experiments described in DSE benchmarks.

56



9 Summary and conclusion

The aim of this paper is to give a comprehensive overview of design space
exploration (DSE) techniques used for System-on-a-Chip architectures, in-
cluding the micro-architecture of single building blocks. We have reviewed
academic and commercial frameworks and classified related work according to
two orthogonal problem areas: (I) the evaluation of a single design, (II) the
representative coverage of the design space. Methods for covering the design
space can further be subdivided into methods for searching or pruning the
design space, and for automating the exploration process. We have also listed
common design space representations and objective functions. We conclude:

• Only evolutionary algorithms or exhaustive search have been used so far
in related work to cope with multi-objective optimization design problems.
Both approaches are ad-hoc solutions. A more guided search would be de-
sirable to reduce the search complexity. A better incorporation of domain
knowledge, e.g. extracted from a coarse characterization of the design space
by analytical models, might help to improve convergence to optimal solu-
tions.

• Very little data is available that compares the implementation and evalua-
tion complexity of different DSE approaches. However, the number of pub-
lished case studies is relatively high. Currently, those studies lack general
comparability. This will continue to be a problem as long as well established
test cases and benchmarks for DSE are missing.

• Many activities in academia focus on automating mapping and space cover-
ing methods, whereas commercial tools ease the manual process of exploring
the design space for an experienced designer. The question arises whether
an experienced designer will always be able to come up with a suitable so-
lution while facing an increasingly complex design space in the future, or
whether automated exploration tools can effectively support the designer in
finding feasible designs in this situation.

Consequently, we have drawn up a discipline for benchmarking design space
exploration methods and revealed meaningful metrics for this purpose. Defined
DSE benchmarks will enable the quantitative and reproducible comparison of
design efficiency and quality of results for manual and automatic DSE meth-
ods.
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