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Acycloid is the curve traced out by a point on the cir-
cumference of a circular disk that rolls without slip-
ping along a straight line. It consists of a periodic

sequence of congruent arches resting on the line. If the point is
rigidly attached to the disk but not on the circumference it
traces out a curtate cycloid if the tracing point lies inside the
disk, and a prolate cycloid if it lies outside the disk. Figure 1
shows an example of each type.

If the rolling disk is replaced by a regular polygon, each
vertex traces out a curve we call a cyclogon. In [1] the authors
determined by elementary means the area of the cyclogon, that
is, the area A of the region under one arch of a cyclogon. We
showed that A is equal to the area P of the rolling polygon plus
twice the area C of the disk that circumscribes the polygon:

A = P + 2C. (1)
In the limiting case, when the number of polygonal edges

increases without bound, the cyclogon becomes a cycloid, P
approaches C, and the cycloidal area is three times the area of
the rolling disk.

Motivated by an effort to better understand why the term
2C appears in (1), we considered the more general area prob-
lem for curtate and prolate cyclogons and found a result that is
surprisingly simple. The general formula can be written sym-

bolically as follows:
A = P + C + Cz, (2)

where P denotes the area of the rolling polygon, C is the area
of the disk that circumscribes the polygon, and Cz is the area of
a disk whose radius is the distance from the center of the
rolling disk to the tracing point z. When z is on the circumfer-
ence of the rolling disk, we have Cz = C and we get (1). In the
limiting case when P approaches C, Eq. (2) gives a known
result A = 2C + Cz.

Many curves related to cycloids can be obtained by rolling
a circular disk around a fixed circular disk (instead of along a
line). A point on the circumference of the rolling disk gener-
ates an epicycloid if the rolling disk is outside the fixed disk,
and a hypocycloid if it is inside. Epicycloids were used by
Apollonius around 200 B.C. and by Ptolemy around 200 A.D. to
describe the apparent motion of planets. When the tracing
point is not on the circumference of the rolling disk, it traces
out a trochoid: an epitrochoid if the rolling disk is outside the
fixed disk, and a hypotrochoid if it is inside.

We consider a more general situation in which a curve is
traced by a point z on a regular polygonal disk with n sides
rolling around another regular polygonal disk with m sides.
The edges of the two regular polygons are assumed to have the
same length. A point z attached rigidly to the n-gon traces out
an arch consisting of n circular arcs before repeating the pat-
tern periodically. We call this curve a trochogon—an epitro-
chogon if the n-gon rolls outside the m-gon, and a hypotro-
chogon if it rolls inside the m-gon. The trochogon is curtate if
z is inside the n-gon, and prolate (with loops) if z is outside the
n-gon. If z is at a vertex it traces an epicyclogon or a hypocy-
clogon. Figure 2 shows a curtate epitrochogon obtained by
rolling a square (n = 4) outside a 24-gon (m = 24).

The main result of this article is a simple and elegant for-
mula for the area of the region between a general trochogonal
arch and the fixed polygon. We call this the area of the tro-
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Figure 1. A cycloid, a curtate cycloid, and a prolate cycloid traced out by
a point on a rolling disk.

We consider a more general situation in which a curve

is traced by a point z on a regular polygonal disk with n

sides rolling around another regular polygonal disk

with m sides.



26 SEPTEMBER 2002

MATH HORIZONS

chogonal arch. It is given by

(3)

with the plus sign for an epitrochogon and the minus sign for
a hypotrochogon. If we let m tend to ∞, the fixed m-gon
becomes a straight line and we obtain (2) as a limiting case of
(3). All results in this paper are obtained without using integral
calculus.

A proof of (3) is outlined in the next section after which we
discuss a number of special cases.

Area of a Trochogonal Arch

Figure 2 displays the essential features required for treating a
general regular n-gon rolling outside a regular m-gon. In Fig-
ure 2, the tracing point z is inside the square, and the arch it
generates consists of four circular sectors and five triangles,
shown shaded. The lower portion of Figure 2 shows how the
five triangular pieces fill the square. Because of periodicity,
the first and last right triangles outside the 24-gon together
have the same area as the bottom triangle in the lower part of
Figure 2. So area A is equal to area P, the area of the rolling
square, plus the sum of the areas of the four circular sectors. 

In the general case of a regular n-gon rolling outside a reg-
ular m-gon, the tracing point z attached to the n-gon generates
an arch consisting of n circular sectors together with a set of
triangles that provide a dissection of the n-gon. So the area A
of any trochogonal arch is equal to that of the rolling n-gon P,
plus the areas of n circular sectors, the kth sector having area

where φ is the common angle (in radians) subtended
by each sector and r1,…, rn, are the radii of the sectors. Radius
rk is the distance from the tracing point z to the kth vertex of
the rolling polygon. Thus, we have
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It is easy to see that φ = 2π/n + 2π/m, the sum of two exte-
rior angles, so (4) becomes

(5)

Now we use a result on sums of squares derived in [2]. In
complex number notation, it states that if z1, z2, …, zn lie on a
circle of radius r with center at the origin 0, and if the centroid
of these points is also at 0, then for any point z in the same
plane we have

(6)

Applying (6) with rk = |z – zk| we find 

which, when used in (5) gives the following formula for the
area of an epitrochogonal arch:

(7)

Incidentally, if the rolling n-gon rolls inside the m-gon, the
same analysis shows that the area formula for a hypotrochog-
onal arch is

(8)

so (7) and (8) together can be combined to give (3).

Applications
We can obtain the limiting case of a circle of radius r rolling
around a fixed circle of radius R if we let both n and m tend to
∞ in such a way that their ratio n⁄m → r⁄R . Then the limiting
case of (3) becomes 

(9)

This gives the area of one arch of the classical epitrochoid
and hypotrochoid without the use of calculus.

The authors could not find this general result in the litera-
ture except for the limiting case R → ∞ and some special cases
in which the tracing point z is at a vertex.

Tracing Point at a Vertex
Return now to (3) and take the tracing point z at a vertex of the
rolling n-gon. Then the areas Cz and C of the disks are equal,
and (3) gives the area of one arch of an epi- or hypocyclogon:

(10)

In the limiting case when both n and m tend to ∞ in such a
way that n⁄m → r⁄R , (10) gives us a known result for the area of
one arch of the classical epicycloid or hypocycloid:
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Figure 2. A curtate epitrochogonal arch traced by a point inside a square
rolling outside a regular 24-gon.
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A special case of (10) is the cardiogon (Figure 3)—an
epicyclogon with n⁄m = 1,

A = P + 4C. (12)
When n → ∞, then P → C, the tracing curve becomes a car-

dioid, and (12) or (11) give us A = 5C. This implies a classical
result that the area of the region bounded by a cardioid is equal
to 6C, because the cardioidal arch, of area 5C, together with
the inner disk of area C, fill the cardioid with total area of 6C.

Another special case of (10) is the nephrogon (Figure 4)—
an epicyclogon with  n⁄m = 1⁄2 , which gives

A = P + 3C (13)
When n → ∞ both (13) and (11) give A = 4C, for the area of

one arch of a nephroid. The nephroid itself encloses two such
arches, each of area 4C, plus the inner disk of area 4C, giving
another proof that a nephroid encloses a region of area of 12C.

A related result is the astrogon (Figure 5)—a hypocyclogon
with n⁄m = 1⁄4. Eq. (10) gives

(14)

When n → ∞, both (14) and (11) give A = 5⁄2C for an
astroid, which is a hypocycloid with four cusps (r⁄R = 1⁄4). The
four arches between the hypocycloid and the outer circle (of
area 16C) have a total area of 4A = 10C, so the region inside
the astroid has area 6C, another classical result obtained with-
out calculus.

Another special case of interest is the deltogon (Figure 6)—
a hypocyclogon with n⁄m = 1⁄3. Eq. (10) gives

(15)

and when n → ∞ (15) and (11) give A = 7⁄3C for the deltoid,
which is a hypocycloid with three cusps (r⁄R = 1⁄3). The three
arches between the deltoid and the fixed circle have a total area
of 3A = 7C, the fixed circle has area 9C, so the region inside
the deltoid has area 2C, another known result.

A somewhat suprising example is what we call a
diamogon—a hypocyclogon with n⁄m = 1⁄2. The curve is traced
by a point z at a vertex of an n-gon rolling inside a 2n-gon.
When the n-gon makes one circuit around the inside of the 2n-
gon, it traces out two curves each consisting of n – 1 circular
arcs situated symmetrically about a diameter of the 2n-gon.
Examples with n = 3 and n = 4, are shown in Figure 7.

Figure 3. A cardiogon traced by the vertex of an n-gon rolling outside
an n-gon. The cardiogon becomes a cardioid as n → ∞.

Figure 5. An astrogon traced by the vertex of an n-gon rolling inside a
4n-gon. The astrogon becomes an astroid as n → ∞.

Figure 4. A nephrogon traced by the vertex of an n-gon rolling outside
a 2n-gon. The nephrogon becomes a nephroid as n → ∞.

Figure 6. A deltogon traced by the vertex of an n-gon rolling inside a
3n-gon. The deltogon becomes a deltoid as n → ∞.

Figure 7. Diamogons traced by a vertex of an n-gon rolling inside a 2n-
gon.
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Using (8) we find that the area of one arch of the diamogon
is A = P + C because Cz = C. The two arches between the
diamogon and the outer polygon have area 2A = 2(P + C). In
the limiting case when n → ∞ this becomes 2A = 4C. But 4C is
the area of the fixed circular disk, which means that the area of
the region common to the two diamogons tends to zero. In
other words, when n → ∞ the diamogon turns into a diameter
of the fixed circle traced twice.

Tracing Point not at a Vertex
We conclude with an example of a hypotrochogon traced out
by a point z not at a vertex of the n-gon. We consider n⁄m = 1⁄2
and call the hypotrochogon an ellipsogon because the limiting
case n → ∞ gives an ellipse. Figure 8 shows an example of a
square rolling inside an octagon with the tracing point z inside
the square. In this case the ellipsogon traces out two arches,
each consisting of four circular arcs.

In the limiting case n → ∞, (9) shows that the area of one
arch is given by A = C + 1⁄2(Cz + C),  so the two arches fill out
a region of area 2A = 3C + Cz. The limiting configuration of
the ellipsogon is an ellipse enclosing an area equal to 4C – 2A
= C – Cz. If the radius of the inner circle is r and if the distance
from z to the center of the inner circle is s then C – Cz = π(r2 –
s2) = π(r + s)(r – s). The distances r + s and r – s are the lengths

of the semiaxes a = r + s and b = r – s of the ellipse, so we get
C – Cz = πab the usual formula for the area of an ellipse.

The point z also traces an ellipsogon if it is outside the
rolling n-gon. If the point z is inside or outside the rolling n-
gon and then moves toward a vertex, the ellipsogon becomes
a diamogon which, in turn, becomes a diameter as n → ∞. 
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Ellipsogon: = 4n Ellipse

Figure 8. An ellipsogon traced by a point inside an n-gon rolling inside a
2n-gon. The ellipsogon becomes an ellipse as n → ∞.


