
March 22, 2003 Draft proposal for tweakable wide-block encryption

 Copyright 2004, IEEE. All rights reserved. Page 1

Document Number: XXXX-00-0-Y-Mar04

Draft Proposal for Tweakable Wide-block
Encryption
Draft 1.00:00

March 22, 2003

Sponsor
IEEE P1619 (?)

Abstract: We describe the EME-32-AES tweakable block cipher and its use of for encryption of
storage. EME-32-AES is a tweakable block cipher that acts on wide blocks of 512 bytes, and it
uses as subroutine the AES block cipher (that acts on blocks of 16 bytes). Specifically, EME-32-
AES encrypts and decrypts wide blocks of 512 bytes, under the control of a secret AES key (that
can be 16, 24, or 32 bytes) and a non-secret 16-byte tweak. EME-32-AES is a concrete
instantiation of the EME mode of operation, as described in reference [HR04]. When used to
encrypt storage data, the tweak value is computed as the logical position of the current wide
block within the scope of the current key.

The motivating application for EME-32-AES is encryption of storage at the sector level. In this
application, sectors are typically of length 512 bytes, and one may use the address of the sector
on the disk as the tweak value.

Keywords: Encryption, storage.

Draft proposal for tweakable wide-block encryption March 22, 2004

Page 2 Copyright 2004, IEEE. All rights reserved.

IEEE Standards documents are developed within the Technical Committees of the IEEE Societies and the
Standards Coordinating Committees of the IEEE Standards Board. Members of the committees serve
voluntarily and without compensation. They are not necessarily members of the Institute. The standards
developed within IEEE represent a consensus of the broad expertise on the subject within the Institute as
well as those activities outside of IEEE that have expressed an interest in participating in the development
of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply that there
are no other ways to produce, test, measure, purchase, market, or provide other goods and services related
to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is approved
and issued is subject to change brought about through developments in the state of the art and comments
received from users of the standard. Every IEEE Standard is subjected to review at least every five years
for revision or reaffirmation. When a document is more than five years old and has not been reaffirmed, it
is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present
state of the art.

Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of
membership affiliation with IEEE. Suggestions for changes in documents should be in the form of a
proposed change of text, together with appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they
relate to specific applications. When the need for interpretations is brought to the attention of IEEE, the
Institute will initiate action to prepare appropriate responses. Since IEEE Standards represent a consensus
of all concerned interests, it is important to ensure that any interpretation has also received the concurrence
of a balance of interests. For this reason IEEE and the members of its technical committees are not able to
provide an instant response to interpretation requests except in those cases where the matter has previously
received formal consideration.

Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE Standards Board
445 Hoes Lane
P.O. Box 1331

Piscataway, NJ 08855-1331

IEEE Standards documents are adopted by the Institute of Electrical and Electronics
Engineers without regard to whether their adoption may involve patents on articles,
materials, or processes. Such adoption does not assume any liability to any patent owner,
nor does it assume any obligation whatever to parties adopting the standards documents.

March 22, 2003 Draft proposal for tweakable wide-block encryption

 Copyright 2004, IEEE. All rights reserved. Page 3

1. Status summary

Contacts

 This proposal editor:
 Shai Halevi
 IBM T.J. Watson Research Center.
 19 Skyline Drive
 Hawthorne, NY 10532
 Tel: +1.914.784.7653
 Fax: +1.914.784.6205
 Email: shaih@watson.ibm.com

Draft proposal for tweakable wide-block encryption March 22, 2004

Page 4 Copyright 2004, IEEE. All rights reserved.

Table of contents

1. Status summary ... 3
Contacts .. 3

2. Overview.. 7
2.1 Scope and purpose ... 7
2.2 Related work .. 7

3. References.. 8

4. Definitions ... 9
4.1 Conformance levels ... 9
4.2 Glossary of terms ... 9
4.3 Acronyms and abbreviations... 10
4.4 Numerical values.. 10
4.5 Field names... 10
4.6 Notations for block encryption and decryption.. 10
4.7 C-code notation .. 11

5. The EME-32-AES transform.. 12
5.1 Multiplication by two in the finite field GF(2128) .. 12
5.2 The EME encryption procedure .. 13
5.3 The EME decryption procedure .. 14

6. Using EME-32-AES for encryption of storage ... 17
6.1 Encoding the tweak values .. 17

Annex A: Bibliography (informative) .. 18

March 22, 2003 Draft proposal for tweakable wide-block encryption

 Copyright 2004, IEEE. All rights reserved. Page 5

List of figures

Figure 5.1. An illustration of EME encryption .. 12
Figure 5.2. A “C” code for the multByTwo procedure... 13
Figure 5.3. A “C” code for the EME encryption procedure. .. 16

Draft proposal for tweakable wide-block encryption March 22, 2004

Page 6 Copyright 2004, IEEE. All rights reserved.

List of tables

Table 4.1 — Names of registers and fields .. 10
Table 4.2 —C code expressions ... 11

March 22, 2003 Draft proposal for tweakable wide-block encryption

 Copyright 2004, IEEE. All rights reserved. Page 7

2. Overview

2.1 Scope and purpose

The purpose of this document is to specify the EME-32-AES transform and its use for encryption of data at
rest. The EME-32-AES transform acts on wide blocks of 512 bytes, under the control of a secret key and a
non-secret tweak. It is implemented as a mode of operation for the AES block cipher (that has blocks of
size 16 bytes). The security goal of EME-32-AES states that it should look like a block cipher (with “wide
blocks” of size 512 bytes). Moreover, using the same key with different tweaks should look like using
completely independent keys.

EME-32-AES is a concrete instantiation of the EME mode of operation, which is described in reference
[HR04]. The EME mode of operation uses a block cipher with n-byte blocks, and turns it into a tweakable
cipher with blocks of size upto 8n2 bytes. It is proven in [HR04] that the EME mode indeed achieves the
stated security goal, assuming that the underlying block cipher is secure.

An example application for this transform is encryption of storage at the sector level, where the encrypting
device is not aware of high-level concepts like files and directories. The disk is often partitioned into fixed-
length sectors (typically 512 bytes), and the encrypting device is given one sector at a time, in arbitrary
order, to encrypt or decrypt. The device needs to operate on sectors as they arrive, independently of the
rest. Moreover, the ciphertext must have the same length as its plaintext. On the other hand, it is possible to
vary the encryption/decryption process, based on the location on the disk where the ciphertext is stored.
The dependency on the location allows that identical plaintext sectors stored at different places on the disk
will have unrelated ciphertexts.

This document includes the description of the EME-32-AES transform itself (in both encryption and
decryption modes), as well as how it should be used for encryption of data at rest. The scope is limited to
encryption of storage data, consisting of an integral number of 512-byte blocks. Throughout this document,
a block of 512 consecutive bytes is referred to as a “wide block”. Encryption of storage data that uses
blocks of different size (or variable length blocks) is expected to be out of scope for this document.

2.2 Related work

Efforts to construct a block cipher with a large block-size from one with a smaller block-size go back to
Luby and Rackoff [LR88], whose work can be viewed as doubling the block-size. They were also the first
to formally define the security goal of a block cipher. The first attempt to directly construct a cipher with
very large blocks from one with small blocks is due to Zheng, Matsumoto, and Imai [ZMI89]. Naor and
Reingold describe in [NR98,NR99] an elegant approach doing just that, using a layer of ECB encryption
that is “sandwiched” between two layers of non-cryptographic hashing. In practice, however, instantiating
the layers of “non-cryptographic hashing” turn out to be problematic. A mode of operation similar to EME
(called CMC) was proposed by Halevi and Rogaway in [HR03]. The main difference between CMC and
EME is that the latter is parallelizable, whereas the former is not. A different approach for constructing a
block cipher with large blocks is to build it cipher from scratch, as with BEAR, LION [AB96], and Mercy
[C00].

The formal definition of the security goal of a tweakable block-cipher is due to Liskov, Rivest, and Wagner
[LRW02], where they also show how (narrow-block) tweakable ciphers can be built from standard block
ciphers. An earlier work by Schroeppel suggested the idea of a tweakable block-cipher, by designing a
cipher that natively incorporates a tweak [S98].

Draft proposal for tweakable wide-block encryption March 22, 2004

Page 8 Copyright 2004, IEEE. All rights reserved.

3. References

[R1] ANSI/ISO 9899-1990, Programming Language—C.1,2

[R2] NIST FIPS-197, Federal Information Processing Standard (FIPS) for the Advanced Encryption
Standard.3

All the standards listed are normative references. Informative references are given in Annex A. At the time
of publication, the editions indicated were valid.

1 Replaces ANSI X3.159-1989.
2 ISO documents are available from ISO Central Secretariat, 1 rue de Varembé, Case Postale 56, CH-1211, Genève 20,
Switzer-land/Suisse; and from the Sales Department, American National Standards Institute, 11 West 42nd Street, 13th
Floor, New York, NY 10036-8002, USA
3 FIPS publications are available from the National Technical Information Service (NTIS), 5285 Port Royal Road,
Springfield, VA, USA. FIPS-197 is also available on-line from http://csrc.nist.gov/CryptoToolkit/aes/

March 22, 2003 Draft proposal for tweakable wide-block encryption

 Copyright 2004, IEEE. All rights reserved. Page 9

4. Definitions

4.1 Conformance levels

4.1.1 expected: A key word used to describe the behavior of the hardware or software in the design models
assumed by this specification. Other hardware and software design models may also be implemented.

4.1.2 may: A key word indicating flexibility of choice with no implied preference.

4.1.3 shall: A key word indicating a mandatory requirement. Designers are required to implement all such
mandatory requirements.

4.1.4 should: A key word indicating flexibility of choice with a strongly preferred alternative. Equivalent
to the phrase is recommended.

4.1.5 reserved fields: A set of bits within a data structure that is defined in this specification as reserved,
and is not otherwise used. Implementations of this specification shall zero these fields. Future revisions of
this specification, however, may define their usage.

4.1.6 reserved values: A set of values for a field that are defined in this specification as reserved, and are
not otherwise used. Implementations of this specification shall not generate these values for the field.
Future revisions of this specification, however, may define their usage.

NOTE — These conformance definitions are used throughout IEEE standards and should therefore never be changed.

4.2 Glossary of terms

4.2.1 byte: Eight bits of data, used as a synonym for octet.

4.2.2 doublet: Two bytes of data.

4.2.3 quadlet: Four bytes of data.

4.2.4 octlet: Eight bytes of data.

3.2.5 block: Sixteen bytes of data.

3.2.6 wide block: Five hundred and twelve bytes of data.

Draft proposal for tweakable wide-block encryption March 22, 2004

Page 10 Copyright 2004, IEEE. All rights reserved.

4.3 Acronyms and abbreviations

IEEE The Institute of Electrical and Electronics Engineers, Inc.

4.4 Numerical values

Decimal, hexadecimal, and binary numbers are used within this document. For clarity, decimal numbers are
generally used to represent counts, hexadecimal numbers are used to represent addresses, and binary
numbers are used to describe bit patterns within binary fields.

Decimal numbers are represented in their usual 0, 1, 2, ... format. Hexadecimal numbers are represented by
a string of one or more hexadecimal (0-9,A-F) digits followed by the subscript 16, except in C-code
contexts, where they are written as 0x123EF2 etc. Binary numbers are represented by a string of one or
more binary (0,1) digits, followed by the subscript 2. Thus the decimal number “26” may also be
represented as “1A16” or “110102”.

4.5 Field names

This document describes values that are in memory-resident or control-and-status registers (CSRs). For
clarity, names of these values have an italics font and contain the context as well as field names, as
illustrated in Table 4.1.

Table 4.1— Names of registers and fields

Name Description

MoverCsr.control The mover’s control register.

Command.code. The code field within a command entry

Status.count The count field within a status entry

Note that run-together names like “MoverCsr” are preferred because they are more compact than under-
score-separated names (like “Mover_Csr”). The use of multiword names with spaces (like “Mover CSR” is
avoided, to avoid confusion between commonly used capitalized key words and the capitalized word used
at the start of each sentence. Capitalization may, however, be useful for differentiating between different
types of key words. For example: the upper case MoverCsr, Command, and Status names refer to CSR
registers and the lower case control, code, and count names refer to fields within these registers.

4.6 Notations for block encryption and decryption

Subject to the procedures described in publication [R2] (AES), we denote by C = AES-enc(K; P) the
operation of applying the encryption procedure from [R2], when K is an array of 16, 24 or 32 bytes that is
used as the encryption key, and P is a block of 16 bytes. The result of this operation is a block of 16 bytes,
which is denoted C. Similarly, we denote by P = AES-dec(K; C) the operation of applying the decryption
procedure from [R2], when K is an array of 16, 24 or 32 bytes that is used as the encryption key, and C is a
block of 16 bytes. The result of this operation is a block of 16 bytes, which is denoted P.

March 22, 2003 Draft proposal for tweakable wide-block encryption

 Copyright 2004, IEEE. All rights reserved. Page 11

4.7 C-code notation

The behavior of many commands is frequently specified by C code, such as in Equation 4.1. To
differentiate this code from textual descriptions, such C code listings are formatted using a fixed-width
Courier font. Similar C-code segments are included within some figures.

// Return maximum of a and b values
Max(a,b) {
 if (a<b)
 return(LT);
 if (a>b)
 return(GT);
 return(EQ);
}

4.1

Since the meaning of many C code operators are not obvious to the casual reader, their meanings are
summarized in Table 4.2.

Table 4.2—C code expressions

Expression Description

~i Bitwise complement of integer i

i^j Bitwise EXOR of integers i and j

i&j Bitwise AND of integers i and j

i<<j Left shift of bits in i by value of j

i*j Arithmetic bmultiplication of integers i and j

!i Logical negation of Boolean value i

i&&j Logical AND of Boolean i and j values

i||j Logical OR of Boolean i and j values

i^= j Equivalent to i= i^j.

i==j Equality test, true if i equals j

i!=j Equality test, true if i does not equal j

i<j Inequality test, true if i is less than j

i>j Inequality test, true if i is greater than j

Draft proposal for tweakable wide-block encryption March 22, 2004

Page 12 Copyright 2004, IEEE. All rights reserved.

5. The EME-32-AES transform

In this section we describe the EME-32-AES transform itself. That is, the procedures to be followed when
encrypting or decrypting a wide block, given the secret key and the public tweak value. A pictorial
illustration of the encryption procedure is provided in Figure 5.1. In that figure, all the lines represent 16-
byte blocks, and the boxes represent the AES encryption procedure, all using the same key. The symbol
`⊕’ denotes bit-wise exclusive-or (xor) of two 16-byte blocks, and multiplications by powers of two are
implemented via the procedure described in Section 5.1. A complete description can be found in Section
5.2.

Figure 5.1. An illustration of EME encryption, C1..32 = EMEK(T; P1..32). We set L=2⋅AESK(0),
SP=PPP2⊕ …⊕PPP32, M=MP⊕MC, and SC=CCC2⊕ …⊕CCC32

5.1 Mul tipl ication by two in the finite field GF(21 28)

We now describe a procedure for multiplying a 16-byte block by the constant “two” in the finite field
GF(2128). Both the input and the output of this procedure are 16-byte blocks. When these blocks are
interpreted as binary polynomials of degree 127, the procedure computes output = x⋅ input modulo P128,
where P128 is the polynomial P128(x) = x128 + x7 + x2 + x + 1. The procedure is implemented as follows:

First, we compute a Mask block that depends on the highest bit in the last byte of the input block. If that bit
is zero (i.e., if the value of the last byte is less than 128), then the mask is set to the all-zero block. If the bit
is one (i.e., if the value of the last byte is more than 127), then the value of the Mask block is set to the
constant

Mask = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 8716

Namely, in the latter case the first byte of the Mask block is set to the constant 135 (hexadecimal 8716), and
all the other bytes are set to zero.

Then, the input block is copied to a temporary block Temp, where the entire block is shifted by one bit
toward the highest bit. Specifically, let the value of the ith input byte be bi and the value of the (i-1)st input

AESK AESK AESK

AESK AESK AESK

AESK

L 2L 4L

L 2L 4L

SP⊕T

SC⊕T

2M 4M

PP1 PP2 PP3

PPP1 PPP2 PPP3

CCC1 CCC2 CCC3

PP1 PP2 PP3

MP

MC

P1 P2 P3

C1 C2 C3

231M

AESK

AESK

231L
PP32

PPP32

CCC32

PP32

P32

C32

231L

…

…

…

March 22, 2003 Draft proposal for tweakable wide-block encryption

 Copyright 2004, IEEE. All rights reserved. Page 13

byte be bi-1. If bi-1 is less than 128, then the ith byte in the block Temp is set to 2bi modulo 256, and if bi-1 is
more than 127 then the ith byte in the block Temp is set to 2bi+1 modulo 256. Finally, the output block is set
to the bit-wise exclusive-or (xor) of the blocks Temp and Mask. A C-code for this procedure is given in
Figure 5.2.

Figure 5.2. A “C” code for the multByTwo procedure.

5.2 The EME encryption procedure

The EME encryption procedure takes as input an AES key K (which must be an array of 16, 24 or 32
bytes), a 512-byte wide block P (for Plaintext) and a 16-byte block T (for Tweak). It produces as output a
512-byte wide block C (for Ciphertext). The procedure works as follows:

1. A 16-byte block L is computes as L = 2 ⋅ AES-enc(K; 0), where AES-enc is the AES encryption
procedure using K as the key, 0 is a 16-byte block with all the bytes set to zero, and the multiplication
by 2 is done using the procedure from Section 5.1.

2. The input wide block P is broken into 32 blocks P1 P2 … P32, where P1 consists of the first 16 bytes in
P, P2 consists of the next 16 bytes, etc. In general, for j=1, 2, … 32, the block Pj consists of bytes
number 16j−15 through 16j (indexing starts at one).

3. For j=1, 2, … 32, a 16-byte block PPj is computed as PPj = Pj ⊕ (2j−1 ⋅ L), where `⊕’ denotes bit-wise
exclusive or, and multiplication by powers of two is done via repeated applications of the procedure
from Section 5.1. For example, the first three blocks are computed as PP1 = P1 ⊕ L, PP2 = P2 ⊕ (2 ⋅ L),
and PP3 = P3 ⊕ (2 ⋅ 2 ⋅ L).

4. For j=1, 2, … 32, a 16-byte block PPPj is computed as PPPj = AES-enc(K; PPj).

5. A 16-byte block SP is computed as the xor-sum of the blocks PPP2 through PPP32, SP = PPP2 ⊕ PPP3
⊕ … ⊕ PPP32. Then a 16-byte block MP is computed as MP = PPP1 ⊕ SP ⊕ T (T is the “tweak”).

6. A 16-byte block MC is computed as MC = AES-enc(K; MP). Then a 16-byte block M is computed as
the bit-wise exclusive-or (xor) of MP and MC, M = MP ⊕ MC.

7. For j=2, 3, … 32, a 16-byte block CCCj is computed as CCCj = PPPj ⊕ (2j−1 ⋅ M), where multiplication
by powers of two is done via repeated applications of the procedure from Section 5.1. For example, the
first two blocks are computed as CCC2 = PPP2 ⊕ (2 ⋅ M), and CCC3 = PPP3 ⊕ (2 ⋅ 2 ⋅ M).

void multByTwo(unsigned char output[16], unsigned char input[16])
{
 int j;
 unsigned char temp[16]; /* a temporary array, just in case input and */
 /* output point to the same memory location */
 temp[0] = 2 * input[0];
 if (input[15] >= 128) temp[0] ^= 135;
 for (j=1; j<16; j++) {
 temp[j] = 2 * input[j];
 if (input[j-1] >= 128) temp[j] += 1;
 }
 for (j=0; j<16; j++) output[j] = temp[j];
}

Draft proposal for tweakable wide-block encryption March 22, 2004

Page 14 Copyright 2004, IEEE. All rights reserved.

8. A 16-byte block SC is computed as the xor-sum of the blocks CCC2 through CCC32, namely SC =
CCC2 ⊕ CCC 3 ⊕ … ⊕ CCC 32. Then, a 16-byte block CCC1 is computed as CCC 1 = MC ⊕ SC ⊕ T,
where T is the input “tweak”.

9. For j=1, 2, … 32, a 16-byte block CCj is computed as CCj = AES-enc(K; CCCj), and then a 16-byte
block Cj is computed as Cj = CCj ⊕ (2j−1 ⋅ L), where multiplication by powers of two is done via
repeated applications of the procedure from Section 5.1.

10. Finally, the 32 blocks C1 through C32 are concatenated to form the output wide block C. That is, the
first 16 bytes in C come from C1, the next 16 bytes from C2, etc. In general, for j=1, 2, … 32, bytes
number 16j−15 through 16j in C come from block Cj (indexing starts at one).

A C-code for this procedure is given in Figure 5.3. This procedure employs many calls to the AES
encryption procedure, all using the same key K. Since the key-setup time for AES is significant, an
implementation of EME may perform it just once, and then use the resulting key-schedule in all the
encryption calls. Moreover, as the computation of the block L does not depend on the input wide block P or
the input tweak T, an implementation may compute the value of L off-line, before learning either P or T. In
fact, an implementation may even store the key-schedule and the block L between different EME calls.

5.3 The EME decryption procedure

The EME decryption procedure takes as input an AES key K (which must be an array of 16, 24 or 32
bytes), a 512-byte wide block C (for Ciphertext) and a 16-byte block T (for Tweak). It produces as output a
512-byte wide block P (for Plaintext). The procedure is very similar to the encryption procedure. In fact, a
“C” code for the decryption procedure can be obtained from the “C” code in Figure 5.3, simply by
replacing all but the first call to encryptAES (i.e. all calls except the call to encryptAES(zero, K,
zero)) by calls to decryptAES. The decryption procedure works as follows:

1. A 16-byte block L is computes as L = 2 ⋅ AES-enc(K; 0), where AES-enc is the AES encryption
procedure using K as the key, 0 is a 16-byte block with all the bytes set to zero, and the multiplication
by 2 is done using the procedure from Section 5.1.

2. The input wide block C is broken into 32 blocks C1 C2 … C32, where C1 consists of the first 16 bytes in
C, C2 consists of the next 16 bytes, etc. In general, for j=1, 2, … 32, the block Cj consists of bytes
number 16j−15 through 16j (indexing starts at one).

3. For j=1, 2, … 32, a 16-byte block CCj is computed as CCj = Cj ⊕ (2j−1 ⋅ L), where multiplication by
powers of two is done via repeated applications of the procedure from Section 5.1.

4. For j=1, 2, … 32, a 16-byte block CCCj is computed as CCCj = AES-dec(K; CCj).

5. A 16-byte block SC is computed as the xor-sum of the blocks CCC2 through CCC32, namely
SC = CCC2 ⊕ CCC3 ⊕ … ⊕ CCC32.

6. A 16-byte block MC is computed as MP = CCC1 ⊕ SC ⊕ T, where T is the input “tweak”. Then a 16-
byte block MP is computed as MP = AES-dec(K; MC). Next a 16-byte block M is computed as the bit-
wise exclusive-or (xor) of MC and MP, M = MC ⊕ MP.

7. For j=2, 3, … 32, a 16-byte block PPPj is computed as PPPj = CCCj ⊕ (2j−1 ⋅ M), where multiplication
by powers of two is done via repeated applications of the procedure from Section 5.1.

March 22, 2003 Draft proposal for tweakable wide-block encryption

 Copyright 2004, IEEE. All rights reserved. Page 15

8. A 16-byte block SP is computed as the xor-sum of the blocks PPP2 through PPP32, namely SP = PPP2
⊕ PPP 3 ⊕ … ⊕ PPP 32. Then, a 16-byte block PPP1 is computed as PPP 1 = MP ⊕ SP ⊕ T, where T
is the input “tweak”.

9. For j=1, 2, … 32, a 16-byte block PPj is computed as PPj = AES-dec(K; PPPj), and then a 16-byte
block Pj is computed as Pj = PPj ⊕ (2j−1 ⋅ L), where multiplication by powers of two is done via
repeated applications of the procedure from Section 5.1.

10. Finally, the 32 blocks P1 through P32 are concatenated to form the output wide block P. That is, the
first 16 bytes in P come from P1, the next 16 bytes from P2, etc. In general, for j=1, 2, … 32, bytes
number 16j−15 through 16j in P come from block Pj (indexing starts at one).

/* The function encryptAES implements the AES encryption procedure. It is
 * assumed that this procedure has external means for determining the key
 * length (16, 24 or 32 bytes).
 */
extern void encryptAES(unsigned char out[16],
 unsigned char key[], unsigned char in[16]);

/* The function xorBlocks computes bit-wise exclusive-or of two blocks */
extern void xorBlocks(unsigned char out[16],
 unsigned char in1[16], unsigned char in2[16]);

/* The function multByTwo is described in Figure 5.2 */
extern void multByTwo(unsigned char out [16], unsigned char in[16]);

void encryptEME(unsigned char C[512], unsigned char K[],
 unsigned char T[16], unsigned char P[512])
{
 int i,j;
 unsigned char L[16], M[16], MP[16], MC[16];
 unsigned char temp[512]; /* a temporary array, just in case P and C */
 /* point to the same memory location */
 unsigned char zero[16] = {0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0};

 encryptAES(zero, K, zero); /* set L = 2*AES-enc(K; 0) */
 multByTwo(L, zero);

 for (j=0; j<32; j++) {
 xorBlocks(&temp[j*16],&P[j*16], L); /* PPj = 2**(j-1)*L xor Pj */
 encryptAES(&temp[j*16], K, &temp[j*16]); /* PPPj = AES-enc(K; PPj) */
 multByTwo(L, L);
 }

 xorBlocks(MP, temp, T); /* MP =(xorSum PPPj) xor T */
 for (j=1; j<32; j++)
 xorBlocks(MP, MP, &temp[j*16]);
 encryptAES(MC, K, MP); /* MC = AES-enc(K; MP) */
 xorBlocks(M, MP, MC); /* M = MP xor MC */

 for (j=1; j<32; j++) {
 multByTwo(M, M);
 xorBlocks(&temp[j*16],&temp[j*16],M); /* CCCj = 2**(j-1)*M xor PPPj */
 }
 xorBlocks(temp, MC, T); /* CCC1 = (xorSum CCCj) xor T xor MC */
 for (j=1; j<32; j++)
 xorBlocks(temp, temp, &temp[j*16]);

 multByTwo(L, zero); /* reset L = 2*AES-enc(K; 0) */
 for (j=0; j<32; j++) {
 encryptAES(&temp[j*16], K, &temp[j*16]); /* CCj = AES-enc(K; CCCj) */
 xorBlocks(&C[j*16], &temp[j*16], L); /* Cj = 2**(j-1)*L xor CCj */
 multByTwo(L, L);
 }

Draft proposal for tweakable wide-block encryption March 22, 2004

Page 16 Copyright 2004, IEEE. All rights reserved.

Figure 5.3. A “C” code for the EME encryption procedure.

March 22, 2003 Draft proposal for tweakable wide-block encryption

 Copyright 2004, IEEE. All rights reserved. Page 17

6. Using EME-32-AES for encryption of storage

The scope of this document is limited to direct application of the EME-32-AES transform to encrypt or
decrypt data at rest, when this data consists of an integral number of wide blocks, each of size 512 byte. To
use this standard, an AES key must be associated with an ordered sequence of wide blocks, numbered
consecutively 1 through N, where 1 is the index of the first logical wide block for this key, and N is the
index of the last one. The sequence of wide blocks that are associated with an AES key is called the
SCOPE of that key. In order to encrypt or decrypt a wide block using an AES key, the index of the wide
block within the scope of the key must be known.

To encrypt a plaintext wide block with index J, the positive integer J is first encoded as a 16-byte block TJ,
as explained in Section 6.1 below. Then the EME-32-AES encryption transform is applied to this wide
block, using the given key and the tweak value TJ, as described in Section 5.2. The result of the
transformation is a ciphertext wide block. Similarly, to decrypt a ciphertext wide block with index J, the
positive integer J is encoded as a 16-byte block TJ, then the EME-32-AES decryption transform is applied
to this wide block using the given key and the tweak value TJ, as described in Section 5.3, and the result is
a plaintext wide block.

In a typical application for storage encryption, the index of a wide block can be computed from the location
where this wide block is stored and the scope of the key. For example, when encrypting a disk with 512-
byte sectors, the scope of a key typically includes a range of logically consecutive sectors on the disk, and
the index of a given sector would be its position within that sequence. In this example, the scope of a key is
defined using two integers, specifying the first and last logical sectors that are associated with this key (call
them X and Y). Then, a sector that is stored in logical location Z on the disk (where X ≤ Z ≤ Y) will have
index J = Z–X+1 within the scope of that key.

It is stressed that an AES secret key must not be associated with more than one scope. The reason is that
encrypting more than one wide block with the same AES key and the same index, introduces security
vulnerabilities that can potentially be used in an attack on the system.

6.1 Encoding the tweak values

A positive integer J (smaller than 2128) is encoded as a 16-byte block T using big-endian notation. That is,
the integer J is represented in base-256 notation, where the most significant byte is stored as the first byte in
the block T and the least significant byte is stored as the last byte. Using “C” notations, we view T as an
array of sixteen unsigned char, indexed from 0 (first) to 15 (last), with each byte representing a
number between 0 and 255, then the integer J is

J = T[0]⋅25615 + T[1]⋅25614 + T[2]⋅25613 + T[3]⋅25612 + T[4]⋅25611 + T[5]⋅25610 + T[6]⋅2569
 + T[7]⋅2568 + T[8]⋅2567 + T[9]⋅2566 + T[10]⋅2565 + T[11]⋅2564 + T[12]⋅2563 + T[13]⋅2562
 + T[14]⋅256 + T[15]

Draft proposal for tweakable wide-block encryption March 22, 2004

Page 18 Copyright 2004, IEEE. All rights reserved.

Annexes

Annex A: Bibliography (informative)
[AB96] R. Anderson and E. Biham. “Two practical and provably secure block ciphers: BEAR and LION.”
In Fast Software Encryption, Third International Workshop, volume 1039 of Lecture Notes in Computer
Science, pages 113-120. Springer-Verlag, 1996.

[C00] P. Crowley. “Mercy: A fast large block cipher for disk sector encryption.” In Fast Software
Encryption: 7th International Workshop, volume 1978 of Lecture Notes in Computer Science, pages 49-63,
Springer-Verlag, 2000.

[HR03] S. Halevi and P. Rogaway. “A tweakable enciphering mode.” In Advances in Cryptology –
CRYPTO '03, volume 2729 of Lecture Notes in Computer Science, pages 482-499. Springer-Verlag, 2003.

[HR04] S. Halevi and P. Rogaway. “A parallelizable enciphering mode.” The RSA conference -
Cryptographer's track, RSA-CT '04. LNCS vol. 2964, pages 292-304. Springer-Verlag, 2004.

[LRW02] M. Liskov, R. Rivest, and D. Wagner. “Tweakable block ciphers.” In Advances in Cryptology –
CRYPTO '02, volume 2442 of Lecture Notes in Computer Science, pages 31-46. Springer-Verlag, 2002.

 [LR88] M. Luby and C. Rackoff. “How to construct pseudorandom permutations from pseudorandom
functions.” SIAM J. of Computation, 17(2), April 1988.

[NR98] M. Naor and O. Reingold. “A pseudo-random encryption mode.” Manuscript, available from
http://www.wisdom.weizmann.ac.il/~naor/.

[NR99] M. Naor and O. Reingold. On the construction of pseudo-random permutations: Luby-Rackoff
revisited. Journal of Cryptology, 12(1):29--66, 1999. Springer-Verlag.

[S98] R. Schroeppel. “The Hasty Pudding cipher.” The first AES conference, NIST, 1998.

[ZMI89] Y. Zheng, T. Matsumoto, and H. Imai. “On the construction of block ciphers provably secure and
not relying on any unproved hypotheses.” In Advances in Cryptology - CRYPTO '89, volume 435 of
Lecture Notes in Computer Science, pages 461--480. Springer-Verlag, 1989.

