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Abstract

Hirzel, Martin (Ph.D., Computer Science)

“Connectivity-Based Garbage Collection”

Thesis directed by Amer Diwan

Garbage collection is an important feature of modern programming languages: by
liberating the programmer from the responsibility of freeing up unused memory by
hand, it leads to code with fewer bugs and a cleaner design. However, these software
engineering benefits have their costs: garbage collection may incur disruptive pauses,
slowdowns, and increased memory requirements. This dissertation presents a novel
family of garbage collection algorithms that use information about the connectivity
of heap objects to reduce these costs.

This dissertation firsts presents empirical data showing that connectivity infor-
mation is a good indicator for when objects die. Then, it describes connectivity-
based garbage collection, a new family of garbage collectors that exploit connectivity
properties to yield short pause times, good throughput, and low memory footprint.
It explores the performance of a variety of connectivity-based garbage collectors in a
simulator. These collectors rely on an analysis of object connectivity; this disserta-
tion describes the first non-trivial pointer analysis that handles all of Java, including
dynamic class loading, reflection, and native code. The dissertation concludes by
describing the design and implementation of a connectivity-based garbage collector
in a Java virtual machine, using the pointer analysis.
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Chapter 1

Introduction

This dissertation introduces connectivity-based garbage collection. Garbage col-
lection is the automatic reclamation of heap objects that the program does not
need anymore. Connectivity is the way in which objects are connected by point-
ers. Connectivity-based garbage collection obtains connectivity information from an
analysis of the program code, and uses it to achieve high throughput, good memory
efficiency, and smooth responsiveness.

This dissertation is based on the thesis that:

1. Objects are part of distinct connected data structures.

2. Connected objects tend to die at the same time.

3. Garbage collectors can exploit properties 1. and 2. to reclaim objects efficiently.

1.1 Benefits of automatic memory management

Modern programming languages rely heavily on dynamic heap-allocated objects.
Objects can form lists, arguably the most prevalent data structure of programs
written in functional languages. Likewise, objects can represent instances of classes
implementing abstract data types, which are the key feature of object-oriented lan-
guages. For example, a hash-table in a language like Java is usually represented
by an object for the hash array, and several objects forming lists that store the
individual key/value pairs, which are usually also represented by objects.

Most programs continuously allocate more and more objects, requiring more
and more heap memory; unless they recycle memory by freeing unused objects, they
eventually run out of memory. In the example of the hash table, adding a new entry
entails allocating a new object to store the key/value pair, and may also lead to
allocating a larger hash array if the hash table grows above a predefined threshold.
On the other hand, programs often use a data structure for a while, but then enter
a new phase where they do not need it anymore and drop pointers to it. When
that happens, the memory of the dead data structure should be reused to avoid
eventually running out of memory.
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In some languages, the programmer is responsible for freeing up memory of dead
objects so it can be reused. For example, in C, malloc() dynamically allocates a heap
object, and free() reclaims its memory again. The allocated object may be accessed
via pointers, which may be stored in global variables, passed as parameters, returned
as return values, or stored in other objects. Without great care and discipline, it is
hard to keep track of all the places in the program that have a pointer to an object
and may thus use it.

Manual deallocation, where the programmer explicitly frees up memory of ob-
jects, is difficult, because it is hard to tell when an object is not used anymore. This
is because object lifetime is inherently a global property: objects are usually shared
by many parts of the code. There are two possible kinds of mistakes in manual
deallocation: freeing an object too early, or freeing an object too late.

Freeing an object too early leads too memory corruption. Freeing an object too
early means that it is freed even though it may be accessed in the future. If the
memory of the freed object gets used for another allocation, then there will be other
code that uses its memory to store unrelated data. Since both parts of the code are
oblivious of each other, and use the same memory to store unrelated pieces of data,
memory corruption ensues. In the best case, testing reveals the memory corruption,
and the bug is fixed. But it can easily happen that the memory corruption goes
unnoticed, or it is detected, but the root cause (too early reclamation) is not tracked
down.

Freeing an object too late leads to memory exhaustion. This situation is called
a leak. The analogy is that of a ship slowly taking on water; eventually, there is
not enough air in its hull anymore to keep it afloat, and the ship sinks. In the case
of dynamic allocation, the program is slowly accumulating dead objects; eventually,
there is not enough free memory anymore to satisfy allocation requests, and the
program crashes. If the leak is detected on small test runs, the bug may be fixed.
But the more insidious leaks act slowly, and only lead to a crash after the software
has been deployed for a long time. This is analogous to a ship staying afloat while
in the safe harbor, but sinking while trying to cross the ocean.

Even in the absence of either kind of bug in manual deallocation, manual deal-
location hurts code quality. To keep track of the global property of which objects
are used from where, developers have to keep the memory management concern in
mind in their entire design. Steering clear of too early or too late reclamation sig-
nificantly increases the cost of software development: the design takes more work,
there is more to implement, and the product requires more thorough testing and
more time-intensive debugging.

In addition to increasing development cost, manual deallocation increases main-
tenance cost. The design of each component of the software considers the global
concern of keeping track of when exactly objects have to be freed. Whenever any-
one tries to fix a bug or add a feature in one component, they have to understand
how that affects manual deallocation, or risk introducing bugs due to too early or
too late reclamation. The design is likely to help the maintainers in this task by
adding explicit protocols; but this increases the complexity of the software, and
makes it harder to understand what else the code does. Often, this inhibits software
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reuse: even though a piece of code already exists for performing a particular task,
it is more work to find it among the memory management code, and to make sure a
reuse does not violate memory management policies, than it is to just write it from
scratch.

Fortunately, one can avoid the software engineering costs of manual deallocation
with automatic memory management, and most modern languages do so. By now,
the benefits of automatic memory management are so widely recognized that it is
mandated by the definition of Sun’s Java language, it is an integral part of Microsoft’s
Common Language Runtime and thus available to languages such as C#, and it is
also used for wide-spread scripting languages such as Perl and Python. Even for
languages with explicit deallocation such as C or C++, many programmers prefer
to use garbage collectors provided in the form of libraries. A popular example for
this is the Boehm-Demers-Weiser collector [23].

1.2 Benefits of tracing garbage collection

The previous section argued for automatic memory management; this section argues
for one specific approach to automatic memory management, namely tracing garbage
collection. Figure 1.1 shows a tree of approaches to memory management.

Memory management

Explicit memory management
(with manual deallocation)

Automatic memory management

Regions Garbage collection

Reference counting Tracing

Figure 1.1: Approaches to memory management.

Memory management is either explicit or automatic. As discussed previously,
automatic memory management has a variety of software engineering benefits that
make it the approach of choice for most modern languages. All of the approaches
to automatic memory management shown in Figure 1.1 prevent the problem of too
early reclamation leading to data corruption, and all of them reduce the problem
of too late reclamation leading to leaks and crashes. They differ fundamentally
in how successful they are at preventing leaks. No automatic memory management
schemes can fully prevent leaks, since that would require perfect liveness information
for variables [80].

One approach to automatic memory management are regions. A region is a
memory area that contains objects. No individual objects in a region ever get freed,
neither explicitly nor automatically. Instead, the entire region is freed en-masse
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when all objects in it are guaranteed to be dead. While some systems require ex-
plicit freeing of regions by the programmer [55], the region deallocation time is more
commonly determined by a static program analysis [129]. Some implementations of
functional programming languages rely on regions for automatic memory manage-
ment [128].

Garbage collection is more popular than regions due to some problems with
regions. The main problem with regions is that since an object is only freed after all
objects in its region are guaranteed to be dead, it is often reclaimed very late. This
happens whenever object lifetime distributions are not amenable to regions, i.e.,
do not resemble a stack discipline. One solution is to use profiling to identify this
problem, and then manually change the code of the program to make object lifetime
distributions fit the region model better. However, that requires extra effort on the
part of the developer not needed with garbage collection. Just like with explicit
memory management, requiring the developers to hand-tune their applications to
work well with regions introduces software engineering costs in design, testing, and
maintenance.

The two main approaches to garbage collection are reference counting and tracing
(see Figure 1.1). Both collect garbage objects based on their connectivity to roots.
A root is a stack variable or global variable storing a pointer to a heap object. An
object not connected to roots by pointers is dead, it can be reclaimed as garbage.
Figure 1.2 shows an example heap.
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Figure 1.2: Example heap. Arrows (→) represent pointers, small boxes ( oi ) rep-
resent objects. The long box on the left represents the roots, including two stack
variables s1 and s2 with pointers to objects o1 and o5, and one global variable g
with a pointer to object o10.

Reference counting garbage collection maintains a counter with each object that
counts how many references (i.e., pointers) there are to it [40]. Writing a pointer to
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the object increments the counter, and deleting a pointer to the object decrements
the counter. When the counter drops to zero, the object is dead and will not be used
anymore, so it is freed. In addition, the reference counters of all successor objects
are decremented.

The problem with pure reference counting garbage collection is that it can not
reclaim cycles. For example, in Figure 1.2, objects o1, o3, and o4 form a cycle. The
reference count of o1 is 2, since both s1 and o4 point to it; the reference counts of o3

and o4 are 1. If s1 is deleted, the reference count of o1 drops to 1. All three objects
o1, o3, and o4 are dead, since they can not be accessed anymore from the roots. But
since they all still have a reference count of 1, the garbage collector does not reclaim
them, and they constitute a leak.

Since pure reference counting garbage collectors can not deal with cycles, there
are hybrids that perform tracing to reclaim cyclic garbage [13].

Tracing garbage collectors work in two phases: the first phase is a graph traversal
that finds all objects reachable by following pointers from the roots, and the second
phase is the reclamation of all objects that the traversal did not reach. For example,
in Figure 1.2, the reachability traversal would find objects o1, o3, o4, o5, o8, o10, o11, o13.
The remaining objects are garbage, and the reclamation phase frees their memory
for future allocation.

Tracing garbage collection reclaims all objects that are not reachable from roots
by following pointers. It has fewer leaks than any of the other approaches to au-
tomatic memory management in Figure 1.1. There may still be more subtle leaks,
where an object should be freed even though it is still reachable from pointers.
This may happen because non-pointers are misinterpreted as pointers due to lack
of type accuracy [76, 77]. All garbage collectors considered in this dissertation are
type accurate, but the approaches it describes generalize to type-inaccurate collec-
tors [61]. Another reason for leaks in tracing garbage collection is lack of liveness
accuracy [77, 80]. Since there are no feasible approaches for obtaining precise liveness
accuracy to date, this dissertation only considers liveness inaccurate collectors.

1.3 Garbage collection wish-list

Garbage collectors should provide high application throughput (low cost in time),
high memory efficiency (low cost in space), and high responsiveness (few disrup-
tions).

1.3.1 Throughput

Throughput is the speed at which a program gets its work done. Given a fixed
amount of work, high throughput means that the program gets it done in a short
time. Throughput is important for saving users money and patience.

Garbage collection affects program throughput in many ways. The most ob-
vious way is that performing a tracing garbage collection costs time, and the less
time it costs, the higher the program throughput gets. But garbage collection also
performs other tasks throughout the program execution. Those include the cost of



CHAPTER 1. INTRODUCTION 18

allocation, as well as costs for book-keeping. All other things being equal, more
efficient allocation and book-keeping lead to higher program throughput.

A more subtle, but equally important, way in which garbage collection affects
throughput is by its effects on locality. If the program accesses some objects close
together in time, the garbage collector should keep them close together in space, to
reduce the likelihood of cache misses, TLB misses, or even page faults. All other
things being equal, a garbage collector that creates good program locality leads to
high program throughput.

1.3.2 Space efficiency

Space efficiency is the smallness of the memory that a program runs in. Memory is
always limited, sometimes severely, for example in small mobile devices, sometimes
less, for example when running a small program on a big desktop machine. Space
efficiency is important to make it possible to run the required jobs on a given machine
without buying more memory or killing other jobs.

Garbage collectors affect space efficiency in many ways. One of them is that
garbage collectors introduce a cost in space by storing their own auxiliary data
structures, some in object headers, some on the side. Another important way in
which garbage collection affects space efficiency is by fragmentation, where free
memory is available, but can not be used for allocating objects. An approach to
limiting fragmentation is copying garbage collection, but that requires reserving
space to copy objects into, which itself reduces space efficiency.

There is a trade-off between throughput and space efficiency. On the one hand,
if the program has a small heap (high space efficiency), the garbage collector runs
often and takes a lot of time (low throughput). On the other hand, if the program
has a large heap (low space efficiency), the garbage collector runs rarely and takes
little time (high throughput). Of course, in a large heap, locality may suffer, so
providing huge amounts of memory does not necessarily lead to high throughput.

This dissertation deals with the trade-off between throughput and space effi-
ciency by reporting throughput for a few fixed heap sizes. This reflects the situation
in practice where the heap size is determined by how much memory is available, and
the user is interested in what throughput the program has at that heap size.

1.3.3 Responsiveness

Responsiveness is the absence of disruptive periods where a program responds slug-
gishly or not at all. It is important for interactive applications such as media replay,
word processing, or web-based forms. It is even more important for soft or hard
real-time applications, where sluggishness may have catastrophic consequences.

The main impact of garbage collection on responsiveness stems from garbage
collection pauses. Pauses should be short, to avoid disruptive periods where the
program responds not all; but when there are many short pauses close to each
other, this also leads to poor responsiveness, where the program responds, but only
sluggishly. Other ways in which garbage collection affects responsiveness include
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the time cost of performing allocations or book-keeping; but those disruptions are
so small compared to garbage collection pauses that they are usually not considered
for evaluating responsiveness.

There is a trade-off between responsiveness and throughput in that some garbage
collection algorithms focus mainly on high responsiveness, at the cost of lower
throughput, and others focus mainly on high throughput, at the cost of lower respon-
siveness. This dissertation mainly concentrates on garbage collection that yields high
throughput. The responsiveness goal is to perform well for interactive applications,
but this dissertation does not consider real-time constraints.

While the primary trade-off between responsiveness and throughput arises from
the choice of garbage collection algorithm, some garbage collectors allow a secondary
trade-off in the form of tuning parameters (e.g., [17]). Connectivity-based garbage
collectors provide this flexibility as well.

1.4 The state of the art

This dissertation is concerned with tracing garbage collectors (Section 1.2) with
high throughput, high memory efficiency, and responsiveness that is high enough
for interactive applications, but not necessarily for real-time systems. The state
of the art for achieving high throughput with reasonable memory efficiency and
responsiveness is generational garbage collection. For example, typical numbers
for a generational collector are spending 14% of the execution time on memory
management tasks when provided with space that is 3 times the high watermark of
the program, and experiencing pauses of up to 0.8 seconds [19].

The key idea of generational garbage collection is to segregate heap objects by
age into generations, and collecting young generations more often than old genera-
tions [94, 130]. Figure 1.3 shows a heap where the young objects occupy a young
generation, and the old objects an old generation.

The weak generational hypothesis states that most objects die young [67]. It is
true for many programs, and means that the survivor rate in the young generation
is lower than in the old generation: the young generation contains proportionally
fewer live objects and more dead objects.

Generational garbage collection increases throughput. This is because garbage
collections opportunistically focus on the area of memory where it is most likely to
find dead objects to reclaim. Opportunistic garbage collections reclaim the same
amount of memory with a lower cost in time. Thus, they incur less overall overhead
on the execution time.

Generational garbage collection can trade some of the increased throughput for
increasing memory efficiency instead. With the increased throughput from oppor-
tunism, generational garbage collection can afford to run in a smaller heap and still
perform as well as it would in a larger heap without the increased throughput.

Generational garbage collection increases responsiveness. This is because most
of the collections collect only a part of the heap. Partial garbage collections take
less time than full garbage collections. Thus, they incur shorter pauses.
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Figure 1.3: The heap from Figure 1.2, with generations.

Generational garbage collection is widely recognized as the state of the art. It
is implemented in the Java virtual machines by Sun and by IBM, it is used by
Microsoft’s implementation of the CLR, and it is implemented in SML/NJ. There
are plenty of variations on generational garbage collection, ranging from add-ons
such as pretenuring [34], over algorithmic variations such as using mark-sweep or
copying or reference counting for the old generation [19], to generalizations of age-
based garbage collection [21].

1.5 Why do something else

The state of the art generational collectors yield high throughput with reasonable
memory efficiency and responsiveness, but this dissertation proposes a radically
different approach.

The wish-list from Section 1.3 is challenging to achieve, and a large part of
today’s garbage collection literature describes how to improve upon the performance
of generational garbage collection along one or more dimensions while remaining
within the general context of age-based garbage collection. This dissertation, on the
other hand, takes the standpoint that it is worth exploring a fundamentally different
approach that is not age-based, but instead, is connectivity-based. The goal is to
deliver throughput, space efficiency, and responsiveness that are competitive with
generational garbage collection.

Generational garbage collection has some problems that hinder its ability to de-
liver high throughput. One problem is posed by old-to-young pointers. For example,
in Figure 1.3, the old object o5 points to the young object o8. In order to collect
only the young generation, the collector must be aware of the pointer from o5 with-
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out performing a reachability traversal of the old generation. This is usually done
with a write barrier that traps old-to-young pointer writes, and records them in a
remembered set. The problem is that this book-keeping adds both time and space
overhead. In addition, even if the pointer s2 to the old object o5 is deleted, since o5

is still in the remembered set, the collector will not free up o8 yet, because it assumes
that it might still be reachable. Since less memory is reclaimed, the collector will
have to run more often, and throughput suffers.

Another impediment to high throughput in a generational garbage collector is
the so-called “pig in the python” problem. The analogy is that of a python that
swallows something too big, and is immobilized until it has digested it. In the case
of the generational collector, “something too big” is a large data structure that lives
long. When it is first allocated, it is still young, and the collector tries in vain to
collect it: since it lives long, it survives that collection, and the opportunistic choice
of collecting the young generation in the hope for many dead objects went wrong.
Since the collector has to pay a high cost trying to collect the young generation,
throughput suffers.

Generational garbage collection also has a problem that hinders its ability to de-
liver high responsiveness. While most collections collect only the young generation
and thus incur only a short pause, every once in a while, a generational collector per-
forms a full collection that incurs a long pause. Regular full collections are necessary
in generational collectors to ensure that all garbage eventually gets collected.

The fundamental idea used by generational garbage collection that can be ex-
tended to non-age-based collectors is to perform partial opportunistic collections.
Section 1.4 described how generational garbage collection does that based on age.
Partial collections increase responsiveness, whereas opportunistic collections increase
throughput. The basis for opportunism in generational collectors is age, and that
also dictates the basis for partial collections. In other words, generational collectors
emphasize opportunistic collections for high throughput, and as a side-effect, achieve
partial collections for high responsiveness.

This dissertation proposes using connectivity to perform partial opportunistic
collections. A connectivity-based garbage collector uses connectivity to support
partial collections. This avoids the problems of old-to-young pointers and regular
full collections that reduce the throughput and responsiveness of age-based partial
collections. The partial collections based on connectivity then give flexibility for an
opportunistic choice of what to collect. As it turns out, connectivity directly helps
the opportunistic choice, but in addition, age-based opportunism is also applica-
ble. In other words, connectivity-based collectors emphasize partial collections for
high responsiveness, but the partial collections are more flexible than in age-based
collectors, with more flexibility for opportunism that yields high throughput.

Preliminary experiments support the claim that connectivity helps opportunism.
Three sets of results that indicate that one can use connectivity information to pre-
dict which partial collections are the most likely to reclaim dead objects: connected
objects tend to die at the same time; short-lived objects tend to have few ances-
tors; and objects reachable from global variables tend to live long, whereas objects
pointed to only from stack variables, but not from globals or other objects, tend to
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die quickly [82].
While a lot of research has focused on age-based garbage collection, this dis-

sertation explores an alternative that has received little attention. Whereas object
age has been proven useful for opportunistic collections, using it to perform par-
tial collections introduces difficulties such as old-to-young pointers and regular full
collections. Connectivity is a natural principle to base partial collections on, and
allows opportunistic collections that exploit connectivity as well as age and other
predictors for which objects are dead.

1.6 How connectivity-based garbage collection works

Section 1.5 motivated that connectivity is a sensible principle to base a garbage
collector on; this section describes a framework for connectivity-based garbage col-
lectors. The goal is to use connectivity to do partial collections (increasing re-
sponsiveness), while at the same time providing a lot of flexibility for opportunism
(increasing throughput), some of which is itself also based on connectivity.

The equivalent of an age-based collector’s generation is a connectivity-based
collector’s partition. Figure 1.4 shows an example heap with partitions. Partition
edges respect pointers: if there is a pointer between two objects, they are either in
the same partition, or there is an edge between their partitions. A partial garbage
collection can reclaim any subset of partitions that is closed under the predecessor
relationship (for each partition in the set, its predecessors are also in the set).

o2

o1

o4
o3

o5

o10

o6

o8

o9

o7

o11

o15

o14

o12o13

s1

s2

g

R
oo

ts

p1p2

p4p3

Figure 1.4: The heap from Figure 1.2, with partitions. Each of p1, p2, p3, and p4 is
a partition. Large bent arrows represent partition edges.

The framework for connectivity-based garbage collectors has four components:
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1. Partitioning. The partitioning is based on a static program analysis, and
decides into which partition each object is is allocated.

2. Estimator. The estimator runs before a garbage collection, and guesses how
many dead and live objects each partition contains.

3. Chooser. The chooser picks which set of partitions to collect based on the
results of the estimator.

4. Partial garbage collection. The partial garbage collection performs a reachabil-
ity traversal on all objects in the chosen partitions, and reclaims unreachable
objects in that part of the heap.

The goal of the partitioning is to provide fine-grained partitions where partition
edges respect object pointers, and objects do not move between partitions. It uses
an analysis of the program code to find conservative connectivity information, which
says how objects may be connected at run-time. Based on that information, each
object is placed into a partition upon allocation. The representation of partitions at
run-time must support garbage collections by providing a mapping from objects to
partitions, and by guaranteeing the absence of cross-partition pointers unless there is
also a partition edge between the partitions in question. For example, in Figure 1.4,
the pointer from object o12 to o14 spans a partition boundary, necessitating the
partition edge from p3 to p4.

The goal of the estimator is to guess, for each partition, how many objects in the
partition are dead and how many are live. It is based on a variety of heuristics for
how information available at run-time predicts partition survivor rates. For example,
one of the heuristics derived from observations from an experimental study of run-
time behavior [82] says that a partition reachable from global variables has a high
survivor rate. To use this heuristic, the estimator looks at all global variables, and
estimates that partitions containing objects pointed to by globals and their successor
partitions contain many survivors. For example, in Figure 1.4, global g points to
object o10 in partition p3, so this heuristic would estimate many survivors in p3 and
its successor p4.

The goal of the chooser is to opportunistically pick a set of partitions to collect
for which the estimator predicted many dead and few live objects. Dead objects are
objects whose memory can be reclaimed, and thus represent the pay-off of a garbage
collection, since that memory becomes available for future allocation. Live objects
are objects that the reachability traversal has to visit to find which objects are dead,
and thus represent the cost of a garbage collection, since the reachability traversal
takes time. The result of the chooser must be a set of partitions that is closed under
the predecessor relationship: if the choice contains a partition, it must also contain
all its predecessors that have partition edges to it. For example, in Figure 1.4, if the
chooser picks p4, it must also pick its predecessors p2 and p3.

The goal of the partial garbage collector is to reclaim all dead objects in the
chosen set of partitions. To do this, it traverses all live objects in those partitions,
and reclaims the rest. When doing this, it does not need to worry about pointers from
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objects in non-chosen partitions, since the partitioning and the chooser guarantee
that there are no pointers from unchosen partitions to chosen partitions. Partial
collections of connectivity-based collectors provide early reclamation: even before
the collection of all chosen partition completes, the memory of dead objects in a
partition can be reclaimed as soon as all live objects in it and its predecessors
have been traversed. For example, in Figure 1.4, if the set of chosen partitions is
{p2, p3, p4}, then dead objects in p2 can already be reclaimed before all live objects
in p3 and p4 have been traversed.

Connectivity-based garbage collection increases throughput. This is because
garbage collections opportunistically focus on the area of memory where it is most
likely to find dead objects to reclaim. In addition, the problem of old-to-young point-
ers that reduced generational garbage collector throughput is absent in connectivity-
based garbage collectors. On the other hand, if the static analysis for obtaining
connectivity information is performed at execution time in a just-in-time compiler,
that incurs its own throughput cost.

Connectivity-based garbage collection can trade some of the increased through-
put for increasing memory efficiency instead. In addition, the early reclamation of
its partial collections help a connectivity-based garbage collector to stay within a
smaller memory range rather than walking all over virtual memory, which increases
both memory efficiency and throughput.

Connectivity-based garbage collection increase responsiveness. This is because
except in pathological cases, all garbage collections are partial, incurring only a short
pause. Whereas generational collectors have to perform full collections regularly,
connectivity-based collectors only have to perform full collections when there is a
partition that contains dead objects and all other partitions are direct or transitive
predecessors of it. We never observed this pathological case in practice.

1.7 Contributions

This dissertation makes three contributions to programming language implementa-
tion research. It reports empirical studies of program behavior that improve un-
derstanding of heap object connectivity; it introduces and evaluates the new family
of connectivity-based garbage collectors; and it presents the first non-trivial pointer
analysis that works for all of Java.

Understanding the connectivity of heap objects is also useful for improving ex-
isting collectors. We originally reported the results of our empirical study in an
ISMM paper [82]. It provided the starting point of this dissertation. The results
have also been picked up by other people; for example, Guyer and McKinley [63]
present a technique for exploiting our finding that connected objects die together in
a generational garbage collector.

Connectivity-based garbage collection is partial opportunistic garbage collec-
tion based on heap object connectivity. We originally presented this new family of
garbage collectors in an OOPSLA paper [78]. It provides the center-piece of this
dissertation. Whereas [78] evaluates the design space of connectivity-based garbage



CHAPTER 1. INTRODUCTION 25

collection using a simulator, this dissertation also includes a description of a con-
crete connectivity-based garbage collector in a Java virtual machine, proving that
the concept works in the presence of all real-world challenges posed by a full-fledged
system. Finally, this dissertation also includes an optimal algorithm for the chooser,
along with a correctness proof and an evaluation, which we originally published in a
technical report [81]. The ideas from our OOPSLA paper have also been picked up
by other people; for example, Grothoff [61] describes how a theoretical framework
helps extend it for conservative garbage collection.

Connectivity-based garbage collection for Java requires a non-trivial pointer anal-
ysis that works for all of Java. We present the first such analysis in an ECOOP
paper [79]. It solves an important challenge posed by performing connectivity-based
garbage collection in a full-fledged system. The ECOOP conference took place
within one month of the defense of the thesis of this dissertation, and the commu-
nity has not yet reacted with follow-up work; but our pointer analysis has already
been cited by concurrent related work by Qian and Hendren on interprocedural
program analysis [103].

This dissertation revolves around the thesis stated on page 13, repeated here:

1. Objects are part of distinct connected data structures.

2. Connected objects tend to die at the same time.

3. Garbage collectors can exploit properties 1. and 2. to reclaim objects efficiently.

Connectivity-based garbage collectors operate on many partitions, each contain-
ing objects forming a distinct connected data structure, supporting Part 1. of the
thesis. This dissertation reports on studies measuring the likelihood that connected
objects die at the same time, which found that it is much higher than for uncon-
nected objects, supporting Part 2. of the thesis. This dissertation describes a new
family of garbage collectors, and reports on experiments both with a simulator and
in a full-fledged system that show that these collectors exploit Parts 1. and 2. of the
thesis to reclaim objects efficiently, supporting Part 3. of the thesis.

1.7.1 Overview of the remaining chapters

Appendix A defines terminology used by the remainder of this dissertation. When
a chapter refers to a definition in this appendix, it uses the notation termp.n , where
n is the number of the page with the definition for the term.

Chapter 2 describes the infrastructure for experimental work reported in this
dissertation. All experiments in this dissertation rely on the Jikes RVM virtual
machine for Java either for providing traces, or as a real-world context in which to
implement our algorithms.

Chapter 3 reports the results of experiments for understanding the connectivity
of heap objects. This dissertation describes garbage collectors based on connectivity,
which make opportunistic choices based on the results of this chapter.
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Chapter 4 gives an overview of the Cbgc family of connectivity-based garbage
collectors. It provides the big picture of how these collectors work, and sets the
stage for the subsequent chapters that flesh out the details.

Chapters 5 to 8 elaborate on the four components of a Cbgc algorithm:

• Chapter 5 gives the details for how the partitioning component of a connectivity-
based garbage collector works, and describes a few possible solutions to this
sub-problem.

• Chapter 6 gives the details for how the estimator component of a connectivity-
based garbage collector works, and also shows how various heuristics can be
applied to solve this sub-problem.

• Chapter 7 gives the details for how the chooser component of a connectivity-
based garbage collector works. It provides a problem statement and an algo-
rithm that is optimal with respect to that problem statement. It also describes
alternative algorithms.

• Chapter 8 gives the details for how the partial garbage collection component
of a connectivity-based garbage collector works, and also describes how var-
ious well-known garbage collectors from the literature can be generalized as
solutions to to this sub-problem.

Chapter 9 reports the results of experiments for exploring the design space of
connectivity-based garbage collectors. It is based on a trace-driven simulator, and
explores both realistic and oracular points in the design space to give indications for
lower and upper bounds on how well Cbgc can perform.

Chapter 10 describes the first non-trivial pointer analysis that works for all of
Java. While many important client tools and optimizations rely on pointer analysis,
in the context of this dissertation, it serves as a foundation for the partitioning
component of connectivity-based garbage collection.

Chapter 11 describes a connectivity-based garbage collector in Jikes RVM, demon-
strating that the concept works in the presence of all real-world challenges posed by
a full-fledged system.

Chapter 12 concludes the dissertation.
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Chapter 2

Infrastructure

This dissertation describes several experiments performed in Jikes RVM on a number
of Java benchmarks, either directly or in the form of traces. This chapter describes
Jikes RVM (Section 2.1), the benchmarks (Section 2.2), and the traces (Section 2.3).

2.1 Jikes RVM

Jikes RVM is an open-source research virtual machine for Java from IBM Research [5,
29]. This section describes details of Jikes RVM that are important for understanding
this dissertation.

2.1.1 Jikes RVM compilers

Jikes RVM, like most Java virtual machines, includes JIT compilersp.176 that com-
pile portable Java bytecode to executable machine code for Power PC or Intel x86
processors. Understanding some details of the Jikes RVM compilers is important
because this dissertation describes experiments based on traces created by using
compilers to instrument code (Chapter 3), because the compilers allocate many ob-
jects that have to be garbage collected (Chapter 9), and because this dissertation
describes a novel compiler analysis (Chapter 10).

Unlike most Java virtual machines, Jikes RVM does not include an interpreter,
compiling all methods before their first execution instead. Jikes RVM has two JIT
compilers: a baseline compiler and an optimizing compiler. Roughly speaking, the
baseline compiler runs fast, but the code it produces runs slowly, whereas the op-
timizing compiler runs slowly, but the code it produces runs fast. In addition to
these two compilers, Jikes RVM also includes an adaptive optimization system that
baseline-compiles most methods and reserves the expensive optimizing compiler for
a few hot methods only.

Either compiler must support the garbage collector in a number of ways. The
compiler is responsible for providing type accuracyp.182, by maintaining type infor-
mation through all compiler passes, storing it for lookup in so-called stack maps,
and supporting stack walks at garbage collection time to identify all pointers in all
method stack frames, among other things. All garbage collectors in Jikes RVM are
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type accurate. For collectors that require write barriersp.189, the compiler is also
responsible for instrumenting compiled code with the instructions implementing the
barrier.

The baseline compiler simply replaces each individual bytecode instruction, one
by one, by an equivalent sequence of machine instructions. In doing so, it does not
perform any optimizations, and it does not even maintain an abstract model of the
stack, relying instead on the consistency of the bytecodes.

The optimizing compiler first translates Java bytecode into a register-based in-
termediate representation, then makes several analysis and optimization passes over
that representation, and finally assembles machine instructions for it. The passes
are called “compiler phases”, and include all the traditional optimizations, as well as
several novel optimizations for object-oriented languages pioneered by the develop-
ers of Jikes RVM. The optimizing compiler has different optimization levels, where
a higher optimization level includes more expensive passes, in the hope of yielding
faster compiled code.

The adaptive optimization system first compiles all methods with the baseline
compiler. When a method executes often, it is considered hot, and thus worthy of
recompilation with the optimizing compiler. Depending on how hot it is, the adap-
tive optimization system requests different optimization levels from the optimizing
compiler. It may also recompile a method that has already been opt-compiled in the
past if it has reason to believe that that may make the compiled code even faster.

2.1.2 Jikes RVM is written in Java

Almost all of Jikes RVM is written in Java. This means that the different components
of Jikes RVM rely on each other more strongly than in other virtual machines: for
example, the compilers compile the code of the garbage collectors, and the garbage
collectors collect dead objects allocated by the compilers.

The self-hosting of Jikes RVM creates both challenges and opportunities. One
of the challenges is that the different components are under more stress, since they
have to service not only the application, but also the virtual machine itself. The
self-hosting puts higher demands on components both in terms of performance (the
amount of work is higher) and correctness (the work is more critical and more
challenging). One of the opportunities is that all VM components benefit from each
other’s improvements; for example, the performance of the allocation sequence of the
garbage collector benefits from the compiler’s ability to inline and optimize it. The
main advantage of writing Jikes RVM in Java, however, is that Java is a high-level
language that yields high programmer productivity.

Each Jikes RVM process starts from a boot image of pre-compiled Java code and
pre-allocated Java data structures. To create this boot image, a host JVM executes
a Java program, the boot image writer. The boot image writer executes the code
of the Jikes RVM compilers to compile the code of various Jikes RVM components,
including the compilers themselves, to machine code. The boot image writer also
executes the initialization code for various Jikes RVM classes to pre-allocate Java
objects, such as auxiliary data structures for the garbage collectors. Finally, the
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boot image writer inspects all those Java objects using reflection, and serializes the
raw data in the object format of a running Jikes RVM process. This yields a boot
image, a file containing the compiled code and Java objects needed to start executing
Jikes RVM. The boot image runner, a tiny C program, loads this boot image into
memory, and jumps to the address of the instructions responsible for starting the
VM, which were compiled from Java at build time.

Not all of Jikes RVM is written in Java, some of it is written in C or even
assembler code. The previous paragraph already mentioned the boot image runner,
a tiny C program responsible for starting Jikes RVM. In addition, Jikes RVM can call
“magic” methods that look like Java methods, but are recognized by the compilers
and translated into lower-level operations, e.g., for raw pointer manipulation. Magic
allows for unsafe, low-level, system code that it necessary for implementing a virtual
machine, but usually not available in Java. Another part of Jikes RVM that is not
written in Java is the interface to the operating system. Jikes RVM includes system
call wrappers written in C, called from Java via a special mechanism. A mechanism
separate from system calls is JNIp.176, the usual mechanism for Java code to interact
with C code. Applications running on top of Jikes RVM can use JNI to call C code
just like in other virtual machines, and the C code can call back into Jikes RVM
service methods to manipulate Java-level fields, call Java methods, or allocate Java
objects.

The fact that so much of it is written in Java means that in Jikes RVM, every
benchmark is large: executing even the simplest “Hello world” program requires ex-
ecuting Jikes RVM itself, a substantial Java program. The FastAdaptiveMarkSweep
configuration of Jikes RVM version 2.2.1 consists of 982 classes with a total class
file size of 4,559 KB. In addition, both Jikes RVM and the application use standard
libraries, which add up to another 2080 classes with a total class file size of 3,543 KB.
This is much more Java code than, for example, the code of the benchmark javac
(1,909 KB), which is itself one of the largest benchmarks in common use in Java
memory management research. The size of the Java code of Jikes RVM and the
libraries impacts the results of experiments with Jikes RVM.

2.1.3 Jikes RVM garbage collectors

A Jikes RVM boot image can include one of several garbage collectors. Understand-
ing some details of the Jikes RVM collectors is important because this dissertation
relies on them for tracing (Chapter 9) and validation (Chapter 10), and because this
dissertation describes a new garbage collector in Jikes RVM, which relies on some
support from the existing code base, but also competes against other collectors in
that code base (Chapter 11).

The garbage collectors in Jikes RVM evolved considerably at the same time that
the research in this dissertation was in progress. Table 2.1 gives a time-line. The
time lag between the release of a Jikes RVM version and the paper that experiments
with it illustrates the inertia of adopting a new version, as well as the time it takes
to understand the new infrastructure, add own code, perform experiments, write a
paper, and wait for it to appear in a conference.
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Table 2.1: Jikes RVM and Cbgc evolution.

April 2001 Jalapeño 1.1 released.
Only limited Linux/IA-32 support so far.

October 2001 Jalapeño renamed into Jikes RVM.
Jikes RVM 2.0.0 released.
It now uses the classpath libraries.

June 2002 The paper underlying Chapter 3 appears in ISMM [82].
It uses Jalapeño 1.1.

December 2002 Jikes RVM 2.2.0 released.
It now includes the JMTk.

April 2003 Jikes RVM 2.2.1 released.
June 2003 Jikes RVM 2.2.2 released.

October 2003 The paper underlying Chapter 9 appears in OOPSLA [78].
It uses Jikes RVM 2.2.0.

June 2004 The paper underlying Chapter 10 appears in ECOOP [79].
It uses Jikes RVM 2.2.1.

July 2004 Chapter 11 is written.
It uses Jikes RVM 2.2.1.

This section describes the JMTk as of Jikes RVM version 2.2.1. JMTk [20], the
Java Memory management Toolkit by Steve Blackburn and Perry Cheng, replaced
the old “Watson” collectors used before Jikes RVM 2.2.0.

In Jikes RVM 2.2.1, JMTk includes five garbage collectors: three full collectorsp.189

(copyingp.184, mark-sweepp.185, and reference countingp.178), and two generational
collectorsp.190 (both using copying for the nurseryp.190, one with copying and one
with mark-sweep for the mature spacep.190). The collectors share support code,
which is general enough for reuse in different collector designs.

JMTk in Jikes RVM 2.2.1 provides exclusively parallelp.190 stop-the-worldp.191

collectors. Regardless of collector, the collector threads share a work-queue of gray
objects. That means that copying GC in JMTk does not use Cheney scanp.184, and
mark-sweep GC does not use a mark stack, contrary to Table A.1. This dissertation
is only concerned with single-threaded, stop-the-world GC. In all experiments, the
parallel Jikes RVM collectors run on single-processor machines, and thus have only
one thread.

All JMTk collectors are hybrids that manage different kinds of objects with
different basic garbage collector techniques.

• Boot image objects. These objects are allocated ahead of time by serializing
host JVM objects into a file, as described in Section 2.1.2. Boot image objects
are never deallocated, but they may point to runtime objects, and they may be
mutated at runtime. Thus, the reachability traversalp.186 of a collector has to
traverse them in order to find which runtime objects have become unreachable,
even though the reclamation phasep.186 will not reclaim boot image objects.
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Boot image objects are never moved, even in a copying collector.

• Immortal objects. These objects are allocated at runtime, but are never deal-
located. Immortal objects in Jikes RVM include TIBsp.188, stacksp.175, and
certain garbage collector data structures. Immortal objects are never moved,
even in a copying collector.

• Meta objects. These include the shared work queues used to maintain gray
objects, as well as remembered setsp.189 for collectors that rely on a write
barrier. They are not treated like normal Java objects in allocation, reachabil-
ity traversal, or reclamation. Instead, they store raw addresses manipulated
with magic, and are allocated and deallocated with explicit low-level memory
management. Any memory manager in any runtime system has to treat meta
objects as a special case, this challenge is not specific to Jikes RVM.

• Large objects. While the JMTk could treat large objects just like small objects,
it does not do so for efficiency reasons. Instead, it manages large objects with a
treadmillp.186, and thus, never copies them. This saves space for copy reserve,
and it saves work for large objects that do not contain any pointers.

JMTk maintains these different kinds of objects — normal small objects, boot
image objects, immortal objects, meta objects, and large objects — in different areas.
It segregates the virtual address space into different areas for these different objects
ahead of time, so that at runtime, it can quickly determine the kind of an object by
its address, and treat it accordingly in the reachability traversal. At runtime, not
all pages in an area need to be in use; instead, JMTk uses mmap to acquire them
lazily from the operating system. JMTk ensures that even though programs use
most of the virtual address space, their usage of the physical address space remains
within the heap size specified for that run, to allow the explicit tradeoff between
throughput and space efficiency discussed in Section 1.3.2.

Jikes RVM uses different layouts for scalarp.177 and array objectsp.177, illustrated
in Figure 2.1.

fields

length

header

header elements

fixed offset

object
reference

base
address

memory addresses increase to the right

scalar object

array object

end
address

Figure 2.1: Object layout in Jikes RVM.
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• A scalar object occupies the memory from its base address to its end address.
It consists of fields and a header. The number and size of fields depends on the
class of the object, which is stored in the header. When a variable refers to a
scalar object, it does so via an object reference, which points to an address at
a fixed offset behind the end address of the object.

• An array object occupies the memory from its base address to its end address.
It consists of a header, a length field, and elements. The header determines the
size of each element, and the length field determines the number or elements.
Together, they determine the size of the object. When a variable refers to an
array object, it does so via an object reference, which points to the address of
the first element.

Regardless of whether an object is a scalar or an array, the header resides at
a fixed negative offset from the object reference. Object headers in Jikes RVM
can have different sizes depending on the garbage collector [12]. The header stores
a pointer to the TIBp.188, and a mark bit to keep track of whether the ongoing
reachability traversal has reached the object.

Jikes RVM with JMTk is a good test bed for garbage collection research. Both
projects are open-source, inviting people to try their ideas and contribute them back
to the community. Jikes RVM includes implementations of cutting-edge Java virtual
machine technology; a new idea for one component can rely on realistic support
by other components, and can compete with state-of-the-art versions of the same
component. These benefits of Jikes RVM and JMTk for garbage collection research
are widely recognized: by June 2004, at least 26 published memory management
papers used Jikes RVM.

2.1.4 Standard libraries

Starting from version 2.0.0, Jikes RVM uses the classpath open-source core Java
libraries [58]. Executing Java programs require not just a virtual machine, but also
a set of libraries. While Jikes RVM provides the necessary runtime support in the
form of compilers, garbage collectors, multithreading, class loading, reflection, etc.,
the libraries are responsible for things like I/O, containers, networking, etc.

The classpath libraries are not complete. They lack some functionality, such as
full support for applications with sophisticated graphical user interfaces. This re-
stricts the set of applications that run on top of Jikes RVM: it is limited to programs
using only the subset of the Java libraries included in classpath. For research with
Jikes RVM, this means that not any program can serve as a benchmark, since some
lack library support. This situation is the same for all open-source Java virtual
machines. Jikes RVM is one of the most full-featured ones.

The classpath libraries use reflection and JNIp.176. For example, parts of the I/O
libraries are implemented by native methods. Since most programs use these I/O
libraries, most programs indirectly use JNI. Hence, at least limited JNI support is
necessary to execute even simple benchmarks on Jikes RVM.
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2.1.5 Versions and configurations

The research leading to this dissertation used three different versions of Jikes RVM,
to take advantages of ongoing improvements in that infrastructure, see Table 2.1.
Unfortunately, the results from the different versions are not directly comparable.

2.1.5.1 Configuration for understanding connectivity

Chapter 3, which is based on the ISMM 2002 paper “Understanding the Connectivity
of Heap Objects” [82], uses Jikes RVM to generate traces. The traces serve as input
to an analyzer that measures things like how likely it is for two objects to die at the
same time if they belong to the same strongly connected component of the object
graph.

This work uses Jalapeño version 1.1, running under Linux on a PowerPC ma-
chine. It uses the BaseBasenoncopyingGC configuration, meaning that the baseline
compiler compiles the boot image, as well as compiling methods just-in-time at
runtime; and that the garbage collector is a full mark-sweep GC.

The traces include events for the boot image, as well as the first (and only)
execution of the benchmark. The death times of objects are approximated by per-
forming frequent garbage collections and recording the earliest time that an object
is found to be unreachable at a garbage collection.

2.1.5.2 Configuration for design space exploration

Chapter 9, which is mostly based on the OOPSLA 2003 paper “Connectivity-Based
Garbage Collection” [78], uses Jikes RVM to generate traces. The traces serve as
input to a garbage collection simulator that performs allocations and garbage col-
lections, measuring metrics indicative of throughput, space efficiency, and respon-
siveness.

This work uses Jikes RVM version 2.2.0, running under Linux on an Intel x86
machine. It uses the FastAdaptiveMarkSweep configuration, meaning that the op-
timizing compiler compiles the boot image, whereas at runtime, the adaptive opti-
mization system controls when methods are compiled by the baseline or optimizing
compiler; and that the garbage collector is a full mark-sweep GC.

The traces include events for all objects that are reachable at the beginning of
the second run (including boot image objects), as well as the second execution of
the benchmark. That means that in generating the traces, Jikes RVM calls the
benchmark’s main() method twice, and omits trace output for the first execution
to reduce perturbation of the results by compilation activity. Of course, inside
their main() method, some benchmarks perform the same work multiple times; this
dissertation still refers to all of this as one run. The death times of objects are
precise based on the Merlin algorithm [72].
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2.1.5.3 Configuration for pointer analysis

Chapter 10, which is based on the ECOOP 2004 paper “Pointer Analysis in the
Presence of Dynamic Class Loading” [79], evaluates a pointer analysis that runs
online within Jikes RVM. It validates the correctness by checking that all actual
pointers are predicted by the pointer analysis results. It measures the performance
as wall-clock time.

This work uses Jikes RVM version 2.2.1, running under Linux (with kernel version
2.4) on an Intel x86 machine (a 2.4GHz Pentium 4 with 2GB of memory). Like the
design space exploration, this work uses a FastAdaptiveMarkSweep configuration,
but it disables inlining during boot image build time. Inlining is, however, enabled
when the optimizing compiler recompiles hot methods at runtime.

The measurements are based on executing the benchmark once. Thus, they do
not include the time it takes to build the virtual machine, but they include the time
for booting it and running the program’s main() method. To enable stack walks for
attributing yieldpoint counts to the application or the pointer analysis, Jikes RVM is
built with deterministic yieldpoints. To enable validation of pointer analysis results,
all objects have an extra header word.

2.2 Benchmarks

This dissertation uses 29 different Java programs as benchmarks to understand pro-
gram behavior and to evaluate techniques for improving program performance. Ta-
ble 2.2 lists these programs.

Not all experiments in this dissertation use all benchmarks. Column “used in” of
Table 2.2 refers to the chapters in this dissertation that use the benchmark for exper-
iments. There are many reasons why the benchmark suite changed over time. For
example, most of the Olden benchmarks are small, so their behavior is overwhelmed
by Jikes RVM objects, since Jikes RVM is itself written in Java (Section 2.1.2).
Chapter 3 works around that problem by reporting separate sets of numbers exclud-
ing Jikes RVM objects. However, this was not easily possible in the later papers,
hence they exclude all Olden benchmarks except for the largest ones.

2.2.1 Benchmark descriptions

The benchmarks in Table 2.2 are grouped by the suite that they originate from.
This section describes the benchmarks in the same order.

2.2.1.1 null

The source code of the null benchmark is a one-liner:
class Null { public static void main(String[] args) { } }

The main() is empty, it does nothing, and thus, executing it in Jikes RVM
demonstrates what it takes to start up the virtual machine and launch an application
without perturbation by what the application itself does. Since Jikes RVM is written
in Java, starting it takes a lot: it requires compiling a substantial amount of Java
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Table 2.2: Benchmark descriptions. Column “used in” refers to the chapters in this
dissertation that use the benchmark for experiments.

Benchmark Used in Description
null 3 9 10 11 Empty main method, does nothing.

SPECjvm98
compress 3 9 10 11 Modified Lempel-Ziv method (LZW).
db 3 9 10 11 Performs database functions on memory resident database.
jack 3 9 10 11 Parser generator, earlier version of JavaCC.
javac 3 9 10 11 The Java compiler from the JDK 1.0.2.
jess 3 9 10 11 Java Expert Shell System.
mpegaudio 3 9 10 11 Decompresses audio files.
mtrt 3 9 10 11 Multi-threaded raytracer.

Colorado Bench
ipsixql 3 9 – 11 Performs queries against persistent XML document.
jigsaw 3 – – – W3C’s web-server, reference implementation of HTML 1.1.
nfc 3 – – – Chat-server.
xalan 3 9 10 11 XSLT tree transformation language processor.

Miscellaneous
deltablue – 9 – 11 Incremental constraint hierarchy solver.
hsql – – 10 11 Object-relational database management system.
javalex – – 10 11 Lexical analyzer generator.
jpat – – – 11 Java protein analysis tool.
pseudojbb – 9 – 11 Java business benchmark, with fixed number of transactions.
richards – – 10 11 Simulates task dispatcher in OS kernel.
soot – – – 11 Bytecode manipulation and analysis framework.

Java-Olden
bh 3 9 – 11 Solves the N-body problem using hierarchical methods.
bisort 3 – – – Sorts by creating and merging bitonic sequences.
em3d 3 – – – Simulates electromagnetic waves propagation in 3D object.
health 3 9 – 11 Simulates Columbian health care system.
mst 3 – – – Computes minimum spanning tree of a graph.
perimeter 3 – – – Computes perimeter of quad-tree encoded raster images.
power 3 9 – 11 Solves the power system optimization problem.
treeadd 3 – – – Adds the values in a tree.
tsp 3 – – – Computes estimate for traveling salesman problem.
voronoi 3 – – – Computes Voronoi diagram of a set of points.
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code and allocating a substantial number of objects. The null benchmark is an
important point of reference to compare real benchmarks against. A benchmark
that behaves almost like the null benchmark has little behavior of its own.

2.2.1.2 SPECjvm98

The benchmarks in the SPECjvm98 suite (http://www.specbench.org/osg/jvm98)
are based on real-world applications from a variety of areas. The SPECjvm98 bench-
marks come with a harness that allows repeatable runs with validity checking and
performance measurement. They are intended for measuring and reporting the per-
formance of commercial Java virtual machines, in which case one has to obey strict
rules to run them. But they are also probably the most popular benchmarks used
in current memory management research, where it often makes sense to change the
run rules to get more meaningful results.

Unfortunately, the SPECjvm98 benchmarks are neither free nor open-source: to
use them, one has to pay a license fee to the SPEC corporation; and, even then jack,
javac, and mpegaudio are available only in bytecode format.

2.2.1.3 Colorado Bench

The Colorado Bench suite (http://systems.cs.colorado.edu/colorado_bench)
is based on four real-world applications. Johannes Henkel put these programs to-
gether. The servers nfc and jigsaw require manual set-up of separate client and
server processes, which precludes running them in a batch with many other bench-
marks. The two non-server programs ipsixql and xalan are more easy to use, and
are among the most challenging for a virtual machine to execute, which makes their
results particularly relevant.

2.2.1.4 Miscellaneous

The programs deltablue and richards (http://research.sun.com/people/mario/
java_benchmarking) are small benchmarks that have been translated into many
languages. Mario Wolczko provided the Java versions.

The hsql database (http://hsqldb.sourceforge.net/) is a significant open-
source project used in the real world. Matthias Hauswirth provided the harness and
workload.

The javalex program (http://www.cs.princeton.edu/~appel/modern/java/
JLex/) is a small, but important open-source tool used by students and others
writing compilers in Java, available on Andrew Appel’s web-page.

The jpat program is part of the Ashes benchmark suite (http://www.sable.
mcgill.ca/software/#ashesSuiteCollection) of the Sable group at McGill uni-
versity.

The pseudojbb program is a slight modification of SPECjbb2000 (http://www.
specbench.org/osg/jbb2000/). It is not free: to use it, one has to pay a license fee
to the SPEC corporation. Whereas the original SPECjbb2000 executes transactions

http://www.specbench.org/osg/jvm98
http://systems.cs.colorado.edu/colorado_bench
http://research.sun.com/people/mario/java_benchmarking
http://research.sun.com/people/mario/java_benchmarking
http://hsqldb.sourceforge.net/
http://www.cs.princeton.edu/~appel/modern/java/JLex/
http://www.cs.princeton.edu/~appel/modern/java/JLex/
http://www.sable.mcgill.ca/software/#ashesSuiteCollection
http://www.sable.mcgill.ca/software/#ashesSuiteCollection
http://www.specbench.org/osg/jbb2000/
http://www.specbench.org/osg/jbb2000/
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until a fixed amount of wall-clock time has passed, the modified pseudojbb executes
a fixed number of transactions. Darko Stefanović came up with these modifications.

The soot framework (http://www.sable.mcgill.ca/soot/) is a significant open-
source project used in the real world, developed by the Sable group at McGill uni-
versity.

2.2.1.5 Java-Olden

The Java Olden benchmark suite (http://www-ali.cs.umass.edu/~cahoon/olden)
consists of “pointer-intensive” kernels originally written in C. Brendon Cahoon pro-
vided the Java versions. These programs are kernels, each executes what is deemed
the interesting inner loop of a significant real-world application. The Java Olden
benchmarks are open-source and free.

Unfortunately, the Java-Olden benchmarks are small both in code size and run-
time behavior. Only three of them (bh, health, and power) exercise a non-trivial
amount of object allocation and object death; therefore, only these three are used
in more than one chapter of this dissertation. An amusing discussion of the limited
runtime behavior of health is [138].

2.2.2 Benchmark suite characterization

An important characteristic of a benchmark suite is that it should contain different
kinds of real-world programs. This is the case for the benchmarks used by this
dissertation. They include server applications (e.g., pseudojbb and jigsaw), compiler
tools (e.g., javac and soot), databases (e.g., db and hsql), multi-media applications
(e.g., mpegaudio and mtrt), as well as programs from several other domains.

Another important characteristic of a benchmark suite is that the programs are
large. However, the notion of size for a program is vague: a large program may be
one whose code base is large, one that allocates a lot of objects, or one that runs for
a long time. Furthermore, the allocation volume and run time depend not just on
the benchmark, but also on the version and configuration of Jikes RVM on which
it runs, on the workload of the benchmark, and on what exactly is being measured.
For example, if the optimizing compilation counts towards allocation and run time,
those are higher.

Table 2.3 shows the workloads and class file sizes of the 29 benchmarks from
Table 2.2. The class file sizes give an indication for how much code the benchmarks
have. Jikes RVM itself has a class file size of 4,559 KB (version 2.2.1 configuration
FastAdaptiveMarkSweep), and both the benchmark and the VM may use some of
the 3,543 KB of class files in the standard libraries.

For memory management research, a more relevant metric of benchmark size is
the total allocation and the high watermark. They vary between chapters in this
dissertation, since the chapters use different Jikes RVM versions and configurations
and different ways to measure them. Thus, each chapter with experimental results
presents those numbers separately.

For compiler analysis research in a virtual machine, a more relevant metric of

http://www.sable.mcgill.ca/soot/
http://www-ali.cs.umass.edu/~cahoon/olden
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Table 2.3: Benchmark sizes and workloads. Size is measured in KB of bytecodes in
class files.

Benchmark Size Workload or command line
null 0.2 (none)
compress 17.4 -s 100 -m1 -M1
db 9.9 -s 100 -m1 -M1
jack 127.8 -s 100 -m1 -M1
javac 1,909.2 -s 100 -m1 -M1
jess 387.2 -s 100 -m1 -M1
mpegaudio 117.3 -s 100 -m1 -M1
mtrt 56.5 -s 100 -m1 -M1

ipsixql 1,986.2 3 2
jigsaw 4,312.9 download complete contents
nfc 556.0 10 rooms, 100 users, 100,000 messages
xalan 4,200.0 3 2 (but Chapter 10 uses 1 1)
deltablue 29.8 (none)
hsql 896.6 -clients 1 -tpc 50000
javalex 88.3 qb1.lex
jpat 78.1 -testDigest
pseudojbb 420.1 1 warehouse, 70,000 transactions
richards 150.2 (none)
soot 4,261.1 -W --app -t Hello --jimple

bh 17.3 -b 500 -s 10
bisort 4.6 -s 100000
em3d 7.1 -n 2000 -d 100
health 9.8 -l 5 -t 500 -s 0
mst 5.8 -v 50
perimeter 9.8 -l 16
power 11.2 (none)
treeadd 3.1 -l 20
tsp 5.9 -c 60000
voronoi 13.9 -n 2048
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benchmark size is the number of classes that actually get loaded, and the number
of methods that actually get compiled, at runtime. Chapter 10 presents the first
non-trivial pointer analysis that works for all of Java, and reports these size metrics
for the benchmarks it uses for performance experiments.

2.3 Traces

Many of the experiments in this dissertation are based on traces, which are chrono-
logical recordings of all mutator events relevant to the garbage collector. The traces
come from two tracers that record similar events, but differ fundamentally in design,
and operate in different versions of Jikes RVM. Understanding the traces is impor-
tant for understanding the experiments conducted with them. But the experiences
from their design and implementation should also be relevant to other researchers
who write new tracers, or who use the traces from the second tracer, which are
available at http://www.cs.colorado.edu/~hirzel/gcSim/.

2.3.1 Trace contents

Each traces is a sequence of events, in chronological order of when the events happen
during program execution. There are three kinds of events:

• Object allocation events. An allocation event records the id, type, and size (in-
cluding two header words) of the object, as well as the thread and stack frame
allocating it. In addition, allocation events for Chapter 3 include the owner of
the object, whereas allocation events for Chapter 9 include the allocation site,
described below.

• Pointer assignment events. A pointer assignment event records the l-value
(the location to which the pointer is assigned) and the r-value (the id of the
target object to which the pointer points). For pointers on the stack, the l-
value consists of the thread id, stack frame, and offset in the stack frame. For
pointers in globals, the l-value is the id of the global. For pointers in fields of
objects, the l-value is the id of the object, together with the offset of the field.

• Object death events. An object death event records the id of the object that
died. It does not need to record the time at which it dies explicitly, since one
can easily derive that by summing up the sizes of all objects allocated so far
(time is measured in bytes allocatedp.180).

2.3.2 Tracer implementation

The two tracers for Chapter 3 and for Chapter 9 have a few implementation details
in common. Both trace object allocation events with code manually inserted in
the Jikes RVM routines that perform allocations. And both derive object ids from
object addresses, using a non-copying garbage collector to ensure that the addresses
of objects do not change over time. Except for these commonalities, the second
tracer differs from the first one to take care of some limitations.

http://www.cs.colorado.edu/~hirzel/gcSim/
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2.3.2.1 Tracer for Chapter 3

The tracer for Chapter 3 uses Jikes RVM as discussed in Section 2.1.5.1 (version 1.1
under Linux on a PowerPC processor, with the baseline compiler). The traces con-
tain events for the boot image and the first, and only, execution of the benchmark’s
main() method.

• Object allocation events. This tracer records allocation events as described
in Section 2.3.1, but in addition, records the owner of each allocated object.
The application owns objects allocated in application methods, and the VM
owns objects allocated in Jikes RVM methods. However, the owner of objects
allocated from standard libraries can not be derived by just looking at the
method doing the allocation. Instead, for allocations in the standard libraries,
the tracer walks up the stack until it reaches a method that does not belong to
the standard libraries, and then uses that to classify the object as belonging
to the application or to the VM.

• Pointer assignment events. This tracer records pointer assignment events by
using the baseline compiler to instrument all code.

• Object death events. This tracer records object death events by recording
objects reclaimed by the garbage collector. These events are imprecise, since
when the garbage collector finds that an object is dead, it has really died at
some time after the previous and before the current collection. The tracer trig-
gers garbage collection frequently to limit the time interval between collections
and thus the imprecision. In addition, Chapter 3 compares some numbers that
are sensitive to trace granularity to numbers based on perfect deathtime traces
provided by Matthew Hertz [72].

2.3.2.2 Tracer for Chapter 9

The tracer for Chapter 9 uses Jikes RVM as discussed in Section 2.1.5.2 (version 2.2.0
under Linux on an Intel x86 processor, with the adaptive optimization system). For
these experiments, Jikes RVM calls the main() method of the application twice. The
traces contain events for everything reachable before the second call to main(), and
for the second execution of the benchmark’s main() method.

• Object allocation events. This tracer records allocation events as described in
Section 2.3.1, but in addition, records the allocation site of the object. The
allocation site is the method that allocates the object, along with the index of
the allocating Java bytecode instruction.

• Pointer assignment events. This tracer records writes of pointers to fields of
heap objects with a write barrier. It defers recording of writes of pointers
to stack or global variables by waiting until the next object allocation, and
then scanning the roots for changes. It remembers the value of all roots at
the previous allocation, and traces pointer assignment events emulating the
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writes necessary to yield the current state of all roots. This methodology does
not rely on compiler instrumentation; tracing all writes with instrumentations
from the optimizing compiler would be difficult to get correct, and would also
perturb the benchmark execution significantly.

• Object death events. This tracer first writes a trace that contains only the
imprecise death events from garbage collections, but then makes an offline
pass over the trace, and uses the Merlin algorithm to compute the precise
deathtimes [72].

2.3.3 Trace quality

Because Jikes RVM is written in Java, traces for Jikes RVM record not just ap-
plication events, but also runtime system events (Section 2.1.2). As it turns out,
the optimizing compiler allocates much more memory than the baseline compiler
does, leading to significant differences between traces. This limits the generality of
the results: most readers of papers are more interested in the behavior of the Java
application than in the behavior of one particular configuration of one particular
virtual machine.

The traces for Chapter 3 work around this problem by providing ownership in-
formation, which the experiments in Chapter 3 use in a meaningful way to record
two separate sets of numbers: one including VM object, one excluding them. Un-
fortunately, for the experiments in Chapter 9, even with ownership information for
objects it is not clear how to exclude VM objects in a meaningful way. Therefore,
the traces for Chapter 9 go to great length to at least use the most realistic configu-
ration of Jikes RVM. Hence, they use the adaptive optimization system even though
it would have been easier to only use the baseline compiler; and, they perform two
runs and record only events from the second run, to hide VM activity for starting
up an application.

In addition to these generality trade-offs, the tracer for Chapter 9 contains careful
validation, giving a high level of confidence that it traces exactly what actually
happens in the virtual machine. The validation consists of two parts: one part
happens during trace generation in Jikes RVM, and the second part happens during
trace consumption in a garbage collection simulator.

The validation during trace generation works as follows. To minimize pertur-
bation of Java-side behavior, the tracer consists of calls to C functions using the
same mechanism that Jikes RVM uses for system call wrappers. Those C func-
tions maintain a complete model of the Java-side heap in form of C data structures,
based on the events written to the trace. At periodic intervals, the tracer compares
the C-side shadow heap with the Java-side actual heap. If there are discrepancies,
the C-side shadow heap is incorrect, meaning some of the events used to construct
it are incorrect. This design leads to minimal perturbation (the Java-side of the
tracer is minimal), while at the same time yielding comprehensive early warnings
(discrepancies are flagged while tracing is still in progress).

The validation during trace consumption works as follows. The simulator emu-
lates a garbage collection, including a reclamation phase. Whenever it reclaims an
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object, it compares the current time to the death time for that object recorded in
the trace. If it is too early, this indicates that either the simulator or the tracer is
buggy.

Implementing tracers that record exactly what actually happens in a virtual
machine is difficult. There are many corner cases of behavior that needs to be
captured, and one can usually not tell from the trace whether anything is missing.
Researchers should therefore go out of their way to add validation mechanisms.
There is no reason to believe that an unvalidated tracer produces anything close to
the real behavior, which limits the credibility of the results of experiments that use
it.
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Chapter 3

Understanding Connectivity

This chapter presents experimental data on correlations between connectivity and
lifetime. Both connectivity and lifetime are fundamental notions for garbage collec-
tors. Connectivity is the manner in which pointers connect objects to each other
and to roots, either directly or transitivelyp.192. Tracing garbage collectionp.184 de-
termines connectivity in a snapshot of the heap. Lifetime is the duration of the
life of an objectp.181. Garbage collectors reclaim objects after they become dead,
and age-based garbage collection exploits patterns in the lifetime distributions of
objects.

The goal of the experiments in this chapter is to find exploitable patterns of con-
nectivity. This dissertation adopts the methodology to first observe, then act based
on those observations. This chapter observes exploitable connectivity behavior in
programs, and the subsequent chapters present a new family of garbage collection
algorithms designed to act on that behavior. The systematic methodology of ob-
servation before action is well established in memory management research. For
example, generational garbage collection is based on the observation that most ob-
jects die young. Wilson et al. reflect on memory management research paradigms
and advocate the style of research that this dissertation adopts [135].

This chapter performs its experiments as follows. It uses Jikes RVM (Section 2.1)
to run 22 Java benchmarks (Section 2.2) and obtain traces of all object allocations,
pointer writes, and object deaths (Section 2.3). It then analyzes these traces to
find exploitable patterns in the correlation between connectivity and lifetime. More
specifically, it looks at connectivity between stack rootsp.179 and objects, globalsp.179

and objects, and between objects and objects, and observes the lifetime and death-
time of objects given different notions of connectivity.

The results from this chapter motivate the design of connectivity-based garbage
collectors. In a nutshell, this chapter finds that connected objects die together,
and that connectivity predicts lifetime in a number of ways. This dissertation pro-
poses partial garbage collection based on partitioning objects by connectivity. That
makes it possible to collect connected objects together, just like partitioning by age
makes it possible to collect objects of the same generation together. Since connec-
tivity predicts lifetime, the collector can pick partitions of collected objects that are
likely to yield much reclaimed memory for little expended garbage collection effort.
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This opportunism improves throughputp.180. In addition, partial garbage collection
improves responsivenessp.180.

This chapter is based on the ISMM 2002 paper “Understanding the Connectivity
of Heap Objects”, which also formed the centerpiece of the thesis proposal in January
of 2002, thus motivating the rest of this dissertation. Besides providing the starting
point of this dissertation, the observations from this chapter are also useful for other
memory managers: connectivity-based garbage collection as proposed here is not the
only way to exploit connectivity. For example, Guyer and McKinley [63] present a
technique for exploiting the results of this chapter in a generational garbage collector.

The rest of this chapter is structured as follows. Section 3.1 presents a tax-
onomy of connectivity and lifetime. Section 3.2 describes the experimental setup
for observing connectivity and lifetime of Java applications. Section 3.3 describes
the results of those observations. Section 3.4 discusses related work on observing
memory-related behavior of Java applications. Section 3.5 concludes.

3.1 Connectivity and lifetime

This section presents a taxonomy of connectivity and lifetime, providing a way to
reason about these concepts in the following sections.

3.1.1 Taxonomy of connectivity

From the point of view of a memory manager, a running program creates new heap
objects and modifies pointers in existing objects. The snapshot of the heap at any
given time can be viewed as a directed graph, where each object is a node and each
pointer is a directed edge. In these terms, the running program can be viewed as a
mutator that adds and removes edges and creates new nodes. The garbage collector
deletes nodes unreachable from the roots along with their outgoing edges.

The taxonomy of connectivity for this chapter is based on the notion of a global
object graph (GOG), which has a node for each object created in a program execution
and a directed edge for each association between two objects via a pointer in a
program execution. The GOG is the union of the snapshot object graphs at all
points in a program execution. Figure 3.1 illustrates this with an example. The set
of nodes of the GOG {o1, o2, o3, o4}, is the union of the objects at the first snapshot
{o1, o2, o3} and the objects at the second snapshot {o1, o2, o4}. The set of edges of
the GOG, {(o1, o2), (o2, o3), (o2, o4)} is the union of the edges at the first snapshot
{(o1, o2), (o2, o3)} and the edges at the second snapshot {(o2, o4)}.

Snapshot at time t1 Snapshot at time t2 Global object graph∪∪∪∪ =
o1

o2

o3

o4

o1

o2 o4

o1

o2

o3

Figure 3.1: The global object graph is the union of the snapshot object graphs.
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There are two orthogonal dimensions to connectivity: whether it is immediate or
transitive, and what kinds of entities are connected. Along the first dimension, im-
mediate connectivity refers to direct pointers, whereas transitive connectivity refers
to paths of pointers via which objects are reachablep.179. Along the second dimen-
sion, the kinds of entities involved are stack variables, globalsp.179, and heap objects.
In Java, the target of a pointer is always a heap object; hence, the second dimension
uses only the source of pointers to distinguish three kinds of connectivity: from a
stack variable to a heap object, from a global to a heap object, or between two heap
objects. For brevity, they are called stack-, globals-, and heap-connectivity.

All six combinations of the connectivity dimensions (immediate or transitive;
stack-, globals-, or heap-connectivity) are defined in terms of graph reachability in
the global object graph, where immediate stack-connectivity or globals-connectivity
is captured as an annotation on the node representing the target object.

In addition to the basic two-dimension taxonomy, this chapter also investigates
a few derived notions of connectivity. For transitive stack- and globals-connectivity,
it distinguishes whether the target object escapes its stack frame or even its thread.
For immediate heap-connectivity, it distinguishes whether the originating object
experiences any pointer mutation other than initialization. And for transitive heap-
connectivity, it distinguishes the special cases of belonging to the same strongly or
weakly connected component.

An object escapes its stack frame if it becomes reachable from a global or from
a variable higher in the stack than the stack frame of the method that allocated
it. That means that the object is accessible from a caller of the allocating method.
Objects that do not escape their stack frames can sometimes be allocated directly
on the stack, rather than on the heap. An object escapes its thread if it is reachable
from variables on the stacks of different threads. Objects that do not escape their
threads can be manipulated without synchronization.

A strongly connected component (SCCp.176) in the GOG is a maximal set of
objects such that each object in the SCC is reachable from all other objects in
the SCC. For example, in Figure 3.2, objects {o6, o7, o9} form a strongly-connected
component. A weakly connected component (WCCp.176) in the GOG is a maximal
set of objects such that if one ignores the directions of edges, each object in the
WCC is reachable from all other objects in the WCC. For example, in Figure 3.2,
objects {o5, o6, o7, o8, o9} form a weakly connected component.

3.1.2 Taxonomy of lifetime

The lifetime of an object is the duration of its life, measured in bytesp.180 from its
birth time to its death time.p.181 The taxonomy of lifetime presented here is based
on Blackburn et al. [18], who classify objects by their lifetime and deathtime into
shortlived, longlived, and immortal objects. This dissertation extends the defini-
tion to further classify immortal objects into quasi immortal and truly immortal as
follows:

• An object that dies at the termination of the program is truly immortalp.181.
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Figure 3.2: Example global object graph. This picture omits the annotations
on nodes, which, among other things, carry information on immediate stack-
connectivity and globals-connectivity.

• Else, if the time from the object’s deathtime to the termination of the program
is shorter than the object’s lifetime, then the object is quasi immortalp.181.

• Else, if the object’s lifetime is shorter than the threshold Ta×high watermark,
the object is shortlived (this chapter uses Ta = 0.2). The high watermark is
the maximum number of bytes in reachable heap objects during the program
execution.

• Else, the object is longlived.

The motivation for the definition of shortlived as a fraction of high watermark is
that generational garbage collectors often reserve a fixed fraction of the heap for the
nursery. The exact value of Ta turns out to have little impact on which objects are
classified as shortlived or longlived unless it is very small: most shortlived objects
live for a much shorter time than the threshold 0.2×high watermark that this chapter
uses as the cut-off.

Ideally, a tracing garbage collector should not expend any effort on quasi im-
mortal or truly immortal objects, but focus mostly on shortlived and occasionally
on longlived objects.

Some of the benchmarks, such as those in the SPECjvm98 suite, are invoked
by harness code that is also written in Java and executed by the VM. This chapter
slightly modifies the lifetime taxonomy by considering objects that survive until the
termination of the benchmark proper as truly immortal even if they do not survive
until the termination of the harness.
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3.1.3 Combining the taxonomies of connectivity and lifetime

The taxonomy for connectivity is based on the global object graph, plus some addi-
tional information for the more sophisticated connectivity notions such as whether
objects experience mutation.

The taxonomy for lifetime is based on two numbers for each object, birth time
and death time, both measured in bytes. They are represented as attributes of global
object graph nodes.

This chapter computes statistics on the global object graph by counting nodes
to which certain unary predicates apply, or pairs of nodes to which certain binary
predicates apply. For example, combining the unary connectivity predicate “object
that is transitively reachable from global variables” with the unary liveness predicate
“object that is shortlived” answers the question whether objects reachable from
globals are more or less likely to die young than other objects.

3.2 Methodology

Chapter 2 described the infrastructure that yields the traces (2.3) of 29 Java pro-
grams (2.2) running on top of Jikes RVM (2.1). This section gives some more details
on the 22 Java programs used in this chapter, and on how this chapter uses their
traces.

3.2.1 Benchmarks

While Section 2.2 only gives some superficial information on the benchmarks used in
this chapter (what they do, which workload they use, and how large their code-base
is), this section characterizes them in more detail. The average row in each table
gives the arithmetic mean of the results for all benchmarks except benchmark null.

Table 3.1 characterizes how large each benchmark is from the perspective of the
garbage collector. The high watermark is the maximum number of bytes simulta-
neously live at any point during the program execution. It includes the size of the
boot image, which explains why even null has a high watermark of about 14 MB.
The GC interval is the time in bytes between forced garbage collections (the forced
garbage collections provide object death times). The garbage collection intervals
are approximately 1/25 of the high watermark; depending on the benchmark, that
means one collection per 0.53MB to 1.31MB of allocation. The total allocation is
the amount of allocation throughout the entire benchmark run, again including the
boot image.

Most measurements in this chapter are presented by two sets of numbers: one for
all allocated objects (including VM and library objects), and one for just the objects
allocated on behalf of the application. The numbers for all allocated objects are
relevant because VM boot-up and compilation are part of the program’s execution.
The application-only numbers emphasize the differences between benchmarks more,
and are probably more transferable to other virtual machines that, unlike Jikes RVM,
are not written in Java.
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Table 3.1: Benchmark sizes.

Benchmark High water- GC interval Total allocation
mark (bytes) (bytes) (bytes) (objects)

null 14,109,770 553,905 14,396,503 106,009
compress 27,688,408 1,193,412 132,931,724 226,002
db 23,503,105 951,881 97,899,266 3,401,539
jack 16,907,838 678,956 331,031,287 8,194,044
javac 25,296,557 1,080,090 285,631,761 8,228,933
jess 17,056,718 684,702 334,187,450 8,662,674
mpegaudio 16,578,151 789,493 35,850,575 380,054
mtrt 22,414,466 895,044 173,683,581 6,889,168
bh 14,580,046 591,819 42,900,870 1,212,329
bisort 14,628,360 588,607 16,085,265 176,878
em3d 19,534,225 805,814 22,101,972 135,894
health 16,563,273 559,042 38,618,097 1,332,116
mst 14,254,193 558,853 15,446,269 124,317
perimeter 27,458,366 1,118,846 31,528,263 595,507
power 14,914,494 608,275 38,101,825 912,770
treeadd 33,644,773 1,375,696 35,751,748 1,159,451
tsp 16,836,300 669,420 21,583,991 310,956
voronoi 14,832,375 590,537 17,712,879 191,434
ipsixql 17,141,410 689,387 99,908,400 2,357,562
jigsaw 26,487,443 1,000,000 257,452,354 4,289,782
nfc 25,643,076 1,000,000 173,637,549 2,154,719
xalan 22,784,083 905,853 123,412,189 1,637,966
average 20,416,555 825,510 110,736,063 2,503,528
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Table 3.2: Benchmark statistics. All numbers are in percent of allocated objects.
The lifetime numbers in parentheses count only objects where the owner is the
application.

Benchmark Owner (%) Lifetime (%)
Boot RVM App. Shortlived Longlived Quasi imm. Truly imm.

null 76.4 23.6 0.0 2.4 (n/a) 0.0 (n/a) 9.2 (n/a) 88.4 (n/a)
compress 35.8 62.8 1.3 42.9 (37.2) 9.6 (17.1) 0.0 (2.3) 47.4 (43.4)
db 2.4 3.2 94.4 87.6 (90.1) 0.1 (0.1) 0.1 (0.1) 12.2 (9.8)
jack 1.0 12.7 86.3 96.6 (97.6) 1.8 (2.1) 0.1 (0.1) 1.6 (0.2)
javac 1.0 23.3 75.7 81.0 (77.0) 13.5 (17.8) 1.1 (1.5) 4.4 (3.6)
jess 0.9 7.6 91.4 98.0 (99.3) 0.3 (0.3) 0.0 (0.0) 1.7 (0.4)
mpegaudio 21.3 77.7 1.0 68.6 (7.6) 0.0 (0.0) 0.0 (0.0) 31.3 (92.4)
mtrt 1.2 2.9 95.9 93.7 (95.1) 0.0 (0.0) 2.2 (2.3) 4.1 (2.6)
bh 6.7 5.1 88.2 88.4 (95.5) 1.2 (1.3) 0.4 (0.4) 10.1 (2.7)
bisort 45.8 17.2 37.1 11.5 (0.0) 0.0 (0.0) 0.0 (0.0) 88.4 (100.0)
em3d 59.6 28.6 11.8 21.1 (0.0) 0.0 (0.0) 0.0 (0.0) 78.9 (100.0)
health 6.1 4.0 89.9 82.2 (88.1) 0.5 (0.5) 0.5 (0.5) 16.9 (10.8)
mst 65.2 30.7 4.1 13.5 (0.0) 0.0 (0.0) 6.0 (0.0) 80.4 (100.0)
perimeter 13.6 10.3 76.1 8.5 (0.0) 0.0 (0.0) 0.0 (0.0) 91.5 (100.0)
power 8.9 5.3 85.8 85.1 (94.4) 0.0 (0.0) 0.0 (0.0) 14.9 (5.6)
treeadd 7.0 2.6 90.4 1.7 (0.0) 0.0 (0.0) 0.0 (0.0) 98.3 (100.0)
tsp 26.0 10.7 63.2 45.5 (60.7) 0.0 (0.0) 0.0 (0.0) 54.5 (39.3)
voronoi 42.3 26.1 31.6 27.0 (22.2) 0.0 (0.0) 0.1 (0.2) 72.9 (77.7)
ipsixql 3.4 16.6 80.0 84.0 (85.7) 6.7 (8.4) 1.9 (2.4) 7.3 (3.4)
jigsaw 1.9 68.0 30.2 93.4 (92.2) 0.0 (0.0) 0.0 (0.0) 6.5 (7.8)
nfc 3.8 21.7 74.6 93.3 (99.4) 0.0 (0.1) 0.0 (0.0) 6.7 (0.5)
xalan 4.9 92.5 2.5 87.5 (87.2) 0.1 (0.9) 0.1 (1.4) 12.2 (10.5)
average 17.1 25.2 57.7 62.4 (58.5) 1.6 (2.3) 0.6 (0.5) 35.3 (38.6)

Table 3.2 shows the distributions of owners and lifetimes among the objects
allocated by each benchmark.

The “Owner” columns in Table 3.2 categorize heap objects into the percentage
of total objects that are allocated in the Jikes RVM boot image (“boot”), by the
running VM (“RVM”), and by the application (“App.”). Section 2.1.2 includes a dis-
cussion of the boot image. Objects allocated at runtime are classified into Jikes RVM
objects and application objects by their allocation site. In the case where the allo-
cation site is within the standard Java library, the ownership classifier traverses the
dynamic chain until it encounters a caller in the Jikes RVM runtime system or the
application, and uses that as the allocation site. For the larger benchmarks, most of
the objects are allocated by the application itself; on the other end of the spectrum,
the benchmark null intentionally does not allocate any application objects.

The “Lifetime” columns in Table 3.2 categorize heap objects by their lifetime
following the definitions in Section 3.1.2. The numbers in parentheses count only
objects where the owner is the application (this convention holds throughout this
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chapter). The “n/a” for benchmark null indicates that the application does no
allocation.

Most benchmarks have a high percentage of shortlived objects, confirming the
weak generational hypothesis [67]. Few objects are longlived or quasi immortal, but
many benchmarks have a significant fraction of truly immortal objects. The number
of truly immortal objects is particularly high for benchmark null. This is because null
allocates only system objects, and many of these survive until the VM terminates. It
may therefore be worthwhile to treat system objects specially in a memory manager
for a VM implemented in Java. A significant percentage of application-only objects
are also truly immortal. This is contrary to the strong generational hypothesis and
motivates techniques like pretenuring [18, 66]. For those benchmarks where almost
all objects are truly immortal, never attempting to collect garbage may be the best
approach to memory management [53].

3.2.2 Global object graph construction

The three kinds of trace events (object allocation, pointer write, and object death)
drive the construction of a global object graph (GOG).

An object allocation event creates a node in the GOG and annotates it with
birth time, type, size, and allocation context. It also advances the allocation clock
by the size.

There are two kinds of pointer assignment events. A pointer assignment event
where the pointer is stored into a field of a heap object creates an edge between
two objects if the edge does not already exist. A pointer assignment event where
the pointer is stored into a global or a stack variable updates information in the
pointed-to object that determines whether it escapes.

An object death event updates the deathtime and lifetime of the corresponding
object. Since the garbage collector generates the deallocation events, the timings
for these events are not precise: an object reported as dead at garbage collection n
may have become unreachable any time after collection n− 1. Performing relatively
frequent garbage collections reduces this imprecision. In addition, Section 3.3.3.4
compares the results from the traces with imprecise deathtimes to precise deathtime
traces [72] for the set of numbers most sensitive to this issue.

After processing all trace events, the GOG contains the information to capture
immediate connectivity and lifetime. A post-processing phase propagates informa-
tion over the graph to annotate nodes with transitive connectivity information as
well.

3.3 Results

This section presents the results. Section 3.3.1 investigates stack-connectivity, Sec-
tion 3.3.2 investigates globals-connectivity, and Section 3.3.3 investigates heap-con-
nectivity.

While most results in this section are kept general, so they can be used to
motivate a variety of garbage collection techniques, Section 3.3.4 is a preliminary



CHAPTER 3. UNDERSTANDING CONNECTIVITY 51

investigation of questions specific to connectivity-based garbage collection.

3.3.1 Correlation between lifetime and stack-connectivity

This sections considers two kinds of stack-connectivity: objects that are reachable
only from the stack, and objects that escape their allocating activation records or
threads.

3.3.1.1 Objects reachable only from the stack

This section investigates immediate stack-connectivity, it looks at objects that are
not reachable from globals or from other objects. Given sufficient compiler support,
these objects should be relatively cheap to garbage collect. Figures 3.3(a) and (b)
present data for all objects and only for objects allocated on behalf of the application,
respectively. In both figures the length of a bar gives the percentage of objects that
are reachable only from the stack. Each bar has four segments, for shortlived,
longlived, quasi immortal, and truly immortal objects.

The results indicate that the benchmarks have a significant percentage of objects
that are pointed to only from the stack: in 11 of the 22 benchmarks it is higher than
30%. For most benchmark programs, the majority of these objects are shortlived. If
a compiler can identify allocation sites whose objects do not escape into the heap or
globals, these objects can be allocated in a special area where they can be garbage
collected cheaply.

3.3.1.2 Lifetime of escaping objects

Recently, there has been much work on escape analysis [36, 56, 122]. Prior work
has used escape analysis to eliminate synchronization or to allocate objects on the
stack [55, 127]. This section investigates whether object escape rates have any
correlation to object lifetimes. Stack allocation manages the memory of some of the
heap objects based on their stack-connectivity, and can thus be viewed as a special
case of connectivity-based garbage collection.

Table 3.3 gives the percentage of objects that escape the stack frame or thread
that created them (the numbers in parentheses consider only application objects).
The Jikes RVM runtime system creates threads for garbage collection and finalization
and thus even single-threaded benchmarks may have thread-escaping application
objects.

On average, only 26.8% of all objects are non-escaping, the rest escape at least
their stack frame, and 19% even escape their thread.

Figure 3.4 shows the lifetime of objects that escape their thread. In Figure 3.4,
the length of the bars shows the percentage of objects that escape their thread.
Each bar is subdivided into four segments, one for each lifetime bin. Figure 3.4(a)
shows data for all objects, whereas Figure 3.4(b) only shows data for the application
objects.

Figure 3.4 shows that while escaping objects are often truly immortal, that is not
always true. In particular, benchmark nfc has many objects that escape a thread,
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Figure 3.3: Lifetime of objects pointed to only by the stack. For most benchmarks
the longlived and quasi immortal segments of the bars are nearly empty.
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Table 3.3: Escape rates (in percent of allocated objects). The numbers in parenthe-
ses count only objects where the owner is the application.

Benchmark No escape Stack frame Thread
null 10.0 (n/a) 90.0 (n/a) 74.0 (n/a)
compress 10.5 (21.5) 89.5 (78.5) 39.4 (4.5)
db 0.8 (0.1) 99.2 (99.9) 2.6 (0.0)
jack 37.2 (39.2) 62.8 (60.8) 1.2 (0.0)
javac 29.7 (37.3) 70.3 (62.7) 1.4 (0.0)
jess 40.4 (43.3) 59.6 (56.7) 1.2 (0.0)
mpegaudio 9.4 (8.3) 90.6 (91.7) 24.8 (0.3)
mtrt 82.5 (85.6) 17.5 (14.4) 1.4 (0.0)
bh 41.1 (45.2) 58.9 (54.8) 7.0 (0.0)
bisort 6.4 (0.0) 93.6 (100.0) 46.3 (0.0)
em3d 14.8 (50.0) 85.2 (50.0) 60.6 (0.0)
health 13.8 (14.3) 86.2 (85.7) 6.2 (0.0)
mst 9.4 (0.0) 90.6 (100.0) 66.1 (0.0)
perimeter 2.2 (0.0) 97.8 (100.0) 13.9 (0.0)
power 84.7 (97.0) 15.3 (3.0) 9.1 (0.0)
treeadd 1.0 (0.0) 99.0 (100.0) 7.1 (0.0)
tsp 46.2 (66.7) 53.8 (33.3) 26.8 (0.0)
voronoi 7.4 (0.1) 92.6 (99.9) 44.0 (0.0)
ipsixql 4.0 (2.7) 96.0 (97.3) 4.2 (0.0)
jigsaw 26.5 (36.1) 73.5 (63.9) 6.2 (8.9)
nfc 28.2 (26.4) 71.8 (73.6) 21.3 (21.7)
xalan 66.6 (18.8) 33.4 (81.2) 7.4 (7.5)
average 26.8 (28.2) 73.2 (71.8) 19.0 (2.0)
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Figure 3.4: Lifetime of objects escaping their thread. For most benchmarks the
longlived and quasi immortal segments of the bars are nearly empty.
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but are shortlived. Since nfc is one of the more realistic benchmarks, this leads to
the conclusion that a garbage collector cannot ignore thread-escaping objects; indeed
many of them may be shortlived. The intuition for this is that server applications
often use shortlived thread-escaping objects to communicate between threads. Other
experiments showed that the correlation between lifetime and escaping from the
stack frame is weaker than the correlation between lifetime and escaping from the
thread.

When repeating the above experiments for the three multi-threaded benchmarks,
mtrt, jigsaw, and nfc, and ignoring objects that escaped to the garbage collector
thread, the data changed slightly, but the main conclusions remained the same. For
example, most of the objects that escaped a thread in nfc remained shortlived.

3.3.2 Correlation between lifetime and globals-connectivity

Figure 3.5 shows the lifetime of objects transitively reachable from globals. It in-
cludes objects that may also be reachable from the stack or heap. In Figure 3.5, the
length of the bars shows the percentage of objects reachable from globals. Each bar
is subdivided into four segments, one for each lifetime bin. Figure 3.5(a) shows data
for all objects, whereas Figure 3.5(b) only shows data for the application objects.

Because global variables exist as long as their classes exist, one can expect objects
reachable from globals to be immortal. (With an interprocedural liveness analysis
for global variables, a garbage collector may be able to collect objects even if they
are still reachable from globals [80]. This chapter disregards this possibility, be-
cause interprocedural liveness analysis for globals is probably unrealistic for Java
programs.) Figure 3.5 confirms the expectation. Figure 3.5(a) shows that with the
exception of benchmarks jack, nfc, and ipsixql, most objects reachable from globals
are truly immortal. Of these benchmarks, jack has a relatively small percentage of
objects reachable from globals.

The benchmark ipsixql has a large SCC that is reachable from globals and is
heavily mutated. Figure 3.6 demonstrates this pictorially. The horizontal axis gives
time in bytes allocated. The vertical axis (in log scale) gives the size of an SCC
in number of objects. There is one curve for each SCC with at least two objects.
A point (x, y) on a curve, C, means that at time x, SCC C has size y objects.
Figure 3.6 shows that benchmark ipsixql has one very large SCC and several smaller
ones. Although many of the objects in the largest SCC die together at the end of the
program, significant parts of the SCC are continuously replaced with newly allocated
objects. This large SCC is part of a cache that stores faulted objects. (Because
sources for ipsixql are not available, these observations are based on the output of
a decompiler, and thus are somewhat speculative). The atypical behavior of this
large SCC dominates the behavior of ipsixql, and among other things destroys the
correlation between lifetime and reachability from globals. In addition, Section 3.3.4
will show that ipsixql incurs a significant write barrier overhead.

In summary, for all benchmarks (except for jack, nfc, and ipsixql) there is a strong
correlation between reachability from globals and lifetime. A generational garbage
collector could exploit these observations by eagerly promoting objects reachable
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Figure 3.5: Lifetime of objects reachable from globals. For most benchmarks the
longlived and quasi immortal segments of the bars are nearly empty.
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Figure 3.6: SCCs in benchmark ipsixql.

from globals to old generations.

3.3.3 Correlation between lifetime and heap-connectivity

This section considers several kinds of heap-connectivity. It investigates how likely
it is for objects that are connected by a pointer to have the same deathtime (Sec-
tion 3.3.3.1) and whether the popularity of objects is related to their lifetimes (Sec-
tion 3.3.3.2). Next, it investigate how likely it is for transitively connected objects
to have the same deathtime (Section 3.3.3.3), and it conclude by evaluating how sen-
sitive these same-deathtime results are to the methodology of tracing with frequent
garbage collections (Section 3.3.3.4).

3.3.3.1 Linked objects

This section considers immediate heap-connectivity, it explores the deathtime of
directly-linked objects. First, it looks at how often objects are modified. Consider a
program that repeatedly modifies an object o such that a field in o points to one of
many different objects at different times. In this case, one can expect o’s deathtime
to be largely unrelated to the deathtime of objects that o points to. If, on the other
hand, the program modifies few objects after initialization, then one can expect a
significant correlation between the deathtime of connected objects.

This section views the first non-null assignment to an object field as “initial-
ization” and subsequent assignments to the same field as “mutations”. Column
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Table 3.4: Mutation rates in % of allocated objects and write barrier overheads
in % of total execution time. In the mutation rates, the numbers in parentheses
consider only objects where the owner is the application.

Benchmark Mutated Write barrier
null 18.6 (n/a) 15.8
compress 10.5 (8.0) 3.9
db 0.7 (0.0) 1.5
jack 4.0 (4.2) 5.7
javac 18.2 (23.4) 19.4
jess 3.5 (3.3) 8.1
mpegaudio 7.5 (3.8) 3.4
mtrt 1.2 (0.9) 4.3
bh 5.7 (4.5) 1.2
bisort 29.8 (50.0) 6.6
em3d 14.8 (0.0) 2.0
health 16.4 (16.6) 1.0
mst 16.2 (1.3) 2.6
perimeter 3.5 (0.0) 1.2
power 2.2 (0.0) 0.1
treeadd 1.7 (0.0) 6.0
tsp 27.5 (33.3) 10.9
voronoi 33.8 (73.2) 5.2
ipsixql 1.7 (0.4) 19.8
jigsaw 4.1 (6.4) –
nfc 14.6 (17.6) –
xalan 2.0 (2.5) 32.4
average 10.5 (11.9) 7.6

“Mutated” of Table 3.4 gives the percentage of all allocated heap objects that are
mutated during program execution. The numbers in parentheses are the percentage
of objects allocated by the application that are mutated during program execution.
Table 3.4 shows that programs do not mutate the majority of objects, and thus, the
lifetimes of linked objects are likely to be related.

Column “Write barrier” of Table 3.4 gives the overhead of the write barrier.
The measurements use a full copying collector that does not need write barriers
for correctness, and then run each benchmark twice, once with and once without
write barriers. The time difference between the two runs is the write barrier over-
head. These measurements use a Jikes RVM version 2.0.2 FastSemispace image on
a uniprocessor PPC/AIX machine. Benchmarks jigsaw and nfc are omitted because
they are interactive. The write barrier is implemented as a sequential store buffer.
Because Jikes RVM is written in the Java programming language, the overheads



CHAPTER 3. UNDERSTANDING CONNECTIVITY 59

include the execution of the application, VM, and optimizing compiler at its default
optimization level (1).

The write barrier numbers in Table 3.4 measure the case where the barrier ex-
ecutes the same actions for each write. In practice, write barriers for generational
collectors are usually optimized to first perform a fast check whether the write is
to an old object, and only executing the (slower) remainder of the actions if that
test succeeds. With this optimization, write barriers in Jikes RVM incur a lower
overhead: the geometric mean of the write barrier overheads for the SPECjvm98
benchmarks and pseudojbb is only 3.2% [19, Table 2].

Table 3.5 investigates the correlation between direct object connectivity and
object deathtimes. Column “o1 → o2” of Table 3.5 gives the probability that two
adjacent objects in the GOG have the same deathtime. For many programs the
probability is nearly 100%. In contrast, column “Any pair” gives the probability
that any two possibly unlinked objects in the program die at the same time. This
value is computed by considering all pairs, both linked and unlinked. In most cases,
the probability that linked objects die at the same time is much higher than the
probability of any two objects dying at the same time.

Column “o1 → o2, o1 mutated” in Table 3.5 gives the probability that two
objects, o1 and o2, have the same deathtime given that o1 points to o2 and o1 is
mutated. For 14 of the 22 benchmarks (19 of 22 benchmarks when looking at the
application-only numbers), these probabilities are lower than the ones in column
“o1 → o2”.

Tables 3.4 and 3.5 show that for many benchmarks there is both a high prob-
ability that objects are not mutated and that objects linked by a pointer have the
same deathtime. However, for some programs, such as db, even though it has a low
mutation rate (0.7%), it also has a relatively low probability of linked objects dying
at the same time (22.7%). In other words, a low percentage of modified objects is
no guarantee for a high correlation of deathtimes of connected objects. Apparently,
even though db modifies only few objects, the modifications happen in key places
and thus have a big impact on the deathtimes of linked objects.

A garbage collector can exploit these results by clustering linked objects together.
Since on average linked objects have a 80.4% probability of dying at the same time,
the garbage collector will be able to free up many objects at once.

3.3.3.2 Incoming pointers

This section investigates whether there is a correlation between the popularity of an
object and its lifetime. A “popular object” is one that is pointed to by many other
objects [85].

Counting the number of objects pointed to by at least two other heap objects
found that, for most benchmarks, fewer than 40% of the objects had at least two
immediate predecessors. The lifetime distribution of objects pointed to by at least
two other heap objects varied widely: in some cases, most of these objects were
shortlived, while in other cases, most of these objects were truly immortal.

To conclude, there was little correlation between the popularity of an object and
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Table 3.5: Pairs of objects with same deathtime (in percent of pairs of objects with
given connectivity). The numbers in parentheses count only objects where the owner
is the application.

Benchmark Any pair o1 → o2 o1 → o2,
o1 mutated

null 79.5 (n/a) 96.5 (n/a) 97.7 (n/a)
compress 22.8 (19.5) 95.5 (63.9) 96.8 (44.2)
db 2.0 (2.1) 22.7 (19.7) 12.5 (0.6)
jack 0.3 (0.3) 54.1 (45.4) 19.1 (5.2)
javac 0.7 (0.9) 66.1 (65.8) 70.4 (68.7)
jess 0.2 (0.3) 63.6 (58.6) 90.1 (89.0)
mpegaudio 10.0 (83.6) 94.8 (74.8) 94.6 (43.8)
mtrt 0.7 (0.7) 77.3 (71.2) 75.9 (57.6)
bh 2.6 (2.3) 89.3 (87.0) 71.0 (51.1)
bisort 78.9 (100.0) 98.9 (100.0) 99.6 (100.0)
em3d 63.7 (100.0) 99.1 (100.0) 97.7 (100.0)
health 4.4 (3.1) 11.4 (9.5) 4.7 (3.6)
mst 66.2 (100.0) 96.1 (100.0) 96.6 (100.0)
perimeter 84.0 (100.0) 99.3 (100.0) 96.0 (n/a)
power 3.8 (2.8) 96.3 (100.0) 97.8 (n/a)
treeadd 96.6 (100.0) 99.4 (100.0) 97.7 (n/a)
tsp 27.9 (15.7) 98.2 (100.0) 99.4 (100.0)
voronoi 44.7 (38.0) 89.1 (82.7) 85.3 (78.9)
ipsixql 1.3 (1.3) 79.1 (79.3) 78.8 (25.2)
jigsaw 0.8 (1.6) 88.9 (83.6) 92.1 (85.9)
nfc 1.0 (0.8) 75.7 (68.9) 69.5 (64.0)
xalan 2.2 (21.9) 94.3 (93.2) 94.2 (82.5)
average 24.5 (33.1) 80.4 (76.4) 78.1 (61.1)
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its lifetime.

3.3.3.3 SCCs and lifetime

Table 3.5 suggests that immediate heap-connectivity is usually, but not always,
a good indicator of deathtime. This section considers transitive notions of heap-
connectivity: strongly and weakly connected components (SCCs and WCCs, Sec-
tion 3.1).

Column “In nontriv. SCC” in Table 3.6 shows the percentage of objects that
belong to SCCs with at least two objects in the global object graph. On average,
only a minority of objects are members of nontrivial SCCs.

Column “Same SCC” in Table 3.6 gives the probability that two objects in the
same SCC have the same deathtime. Column “Same WCC” in Table 3.6 gives
the probability that two objects in the same WCC have the same deathtime. The
numbers in parentheses consider only objects allocated by the application. Since an
SCC implies stronger connectivity, we expected that the probability would be higher
for an SCC than for a WCC.

Table 3.6 shows that for many programs there is a high probability that objects
in the same SCC die together. For many benchmarks the probability for two objects
in an SCC having the same deathtime is greater than the probability of two linked
objects (Table 3.5) having the same deathtime. A garbage collector could exploit
these observations by designating any object in an SCC as the key object [67], the
object whose death likely coincides with the death of other objects connected to it.
Thus, when that object dies, there is a good chance that the rest of the SCC is also
garbage.

3.3.3.4 Trace granularity

Most of the numbers in this chapter are based on traces with three kinds of events:
object allocation events, pointer assignment events, and deallocation events (see
Section 2.3.1). To obtain the deallocation events, the tracer performed frequent
garbage collections. In the traces, all objects that become unreachable between
collection n and collection n + 1 die at the time when collection n + 1 happens.
Thus, the traces are granulated : deathtimes are not precise, but rounded up to a
multiple of the GC interval (rightmost column in Table 2.2).

Until recently, the only known way to get precise deathtime traces (not granulated
traces) was to perform a garbage collection at every allocation (e.g. [117]), which is
prohibitively expensive. Recently, Hertz et al. proposed the Merlin algorithm [72]
that generates precise deathtime traces much faster than the brute force method.
Using Hertz’s precise deathtime traces to regenerate the results showed that it made
a significant difference in the same deathtime numbers (Tables 3.5 and 3.6) but not
in the classification of objects by lifetime into shortlived, longlived, quasi immortal,
and truly immortal.

Table 3.7 shows how using granulated traces inflated the numbers in Tables 3.5
and 3.6. The numbers in Table 3.7 come from recomputing the numbers in Ta-
bles 3.5 and 3.6 using precise deathtime traces, and then, subtracting the numbers
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Table 3.6: Column “In nontriv. SCC” shows objects in non-trivial SCCs (in percent
of allocated objects). Columns “Same SCC” and “Same WCC” show pairs of objects
with the same deathtime (in percent of pairs of objects in the same SCC or WCC,
respectively). The numbers in parentheses count only objects where the owner is
the application.

Benchmark In nontriv. SCC Same SCC Same WCC
null 13.0 (n/a) 99.8 (n/a) 95.4 (n/a)
compress 9.8 (13.5) 99.4 (100.0) 25.7 (64.6)
db 0.6 (0.0) 99.5 (100.0) 2.2 (2.1)
jack 0.4 (0.0) 99.0 (100.0) 0.5 (0.3)
javac 15.1 (19.0) 34.1 (34.0) 1.3 (2.6)
jess 0.7 (0.0) 94.9 (19.3) 0.2 (0.3)
mpegaudio 8.7 (8.2) 99.1 (100.0) 10.4 (99.1)
mtrt 0.6 (0.2) 99.5 (100.0) 21.8 (23.1)
bh 1.4 (0.0) 99.6 (100.0) 28.5 (5.4)
bisort 8.0 (0.0) 99.8 (n/a) 87.7 (100.0)
em3d 19.7 (74.9) 99.8 (100.0) 71.5 (100.0)
health 14.4 (14.6) 46.7 (46.3) 6.2 (4.7)
mst 13.9 (50.9) 99.8 (100.0) 76.8 (100.0)
perimeter 78.8 (100.0) 100.0 (100.0) 96.6 (100.0)
power 1.7 (0.0) 99.7 (n/a) 64.1 (100.0)
treeadd 1.2 (0.0) 99.8 (n/a) 99.9 (100.0)
tsp 25.7 (33.3) 100.0 (100.0) 87.3 (100.0)
voronoi 37.0 (91.5) 42.6 (39.2) 56.6 (38.0)
ipsixql 46.9 (56.5) 1.3 (1.3) 1.3 (1.3)
jigsaw 5.0 (3.1) 81.6 (63.8) 1.2 (3.2)
nfc 9.6 (10.8) 1.9 (0.8) 1.5 (0.8)
xalan 2.6 (2.0) 99.0 (98.6) 9.5 (26.0)
average 14.4 (22.8) 80.8 (72.4) 35.8 (46.3)
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Table 3.7: Over-estimation of numbers in Tables 3.5 and 3.6 due to granulated
traces. The numbers count only objects where the owner is the application.

Benchmark Any o1 → o2 o1 → o2, Same Same
pair o1 mutated SCC WCC

compress 7.7 7.2 3.6 0.0 1.9
db 1.3 16.0 −1.0 0.0 1.3
jack 0.3 7.9 3.6 0.0 −0.3
javac 0.4 23.2 27.7 0.7 0.5
jess −0.3 43.3 14.0 18.3 −0.3
mpegaudio 6.0 4.5 1.8 0.0 0.6
bh 2.3 1.4 6.5 0.0 5.1
bisort 0.0 0.0 0.0 n/a 0.0
em3d 0.2 2.4 100.0 0.0 −0.1
health 2.2 5.4 3.0 0.5 1.9
mst 2.1 2.2 5.8 0.0 2.0
perimeter 0.0 33.3 n/a 0.0 0.0
power 2.7 0.0 n/a n/a 0.0
treeadd 0.0 0.0 n/a n/a 0.0
tsp 4.6 0.0 0.0 0.0 0.0
voronoi 8.8 12.3 13.4 8.5 8.8
average 2.3 9.9 13.7 2.1 1.3

based on precise deathtime traces from the numbers based on granulated traces.
Table 3.7 reports these differences for application objects only. Since Merlin cannot
yet trace multithreaded programs, Table 3.7 does not contain the results for all the
benchmarks. Merlin’s inability to handle multithreaded programs is also the reason
why this chapter does not use precise deathtime traces throughout.

As expected Table 3.7 shows that granulated traces inflate the same deathtime
numbers, i.e. most entries are greater than zero. (Since the precise and granulated
traces use different runs and different versions of the Jikes RVM, there is some noise
in the data leading to a few negative numbers.)

Table 3.8 juxtaposes the last rows of Tables 3.5, 3.6, and 3.7. It shows that even
though the likelihood of two linked objects having the same deathtime is lower by
9.9% (on average) with precise traces than with granulated traces, the basic results
still hold. In other words, the likelihood of linked objects or objects in the same
SCC having the same deathtime is much higher than the likelihood of two random
objects having the same deathtime.

3.3.4 CBGC-specific questions

While the previous sections presented results that are general, so they can motivate
Cbgc as well as other garbage collection techniques, this section is a preliminary
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Table 3.8: (a) Average number of pairs of application objects with the same death-
time based on granulated traces (last rows in Tables 3.5 and 3.6); (b) Average
over-estimation in these numbers (last row in Table 3.7); (c) Difference.

Any o1 → o2 o1 → o2, Same Same
pair o1 mutated SCC WCC

(a) 33.1 76.4 61.1 72.4 46.3
(b) 2.3 9.9 13.7 2.1 1.3
(c) 30.8 66.5 47.4 70.3 45.0

investigation of questions specific to Cbgc.
Connectivity-based garbage collection avoids write barrier overhead even for par-

tial collections, whereas partial collections in a generational collector use potentially
write barriers. Write barriers are often expensive: in Table 3.4, the average mean of
the write barrier overhead is 7.6%, and in [19, Table 2], the geometric mean of the
write barrier overhead is 3.2%. Prior work confirms these findings [123]. Fitzgerald
and Tarditi [53] report experiments where generational collectors “... did poorly on
benchmarks that had low collection costs and high write barrier costs. For those
benchmarks, the cost of the write barrier was higher than the reduction in collection
cost”.

For connectivity-based garbage collection to perform well, two properties must
hold. First, for most partitions, the number of objects in their ancestor partitions
must be small, otherwise the collector will end up having to collect a good part of
the heap at every partial collection. Second, the objects that are close to the roots
should be the most profitable to collect since they are the easiest to collect. The
following data explores these requirements.

Figure 3.7(a) gives the number of objects in the ancestors of the partition of
each object in a benchmark program, where the partitioning is based on a coarse
type-based analysis [65]. This graph weighs the partition dag with the live objects
in each partition at a particular snapshot in program execution. A point (x, y) in
Figure 3.7(a) means that y objects are in partitions whose ancestor sets have sizes
of at most x% of all live objects. It turns out that most objects require the garbage
collector to look at about 59% of the total objects at that point. These numbers
are high because they are based on a partitioning using declared types, and because
Java bytecodes do not support generic types and thus container data structures have
fields of type Object (and can therefore point to all objects). Stronger static analysis
(or a language with generic types) may yield better results.

Figure 3.7(b) presents the same graph as Figure 3.7(a) except that it uses an
optimal partitioning: for each object, it reports how many other objects reach it
in the snapshot used for Figure 3.7(a). Figure 3.7(b) thus gives an upper bound
on the quality of partitioning with a stronger analysis than type-based analysis.
Figure 3.7(b) shows that at least in the optimal scenario, all objects can be garbage
collected by examining only about 18% of the objects.
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(a) Number y of objects that are reachable from at most x% of the live objects,
where reachability is based on static type information.
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(b) Number y of objects that are reachable from at most x% of the live objects,
where reachability is based on the actual pointers in the heap.

Figure 3.7: Reachability in snapshot of heap.
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Figures 3.7(a) and (b) present data measured on snapshot object graphs. This
is equivalent to sampling the objects that happen to be alive at one particular point
in time; such a sample will overemphasize longlived, quasi immortal, and truly
immortal objects. Thus, it may be the case that for shortlived objects, a garbage
collector may need to look at many fewer objects than 59% (in the case of the Harris
partitioning) or 18% (in the case of the optimal partitioning).

Figure 3.8 shows the average number of objects from which each object can be
reached in the global object graph. Figure 3.8(a) presents data for all objects and
Figure 3.8(b) presents data for application objects only. The length of the bars
is the average number of objects with a path to an object on a logarithmic scale.
There are four bars for each benchmark, one per lifetime bin. The bars for shortlived
objects are usually the shortest (Section 3.3.2 explains the exceptional behavior of
benchmark ipsixql). That is encouraging because it means that to garbage-collect
shortlived objects, the collector does not have to look at too many other objects.
This data also suggests that Figures 3.7(a) and (b) are overly pessimistic, since they
are based on snapshots which will be biased towards longer-lived objects.

3.4 Related work

This section summarizes related work on understanding object behavior, genera-
tional garbage collection, other relevant memory management schemes, and escape
analysis.

3.4.1 Understanding object behavior

Barry Hayes described and tested the weak and strong generational hypotheses [67].
The weak generational hypothesis states that “newly-created objects have a much
lower survival rate than older objects” [67]. The strong generational hypothesis
states that “even if the objects in question are not newly created, the relatively
younger objects have a lower survival rate than the relatively older objects” [67]. He
found that even though the weak generational hypothesis is often true, the strong
generational hypothesis is usually false. He goes on to describe key object oppor-
tunism, where the assumption is that connected objects die together and this can
be exploited by collecting a data structure when its root dies. This chapter provides
supporting evidence for this claim and explores the correlation of different kinds of
connectivity with lifetime.

Stefanović and Moss [119] explore the age distribution of objects. They col-
lect their data by garbage collecting frequently. Unlike the work in this chapter,
Stefanović and Moss do not empirically relate age behavior to connectivity.

Dieckmann and Hölzle [46] measure the distribution of object lifetimes, sizes,
and types and the reference density (fraction of fields that contain pointers) for
the SPECjvm98 benchmarks. They focus on traits inherent in individual objects,
whereas this chapter studies connectivity between various objects and how it corre-
lates with lifetime.
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Figure 3.8: Average number of objects from which each object can be reached in
the global object graph.
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Shuf et al. [112] study the cache and TLB behavior of the SPECjvm98 bench-
marks and pBOB. They use Jikes RVM to trace high-level heap accesses and then
use a simulator to correlate cache and TLB misses with object sizes and layouts.

3.4.2 Generational garbage collection

The results in this chapter point at several possibilities for improving generational
garbage collection. For example, the results suggest that moving an object near
its connected objects is often a good idea since connected objects have a similar
deathtime. Thus, connectivity information may give the benefits of pretenuring and
locality optimizations without requiring profile information. Guyer and McKinley
found a way to apply this idea in practice [63].

3.4.3 Escape analysis

If the lifetime of a data structure ends before the routine that allocated it returns
and the size of the data structure is bounded, it can be allocated on the stack instead
of the heap. Analyses that try to determine these properties of objects are called
escape analyses [36, 56, 106, 122, 132]. Some escape analyses focus on objects that
escape a thread (e.g., [115]). The escape behavior numbers in this chapter help
judge the potential benefit of escape analyses for garbage collection.

3.5 Conclusions

This chapter explores object connectivity and its relationship with object deathtime
and lifetime. It classifies connectivity into six categories: immediate or transitive
stack-, globals-, and heap-connectivity.

The results demonstrate that some kinds of connectivity correlate strongly with
object deathtime or lifetime:

• Objects that are reachable only immediately from the stack are usually short-
lived.

• Objects that are reachable transitively from globals are usually quasi immortal
or truly immortal.

• Objects that are connected via pointers (immediately or transitively) usually
die at the same time.

Since the infrastructure (Jikes RVM) uses the same heap as the application, this
chapter presented results for both all objects (including objects created on behalf of
the Jikes RVM) and application objects (objects created on behalf of the application
only).

The fact that connected objects tend to die together motivates partitioning ob-
jects by connectivity. Objects in a partition are connected, making it likely that
they die at the same time. When the garbage collector can also estimate which par-
tition contains objects that just died, it can perform less work to reclaim memory,
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improving throughput. The observations on roots-connectivity help estimate which
partitions contain the garbage.
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Chapter 4

The CBGC Algorithm Family

This chapter introduces the Cbgc family of garbage collection algorithms. To pro-
vide a better understanding of how Cbgc exploits the connectivity of heap objects,
this chapter primarily focuses on an abstract Cbgc algorithm, leaving explicit de-
tails to later chapters.

4.1 Partitioning

Based upon conservative information about object connectivity, Cbgc divides the
set of heap objects, O, into a set of disjoint partitions, P . A partitioning of the
objects, (partition, P, E), consists of a partition map partition : O → P and a
partition dagp.176 (P,E). The partition map partition associates each object o ∈ O
with its partition partition(o) ∈ P . The edges E of the partition dag represent the
may-point-to relations.

A partitioning (partition, P, E) for Cbgc must be conservative and stable. In
a conservative partitioning, if a pointer may exist between two heap objects, then
either the objects must be in the same partition or there must exist an edge between
their partitions in the partition dag. Equation (4.1) formalizes this definition of
conservatism.

pointsTo(o1, o2)⇒
( partition(o1) = partition(o2) ∨

(partition(o1), partition(o2)) ∈ E

)
(4.1)

In a stable partitioning, two objects that belong to the same partition at one
point in time must belong to the same partition ever afterward. Thus Cbgc cannot
split partitions. More specifically, when (as is common in Java) a class is dynamically
loaded, a connectivity analysis of the class may cause Cbgc to add new partitions
or merge existing partitions, but never to divide existing partitions.

Figure 4.1 gives an example partitioning. Solid boxes are objects, solid arrows
are pointers, dashed ovals are partitions, and dashed arrows are partition edges.
Thus partition(o), the partition map, is implicitly defined by graphic inclusion, e.g.
partition(o1) = partition(o2) = p1. Because there are no cycles of partition edges,
the partitions form a dag. This partitioning is conservative because there exists an
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edge between the corresponding partitions wherever a pointer crosses the partition
boundaries. Because of possible weaknesses in the program analysis, the reverse
does not have to hold. For example there is an edge (p2, p3) even though no object
in p2 points to an object in p3.

o1

o2

o4

o3

o5

o6

o7

o8

p1

p2

p3

Figure 4.1: Example partitioning. Solid boxes are objects, solid arrows are pointers,
dashed ovals are partitions, and dashed arrows are partition edges.

While this section gave an abstract overview of what a partitioning is, Chap-
ter 5 is devoted to giving details of the many concrete ways for coming up with a
partitioning.

4.2 Partial garbage collection

A partial garbage collectionp.188 is a GC of only a portion of the heap, such as when
a generational collector collects only one or more young generationsp.190. Because
they do not examine the entire heap, partial GCs usually take less time than full
GCs, improving responsiveness. A partial GC ideally focuses on the parts of the
heap where it can reclaim a lot of garbage at low cost, thereby improving program
throughput. Cbgc normally performs only partial GCs and performs full GCs only
in pathological cases.

While this section gives an abstract overview of what partial garbage collection
in Cbgc is, Chapter 8 is devoted to giving details of the many concrete ways for
implementing it.

The algorithm in Figure 4.2 shows how Cbgc performs partial collections based
on the tricolor abstractionp.183. It is a generalization of the abstract full garbage
collection algorithm from Figure A.6. Note that the algorithm does not rely on write
barriersp.189 to perform partial collections.
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1: estimate how many objects are dead and live in each partition
2: choose a set C of partitions

Partial garbage collection
3: for each root v
4: if v 6= null and partition(target(v)) ∈ C
5: color(target(v))← gray
6: for each chosen partition p ∈ C in topological order
7: while there are gray objects in p
8: o← pickGray(p)
9: color(o)← black

10: for each field f of o
11: if o.f 6= null and partition(target(o.f)) ∈ C
12: if color(target(o.f)) = white
13: color(target(o.f))← gray
14: for each heap object o with partition(o) = p
15: if color(o) = white, reclaim its memory
16: else color(o)← white

Figure 4.2: Abstract connectivity-based stop-the-world garbage collector.

4.2.1 The algorithm in detail

This section explains the Cbgc algorithm from Figure 4.2, which is central to this
dissertation.

Section 4.3 discusses Lines 1 and 2 of the algorithm from Figure 4.2; for now,
the only thing one needs to know about them to understand the subsequent lines is
that the chosen set is closed under the predecessor relation. In other words, for each
partition q in the chosen set C ⊆ P of partitions, all its predecessors are chosen as
well (q ∈ C ∧ (p, q) ∈ E ⇒ p ∈ C).

At the beginning of Line 3, all objects in C are white. Nothing has been visited
yet. The reachability traversal will only be concerned with objects in C, hence, it
does not care about the color of objects in the rest of the heap.

Lines 3 to 5 scan the program rootsp.179. They are the equivalent of Lines 1 and 2
in Figure A.6. For each pointer in a stack or global variable that points to a white
object o with partition(o) ∈ C, they color that object gray. After that, all objects
that are reachable from a root are reachable from a gray object.

The outer loop of Lines 6 to 16 visits each partition p ∈ C in topological order.
Since Line 2 ensures that C is closed under the predecessor relation, the topological
order guarantees that at the loop iteration for a partition, all of its predecessor
partitions have already been visited.

Lines 7 to 13 of the algorithm from Figure 4.2 finish the reachability traversalp.186

for the current partition p. They are the equivalent of Lines 3 to 9 in Figure A.6.
At the end of Lines 7 to 13, all reachable objects in p are black, and all unreachable
objects in p are white.

Lines 14 to 16 of the algorithm from Figure 4.2 are the reclamation phasep.186
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for the current partition. Since they happen before the next outer loop iteration
processes the next partition, Cbgc performs early reclamationp.186. That means
that in the case of copying Cbgc, the memory reclaimed for one partition is already
available when the reachability traversal of the next partition needs a place to copy
objects into.

4.2.2 Correctness proof

Lemma 1 Line 15 of the algorithm from Figure 4.2 reclaims exactly the unreachable
objects in partition p.

Proof.

i. After Lines 7 to 13, if an object on in partition p is reachable from the roots via
objects in p or any predecessor partitions of p, then it is black, otherwise white.
To see this, suppose root r reaches object on via the pointer chain r → o1 →
. . . → on. Per induction hypothesis, the prefix r → o1 → . . . → oi residing in
predecessor partitions of p is black. Because of the tricolor abstraction, oi+1

is gray, and Line 9 makes oi+1 . . . on black, since they reside in p.

ii. If an object on in partition p = partition(on) is reachable, then it is reach-
able via objects in p or in predecessor partitions of p. Suppose on is reachable
via the pointer chain r → o1 → . . . → on. Let r → p1 → . . . → pn be the
corresponding partitions, where pn = p. Then conservatism (Equation (4.1))
guarantees that p1 . . . pn−1 are predecessors of p or the same as p.

Parts i. and ii. together show that after Lines 7 to 13, exactly the unreachable
objects in partition p are white. Line 15 reclaims them. 2

A corollary of Lemma 1 is that a partial GC reclaims exactly the unreachable
objects in the chosen set of partitions C ⊆ P .

4.3 Opportunism

Chapter 3 showed that connected objects die together and that lifetime and con-
nectivity are related. Cbgc exploits these properties by making some connectivity
information explicit, allowing an opportunistic choice about where to collect. This
is similar to how generational GC exploits the hypothesis that young objects die
quickly by making some age information explicit.

When Cbgc performs a partial GC, it first chooses a set of partitions to collect,
in Lines 1 and 2 of the algorithm from Figure 4.2. Cbgc uses two functions in
making this choice: the estimator estimates how many objects are dead and live
in each partition (Line 1), and the chooser chooses a set of partitions where, based
on the estimates, it expects to collect a sufficient amount of garbage at low cost
(Line 2).

The task of the estimator is to annotate each partition p ∈ P with two integers
dead(p) and live(p) as shown in Figure 4.3.
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p1

p2

p3

p4

p5

dead(p) : live(p) 1:12

6:3

10:3

2:2

4:3

Figure 4.3: Example partition dag annotated by the estimator.

After this annotation, the chooser opportunistically chooses a set C of partitions
that is closed under the predecessor relation. In Figure 4.3, it might choose C =
{p2, p5}, because they have the best ratio of total dead to live objects

∑
dead/

∑
live =

(4+10)/(3+3) = 7/3. The ratio 10/3 for the individual partition p5 would be better,
but the set {p5} is not closed and thus cannot be independently collected.

While this section gave an abstract overview of what the chooser and the esti-
mator have to do, Chapter 7 describes how concrete choosers work, and Chapter 6
describes how concrete estimators work.

4.4 Related work

Jones and Lins [86] and Wilson [134] provide good introductions to garbage collection
and also describe many techniques and algorithms that inspired Cbgc.

4.4.1 Eliminating write barriers

Cbgc does partial GC without any write barriers. Shuf et al. describe a simple
type-based partitioning that allows eliminating some write barriers [110]. Zee and
Rinard have presented an analysis for eliminating some of the write barriers for
generational GC [137]. We are not aware of any other work on eliminating write
barriers for partial GC.

4.4.2 Partitioning

Cbgc partitions heap objects by connectivity to improve locality (allocate connected
objects together, since the mutator is likely to access them together), to enable
opportunism (do GC where it gets high payoff with little effort), and to improve
responsiveness (reduce pause times by avoiding full GC). Over the years, other
partitioning techniques have been proposed to achieve these goals.
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4.4.2.1 Age-based partitioning

Age-based garbage collectors (see Section A.10) partition objects by age. They
assume that the survivor rate is related to object age, and exploit this by making
opportunistic choices about where to do partial GC.

The weak generational hypothesis states that most objects die young, and thus
generational collectors collect young objects most frequently [130]. While Appel
flexibly adapts the boundary between young and old objects to achieve optimal
memory usage [7], Barrett and Zorn adapt the boundary to achieve a variety of
objectives [17].

Some researchers have found that the weak generational hypothesis does not
allow the best opportunistic choices about where to collect. Pretenuring allocates
objects that are expected to be long-lived directly into the old generation to avoid
copying long-lived objects out of the nursery [34]. Older-first collection assumes that
the very youngest objects are unlikely to be dead since they have not yet had time
to die [117]. The Beltway collector generalizes existing copying age-based collectors
by using a configurable partitioning [21].

Age-based collectors are well-studied and often successful, but there is reason to
believe one should not rely solely on age, as it is not always a reliable predictor for
when objects die. While this dissertation proposes using heap object connectivity
as the main principle for guiding garbage collection, it may also be beneficial to use
Cbgc just for the old generation of a generational collector.

4.4.2.2 Stack-based partitioning

Stack-based techniques partition objects by the stack frames that allocated them.
They assume that the lifetime of objects is related to the time at which the stack
frame gets popped, and exploit this by opportunistically deallocating objects to-
gether with stack frames if possible.

Some stack-based techniques rely on static information. Stack allocation is based
on escape analysis and allocates the objects directly on the stack [100]. In region
allocation (see Figure 1.1), regions are allocated and deallocated at statically prede-
fined program points following a stack discipline, and individual objects are allocated
into their region, but deallocated only when the entire region is deallocated [55, 129].

Other stack-based techniques rely on dynamic checks. Contaminated GC tracks
the lowest stack frame from which an object is reachable, and only deallocates the
object when that stack frame gets popped [28]. Qian and Hendren associate a region
with each stack frame and track whether objects escape from it; if so, the region
is merged into the global region and handled by conventional GC, otherwise it is
reclaimed en-masse when the stack frame is popped [102].

Stack-based techniques may work well for functional languages, but they often
require hand-tuning by the programmer. Section 1.2 argues that the job of automatic
memory management should be to relieve the programmer from having to pay much
attention to memory. Also, large object-oriented programs are unlikely to obey a
strict stack discipline.
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4.4.2.3 Other partitioning techniques

Age-based and stack-based partitioning are the most popular techniques for improv-
ing locality and allowing partial, opportunistic GC. But this dissertation is not the
only example of seeking other partitionings to achieve this goal.

Some techniques use static analyses. Dolby and Chien analyze ownership rela-
tions between objects. If they find a relation between two objects such that the
owned object has a fixed size and dies before the owner, they inline it into the
owner [49]. Steensgaard describes thread-specific heaps for objects that are not
shared among multiple threads [115]. Other techniques rely on profile information.
Seidl and Zorn partition heap objects by the number of dynamic references to them
and by their expected lifetime [108], and Shuf et al. partition heap objects by whether
their type has many instances or not [110, 111].

As early as 1991, Barry Hayes envisioned key object opportunism, which observes
when a key object dies and opportunistically reclaims the objects connected to
it [67]. Key object opportunism relies on the hypothesis that connected objects die
together, and Chapter 3 provides evidence that supports this. To implement key
object opportunism, a GC needs to be aware of connectivity, hence Cbgc is a step
closer to making Hayes’s vision a reality.

4.5 Discussion

Cbgc has some inherent advantages over other collectors that perform partial GC.
In Cbgc’s partial GC, the uncollected remaining partitions, R, do not affect the
reachability of objects in the portion of the heap chosen for GC, C. Therefore, Cbgc
need not track pointers from R to C, eliminating the need for a write barrier. Cbgc
also does not suffer from nepotismp.189 (nepotism is when a dead object in R falsely
keeps an object in C live). Furthermore, Cbgc allows early reclamationp.186 in that
some objects in C can be reclaimed even before all of C is collected (Harris used a
similar approach for early reclamation during full GC [65]). Early reclamation means
that when collecting partition p, the memory reclaimed earlier during the collection
of p’s predecessors can already be reused. Finally, except for the degenerate case
where one of the partitions is reachable from all other partitions, Cbgc can collect
all heap objects without ever performing a full GC. This substantially improves upon
most other garbage collectors that require occasional full GCs for completenessp.189

(the MOS collector is an exception [85]).
In addition to the above, Cbgc may make better opportunistic choices and

deliver better locality than existing collectors.
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Chapter 5

Partitioning

Cbgc relies on a partitioning of the set of heap objects, O, based on a conservative
approximation of their connectivity. A partitioning (partition, P, EP ) consists of a
partition map partition : O → P and a partition dag (P,EP ). The partition map
associates each object o ∈ O with its partition partition(o) ∈ P . The edges of the
partition dag represent may-point-to relations.

There are many ways to come up with a partitioning (partition, P, EP ) for Cbgc.
The simplest possible partitioning is to have only one partition, in which case Cbgc
degenerates to full GCp.189. This chapter explores a variety of partitionings that
allow Cbgc to do true partial GCp.188.

This chapter considers only partitionings that are based on strongly connected
components of some form of may-point-to graph. Using finer-grained partitions
than SCCs would require some changes to the framework, e.g. introducing write
barriersp.189. Using coarser-grained partitions would not require any changes to the
framework, but would reduce the flexibility for partial garbage collections.

Section 5.1 defines a way for comparing partitionings. Section 5.2 presents in-
variants that a partitioning for Cbgc must satisfy. Section 5.3 explores how several
compiler analyses can yield partitionings that satisfy those invariants. Section 5.4
introduces two oracular partitionings to evaluate realistic partitionings against.

5.1 Granularity

This section defines the concepts of granularity for partitionings: given two partition-
ings, one may be more fine-grained, and the other more coarse-grained. Intuitively,
a partitioning that is more fine-grained has smaller partitions and fewer edges. Ob-
jects that belong to the same partition in a more coarse-grained partitioning may
belong to different partitions in a more fine-grained partitioning. Edges in the more
coarse-grained partitioning may be missing from the more fine-grained partitioning.

In general, a more fine-grained partitioning is harder to find, but leads to better
performance of the connectivity-based garbage collector. It is harder to find because
it requires a more precise compiler analysis, which is both more difficult to develop,
and more expensive to run. It improves the performance of a connectivity-based
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garbage collector out of several reasons. In a more fine-grained partitioning, the
lifetime distributions within individual partitions are more skewed; if the estimator
can predict the skew, that leads to better throughput. Also, with smaller partitions,
a partial collection takes less time, and that leads to better responsiveness. Finally,
having fewer edges between partitions means that it is easier to collect partitions
independently from each other, improving both throughput and responsiveness.

Formally, a partitioning (partitionfiner, Pfiner, Efiner) is more fine-grained than
a partitioning (partitioncoarser, Pcoarser, Ecoarser) if there is a function coarsening :
Pfiner → Pcoarser such that the following holds.

• The function coarsening is defined for all partitions in the more fine-grained
partitioning.

domain(coarsening) = Pfiner (5.1)

• The more coarse-grained partitioning has at least the edges corresponding to
edges in the more fine-grained partitioning, perhaps more.

(p, q) ∈ Efiner ⇒
(

coarsening(p) = coarsening(q) ∨
(coarsening(p), coarsening(q)) ∈ Ecoarser

)
(5.2)

• The partition map of the more coarse-grained partitioning is the composition
of the function coarsening with the partition map of the more fine-grained
partitioning.

partitioncoarser = coarsening ◦ partitionfiner (5.3)

Intuitively, Equation 5.3 means that the more fine-grained partitioning must
have at least as many partitions as the more coarse-grained partitioning. It has two
simple corollaries:

• The set of objects in a partition pc ∈ Pcoarser of the more coarse-grained par-
titioning is the union of the sets of objects of all partitions pf ∈ Pfiner of the
more fine-grained partitioning that map to pc.

{o | pc = partitioncoarser(o)} =
⋃

pc=coarsening(pf )

{o | pf = partitionfiner(o)}

(5.4)

• If two objects belong to the same partition pf ∈ Pfiner of the more fine-grained
partitioning, then they also belong to the same partition pc ∈ Pcoarser of the
more coarse-grained partitioning.

partitionfiner(o1) = partitionfiner(o2)⇒ partitioncoarser(o1) = partitioncoarser(o2)
(5.5)

The concept of partitioning granularity yields a partial order on partitions, but
not a total order. Given two partitions, it may be that one of them is more fine-
grained than the other; but it may also be that neither it more fine-grained, because
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their granularity is incomparable. But even though it yields only a partial order,
granularity is useful for defining how a partitioning may evolve over time in the
presence of dynamic class loading (Section 5.2.3), and to compare partitionings
resulting from different compiler analyses to oracular partitionings (Section 5.4).

5.2 Invariants

Cbgc relies on a compiler analysis to come up with a partitioning. This section
describes what invariants such a partitioning must satisfy. This section honors the
important issues of dynamic class loading, the native code interface, and reflection.
The intent is to have a formulation of the invariants that is precise enough to val-
idate proposed analyses against them. This section also motivates each individual
invariant; it it conceivable that an analysis does not quite fulfill one of the invariants,
and in that case it is important to make realistic tradeoffs for weakening it.

A partitioning (partition, P, EP ) for Cbgc must satisfy three invariants: acyclic-
ity, conservatism, and stability. Sections 5.2.1, 5.2.2, and 5.2.3 formalize and moti-
vate these invariants.

5.2.1 Acyclicity

The directed graph of partitions, (P,EP ), must be a acyclic, hence the name parti-
tion dagp.176.

¬
(

(p→+ q) ∧ (q →+ p)
)

(5.6)

Motivation

When Cbgc collects a partition p ∈ P , it collects all of its predecessors along with
it. If there were cycles of partitions, they would all be predecessors of each other,
and thus be collected together. That means that one can collapse the cycle to just
one partition without reducing the number of choices for which partitions to collect.
In addition, acyclicity establishes a well-defined topological order, which the Cbgc
algorithm (Figure 4.2) uses in Line 6; the topological order guarantees the correctness
of the early reclamation in Line 15. Finally, collapsing cycles reduces the number of
partitions, which in turn speeds up algorithms that operate on the partition dag, and
may also reduce fragmentation in the memory representing partitions. Therefore,
this dissertation demands acyclicity for Cbgc partitionings.

5.2.2 Conservatism

If there may be a pointer between two heap objects, either they must be in the same
partition or there must exist an edge between their partitions in the partition dag.

pointsTo(o1, o2)⇒
( partition(o1) = partition(o2) ∨

(partition(o1), partition(o2)) ∈ EP

)
(5.7)
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Motivation

To do a partial GC, Cbgc chooses a set C ⊆ P of partitions to collect. It chooses C
such that it is closed under the predecessor relation, i.e. for each chosen partition,
all its predecessors are chosen as well (q ∈ C ∧ (p, q) ∈ E ⇒ p ∈ C). Let R = P \ C
be the remaining partitions that have not been chosen. The correctness of Cbgc’s
partial GC relies on the fact that no objects in R have pointers to any objects in C
(see the proof of Lemma 1). This is guaranteed by conservatism, so this dissertation
demands conservatism for Cbgc partitionings.

5.2.3 Stability

Stability constrains how partitionings may change over time. A partitioning at an
earlier point in time must be more fine-grained than the partitioning at a later point
in time, where granularity is defined as in Section 5.1. In the context of the stability
invariant, the three granularity equations mean the following:

• Equation (5.1): Partitions are never removed. If a partition exists at one point
in time, it either stays or is merged with other partitions.

• Equation (5.2): Edges are never removed. If there is an edge between two
partitions at one point in time, there is an edge between these partitions as
long as they are not merged.

• Equation (5.3) and its corollaries (5.4,5.5): Partitions are never split. If two
objects belong to the same partition at one point in time, they belong to the
same partition forever after.

Stability is trivially satisfied if the partition map and the partition dag never
change. Stability also admits adding partitions, adding edges, and merging parti-
tions, just not removing partitions, removing edges, or splitting partitions.

Motivation

Java has a few features that make it hard to analyze, such as dynamic class loading,
the native code interface, and reflection. The goal of this dissertation is to accept
these challenges and design Cbgc so that it deals with them correctly. Therefore,
instead of just restricting partitionings to never change, this dissertation allows
adding partitions, adding edges, and merging partitions.

The goal is to allow flexible and efficient algorithms for Cbgc even in the face
of Java’s challenging features. Removing partitions, removing edges, and splitting
partitions may be expensive at runtime, so these actions are forbidden. Fortunately,
Cbgc can deal with Java’s challenging features despite of these restrictions.

• Why is adding partitions allowed?

Assume the JIT compiler compiles a new allocation site or a new class, and
that allocation site or class allocates new objects. In general, these new objects
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have different connectivity properties than existing objects. If that is the case,
the system should allocate them into a new partition to increase the number
of choices for which partitions to collect at future partial GCs.

It is easy to create the bookkeeping data structures for a new partition, so
that new objects can be allocated into that partition and the partition can be
a candidate when choosing partitions for partial GC.

• Why is adding edges allowed?

Assume the JIT compiler compiles a new pointer assignment, or native code
or reflection performs a pointer assignment. The assignment may result in a
pointer o1 → o2 that would violate conservatism. If that is the case, the sys-
tem should introduce a new edge (partition(o1), partition(o2)) to repair con-
servatism.

It is easy to create the representation for a new edge, so that doing partial GC
on a set of partitions that is closed under the predecessor relation will be safe.

• Why is merging partitions allowed?

Assume the JIT compiler compiles a new pointer assignment, or native code
or reflection performs a pointer assignment. If the assignment would result in
a pointer o2 → o1 in the opposite direction of an existing path of edges from
partition(o1) to partition(o2), introducing an edge (partition(o2), partition(o1))
would violate acyclicity. If that is the case, the system should merge all in-
volved partitions to repair acyclicity.

Merging two partitions involves changing the partition map for the objects in
at least one of them. Changing the partition map for objects that have not
yet been allocated is easy: the allocation routine evaluates the map with some
data structure, so the system just changes the entry into that data structure.

Changing the partition map for all the objects that have already been allocated
into a partition p may appear difficult at first glance. However, the system
can use a two-level data structure, where the object is first mapped to a group
of objects belonging to the same partition, and that group is in turn mapped
to the partition. So the system again just changes the entry into the second
level of the data structure.

For example, objects may be segregated by partition into blocks. Each block
represents a group of objects, and a side array maps each block to a partition.
When the system merges two partitions, it updates the entries in the side array
to point to the new representative.

• Why is removing partitions forbidden?

Removing a partition does not only require proving that no new objects will be
allocated into that partition, but also that the partition contains no existing
live objects. Showing that the partition contains no live objects may require
a garbage collection, which is expensive.
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• Why is removing edges forbidden?

Removing an edge does not only require proving that no new pointers will be
installed between the partitions in question, but also that there are no existing
pointers between them. Showing that there are no existing pointers between
them may require a garbage collection, which is expensive.

• Why is splitting partitions forbidden?

Splitting a partition does not only require proving that no new pointers will
be installed that make the contained objects cyclic, but also that they are not
connected in a cycle by existing pointers. Showing that they do not form a
cycle may require a garbage collection, which is expensive. In addition, the
collector would have to update the partition map for the objects in the split
partitions in a way that is more difficult than for merging partitions.

5.3 Using compiler analysis

This section describes how to use a compiler analysis of the code of a program to
come up with a partitioning of the objects allocated by the program that satisfies
the invariants from Section 5.2. The literature proposes many analyses whose results
may be postprocessed to yield Cbgc partitionings; most of these analyses have been
invented for different purposes. This section reviews some of them, and demonstrates
how to post-process their results.

Let O be the set of objects. This section proposes composing the partition map
partition : O → P of a partitioning (partition, P, EP ) from two mapping functions
m1 ◦m2, where m1 : O → N and m2 : N → P . The set N of nodes is chosen in such
a way that evaluating m1 at allocation time is trivial, and may even be hardcoded
into the compiled allocation sequence.

This section proposes using a compiler analysis to find a directed graph (N,EN ),
where each node n ∈ N represents a set of objects, and an edge (n1, n2) represents
may-point-to relations. Then, the partition dag (P,EP ) is just the dag of strongly
connected components of (N,EN ), found by a simple depth-first search on that
graph. The second part m2 : N → P of the partition map is the mapping from a
node to its SCC, which is a by-product of the depth-first search. A connectivity-
based garbage collector stores the map m2 in an efficient data structure, and consults
it upon object allocation to determine which partition the new object belongs to.

5.3.1 Compiler analysis classification

Compiler analyses for Java fall into two categories: offline or online. Whereas on-
line analyses are compiler analyses that can deal with dynamic class loading, re-
flection, and native code, offline analyses ignore those features, which means they
do not handle the full Java language. Online analyses happen partly during JIT
compilationp.176, finding new results as new code is compiled, and may thus lead
to changes in the partitioning. While the invariants from Section 5.2 are general
enough to admit online analyses, most compiler analyses from the literature work
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Table 5.1: Classification of compiler analyses. Column “Set N” indicates whether
the nodes of the may-point-to graph (N,EN ) of postprocessed results are types
or allocation sites. Column “Online” indicates a paper that demonstrated that the
analysis can deal with dynamic class loading. Column “Section” refers to the section
that describes how to postprocess the analysis results for Cbgc.

Analysis Set N Online Section
[65] Harris’s analysis types [65] 5.3.2
[126] XTA types [103] 5.3.3
[48] Diwan et al.’s analyses types – 5.3.4
[6] Andersen’s analysis allocation sites [79] 5.3.5
[114] Steensgaard’s analysis allocation sites – 5.3.6
[57] Connection analysis allocation sites – 5.3.7
[89] Data structure analysis allocation sites – 5.3.8

only offline. This section does not restrict itself to online analyses. Chapter 10 is
dedicated to describing how to turn one particular offline analysis, Andersen’s anal-
ysis, into an online analysis; many of the solutions from Chapter 10 are transferable
to other analyses.

There are many compiler analyses in the literature that can come up with re-
sults that can be post-processed into a may-point-to graph (N,EN ). This chapter
considers two categories: analyses where the set N is the set of types, and analyses
where the set N is the set of allocation sites. The allocation site is the place in the
source code that allocates the object; in the presence of inlining, an analysis can
actually derive a more fine-grained set N of inlined allocation contexts. Since all
objects allocated at an allocation site have the same type, but a type may be used
by multiple allocation sites, the set of types can be viewed as a coarsening of the set
of allocation sites.

Table 5.1 classifies various analyses that can yield partitionings for Cbgc by
whether they have been demonstrated to work online or not, and by whether they
yield a may-points-to graph (N,EN ) where nodes are types or allocation sites.

Cbgc can use a wide spread of analyses; Table 5.1 shows only a few examples.
For an analysis to be useful for Cbgc it has to find complete information of what
all fields of all objects in the program may point to. This means the analysis has
to analyze the whole program. Since the clients of escape analyses often require
information for some objects only, most escape analyses are insufficient for Cbgc.

The following sections describe each of the analyses from Table 5.1, and discuss
how to post-process their results for Cbgc. Later parts of the dissertation will refer
back to Harris’s analysis (Section 5.3.2) and Andersen’s analysis (Section 5.3.5);
readers who are less interested in compiler analyses may skip the other sections, and
continue reading in Section 5.4.
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5.3.2 Harris’s analysis

Harris’s analysis is based on inspecting the declared types of fields and the type
hierarchy [65].

Harris’s analysis constructs a directed graph (N,EN ) where nodes N are types,
and edges EN are may-point-to relationships. A type t1 ∈ N may point to a type
t2 ∈ N if t1 or one of t1’s supertypes has a field that may store objects of type
t2 or one of t2’s supertypes. Harris used this analysis for early reclamation in an
incremental treadmill collector. This analysis does not need to inspect program
statements, just type declarations. Thus, it trivially works with reflection and JNI.

Format of results

The results are a directed graph (N,EN ), where the nodes N are types, and the
edges EN are may-point-to relationships.

Postprocessing

To obtain a partitioning, collapse SCCs of the directed graph (N,EN ).

5.3.3 XTA

XTA, or extensible type analysis, is a subset constraint based analysis for type
resolution [126].

Format of results

XTA finds a points-to set of types for each method and each field. Local variables of
a method M can point to objects of any type in the set pointsTo(M) = SM . Field
x of all objects that declare that field can point to objects of any type in the set
pointsTo(x) = Sx.

Postprocessing

One can turn the results of XTA into a type may-point-to graph (N,EN ) by looking
at the points-to sets of fields. For each field x, for each subtype t1 ∈ N of the type
that declares field x, for each element t2 ∈ Sx, add an edge (t1, t2) to EN .

To obtain a partitioning, collapse SCCs of the directed graph (N,EN ).

5.3.4 Diwan et al.’s analyses

Diwan, McKinley, and Moss propose a number of different type-based analyses for
object-oriented languages [48].
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Format of results

Let N be the set of types, and A be the set of access paths. An access path a ∈ A is
a pointer expression at a program point. The paper describes various analyses that,
among other things, find the following mappings:

• Subtypes : N → 2N maps each type n ∈ N to the set Subtypes(n) ⊆ N of its
subtypes.

• Type : A→ N maps each access path a ∈ A to its declared type Type(a) ∈ N .

• TypeRefsTable : N → 2N maps each type n ∈ N to the set TypeRefsTable(n) ⊆
N of types that may be referenced by an access path a of declared type
Type(a) = n (TM-TBAA).

• ResolvedTypes : A → 2N maps each access path a ∈ A to a set of types
ResolvedTypes(a) ⊆ N it may point to. The paper describes different analyses
that find this kind of mapping for virtual method resolution (TPA, ITPA,
TPA-TBAA, and ITPA-TBAA).

Postprocessing

There are different ways to use the above mappings to find the edges of may-point-to
graphs (N,EN ) where the nodes N are types.

1. Initialize EN ← ∅. For each field assignment a1.f ← a2 or array slot
assignment a1[i]← a2, for each n1 ∈ Subtypes(Type(a1)) and each
n2 ∈ Subtypes(Type(a2)), add edge (n1, n2) to EN .

2. Initialize EN ← ∅. Let FieldTypes : N → 2N map a type n ∈ N to the set
FieldTypes(n) ⊆ N of declared types of its fields (for a class type) or to its
components (for an array type). Then, for each type n1 ∈ N , for each type
n2 ∈ TypeRefsTable(FieldTypes(n1)), add edge (n1, n2) to EN .

3. Initialize EN ← ∅. For each field assignment a1.f ← a2 or array slot
assignment a1[i]← a2, for each n1 ∈ ResolvedTypes(a1) and each
n2 ∈ ResolvedTypes(a2), add edge (n1, n2) to EN .

To obtain a partitioning, collapse SCCs of the directed graph (N,EN ).

5.3.5 Andersen’s analysis

Andersen’s analysis is a flow-insensitive, context-insensitive, subset constraint based
pointer analysis that works on the granularity of allocation sites [6].
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Format of results

Some papers on pointer analysis for Java [79, 91, 92, 105, 133] describe how to
perform Andersen’s analysis on Java programs. The following description of the
analysis results follows [79], which bases its analysis results terminology on [91].

Andersen’s analysis computes points-to sets containing allocation sites. Points-
to sets are attached to analysis entities called v-nodes and h.f -nodes. A v-node
represents a variable, and an h.f -node represents a field. Let h be an allocation
site, and let f be a field. Then pointsTo(h.f) is the set of allocation sites of objects
pointed to by the field f of objects allocated at allocation site h. For example, if h
allocates an object o1, and if pointsTo(h.f) contains an allocation site that allocates
an object o2, then o1.f may point to o2.

Postprocessing

Each h-node corresponds to a node in the set N of nodes. For each h1 ∈ N , for
each field f , for each element h2 ∈ pointsTo(h1.f), add edge (h1, h2) to the set of
edges EN .

To obtain a partitioning, collapse SCCs of the directed graph (N,EN ).

5.3.6 Steensgaard’s analysis

Steensgaard’s analysis is a flow-insensitive, context-insensitive, unification based
pointer analysis that works on the granularity of allocation sites [114].

Format of results

Some papers on pointer analysis for Java [91, 92] describe how to use Steensgaard’s
analysis for Java, and obtain results in the same format as for Andersen’s analysis
(Section 5.3.5).

Postprocessing

See Andersen’s analysis (Section 5.3.5).

5.3.7 Connection analysis

Connection analysis is a flow-sensitive and context-sensitive analysis for finding
whether pointer targets may be in the same WCCp.176 of the object graph [57].
It works on the granularity of allocation sites.

Format of results

For each function f , let Vf be the set of variables that f operates on. For each
program point in f , connection analysis computes a Boolean matrix C : Vf × Vf →
{0, 1}. For a pair of variables v1, v2 ∈ Vf , the result C[v1, v2] = 1 indicates that
the objects that v1 and v2 point to may be weakly connected. In other words,
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C[v1, v2] = 1 iff target(v1) and target(v2) may be reachable from each other (ignoring
the direction of heap pointers).

Postprocessing

Call a variable v an avar if it appears as the left-hand side of an allocation v =
new.... Call a variable v a pvar if it is involved in parameter or return value passing,
i.e. it is used as a formal or actual parameter, receives a return value, or appears in
a return statement. Without loss of generality, assume that all allocations assign
to simple avars, and all parameter or return value passing happens through simple
pvars.

Initialize a disjoint-set data structure with one singleton set for each avar or
pvar. For all matrices C, for all pairs of variables v1, v2, if C[v1, v2] = 1 then merge
the sets that v1 and v2 belong to.

Use the resulting disjoint-set data structure to get an undirected may-point-to
graph (N,EN ) where the nodes N are allocation sites. To do that, for each avar
v1, for each avar v2 in the same set, introduce an edge between the corresponding
allocation sites (n1, n2). Note that since the graph is undirected, SCCs are the same
as WCCs, and that the disjoint-set data structure already yields WCCs. Use those
SCCs as partitions.

5.3.8 Data structure analysis

Data structure analysis is a flow-insensitive by context-insensitive analysis that dis-
covers parts of the shape of data structures, and is used for segregated explicit
memory management [89].

Format of results

The analysis is described based on SSA form. The following description is simplified
for Java.

The analysis finds one data structure graph per function. There are scalar nodes
(for stack and global pointers) and heap nodes (for heap-allocated objects). There
are two kinds of heap nodes: allocation nodes (for objects allocated in this procedure
or its callees) and shadow nodes (for objects allocated elsewhere). Each directed edge
is a triple (srcNode,field, tgtNode). For uniformity, scalar nodes have one “field” for
their contents, and array nodes have one “field” for their elements (i.e. array elements
are not tracked separately).

Postprocessing

The goal is to construct a directed may-point-to graph (N,EN ) where the nodes N
are allocation sites.

First obtain a mapping from shadow nodes to sets of allocation nodes by looking
at all possible unifications at call-sites. Assuming a mapping from allocation heap
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nodes to allocation sites, this yields a mapping allocSites : H → 2N from heap nodes
h ∈ H to sets allocSites(h) ⊆ N of allocation sites.

Initialize EN ← ∅. For each data structure graph edge (srcNode,field, tgtNode)
connecting heap nodes, each n1 ∈ allocSites(srcNode) and n2 ∈ allocSites(tgtNode),
add edge (n1, n2) to EN .

To obtain a partitioning, collapse SCCs of the directed graph (N,EN ).

5.4 Oracular partitionings

Section 5.3 demonstrates that Cbgc can use a wide variety of compiler analyses
to obtain a partitioning. Therefore, it is important to determine which of these
analyses can lead to good Cbgc performance. Chapter 9 performs limit studies for
two broad categories of analyses: those that are based on types, and those that are
based on allocation sites, see Table 5.1. The limit studies use partitionings obtained
with oracular knowledge rather than with a compiler analysis.

By the definition of granularity in Section 5.1, the type-dynamic partitioning
(Section 5.4.1) is the most fine-grained partitioning possible that is at least as coarse-
grained as types; and the allocsite-dynamic partitioning (Section 5.4.2) is the most
fine-grained partitioning possible that is at least as coarse-grained as allocation
sites. Referring to Table 5.1, that means that the type-dynamic partitioning is more
fine-grained than partitionings based on Harris’s analysis, XTA, or Diwan et al.’s
analyses. The allocsite-dynamic partitioning is more fine-grained than any of the
analyses in Table 5.1. A partitioning that is more fine-grained usually leads to better
Cbgc performance than a partitioning that is less fine-grained.

Both the type-dynamic partitioning and the allocsite-dynamic partitioning re-
quire oracular knowledge. They can not be used for a realistic Cbgc algorithm
that has no knowledge of the future of the computation. This dissertation describes
experiments where the future of the computation is known, since the garbage col-
lector is driven by a trace that can be analyzed beforehand. Those experiments
are limit-experiments investigating the hypothetical case of operating with the most
fine-grained partitionings of a given kind; any real partitioning of that kind will be
more coarse-grained than that.

5.4.1 Type-dynamic partitioning

The initial partitions in the type-dynamic partitioning are program object types
(classes in Java terminology). If the trace of a benchmark run contains an assignment
that creates a pointer from an object of one type to an object of another type, the
type-dynamic partitioning adds a corresponding edge between the types. Finally,
the type-dynamic partitioning collapses SCCs in the type may-point-to graph to
form partitions.
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5.4.2 Allocsite-dynamic partitioning

The initial partitions in the allocsite-dynamic partitioning are the allocation sites. If
the trace of a benchmark run contains an assignment that creates a pointer from an
object created at one allocation site to an object created at another allocation site,
the allocsite-dynamic partitioning adds a corresponding edge between the allocation
sites. Finally, the allocsite-dynamic partitioning collapses SCCs of the allocation
site may-point-to graph to form partitions.
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Chapter 6

Estimator

The estimator’s job is to annotate each partition p with two numbers dead(p) and
live(p), where dead(p) is a guess for how much memory of dead objects a collection of
p would reclaim, and live(p) is a guess for how much work a reachability traversal of
p would expend tracing live objects. The estimator is invoked in Line 1 of the partial
garbage collection for Cbgc in Figure 4.2. Along with the chooser, the estimator is
responsible for opportunism in Cbgc, which impacts throughput.

An estimator is based on heuristics. The only invariant it has to satisfy is
that for each partition p, dead(p) + live(p) should add up to the total amount of
memory that p currently occupies. The estimator problem for Cbgc is akin to
machine learning problems, in that an estimator uses features (information available
at runtime) to guess results that are as accurate as possible. Chapter 3 presents
empirical observations of correlations between connectivity and lifetime, which an
estimator can exploit by observing connectivity to predict how many objects are
dead and life. But Cbgc is flexible enough to allow for other estimators that use
other heuristics, for example, based on object age.

In practice, an estimator usually does not just guess the total number of bytes in
dead and life objects in a partition p. Rather, it estimates a survivor rate s(p) with
0 ≤ s ≤ 1. The survivor rate s(p) times the total bytes in objects in the partition
yields live(p). Since a partition usually occupies a multiple of the block size, dead(p)
is the total number of bytes occupied by blocks of the partition minus live(p). In a
copying collector, this is likely to yield an accurate estimate of how much work the
collection takes (live(p)), and how much memory it reclaims (dead(p)). In a non-
copying collector, fragmentation may prevent reuse of the freed memory dead(p) for
allocation to other partitions than p.

Section 6.1 discusses a number of realistic estimators. Since there are plenty
of ways to implement an estimator for Cbgc, Section 6.2 also presents an oracu-
lar estimator that serves as a point of reference to evaluate less precise estimators
against.
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6.1 Realistic estimators

A realistic estimator is an estimator that uses only information available at low
overhead at runtime. More precisely, a realistic estimator should recoup the cost of
obtaining the information it requires by the benefit of improved throughput from
opportunistic garbage collection.

Sections 6.1.1 to 6.1.3 describe three realistic estimators that this dissertation
experiments with. Section 6.1.4 discusses alternative estimators that one could re-
alistically implement as future work.

6.1.1 Roots estimator

The roots estimator is motivated by the results from Chapter 3 that show that ob-
jects reachable from global variables tend to be immortal, while objects reachable
only from the stack tend to be shortlived. The roots estimator first scans the roots
to find out which partitions contain objects directly pointed to by stack variables
and which by global variables. It then propagates this information over the edges of
the partition dag to find out which partitions may contain objects that are reach-
able from stack variables, and which may contain objects that are reachable from
global variables. The information is conservative: if a partition p contains objects
reachable from stack/global variables, this is noted, but the reverse is not necessarily
true. The roots estimator then assumes the survivor rate function

sroots = if(globalsReach(p)) then 90%
else if(stackReach(p)) then 20%
else 0%

6.1.2 Decay estimator

The decay estimator assumes that the survivor rate of a partition p is an inverse
exponential function of the average age, a, of its objects as shown in Figure 6.1.
This expresses the intuition that the longer you wait, the more objects die. The
literature refers to the model behind the decay estimator as the radioactive decay
model. Stefanović found that none of the well-known analytical models for object
lifetime distributions is completely satisfactory [118], but it is still interesting how
well a simple model works for Cbgc.

For each partition p, the decay estimator maintains the observed decay factor,
d, at the previous GC of p, the average age, a, of objects in p, and the total number,
n, of objects in p. At each allocation, the decay estimator updates the average age:
a← (a+ timeSinceLastAlloc) · (n/(n+1)). After each garbage collection of partition
p, the decay estimator updates the decay factor d ← − ln(S)/a based on the exact
observed survivor rate S in p. Before the first garbage collection, the decay factor d
defaults to the same constant for all partitions, e.g. 10−8.
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Figure 6.1: Decaying survivor rate sdecay(a) = e−da.

6.1.3 Combined estimator

The combined estimator is a hybrid estimator combining the roots estimator from
Section 6.1.1 and the decay estimator from Section 6.1.2. If a partition has not been
collected before, the combined estimator uses the roots estimator, otherwise it uses
the decay estimator. This means that it does not have to use an arbitrary default
decay factor, since it has an opportunity to learn a better one before using the decay
estimator.

6.1.4 Alternatives

The field of estimator design for connectivity-based garbage collection is wide open,
and limited only by the creativity of the designers. This section discusses some ideas
for future work on Cbgc estimator design, but there are plenty of other ways to it.

6.1.4.1 Access density estimator

Access density of a partition is the frequency of accesses to objects in that partition.
It can be computed by counting the loads and stores of memory addresses in the
partition, and dividing it by the time during which they happened. Access density
can be profiled at low overhead with sampling in software [9, 75] or with hardware
performance monitors, and can be attributed to partitions by the blocks they occupy.

The access density estimator periodically records the observed access density for
each partition. When the access density of a partition suddenly drops, that indicates
that the objects in that partition may be dead, because the mutator does not use
them anymore. At that point, the access density estimator would estimate a low
survivor rate for that partition.

6.1.4.2 Correlation matrix estimator

The correlation matrix estimator would learn, for each pair of partitions, how well-
correlated their survivor rates are. It would maintain a correlation matrix with one
entry for each pair (p, q) of partitions. This matrix would be initialized based on the
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distance of the partitions (p, q) in the partition dag; for example, if (p, q) is an edge,
then p and q are likely to have related survivor rates. During garbage collections,
the correlation matrix estimator would learn more precise matrix entries based on
actual observed survivor rates.

Suppose that the survivor rates of two partitions p and q are highly correlated.
When the estimator estimates the survivor rate of p, it guesses that it is similar to
the most recent survivor rate of q.

6.1.4.3 Key object estimator

A key object is an object whose death is likely to predict the death of many other
objects [67]. One form of key objects is an object that “dominates” others in the
object graph. An object o1 dominates an object o2 if all paths by which o2 is
reachable go through o1. The notion of dominance among objects has been shown
to be useful for leak detection [97].

An estimator based on key objects could use observations from two earlier
garbage collections. The first of these garbage collections would identify a key
object based on its observed connectivity in the snapshot of the object graph at
that collection. The second of these garbage collections would identify one path of
pointers by which the key object is reachable from the roots. The key object predicts
the survivor rate of the objects in a partition p. The key object estimator would
estimate the survivor rate of p by trying to traverse the pointer chain by which its
key object was reachable in the past. If that chain is broken, it would guess that
the key object became unreachable, and that p has a low survivor rate.

6.2 Oracle estimator

The most accurate estimator would predict exactly how many objects are dead and
live in each partition. In general, a more accurate estimator leads to better Cbgc
performance. To evaluate the realistic estimators described in Section 6.1, this
dissertation also experiments with an estimator that is based on oracular information
that would usually not be available to a garbage collector.

The oracle estimator uses the precise deathtimes obtained for a trace using the
Merlin algorithm [72], see Section 2.3. When a garbage collection simulator simulates
Cbgc based on the trace, it uses the Merlin-based death events in the trace to keep
a running tally of how many objects are dead and live in each partition. At garbage
collection time, the oracle estimator consults that tally to quickly and accurately
“estimate” survivor rates.

The oracle estimator assumes information unavailable without a reachability
traversal of the whole heap. Thus, unlike the realistic estimators from Section 6.1,
it is not useful in practice. However, it allows a limit study of how Cbgc behaves
with a very accurate estimator. One caveat is that even the oracle estimator may,
due to fragmentation, still mis-estimate the number of blocks that a collection of a
partition actually reclaims.
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Chapter 7

Chooser

The chooser’s job is to chose a subset C of the set P of partitions for a partial garbage
collection. The chosen set C must be closed under the predecessor relation. The
chooser is invoked in Line 2 of the partial garbage collection algorithm for Cbgc in
Figure 4.2. The estimator finds two numbers dead(p) and live(p) for each partition,
and those serve as input to the chooser.

The choice made by the chooser should maximize the expected benefit in re-
claimed memory, while minimizing the cost in expended work. This chapter formal-
izes this problem and presents two solutions: the flow-based chooser, an algorithm
that uses network flow to find an optimal solution, and the greedy chooser, a simpler
algorithm that may not find an optimal solution.

Section 7.1 states the chooser problem, section 7.2 presents the greedy chooser,
and Section 7.3 presents the flow-based chooser. Section 7.4 discusses alternatives
to the greedy or flow-based chooser, and even to the problem statement.

7.1 Problem statement

A connectivity-based garbage collector (Cbgc) divides the set O of heap objects
into a set P of partitions based on a conservative estimate of their connectivity. A
partitioning (partition, P, EP ) of the objects consists of a partition map partition :
O → P and a partition dag (P,EP ). The partition map partition associates each
object o ∈ O with its partition partition(o) ∈ P . The edges EP of the partition
dag represent may-point-to relations. In other words, if a pointer may exist between
two heap objects, then either the objects must be in the same partition, or there
must exist an edge between their partitions in the partition dag. Figure 7.1 gives
an example partitioning.

When the Cbgc needs to free up some memory, it scavenges a subset C ⊆ P
of the partitions. The goal is to choose C such that (i) the objects in C can be
collected independently from the rest of the heap, and (ii) the benefit/cost ratio for
collecting C is as high as possible.

For the independence property (i), the chooser uses the connectivity information
that the partition dag gives it: it picks a set C ⊆ P of partitions that is closed under
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Figure 7.1: Example partitioning. Solid boxes are objects, solid arrows are pointers,
dashed ovals are partitions, and dashed arrows are partition edges.

the predecessor relation (q ∈ C ∧ (p, q) ∈ EP ⇒ p ∈ C). When an object in C is not
reachable from the roots via any objects in C, it is not reachable from the roots via
any objects in O, and is therefore garbage; its memory can be reclaimed.

For the benefit/cost ratio property (ii), Cbgc starts out by estimating the local
cost and benefit of collecting an individual partition. This estimate is represented
by a pair of functions dead, live : P → N mapping partitions to nonnegative integers.
The number of dead objects dead(p) in a partition p is the benefit of collecting it,
since their memory can be reclaimed for reuse. The number of live objects live(p)
in a partition p is the cost of collecting it, since they need to be traversed before
unreachable objects can be reclaimed as garbage. These estimates can come from
any of the estimators described in Chapter 6.

Figure 7.2 shows an example of a partition dag with cost/benefit estimates.
For instance, partition p1 may contain objects pointing to objects in p3, and the
estimates say that p2 contains four dead objects and three live objects (4 : 3).

Equation (7.1) defines the quality of a set C ⊆ P of partitions.

quality(C) =

∑
p∈C dead(p)∑
p∈C live(p)

(7.1)

The chooser needs to solve the following problem:

Given a partition dag (P,EP ) and a pair of functions dead, live : P → N,
find a closed subset C ⊆ P of partitions that maximizes quality(C).

The solution to this problem may not be uniquely defined. The naive algorithm
of computing the quality of all closed sets of partitions has complexity O(2P ).

Table 7.1 shows all closed subsets of the partition dag in Figure 7.2 and their
quality. The best quality set is {p2, p5}.
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p1

p2

p3

p4

p5

dead(p) : live(p) 1:12

6:3

10:3

2:2

4:3

Figure 7.2: Example partition dag annotated with the estimated dead and live
functions.

Table 7.1: Qualities of closed subsets of the partition dag in Figure 7.2.
Closed set C ⊆ P Quality
p1 p2 p3 7/17 = 0.41
p1 p2 p3 p4 13/20 = 0.65
p1 p2 p3 p5 17/20 = 0.85
p1 p2 p3 p4 p5 23/23 = 1.00

(empty set) 0/0 = undefined
p1 2/2 = 1.00

p2 4/3 = 1.33
p2 p4 10/6 = 1.67
p2 p4 p5 16/9 = 1.78
p2 p5 14/6 = 2.33

7.2 Greedy Chooser

Figure 7.3 shows the greedy chooser algorithm. The goal is to compute the set C of
chosen partitions. For a partition q ∈ P , let A(q)← {p ∈ P \C | p→∗ q} be the set
that contains all ancestors of q that have not yet been chosen. Since the ancestor
relation is reflexive, q is an ancestor of itself.

Line 1 initializes the set C, and Lines 2 to 3 initialize the unchosen ancestor sets
A(q). Since nothing is chosen yet, Line 3 sets A(q) to the set of all ancestors of q,
i.e., all partitions p that reach q via a path of edges.

Lines 4 to 16 are the main loop of the greedy chooser algorithm. In each iteration,
Line 6 chooses the partition p with the unchosen ancestor set of the highest quality
as a candidate for addition. It is added if either a garbage collection of the current
choice C would not reclaim enough memory to satisfy the allocation request that
triggered GC (Line 8), or the addition would improve the quality of the overall choice
(Line 10). If p and its ancestors are chosen, Line 12 updates the chosen set, and
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1: C ← ∅
2: for each partition q ∈ P
3: A(q)← {p ∈ P | p→∗ q}
4: done← false
5: while not done
6: p ← an unchosen partition p′ with the highest quality(A(p′))
7: if
8: dead(C) not enough for current allocation request
9: or

10: quality(C) < quality(C ∪A(p))
11: then
12: C ← C ∪A(p)
13: for each partition q ∈ P
14: A(q)← A(q) \ C
15: else
16: done← true
17: return C

Figure 7.3: Greedy chooser algorithm.

Lines 13 and 14 update the sets of unchosen ancestors of all partitions to exclude
the newly chosen partitions.

The description of the greedy chooser algorithm in Figure 7.3 omits some details
on data structures for implementing it efficiently.

7.2.1 The greedy chooser is not optimal

Figure 7.4 shows an example of a partition dag annotated with the estimated dead
and live functions. For this example, the greedy chooser will not find the optimal
solution.

p1 p2

p3

p4

dead(p) : live(p)
3:0

3:0

2:1 0:2

Figure 7.4: Example where the greedy chooser is not optimal.

Table 7.2 shows all closed subsets of the partition dag in Figure 7.4 and their
quality. The greedy chooser would start by choosing C1 = {p1}, which has a quality
of 2/1 = 2.00. Then, it would consider adding another partition with its ancestor set.
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But all of the three possibilities C2 = {p1, p2}, C3 = {p1, p2, p3}, or C4 = {p1, p2, p4}
have worse qualities than what has already been chosen. The only better choice,
which the flow-based chooser would find, is Copt = {p1, p2, p3, p4} with a quality of
2.67, but the greedy chooser does not consider it, since it involves adding more than
the ancestor set of a single partition.

Table 7.2: Qualities of closed subsets of the partition dag in Figure 7.4.
Closed set C ⊆ P Quality
p1 p2 2/3 = 0.67

(empty set) 0/0 = undefined
p1 p2 p3 5/3 = 1.67
p1 p2 p4 5/3 = 1.67
p1 2/1 = 2.00
p1 p2 p3 p4 8/3 = 2.67

7.3 Flow-Based Chooser

The flow-based chooser finds an optimal solution to the problem stated in 7.1. It
does so by reducing it to a max-weight closed set problem, for which the literature
has solutions using network flow algorithms. Section 7.3.1 describes the reduction,
Section 7.3.2 reviews some basics on network flow, and Section 7.3.3 reviews the
solution to the max-weight closed set problem from the literature.

7.3.1 Reduction to max-weight closed set problem

Section 7.3.1.1 proves two lemmas and makes some observations that allow reduc-
ing the Cbgc partition selection problem to the max-weight closed set problem.
Section 7.3.1.2, formulates the algorithm that does that. Section 7.3.1.3 describes
how that algorithm uses geometry so it needs to solve only a logarithmic number of
instances of the max-weight closed set problem.

7.3.1.1 Preparation

One difficulty of the problem that this section is trying to solve is that the properties
of individual partitions do not simply add up (d1

l1
+ d2

l2
6= d1+d2

l1+l2
). Therefore, the first

goal is to reduce the problem to one where they do add up. To this end, define
a family w : R × P → R of weight functions on partitions. For each real number
x ∈ R, the weight function wx : P → R is given by wx(p) = dead(p) − x · live(p).
Table 7.3 shows the weights wx for the example in Figure 7.2 and x = 21

11 .
Lemma 2 gives a feeling for how the weight-functions are related to the problem.
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Table 7.3: The weight function w( 21
11) for the partitions in Figure 7.2.

Partition p p1 p2 p3 p4 p5

dead(p)
live(p)

2
2

4
3

1
12

6
3

10
3

w( 21
11)(p) −20

11 −19
11 −241

11
3
11

47
11

Lemma 2 For all x ∈ R and all non-empty closed sets of partitions C ⊆ P ,
(i) 0 ≤

∑
p∈C wx(p)⇔ x ≤ quality(C)

(ii) 0 ≥
∑

p∈C wx(p)⇔ x ≥ quality(C)
(ii) 0 =

∑
p∈C wx(p)⇔ x = quality(C)

Proof. Part (i) can be seen by symbol-pushing:
0≤

∑
p∈C wx(p) ⇔

0≤
( ∑

p∈C dead(p)− x · live(p)
)

⇔

0≤
( ∑

p∈C dead(p)
)
− x ·

( ∑
p∈C live(p)

)
⇔

x≤
( ∑

p∈C dead(p)
)
/
( ∑

p∈C live(p)
)

⇔
x≤ quality(C)

This proof used the property that the domain of the functions live and dead is
non-negative. The lemma required that C is non-empty, since otherwise quality(C) =
0/0 is undefined. The proof for the other two parts of the lemma is analogous. 2

Using Lemma 2, one can show how the solution of maximizing a straight sum
correlates with the solution of the problem at hand. Let K be the set of non-empty
closed subsets of P .

Lemma 3 For all x ∈ R,
(i) 0 ≤ max

C∈K

{ ∑
p∈C

wx(p)
}
⇒ x ≤ max

C∈K
{quality(C)}

(ii) 0 ≥ max
C∈K

{ ∑
p∈C

wx(p)
}
⇒ x ≥ max

C∈K
{quality(C)}

(iii) 0 = max
C∈K

{ ∑
p∈C

wx(p)
}
⇒ x = max

C∈K
{quality(C)}

Proof. For part (i), let C1 be a witness for the premise, in other words, let
C1 ∈ K satisfy 0 ≤

∑
p∈C1

wx(p). Then Lemma 2 implies x ≤ quality(C1). Since
in addition quality(C1) ≤ maxC∈K{quality(C)}, that shows the conclusion x ≤
maxC∈K{quality(C)}.
A proof by contradiction shows part (ii). Assume that 0 ≥ maxC∈K{

∑
p∈C wx(p)},

but that x < maxC∈K{quality(C)}. Then there exists a closed set of partitions
C2 ∈ K for which x < quality(C2). By Lemma 2 that means that

∑
p∈C2

wx(p) > 0.
But that would mean

∑
p∈C2

wx(p) > maxC∈K{
∑

p∈C wx(p)}, contradicting the
maximality.
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Part (iii) follows from the conjunction of parts (i) and (ii). 2

Section 7.3.3 will show how to find a solution (along with a witness) to the
max-weight closed set problem

max
C∈K∪{∅}

{ ∑
p∈C

wx(p)
}

.

Here is a sketch how to use that know-how to find a solution (along with a witness)
to the main problem

max
C∈K
{quality(C)}.

The basic idea is to try different values for x and to use Lemma 3 to search for an
xM that satisfies

xM = max
C∈K
{quality(C)}.

First observe some properties of the search space.

1. For every partition q that has no predecessors (¬∃p . (p, q) ∈ EP ), the singleton
set of partitions {q} is closed ({q} ∈ K). Hence, xmin = max{quality({q}) |
¬∃p . (p, q) ∈ EP } is a lower bound on xM . For example, in Figure 7.2, xmin =
max{quality({p}) | p ∈ {p1, p2}} = quality({p2}) = 4

3 .

2. Either
∑

p∈P dead(p) = 0, or the solution has positive quality, and hence
contains at least one partition. One can ignore the case

∑
p∈P dead(p) = 0,

since in that case, it would not make sense to attempt scavenging at all. Let
xmax = max{quality({p})} be the best quality of any singleton set of partitions
(including singleton sets of partitions with predecessor, which are not closed).
Since the quality of a set of partitions is at most as high as the quality of its
best member, xmax is an upper bound on xM . For example, in Figure 7.2,
xmax = max{quality({p})} = quality({p5}) = 10

3 .

3. Let D =
∑

p∈P dead(p) and L =
∑

p∈P live(p). It is clear that xM must be of
the form d/l where 0 < d ≤ D and 0 < l ≤ L. Hence, there are O(DL) valid
values for xM . For example, in Figure 7.2, D = 23 and L = 23, so xM must be
of the form d/l with 0 < d ≤ 23 and 0 < L ≤ 23. Note that in general D 6= L.

7.3.1.2 Flow-based chooser algorithm

Figure 7.5 formulates the algorithm. If D is the total number of dead objects, L the
total number of live objects, P the number of nodes and E the number of edges in
the partition dag, then the total complexity of the algorithm is

O
(

log(DL) ·
(

min{D,L}+ PE log
(

P 2

E

) ))
The algorithm works as follows. Lines 1 and 2 initialize [low, high] to the range in

which the solution of the partition selection problem must reside. The do-while-loop
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action complexity
1 low← xmin = max{quality({q}) | ¬∃p . (p, q) ∈ EP }; P +
2 high← xmax = max{quality({p})}; P +
3 do{ (
4 choose x = d

l such that low ≤ x ≤ high ∧ 0 < d ≤ D ∧ 0 < l ≤ L min{D,L}+
and such that x halves the search space;

5 find yx, Cx such that yx = max
C∈K∪{∅}

{ ∑
p∈C

wx(p)
}

=
∑

p∈Cx

wx(p); PE log(P 2/E) +

6 if(Cx = {} ∨ 0 > yx){ max{
7 high← max{d

l |
d
l < x ∧ 0 < d ≤ D ∧ 0 < l ≤ L}; min{D,L}

8 }else if(0 < yx){ ,
9 low← min{d

l |
d
l > x ∧ 0 < d ≤ D ∧ 0 < l ≤ L}; min{D,L}

10 } }
11 }while(Cx = {} ∨ 0 6= yx); ) · log(DL) +
12 return Cx; 1

Figure 7.5: Algorithm for flow-based chooser.

in lines 3 to 11 repeatedly solves max-weight closed set problems for values of x in
the search space, and uses the solution yx to either narrow the range [low, high] or to
determine that it has found the solution to the Cbgc partition selection problem.
Line 4 chooses an x that is a possible solution between low and high such that the
search space is halved (see Section 7.3.1.3). Line 5 solves the max-weight closed set
problem for the weight function w = wx (see Section 7.3.3), finding the maximum
weight yx and a witness set of partitions Cx that has the maximum weight. If Cx

is empty or 0 > yx, then x was too large and line 7 sets high to a possible solution
value d

l just below x. If 0 < yx, then x was too small and line 9 sets low to a possible
solution value d

l just above x. When the algorithm has found a non-empty set Cx

that maximizes
∑

p∈Cx
wx(p), then according to Lemmas 2 and 3 the set Cx is also

a solution to the Cbgc partition selection problem, and the algorithm terminates.

7.3.1.3 Search space halving

The search space for solutions to the Cbgc partition selection problem is {d/l | 0 <
d ≤ D ∧ 0 < l ≤ L}. Figure 7.6 visualizes the search space for D = L = 23 as a
two-dimensional grid of numbers.

Each number in the search space corresponds to a ray originating in (0, 0). Fig-
ure 7.6 shows the rays corresponding to low = 4

3 and high = 10
3 . The solution xM

must be one of the fractions in the area between the rays.
Without loss of generality assume that D

L ≤ low, in other words, both rays
low and high are above the diagonal of the rectangular solution grid. Pick d′ =
lcm(low.dead, high.dead); in Figure 7.6, this yields d′ = lcm(4, 10) = 20. The rays
low and high intersect the line dead = d′ at ll = low.live · d′/low.dead and lh =
high.live · d′/high.dead.

The goal is to find a point that halves the area of the triangle ((0, 0), (d′, ll), (d′, lh)).
Let Al be the area of the triangle ((0, 0), (d′, ll), (d′, 0)), which is 1

2(d′ · ll), and let
Ah be the area of the triangle ((0, 0), (d′, lh), (d′, 0)), which is 1

2(d′ · lh). The goal is
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Figure 7.6: Solution space.

to find a point x′ = (d′, lx) such that Ax = 1
2(d′ · lx) = 1

2(Al + Ah). It is easy to see
that lx = 1

2(ll + lh).
Line 4 of the algorithm in Figure 7.5 finds an x′ = d′/lx as described above, and

then rounds it to the closest x = d/l that corresponds to a point in the grid, i.e.
that satisfies 0 < d ≤ D and 0 < l ≤ L. For example, for low = 4

3 and high = 10
3 ,

the value of x′ is 10.5
20 , and the closest legal x is 11

21 .

7.3.2 Flow networks

Before Section 7.3.3 looks at max-weight closed sets, this section reviews some folk-
lore on flow networks, as described e.g. in [42] chapter 27.

A flow network consists of a set V of vertices, with two special vertices s, t ∈ V ,
the source s and the sink t, and a capacity function c : V × V → R+. It can be
represented as a graph with edges E = {(p, q) ∈ V × V | c(p, q) > 0}.

A flow is a function f : V × V → R on pairs of vertices in a flow network that
satisfies the three flow properties
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• Capacity constraint: for all p, q ∈ V , require f(p, q) ≤ c(p, q).

• Skew symmetry: for all p, q ∈ V , require f(p, q) = −f(q, p).

• Flow conservation: for all p ∈ V \ {s, t}, require
∑

q∈V f(p, q) = 0.

The value value(f) of a flow is the total flow coming out of the source, in other
words value(f) =

∑
q∈V f(s, q). A max-flow is a flow of maximum value for its

network. A flow defines a residual capacity function cf (p, q) = c(p, q) − f(p, q) on
pairs of vertices.

A cut is a partition (S, T ) of the vertices of a flow network into a source side
S ⊂ V with s ∈ S and a sink side T = V \ S with t ∈ T . The capacity c(S, T )
of a cut is the total capacity of the edges that cross the partition, in other words,
c(S, T ) =

∑
p∈S,q∈T c(p, q). A min-cut is a cut of minimum capacity for its network.

There is a duality between max-flows and min-cuts.

Theorem 1 (Max-flow min-cut.) max
f flow

{value(f)} = min
(S,T ) cut

{c(S, T )}

Proof. See [42] page 593. This theorem is also constructive: given a max-flow, one
can find a min-cut by choosing all vertices reachable from s via edges with positive
residual capacities as S. 2

The max-flow problem is to find a max-flow along with a witness. The fairly
straight-forward lift-to-front algorithm from [42] page 621 solves it in O(V 3). The
Goldberg-Tarjan algorithm is an extension of the lift-to-front algorithm that solves
the problem even faster, namely in O(V E log(V 2/E)) [59].

7.3.3 Max-weight closed sets

Max-weight closed set problems and their solution using network flow are described
on pages 719-721 of [4]. This section modifies the problem slightly by solving for sets
that are closed under the predecessor relation, instead of closed under the successor
relation as in [4].

A max-weight closed set problem consists of a partial order (P,<) and a weight
function w : P → R on elements of P . The goal is to find a closed set C ⊆ P with
maximum weight

∑
p∈C w(p). Here, a set C is closed if for all q ∈ C, the implication

p < q ⇒ p ∈ C holds. Note that this definition differs from [4].
For example, the partial order in Figure 7.2 together with the weight function

in Table 7.3 defines a max-weight closed set problem.
The first step is to construct a flow network from the max-weight closed set

problem. Partition the elements of P into P+ = {p ∈ P | w(p) ≥ 0} and P− =
{p ∈ P | w(p) < 0}. For the vertices V of the flow problem, choose two additional
vertices s, t as source and sink and set V = P+ ∪P− ∪{s, t}. The capacity function
c : V × V → R+ ∪∞ is defined as

• c(s, p) = w(p) for each p ∈ P+
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• c(p, t) = −w(p) for each p ∈ P−

• c(q, p) = ∞ whenever p < q (this differs from [4], since the sets that Cbgc is
interested in are closed under the predecessor relation)

For example, the weights from Table 7.3 partition P = {p1, p2, p3, p4, p5} into
P+ = {p4, p5} and P− = {p1, p2, p3}, yielding the flow network in Figure 7.7.

p4

p5

p3

p1

p2

11

19

11

20

11

241

s t

47

113

11

Figure 7.7: Example flow network.

The second step is to find a min-cut (S, T ) in the flow network. The set S \ {s}
is a max-weight closed set. A few lemmas show why this is true.

Lemma 4 A min-cut in a network constructed by the first step above has finite
capacity.

Proof. The cut ({s}, V \ {s}) has finite capacity, since there are no vertices p ∈ V
with c(s, p) =∞. The capacity of a min-cut is less than or equal to the capacity of
({s}, V \ {s}). Hence, the capacity of a min-cut is finite. 2

Lemma 5 A subset C ⊆ P of the partial order is closed if and only if {s}∪C gives
a cut with finite capacity.

Proof.
C is closed⇔ (q ∈ C ∧ p < q)⇒ p ∈ C

⇔ q 6∈ C ∨ ¬(p < q) ∨ p ∈ C
⇔ (q ∈ C ∧ p 6∈ C)⇒ ¬(p < q)
⇔ (q ∈ C ∧ p 6∈ C)⇒ c(q, p) <∞
⇔ c({s} ∪ C, {t} ∪ (P \ C)) <∞

2

Lemma 6 If c(S, T ) is finite, then

c(S, T ) =
∑

p∈P+

w(p)−
∑

p∈(S\{s})

w(p).
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Proof. Being finite, the cut (S, T ) can only cross edges involving s or t. More
precisely, the capacity is the total capacity of edges going from s to T , which is∑

p∈T c(s, p), plus the total capacity of edges going from S to t, which is
∑

p∈S c(p, t).
c(S, T )

=
∑
p∈T

c(s, p) +
∑
p∈S

c(p, t)

=
∑

p∈(P+\(P+∩S))

c(s, p) +
∑

p∈(P−∩S)

c(p, t)

=
∑

p∈P+

c(s, p)−
∑

p∈(P+∩S)

c(s, p) +
∑

p∈(P−∩S)

c(p, t)

=
∑

p∈P+

w(p)−
∑

p∈(P+∩S)

w(p) +
∑

p∈(P−∩S)

(−w(p))

=
∑

p∈P+

w(p)−
∑

p∈(S\{s})

w(p)

2

With these lemmas, one can show that the reduction from a max-weight closed
set problem to a min-cut problem worked.

Theorem 2 If (S, T ) is a min-cut of the flow network, then S \{s} is a max-weight
closed set of the partial order (P,<).

Proof. A min-cut minimizes c(S, T ), and according to Lemma 6 that is equivalent
to minimizing

∑
p∈P+ w(p) −

∑
p∈(S\{s}) w(p). Since

∑
p∈P+ w(p) is constant, that

means that the min-cut maximizes
∑

p∈(S\{s}) w(p). Lemma 5 states that that has
indeed maximized over all closed sets. 2

When there are multiple min-cuts (S, T ), one can choose the one with the largest
S using a depth-first search starting at t.

Figure 7.8 shows a max-flow in the flow network from Figure 7.7. A min cut
is S = {s, p2, p4, p5}, T = {p1, p3, t}, since the residual capacities cf (p2, p3) =
cf (p2, t) = 0. (Note that cf (p3, p2) 6= 0, but that is the wrong direction). The
max-weight closed set is therefore {p2, p4, p5} with a weight of −19

11 + 3
11 + 47

11 = 31
11 .
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Figure 7.8: Max-flow in network from Figure 7.7.
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7.4 Alternatives

This chapter introduced two choosers for Cbgc: flow-based and greedy. In theory,
the flow-based chooser is optimal, while the greedy chooser can make sub-optimal
choices. In practice, the quality of the two choosers is usually almost the same.
From a prototype implementation, the flow-based chooser appears to be too slow,
whereas the greedy chooser is probably usable. Nevertheless, the flow-based chooser
was important for experiments; at the very least, it helped demonstrate that the
greedy chooser makes good choices in practice.

One alternative for the chooser is to add more constraints, for example a lower
bound on the total size of dead objects that must be reclaimed, or an upper bound
on the total size of live objects that should be traversed. In fact, the greedy chooser
from Section 7.2 already employs such a lower bound. It has a similar effect for Cbgc
as Barret and Zorn’s dynamic threatening boundary for generational GC [17].

So far, this dissertation has assumed that Cbgc runs the estimator, the chooser,
and the actual partial GC in that order. It followed a divide-and-conquer strategy
by investigating these Cbgc components separately. One could also imagine inter-
leaving them, which may enable the estimator and chooser to make more informed
decisions and may thus lead to synergy. For example, the estimator may revise its
estimates based on exact survivor rates of some partitions in a GC in progress, and
the chooser may revise its choice based on the updated estimates.

Another alternative is to change the problem statement so the chooser tries not
only to maximize reclaimed memory while minimizing cost, but also tries to improve
mutator locality. That would improve overall throughput without necessarily taking
less work during garbage collection.
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Chapter 8

Partial Garbage Collection

Lines 3 to 16 of Figure 4.2 show the abstract algorithm for partial garbage collection
in a Cbgc, and Section 4.2.1 describes it in detail. A member of the Cbgc family
has two choices for making that abstract algorithm concrete: how to implement
the tricolor abstraction, and in which order to do the reachability traversal. In
addition, each concrete Cbgc algorithm has to make a number of design choices for
the implementation; Chapter 11 discusses those.

Section 8.1 shows how a Cbgc algorithm can make the tricolor abstraction con-
crete, and Section 8.2 shows concrete traversal orders that a Cbgc algorithm can
use.

8.1 Tricolor abstraction

The tricolor abstractionp.183 assigns each object one of three colors white, gray, or
black. During a garbage collection, white objects have not been reached yet; gray ob-
jects have been reached, but must yet be scanned for pointers to possibly unreached
successors; and black objects have been reached along with all their successors.

A concrete connectivity-based garbage collector must somehow keep track of
which objects are white, gray, and black. Section 8.1.1 specifies that problem more
precisely. Section 8.1.2 is a case study of solving it in a copying Cbgc. Section 8.1.3
discusses how Cbgc can use other tricolor abstractions.

8.1.1 Problem statement

Figure 4.2 shows the algorithm for partial garbage collection in a Cbgc, formulated
abstractly in terms of the tricolor abstraction. Making it concrete entails giving
concrete implementations of the operations referring to the tricolor abstraction listed
in Table 8.1.

Table A.1 shows how a garbage collector can implement the tricolor operations
when operating on the full heap. The solutions are mostly transferable to the partial
GC situation. The differences are:
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Table 8.1: Tricolor operations from Figure 4.2 that a concrete Cbgc needs to im-
plement.

Line(s) Operation
5 and 13 color(o)← gray
8 pickGray(p)
9 color(o)← black
12 color(o) = white
15 reclaim memory
16 color(o)← white

• Partition map maintenance. All recoloring operations must maintain the par-
tition map. After changing the color of an object o, the map partition(o) must
still be defined, and must still yield the same partition as before the recoloring.

• Partition-specific pickGray(p). Whereas in a full GC, pickGray() takes no
arguments, in Cbgc, it is parameterized by the partition p, and must return
a gray object o with partition(o) = p.

• Partition-specific memory reclamation. In order to execute Line 15 efficiently,
Line 14 must be able to identify all objects of the current partition that are
still white, without having to scan white objects in other partitions.

• Partition-specific color reset. In order to execute Line 16 efficiently, Line 14
must be able to identify all objects of the current partition that are black,
without having to scan survivor objects in other partitions.

To implement the tricolor abstraction for Cbgc, one can start with one of the
well-known implementations of the tricolor abstraction for full GC from Table A.1,
and then take care of the four differences outlined above.

8.1.2 Copying CBGC

This section is a case study for how to make the tricolor abstraction concrete for
Cbgc with semispace copying, using a generalization of Cheney scanp.184. The rea-
son for picking that algorithm in this case study is that it is simple and efficient, and
works naturally on lists of blocks, allowing partitions to be implemented by main-
taining lists of blocks. However, Cbgc also works with other tricolor abstractions,
as discussed below.

Copying Cbgc implements the tricolor operations as in Table A.1, with a few
changes to take care of the differences in partial GC (Section 8.1.1):

• Partition map maintenance. In copying Cbgc, each partition has two semis-
paces, each of which is a list of blocks. Before copying, objects reside in from-
space, and the partition map maps an object to its partition by mapping its
address to a block, and then looking up the partition that that block belongs
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to. When the color of an object changes to gray, it is copied into a block in
to-space. The partition map is still defined: again, it maps the object address
to the new block, and then looks up the partition that that block belongs to.

• Partition-specific pickGray(p). To allow picking a gray object of a given par-
tition p, each partition maintains a scan-pointer in its own to-space. Just like
in full-heap Cheney scanp.184, objects from the start of to-space to the scan
pointer are black, and objects from the scan pointer to the end of to-space are
gray. The only difference is that to-space is not necessarily consecutive, its
blocks may be scattered over memory. But that does not prevent picking the
next gray object and advancing the scan pointer.

• Partition-specific memory reclamation. In copying Cbgc, each partition has
a from-space, which is a list of blocks. To reclaim all white objects of a given
partition, the collector releases all blocks of its from-space. The released blocks
become available for use by other partitions. For example, they may be used
to satisfy future allocation requests, or they may be used to grow the to-space
of another partition that the partial GC algorithm has not finished processing
yet.

• Partition-specific color reset. Whereas full copying gc resets the color of all
objects in to-space to white by flipping the global from-space and to-space,
copying Cbgc does the same for one partition by flipping that partition’s
from-space and to-space. This just means swapping the pointers to the two
lists of blocks implementing from-space and to-space.

In copying Cbgc as described above, white objects are non-forwarded objects
still in the from-space of their partition, whereas gray and black objects are for-
warded and in to-space of their partition. Gray objects are before, black objects
after the scan-pointer of their partition. Table 8.2 shows what that means in terms
of the tricolor operations.

8.1.3 Alternatives

Using a different tricolor abstraction for Cbgc can be done with two steps: start
from the tricolor operations of a full-heap collector, then address the four differences
of partial GC in Cbgc listed in Section 8.1.1. Chapter 11 describes how a real Cbgc
in Jikes RVM does that for the tricolor abstractions mark-sweep and treadmill, and
for immortal objects. This not only demonstrates that Cbgc works with different
tricolor abstractions, it also shows that it can use multiple tricolor abstractions in
the same heap at the same time. Such hybrids are actually common: all JMTk
collectors in Jikes RVM use multiple tricolor abstractions in the same heap [20], and
prior work suggests the same thing [26, 98].
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Table 8.2: Tricolor operations from Figure 4.2, and how copying Cbgc implements
them.

Line(s) Operation Copying Cbgc

5 and 13 color(o)← gray copy to to-space of partition(o)
and forward

8 pickGray(p) at scan pointer in to-space of
partition p

9 color(o)← black move scan pointer of
partition(o) past o

12 color(o) = white in from-space of partition(o)
and not forwarded

15 reclaim memory release all blocks of the from-
space block list of the partition

16 color(o)← white flip meaning of from-space and
to-space of partition(o)

8.2 Traversal order

Partial GC in a Cbgc performs a reachability traversal, but the algorithm in Fig-
ure 4.2 leaves the traversal order for this undefined. It is up to the specific algorithm
to decide in which order Line 3 scans the roots, in which order Line 8 returns gray
objects, and in which order Line 14 sweeps garbage and survivors.

In the common case, the order of the root scan in Line 3 is determined by what
scanning order of globals and variables on thread stacks is the most efficient. All
garbage collectors in JMTk in Jikes RVM (see Section 2.1.3) use the same root scan
order. Globals are scanned in the order in which their classes declare them and in
the order in which Jikes RVM loaded their classes. Threads are scanned from top
to bottom, in the order in which Jikes RVM’s scheduler stores the thread objects.
Wilson, Lam, and Moher [136] discuss the order of root scanning, and warn against
storing roots in a hash-table and scanning that in order of hash values.

In the common case, the order of processing gray objects in Line 8 of the algo-
rithm in Figure 4.2 is a by-product of the chosen reachability traversal. For example,
copying with Cheney scan leads to a breadth-first order, whereas mark-sweep with
a mark stack leads to a depth-first order. A treadmill that keeps gray objects on a
doubly-linked list can pick a breadth-first or depth-first order by the decision which
end of the queue to retrieve objects from. Hierarchical decomposition is a traversal
order that tries to improve collector locality [136]; one can probably generalize it
to Cbgc. Alternatively, one could change the traversal order based on dynamic
feedback to improve mutator locality [35].

In the common case, the order of sweeping garbage and survivors in Line 14 of
the algorithm in Figure 4.2 is also a by-product of the chosen reachability traversal.
For example, a semispace copying collector does not need to process white objects
one by one in Line 15, but rather discards them en-masse when reclaiming the blocks
of the from-space. A mark-sweep collector, on the other hand, will usually sweep
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objects in address order.
An idea related to the traversal order is parallelism. Cbgc could be extended

by parallelizing Line 6 in Figure 4.2: two partitions that are incomparable by the
partial topological order of the partition dag can be collected in parallel without any
need for synchronization on object granularity. Doing that is future work.
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Chapter 9

Design Space Exploration

This chapter explores the performance of garbage collectors in the Cbgc family.
Chapter 4 introduced the four components of this family: partitioning, estimator,
chooser, and partial garbage collection. Chapters 5 to 8 dealt with the components
one by one, and showed that there are several ways to instantiate each component.
The design space of Cbgc is the set of combinations of instantiations of its compo-
nents.

Broadly speaking, there are three aspects of performance to evaluate in a garbage
collector (see Section 1.3): cost in time, or throughput; cost in space, or memory
efficiency; and pause times, or responsiveness. This chapter compares a range of
Cbgc collectors to each other and to the Semi and Appel garbage collectors, with
respect to these three performance aspect. In this chapter, Semi denotes a copying
garbage collector that does not use any partitioning, but instead performs only full
GCsp.184. Appel [7] denotes Appel’s flexible-size nursery copying generational col-
lector with two partitions: a nursery partition containing all objects allocated since
the last GC, and a mature partition containing the remaining objectsp.190. Prior
work has found Appel to be one of the best performing generational collectors [21].

For Cbgc, this chapter examines several different partitionings, estimators, and
choosers. It abbreviates the configurations with Cbgcpec, where

• p ∈ {H,T,A} is the Harris, Type-dynamic, or Allocsite-dynamic partitioning
(Chapter 5);

• e ∈ {D,R,C,O} is the Decay, Roots, Combined, or Oracle estimator (Chap-
ter 6); and

• c ∈ {G,F} is the Greedy or Flow-based chooser (Chapter 7).

This chapter considers only one instantiation of the partial GC component of
Cbgc, namely copying Cbgc as described in Section 8.1.2. The two non-Cbgc
collectors in this chapter are also copying collectors, thus comparing with a copying
Cbgc makes he most sense.

Figure 9.1 shows the relative strength of the various configurations. Two configu-
rations are connected by an edge if the upper configuration is theoretically “better”
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than the lower one. For example, CbgcAOF is theoretically better than Cbg-
cAOG, since CbgcAOF uses the flow-based chooser, which is optimal given a
particular partitioning and estimator, whereas CbgcAOG uses the greedy chooser,
which is only approximate.

F F F F GA D A R A C T O A O

F F F F GG G GT D T R T C HO A D A R A C T O

FFF GG GGHD HR HC T D T R T C HO

GGGHD HR HC

FA O

Figure 9.1: Cbgc Configurations. Higher positions represent a “stronger” or more
optimal configuration. The configurations with an ‘A’, ‘T’, or ‘O’ use information
from a benchmark run and are therefore not realistic.

Components in Figure 9.1 that are not realistic (e.g., they require information
from a program run) are underlined. For example, TDF uses an unrealistic type-
dynamic partitioning, and so the ‘T’ is underlined. Including the unrealistic config-
urations allows an exploration of the limits of how well Cbgc could perform if one
provided it with better instantiations of the components than those that are known
today.

Section 9.1 discusses the experimental methodology for the design space explo-
ration.

Sections 9.2, 9.3, and 9.4 evaluate the cost in time, cost in space, and pause
times for just two points of the design space, namely CbgcAOG and CbgcHCG.
CbgcHCG is a fully realistic configuration, giving a lower bound for what can be
achieved in practice, whereas CbgcAOG is one of the strongest (albeit unrealistic)
configurations, presenting the full potential of Cbgc.

Section 9.5 explores many of the other points in the design space in order to
better understand the tradeoffs in Cbgc algorithms.

In the experiments, unless otherwise indicated, the collectors use a heap size
of three times the high watermark of the benchmark, and a block size of 1KB.
Section 9.6 shows that the results generalize to different heap sizes and block sizes.

9.1 Methodology

The methodology of the garbage collector performance experiments in this chapter
is based on a trace-driven simulator. Section 9.1.1 describes the traces that drive
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the simulator. Section 9.1.2 outlines the design of the simulator itself. Section 9.1.3
discusses strengths and weaknesses of the methodology.

9.1.1 Garbage collection traces

This chapter uses traces from 13 Java benchmarks to drive garbage collection simu-
lations. Section 2.2 described the benchmarks, and Section 2.3 described the traces.
The traces are chronological recordings of every object allocation, pointer update,
and object death over the execution of a program. Each of these events includes the
information required to simulate it.

Table 9.1 lists the benchmarks. The table shows the total allocation and high
watermark (maximum number of simultaneously reachable bytes) to give a feeling
for the size of the runs. Benchmark null is an empty Java program, and thus it gives
an indication of how much memory the virtual machine uses just for starting up. It
is included to put the data in Table 9.1 into perspective, but of course subsequent
sections do not present numbers for null. Jikes RVM allocates its own objects on the
same heap as application objects, and the simulations in this chapter treat objects
from all owners uniformly.

Table 9.1: Traces used in this evaluation; for a description of what the benchmarks
do, see Tables 2.2 and 2.3.

Program Total allocation High water-
objects bytes mark bytes

null 373,315 48,791,248 48,695,104
power 1,230,662 73,228,028 49,700,876
deltablue 1,303,984 77,502,904 49,305,572
bh 1,453,904 83,503,920 49,342,316
health 2,102,507 86,718,316 51,499,180
db 3,807,582 133,782,036 58,714,536
compress 388,832 159,951,240 56,684,200
mtrt 7,973,471 237,305,784 59,777,468
ipsixql 10,089,370 351,117,828 53,827,992
jess 12,345,040 437,641,308 54,330,928
jack 14,274,816 473,120,964 55,925,844
xalan 7,388,779 488,960,484 85,682,372
pseudojbb 18,063,813 566,361,852 78,049,072
javac 17,943,604 579,746,244 61,123,296

Table 9.1 shows the benchmarks ordered by increasing numbers of bytes allo-
cated. Subsequent tables and figures use the same ordering, so that the bottom-most
(if arranged vertically) or right-most (if arranged horizontally) benchmarks are the
largest.



CHAPTER 9. DESIGN SPACE EXPLORATION 115

9.1.2 Garbage collection simulator

This chapter is based on a simulator, gcSim; gcSim is open-source and available
at http://www.cs.colorado.edu/~hirzel/gcSim. It consists of implementations
of the collectors described in this chapter, supported by a number of abstractions.
These abstractions include models of the root set, the heap, and individual objects
and a block manager (the heap is organized as a number of fixed-sized blocksp.177).

9.1.3 Strengths and weaknesses of the methodology

Using a simulator to evaluate Cbgc had some advantages over a full implementa-
tion: it allowed abstracting from implementation details, it allowed comparing Cbgc
to other collectors in a controlled environment, and it allowed experimenting with
various Cbgc algorithms, some of which are not possible to implement in practice,
but are interesting for limit evaluation.

There are also drawbacks to not using a full implementation in a Java virtual ma-
chine. The most important is that simulation can not give concrete timing numbers.
Another drawback is the lack of cache-level locality numbers. However, previous
work has shown that simulators can be useful for GC research: the older-first collec-
tor was first evaluated using a simulator similar to ours [117], and the results carried
over to the real implementation [116].

Chapter 11 describes the design and implementation of a Cbgc algorithm in
Jikes RVM, demonstrating that Cbgc works correctly in the presence of all real-
world challenges of a full system.

9.2 Cost in time

This section compares Semi, Appel, CbgcHCG, and CbgcAOG with respect to
the time cost of garbage collection. Section 9.2.1 compares the amount of work each
collector does during garbage collection, while Section 9.2.2 considers the other time
costs of garbage collection.

9.2.1 GC work per time

This chapter uses the gcWorkPerTime metric to compare the work that different
garbage collection algorithms do during GC. The metric gcWorkPerTime is com-
puted as the total number of bytes copied in all garbage collections (work), divided
by the total allocation, in bytes, of the program (time). Measuring time in bytes
allocated is common in memory management researchp.180; Table 9.1 shows the total
allocation of the benchmark programs.

As an example, if the gcWorkPerTime is 0.5, then for every 2 bytes that the
application allocates, GC must perform 1 byte of copying work. The gcWorkPerTime
metric is often called mark/cons ratiop.185 in the literature.

Figure 9.2 shows gcWorkPerTime for Semi, Appel, the simplistic CbgcHCG,
and the oracle-based CbgcAOG. In this and subsequent figures taller bars indicate
worse performance.

http://www.cs.colorado.edu/~hirzel/gcSim
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Figure 9.2: gcWorkPerTime (bytes copied / bytes allocated).

Comparing CbgcAOG to Appel shows that except for one benchmark (jess),
CbgcAOG outperforms Appel. For the benchmarks that do relatively little allo-
cation, the bar for CbgcAOG is not even visible. In other words, at each garbage
collection CbgcAOG is able to choose only partitions where almost every object
is a dead object. For the benchmarks that allocate more, CbgcAOG copies more,
but typically still copies far fewer bytes than Appel does.

On the other hand, the realistic CbgcHCG collector is usually worse than Ap-
pel, but usually outperforms Semi. CbgcHCG performs worse than Semi for
xalan because of weakness in the estimator (Figure 9.8); the combined estimator
tells CbgcHCG that certain partitions have many dead objects when they do not.
CbgcHCG performs worse than Semi for bh and power because these benchmarks
perform only one collection each with Semi (Table 9.2) and thus the exact timing
of the one collection ends up being significant.

9.2.2 Other time cost factors

Besides the time spent in garbage collection, there are many other costs of memory
management [123]. Other time costs of Cbgc include time to perform the parti-
tioning analysis upon class loading, and running the estimator and chooser before
GC. Time costs present in Appel but not in Cbgc include the time to compile and
execute write barriers. In addition, the two collectors may have different memory
system costs (Section 9.3.1 presents a preliminary exploration of these last costs).
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9.2.3 Cost in time conclusions

• The oracle-based CbgcAOG usually performs much less GC work per time
than Appel. A good Cbgc algorithm can potentially have lower cost in time
than state-of-the-art collectors.

• The simplistic CbgcHCG usually performs more GC work per time than
Appel, but less than Semi. Reducing Cbgc’s cost in time requires better
realistic Cbgc components.

• There are other time cost factors besides GC work per time. The design and
implementation of a real-world Cbgc in Chapter 11 is a step towards allowing
more definitive comparisons.

9.3 Cost in space

There is an obvious space-time tradeoff with garbage collectors. Increasing the
memory available to run an application reduces the time spent in garbage collection.
At one extreme, if an application has an infinite amount of memory, it will never
need to garbage collect. Conversely, if an application has little memory, it needs to
perform more collections which causes an increase in the time costs of GC.

To allow controlled and fair comparison across garbage collectors, the experi-
ments in this chapter use a fixed heap sizep.187 equal to three times the high water-
mark of the benchmark program. The high watermark is the maximum number of
bytes that are reachable at the same time. Table 9.1 shows the high watermark for
each benchmark, computed using the Merlin perfect death time traces. Most of this
chapter uses a fixed heap size of three times this high watermark, because previous
research shows it to be a heap size at which many algorithms perform well [7, 21].
Section 9.6 shows that the results hold across a range of heap sizes.

reclaimed (benefit)

copied (cost)
chosen

rest

occupied before gc

copy reserve

footprint

heap size
0.5

1.0

Figure 9.3: Heap Anatomy.

Even though the heap size is fixed, one can still evaluate the cost in space by mea-
suring the footprint of memory in use. Figure 9.3 shows the space usage of garbage
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collectors in the simulator (for simplicity, Figure 9.3 shows the memory regions as
contiguous; in reality, they are represented as sets of fixed-sized blocks.) During
program execution, the collectors maintain half of the heap as “copy reserve”p.187

since in the worst case, all objects may survive GC. While Semi collects the entire
heap at each GC, Cbgc and Appel may perform a partial GC and examine only a
few partitions (“chosen”). A partial GC will use only a subset of the copy reserve.
The maximum footprint of a collector is the maximum fraction of the heap that
is simultaneously in usep.187. A smaller footprint generally translates into better
memory system performance (e.g., less paging).

9.3.1 Maximum footprint

Figure 9.4 shows the maximum footprint for Semi, Appel, the realistic, but simple
CbgcHCG, and the oracle-based CbgcAOG.

Figure 9.4 shows that the realistic CbgcHCG consistently has a smaller footprint
than Appel. For some benchmarks (e.g., jess) the footprint of CbgcHCG is much
smaller than that of Appel.

The oracle-based CbgcAOG consistently has a much smaller footprint than
Appel. Oftentimes, the footprint of CbgcAOG is close to 0.5, indicating that
CbgcAOG hardly uses the copy reserve at all.
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Figure 9.4: maxFootprint (maximum footprint / heap size in bytes).

There are two reasons why Cbgc has such a good maximum footprint. First,
in the experiments for this chapter, the pathological case where it would need to
do the equivalent of a full GC in Appel never occurred. Second, Cbgc allows
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early reclamationp.186, reusing memory while a GC is still in progress as discussed
in Section 4.5. Appel, on the other hand, usually has a maximum footprint close to
85% of the heap size. This is because most of the immortal data of a benchmark is
allocated up front and survives the first garbage collection, where Appel’s flexible-
sized nursery occupies 50% of the heap. The immortal data includes the runtime
system of the virtual machine, the application stacks, and compiled methods.

Both Cbgc and Appel may suffer from some amount of internal fragmenta-
tion. One might have expected this to be worse for Cbgc than for Appel, be-
cause Cbgc has more partitions. The simplistic CbgcHCG usually uses around
85 partitions, and on average 3.4 partitions contain 95% of the heap objects. The
oracle-based CbgcAOG usually uses around 900 partitions, and on average 13.7
partitions contain 95% of the heap objects. But as Figure 9.4 shows, the differences
in fragmentation due to many partitions has little impact on the footprint.

9.3.2 Other space cost factors

Besides the space occupied by objects, all garbage collectors maintain a number of
data structures that also contribute to the space cost. For example, Cbgc needs
space for the partition graph and Appel needs space for the remembered sets and
the write barrier instructions (in the code). While this chapter presents no detailed
experimental results for these costs, the above mentioned space costs for Cbgc
appear to be insignificant.

9.3.3 Cost in space conclusions

• Even the simplistic CbgcHCG has a lower cost in space than Appel. There-
fore, the paging and TLB activity of Cbgc are likely to be lower than that of
Appel. That can lead to better memory system performance.

• Since Cbgc has a lower cost in space than Appel, it may enable programs to
run in less memory.

9.4 Pause times

For stop-the-world collectorsp.191, the amount of work that a garbage collector per-
forms during a collection determines the amount of time for which the application
is paused. This chapter considers two measures for this: the amount of work the
garbage collector performs on average during a collection (Section 9.4.1) and the
maximum amount of work the garbage collector performs on any collection (Section
9.4.2).

9.4.1 Average work per GC

Figure 9.5 gives the average amount of copying performed by a collector as a fraction
of heap size in bytes (avgWorkPerGc). For example, if the avgWorkPerGc is 0.01,
then the average collection copies 1% of the heap size (see Figure 9.3).
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Figure 9.5: avgWorkPerGc (average copied / heap size in bytes).

Figure 9.5 shows that while Appel usually performs well (especially for the larger
benchmarks), CbgcAOG performs much better. As a matter of fact, CbgcAOG
performs so well that its bars are not visible for most of the benchmarks.

The realistic CbgcHCG performs well, even outperforming Appel for some
benchmarks. As expected, Semi performs poorly, since at each collection it needs
to copy all the reachable objects.

Table 9.2: Number of Garbage Collections.
Program Semi Appel CbgcHCG CbgcAOG

Total Total Major Total Total
power 1 1 0 2 1
deltablue 1 1 0 1 55
bh 1 1 0 4 11
health 1 1 0 1 10
db 2 2 0 3 9
compress 3 3 0 5 5
mtrt 6 6 0 13 1,925
ipsixql 11 22 1 34 1,097
jess 14 15 0 17 692
jack 14 34 0 30 2,155
xalan 9 33 2 31 703
pseudojbb 12 39 1 27 2,619
javac 17 79 2 35 3,349
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CbgcAOG has such a low avgWorkPerGc because it usually collects only par-
titions that contain mostly garbage and it performs many garbage collections (Ta-
ble 9.2). Since there is an overhead to triggering a garbage collection (e.g., root
scanning), it may be worthwhile to consider other choosers that pick more parti-
tions to collect at each collection (Section 7.4).

9.4.2 Maximum work per GC

Even if a garbage collector has a low average pause time, it may still be disruptive if
some pauses are much longer. Therefore, this section considers the maximum pause
time.

Figure 9.6 shows maxWorkPerGc for Semi, Appel, the realistic CbgcHCG,
and the oracle-based CbgcAOG. The maxWorkPerGc is the maximum number of
bytes copied at any garbage collection divided by the heap size (see Section 9.3).
For example, if maxWorkPerGc is 0.18, then the largest collection copies 18% of the
heap size (see Figure 9.3).
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Figure 9.6: maxWorkPerGc (maximum copied / heap size in bytes).

Figure 9.6 shows that even the realistic CbgcHCG has a better maxWorkPerGc
than Appel for all benchmarks except power and javac, where it is slightly worse.
CbgcAOG is consistently the best configuration.

With respect to this metric, Appel does not perform any better than Semi. The
reason for this is that Appel occasionally performs major collections that collect the
entire heap. Also, the first collection with Appel is effectively a full heap collection.
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9.4.3 Pause times conclusions

• Even the simplistic CbgcHCG tends to incur less work per GC than Appel.

• Cbgc never required full-heap collections in the experiments for this chapter.
It always chose few enough and small enough partitions to collect. While one
can construct a pathological situation that forces Cbgc to do a full-heap GC,
it is unlikely to ever happen in practice. Appel, on the other hand, usually
does full-heap GCs in long runs.

9.5 Other points in the CBGC design space

The previous sections looked at whether or not Cbgc can outperform other garbage
collectors. This section explores the Cbgc design space and tries to identify weak-
nesses in the realistic Cbgc implementations. Since cost in time appears to be the
biggest challenge for the simplistic CbgcHCG (compared to Appel, it already has
low cost in space and low work per GC), this section uses cost in time to compare
Cbgc configurations.

This section uses the methodology of varying one component (e.g., partitioning)
while fixing the other components at their strongest level (which may be unrealistic).
This methodology allows evaluation of how different implementations of a component
perform without worrying about interactions with poor implementations of the other
components. For example, a poor implementation of a partitioner may obfuscate
the differences between estimators.

9.5.1 Partitionings

This section explores the partitionings described in Chapter 5. The Harris parti-
tioning is realistic, but simple. The allocsite-dynamic partitioning is a limit study
for the finest-grained partitioning one can get if all objects allocated at the same
allocation site must reside in the same partition. The type-dynamic partitioning
falls in between the Harris partitioning and the allocsite-dynamic partitioning.

Figure 9.7 shows the gcWorkPerTime metric from Section 9.2 for CbgcHOG,
CbgcTOG, and CbgcAOG. In other words, it keeps the estimator (oracle) and
chooser (greedy) constant and varies the partitioner. Figure 9.1 shows the theoretical
ordering between these alternatives.

Figure 9.7 shows that as the partitioning improves, so does the gcWorkPerTime
metric. Using the type-dynamic partitioning is usually not much better than using
the Harris partitioning. Using the allocsite-dynamic partitioning often reduces the
amount of GC work by a factor of 2 or more over the other partitioners.

Compared to Figure 9.2, Figure 9.7 shows that the differences due to different
partitionings are less than the total difference between the realistic CbgcHCG and
the unrealistic CbgcAOG. Thus, the estimator also contributes to the difference.

To summarize, the quality of the partitioning makes a big difference in the per-
formance of Cbgc. The results suggest that Cbgc should avoid type-based par-
titionings, and use a realistic partitioning based on allocation sites instead. That
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Figure 9.7: gcWorkPerTime (bytes copied / bytes allocated) for different partition-
ings. The Cbgc AOG bars are the same as in Figure 9.2, the other bars are new.

narrows down the choice to the bottom four partitionings in Table 5.1. Chapter 10,
which is based on the paper [79], describes how to perform Andersen’s analysis in a
Java virtual machine, and Chapter 11 uses it for a realistic partitioning.

9.5.2 Estimators

This section explores the estimators described in Chapter 6. The roots and decay
estimators are simple and realistic. The combined estimator is a hybrid of these
two, so it is still realistic and a little more sophisticated. The oracle estimator is
a limit study that always estimates correctly. A realistic estimator can perform at
most as well as the oracle.

Figure 9.8 shows the gcWorkPerTime metric from Section 9.2 for CbgcARG,
CbgcADG, CbgcACG, and CbgcAOG. Since the decay estimator needs some
experience to learn the survival rates, it performs poorly for the smaller benchmarks
that cause few collections (for those benchmarks, the decay estimator also has high
cost in space and high pause times). The roots estimator performs poorly for larger
benchmarks. Fortunately, the combined estimator combines the strengths of the
roots and decay estimator to yield a much better estimator. The oracle estimator
performs much better than the other estimators especially for the larger benchmarks.

To summarize, the combined estimator is the best of the realistic estimators
implemented so far. However, comparison with the oracle estimator shows that
there is still much room for improvement. Hence, it may be worthwhile to explore
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Figure 9.8: gcWorkPerTime (bytes copied / bytes allocated) for different estimators.
The Cbgc AOG bars are the same as in Figure 9.2, the other bars are new.

some of the alternative estimators that Section 6.1.4 suggests.

9.5.3 Choosers

So far, this chapter reported results for the greedy chooser instead of the optimal
flow-based chooser. This section compares the gcWorkPerTime, maxFootprint, avg-
WorkPerGc, and maxWorkPerGc metrics from Sections 9.2 to 9.4 for CbgcAOG
and CbgcAOF. Chapter 7 describes how the two choosers work.

Table 9.3 shows the results. Column “Average time choose” is the average wall
clock time for running the Java implementations of the choosers in gcSim, on a
1.4GHz Pentium 4 with 1GB of RAM. The unit is seconds.

The metrics “GC work per time”, “maximum footprint”, and “average and max-
imum work per GC” evaluate how the quality of the chooser affects overall GC per-
formance. If the chooser makes good choices, the numbers are lower; if it makes bad
choices, they are higher. In almost all cases, the flow-based and the greedy chooser
make choices of identical quality. The only exceptions occur for the programs ip-
sixql, xalan, and pseudojbb. For ipsixql, the greedy chooser turns out to improve
overall GC performance. At first glance, this seems to contradict the optimality of
the flow-based chooser; but it can happen if the choosers make different choices of
similar quality that lead to different fragmentation effects down the line.

The wall-clock times have to be taken with a grain of salt, since the choosers are
not optimized for running quickly. The flow-based chooser implemented in gcSim
uses the cubic lift-to-front flow algorithm described in [42], but in the literature,
there are algorithms with better complexity (e.g. [59]). The greedy chooser is not
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Table 9.3: Performance of different choosers.

Program GC Work Maximum Work per GC Average
per Time Footprint Average Maximum Time Choose

AOF AOG AOF AOG AOF AOG AOF AOG AOF AOG
power 0.000 0.000 0.500 0.500 0.000 0.000 0.000 0.000 0.11s 0.13s
deltablue 0.000 0.000 0.500 0.500 0.000 0.000 0.000 0.000 1.33s 0.10s
bh 0.000 0.000 0.500 0.500 0.000 0.000 0.000 0.000 0.19s 0.11s
health 0.000 0.000 0.500 0.500 0.000 0.000 0.000 0.000 0.62s 0.11s
db 0.000 0.000 0.500 0.500 0.000 0.000 0.000 0.000 0.34s 0.10s
compress 0.000 0.000 0.498 0.498 0.000 0.000 0.000 0.000 3.97s 0.04s
mtrt 0.057 0.057 0.530 0.530 0.000 0.000 0.037 0.037 2.14s 0.12s
ipsixql 0.151 0.137 0.532 0.518 0.000 0.000 0.054 0.049 4.81s 0.13s
jess 0.236 0.236 0.538 0.538 0.001 0.001 0.046 0.046 6.69s 0.18s
jack 0.092 0.092 0.537 0.537 0.000 0.000 0.047 0.047 3.03s 0.15s
xalan 0.333 0.328 0.536 0.561 0.001 0.001 0.045 0.130 12.62s 0.32s
pseudojbb 0.239 0.240 0.550 0.549 0.000 0.000 0.081 0.081 4.25s 0.18s
javac 0.234 0.234 0.564 0.564 0.000 0.000 0.076 0.076 5.02s 0.24s

very efficient either, it builds up auxiliary data structure for every choice that could
be cached in a better implementation.

Table 9.3 shows that the wall-clock time of the flow-based chooser is quite high.
In fact, given that a GC should take less than around 0.3 seconds to be imperceptible
by the user, it can probably not afford the flow-based chooser, even if it is optimized
by an order of magnitude. The greedy chooser performs much better, and with a
little more optimization, its choice times will be acceptable.

9.6 Sensitivity to heap size and block size

So far this chapter reported results for a heap size of 3.0 times the high watermark
and a block size of 1KB. This section considers how the results change when using
different heap and block sizes.

9.6.1 Heap sizes

Assuming zero fragmentation, a copying collector needs at least a heap size of 2.0
times the high watermark to work, since it keeps a copy reserve. Previous research
indicates that a heap size of 2.5 times the high watermark is tight and a heap size
of 4.0 times the high watermark is loose [21].

Table 9.4 shows the gcWorkPerTime metric from Section 9.2 using three different
heap sizes. For all heap sizes and all benchmarks except for jess the relative per-
formance of CbgcAOG and Appel is the same. For benchmark jess, CbgcAOG
performs worse than Appel at heap sizes 2.5 and 3.0.

While not all experiments in this chapter were repeated with a range of heap
sizes, Table 9.4 gives some confidence that the results hold for other heap sizes as
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Table 9.4: gcWorkPerTime (bytes copied / bytes allocated) for different heap sizes.

Program HeapSizeFrac 2.5 HeapSizeFrac 3.0 HeapSizeFrac 4.0
Appel CbgcAOG Appel CbgcAOG Appel CbgcAOG

power 0.679 0.000 0.676 0.000 0.000 0.000
deltablue 0.634 0.160 0.632 0.000 0.000 0.000
bh 0.593 0.075 0.588 0.000 0.000 0.000
health 0.596 0.071 0.579 0.000 0.000 0.000
db 0.433 0.000 0.431 0.000 0.430 0.000
compress 0.384 0.020 0.330 0.000 0.312 0.000
mtrt 0.277 0.150 0.257 0.057 0.248 0.029
ipsixql 1.078 0.342 0.390 0.137 0.173 0.049
jess 0.132 0.541 0.128 0.236 0.121 0.101
jack 0.397 0.202 0.160 0.092 0.134 0.050
xalan 0.570 0.373 0.634 0.328 0.467 0.126
pseudojbb 0.641 0.539 0.338 0.240 0.187 0.084
javac 0.734 0.565 0.405 0.234 0.183 0.113

well.

9.6.2 Block sizes

All data presented in this chapter uses a block size of 1KB. The motivation for
this small block size was to reduce potential internal fragmentation, especially when
Cbgc uses a large number of partitions. Since Appel uses only two partitions, it is
unlikely to be affected by a different block size.

Experiments with block size 4KB revealed that the numbers for each individual
collector are virtually the same with block size 1KB as they are with block size 4KB.
The small variations appear unrelated to the collector.

9.7 Conclusions

In the simulator, even a simplistic member of the Cbgc family outperforms Ap-
pel with respect to pause times and memory footprint. The experiments with
oracle-based Cbgc reveal that Cbgc has potential to dramatically improve upon
all performance aspects of existing garbage collectors.

A partitioning needs to be more fine-grained than types for Cbgc to yield good
cost in time. The coarsest partitioning (putting all objects in one partition) would
correspond to Semi.

The realistic combined estimator is a good start at obtaining low cost in time, but
there is still much room for improvement with better estimators. A bad estimator
can lead Cbgc totally astray.

The greedy chooser is simple and close to optimal.
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Chapter 10

Pointer Analysis for Java

Chapter 9 indicates that connectivity-based garbage collection needs a partitioning
based on allocation sites to perform well. One such analysis is Andersen’s pointer
analysis, and Section 5.3.5 describes how to use it for partitioning. This chapter
describes how to make Andersen’s analysis work for all of Java; it is based on the
ECOOP 2004 paper “Pointer analysis in the presence of dynamic class loading”.

Many optimizations need precise pointer analyses to be effective. Unfortunately,
some Java features, such as dynamic class loading, reflection, and native methods,
make pointer analyses difficult to develop. Hence, prior pointer analyses for Java
either ignore these features or are overly conservative. This chapter presents the
first non-trivial pointer analysis that deals with all Java language features.

This chapter identifies all problems in performing Andersen’s pointer analysis for
the full Java language, presents solutions to those problems, and uses a full imple-
mentation of the solutions in Jikes RVM for validation and performance evaluation.
The results from this work should be transferable to other analyses and to other
languages.

Pointer analysis benefits many optimizations, such as inlining, load elimination,
code movement, stack allocation, and parallelization. Unfortunately, dynamic class
loading, reflection, and native code make ahead-of-time pointer analysis of Java
programs impossible.

This chapter presents the first non-trivial pointer analysis that works for all of
Java. Most prior papers assume that all classes are known and available ahead of
time (e.g., [91, 92, 105, 133]). The few papers that deal with dynamic class loading
assume restrictions on reflection and native code [25, 87, 101, 103]. Prior work makes
these simplifying assumptions because they are acceptable in some contexts, because
dealing with the full generality of Java is difficult, and because the advantages of
the analyses often outweigh the disadvantages of only handling a subset of Java.

This chapter describes how to overcome the restrictions of prior work in the
context of Andersen’s pointer analysis [6], so the benefits become available in the
general setting of an executing Java virtual machine. This chapter:

(a) identifies all problems of performing Andersen’s pointer analysis for the full
Java language,
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(b) presents a solution for each of the problems,

(c) reports on a full implementation of the solutions in Jikes RVM,

(d) validates, for a set of benchmark runs, that the list of problems is complete,
the solutions are correct, and the implementation works, and

(e) evaluates the efficiency of the implementation.

The performance results show that the implementation is efficient enough for
stable long-running applications. However, because Andersen’s algorithm has cubic
time complexity, and because Jikes RVM, which is itself written in Java, leads to
a large code base even for small benchmarks, performance needs improvements for
short-running applications. Such improvements are an open challenge; they could
be achieved by making Andersen’s implementation in Jikes RVM more efficient, or
by using a cheaper analysis.

The contributions from this work should be transferable to

• Other analyses: Andersen’s analysis is a whole-program analysis consisting of
two steps: modeling the code and computing a fixed-point on the model. Sev-
eral other algorithms follow the same pattern, such as VTA [121], XTA [126],
or Das’s one level flow algorithm [43]. Algorithms that do not require the
second step, such as CHA [44, 51] or Steensgaard’s unification-based algo-
rithm [114], are easier to perform in an online setting. Andersen’s analysis
is flow-insensitive and context-insensitive. While this chapter should also be
helpful for performing flow-sensitive or context-sensitive analyses online, those
pose additional challenges (multithreading and exceptions, and multiple calling
contexts) that need to be addressed.

• Other languages: This chapter shows how to deal with dynamic class loading,
reflection, and native code in Java. Other languages have similar features,
which pose similar problems for pointer analysis.

10.1 Motivation

Java features such as dynamic class loading, reflection, and native methods prohibit
static whole-program analyses. This chapter identifies all Java features that cre-
ate challenges for pointer analysis; this section focuses just on class loading, and
discusses why it precludes static analysis.

10.1.1 It is not known statically where a class will be loaded from.

Java allows user-defined class loaders, which may have their own rules for where
to look for the bytecode, or even generate it on-the-fly. A static analysis cannot
analyze those classes. User-defined class loaders are widely used in production-
strength commercial applications, such as Eclipse [125] and Tomcat [124].
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10.1.2 It is not known statically which class will be loaded.

Even an analysis that restricts itself to the subset of Java without user-defined class
loaders cannot be fully static, because code may still load statically unknown classes
with the system class loader. This is done by invoking Class.forName(String name),
where name can be computed at runtime. For example, a program may compute the
localized calendar class name by reading an environment variable. One approach to
dealing with this issue would be to assume that all calendar classes may be loaded.
This would result in a less precise solution, if, for example, at each customer’s site,
only one calendar class is loaded. Even worse, the relevant classes may be available
only in the execution environment, and not in the development environment. Only
an online analysis could analyze such a program.

10.1.3 It is not known statically when a given class will be loaded.

If the classes to be analyzed are available only in the execution environment, but
Class.forName is not used, one could imagine avoiding static analysis by attempting
a whole-program analysis during JVM start-up, long before the analyzed classes will
be needed. The Java specification says it should appear to the user as if class loading
is lazy, but a JVM could just pretend to be lazy by showing only the effects of lazy
loading, while actually being eager. This is difficult to engineer in practice, however.
One would need a deferral mechanism for various visible effects of class loading. An
example for such a visible effect would be a static field initialization of the form

static HashMap hashMap = new HashMap(Constants.CAPACITY);
Suppose that Constants.CAPACITY has the illegal value −1. The effect, an Ex-

ceptionInInitializerError, should only become visible when the class containing the
static field is loaded. Furthermore, hashMap should be initialized after CAPACITY,
to ensure that the latter receives the correct value. Loading classes eagerly and still
preserving the proper (lazy) class loading semantics is challenging.

10.1.4 It is not known statically whether a given class will be
loaded.

Even if one ignores the order of class loading, and handles only a subset of Java
without explicit class loading, implicit class loading still poses problems for static
analyses. A JVM implicitly loads a class the first time executing code refers to it, for
example, by creating an instance of the class. Whether a program will load a given
class is undecidable, as Figure 10.1 illustrates: a run of “java Main” does not load
class C; a run of “java Main anArgument” loads class C, because Line 5 creates
an instance of C. One can observe this by whether Line 10 in the static initializer
prints its message. In this example, a static analysis would have to conservatively
assume that class C will be loaded, and to analyze it. In general, a static whole-
program analysis would have to analyze many more classes than necessary, making
it inefficient (analyzing more classes costs time and space) and less precise (the code
in those classes may exhibit behavior never encountered at runtime).
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1: class Main {
2: public static void main(String[ ] argv) {
3: C v = null;
4: if (argv.length > 0)
5: v = new C();
6: }
7: }
8: class C {
9: static {

10: System.out.println("loaded class C");
11: }
12: }

Figure 10.1: Class loading example.

10.2 Related work

This chapter shows how to enhance Andersen’s pointer analysis to analyze the full
Java programming language. Section 10.2.1 puts Andersen’s pointer analysis in
context. Section 10.2.2 discusses related work on online, interprocedural analyses.
Section 10.2.3 discusses related work on using Andersen’s analysis for Java. Finally,
Section 10.2.4 discusses work related to the validation methodology.

10.2.1 Static pointer analyses

The body of literature on pointer analyses is vast [73]. At one extreme, exemplified
by Steensgaard [114] and type-based analyses [48, 65, 126], the analyses are fast,
but imprecise. At the other extreme, exemplified by shape analyses [71, 107], the
analyses are slow, but precise enough to discover the shapes of many data structures.
In between these two extremes there are many pointer analyses, offering different
cost-precision tradeoffs.

The goal of the research presented in this chapter was to choose a well-known
analysis and to extend it to handle all features of Java. This goal was motivated by
the need to build a pointer analysis to support connectivity-based garbage collection,
for which type-based analyses are too imprecise (Section 9.5.1). Liang et al. [93]
report that it would be very hard to significantly improve the precision of Andersen’s
analysis without biting into the much more expensive shape analysis. This left a
choice between Steensgaard’s [114] and Andersen’s [6] analysis. Andersen’s analysis
is less efficient, but more precise [74, 109]. We decided to use Andersen’s analysis,
because it poses a superset of the Java-specific challenges posed by Steensgaard’s
analysis, leaving the latter (or points in between) as a fall-back option.

10.2.2 Online interprocedural analyses

An online interprocedural analysis is an interprocedural analysis that occurs during
execution, and thus, can correctly deal with dynamic class loading.
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10.2.2.1 Demand-driven interprocedural analyses

A number of pointer analyses are demand-driven, but not online [2, 30, 32, 69, 90,
132]. All of these analyses build a representation of the static whole program, but
then compute exact solutions only for parts of it, which makes them more scalable.
None of these papers discuss issues specific to dynamic class loading.

10.2.2.2 Incremental interprocedural analyses

Another related area of research is incremental interprocedural analysis [27, 41, 62,
64]. The goal of this line of research is to avoid a reanalysis of the complete program
when a change is made after an interprocedural analysis has been performed. This
chapter differs in that it focuses on the dynamic semantics of the Java programming
language, not programmer modifications to the source code.

10.2.2.3 Extant analysis

Sreedhar, Burke, and Choi [113] describe extant analysis, which finds parts of the
static whole program that can be safely optimized ahead of time, even when new
classes may be loaded later. It is not an online analysis, but reduces the need for
one in settings where much of the program is available statically.

10.2.2.4 Analyses that deal with dynamic class loading

Below is a discussion of some analyses that deal with dynamic class loading. None
of these analyses deals with reflection or JNI, or validate their analysis results.
Furthermore, all are less precise than Andersen’s analysis.

Pechtchanski and Sarkar [101] present a framework for interprocedural whole-
program analysis and optimistic optimization. They discuss how the analysis is
triggered (when newly loaded methods are compiled), and how to keep track of what
to de-optimize (when optimistic assumptions are invalidated). They also present an
example online interprocedural type analysis. Their analysis does not model value
flow through parameters, which makes it less precise, as well as easier to implement,
than Andersen’s analysis.

Bogda and Singh [25] and King [87] adapt Ruf’s escape analysis [106] to deal
with dynamic class loading. Ruf’s analysis is unification-based, and thus less precise
than Andersen’s analysis. Escape analysis is a simpler problem than pointer analysis
because the impact of a method is independent of its parameters and the problem
doesn’t require a unique representation for each heap object [36]. Bogda and Singh
discuss tradeoffs of when to trigger the analysis, and whether to make optimistic or
pessimistic assumptions for optimization. King focuses on a specific client, a garbage
collector with thread-local heaps, where local collections require no synchronization.
Whereas Bogda and Singh use a call graph based on capturing call edges at their
first dynamic execution, King uses a call graph based on rapid type analysis [14].
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Qian and Hendren [103], in work concurrently with the work for this chapter,
adapt Tip and Palsberg’s XTA [126] to deal with dynamic class loading. The main
contribution of their paper is a low-overhead call edge profiler, which yields a precise
call graph on which XTA is based. Even though XTA is weaker than Andersen’s
analysis, both have separate constraint generation and constraint propagation steps,
and thus pose similar problems. Qian and Hendren solve the problems posed by dy-
namic class loading similarly to the way this chapter solves them; for example, their
approach to unresolved references is analogous to the approach in Section 10.3.5.

10.2.3 Andersen’s analysis for static Java

A number of papers describe how to use Andersen’s analysis for Java [91, 92, 105,
133]. None of these deal with dynamic class loading. Nevertheless, they do present
solutions for various other features of Java that make pointer analyses difficult (ob-
ject fields, virtual method invocations, etc.).

Rountev, Milanova, and Ryder [105] formalize Andersen’s analysis for Java us-
ing set constraints, which enables them to solve it with Bane (Berkeley ANalysis
Engine) [50]. Liang, Pennings, and Harrold [92] compare both Steensgaard’s and
Andersen’s analysis for Java, and evaluate trade-offs for handling fields and the
call graph. Whaley and Lam [133] improve the efficiency of Andersen’s analysis
by using implementation techniques from CLA [70], and improve the precision by
adding flow-sensitivity for local variables. Lhoták and Hendren [91] present Spark
(Soot Pointer Analysis Research Kit), an implementation of Andersen’s analysis in
Soot [131], which provides precision and efficiency tradeoffs for various components.

Prior work on implementing Andersen’s analysis differs in how it represents con-
straint graphs. There are many alternatives, and each one has different cost/benefit
tradeoffs. Section 10.3.2.1 discusses these alternatives.

10.2.4 Validation methodology

The validation methodology compares points-to sets computed by the analysis to
actual pointers at runtime. This is similar to limit studies that other researchers
have used to evaluate and debug various compiler analyses [48, 88, 93].

10.3 Algorithm

Section 10.3.1 presents the architecture for performing Andersen’s pointer analysis
online. The subsequent sections discuss parts of the architecture that deal with: con-
straint finding (10.3.2), call graph building (10.3.3), constraint propagation (10.3.4),
type resolution (10.3.5), and other constraint generating events (10.3.6).

10.3.1 Architecture

As mentioned in Section 10, Andersen’s algorithm has two steps: finding the con-
straints that model the code semantics of interest, and propagating these constraints
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until a fixed point is reached. In an offline setting, the first step requires a scan of the
program and its call graph. In an online setting, this step is more complex, because
parts of the program are “discovered” during execution of various VM events. Fig-
ure 10.2 shows the architecture for performing Andersen’s pointer analysis online.
The events during virtual machine execution (left column) generate inputs to the
analysis. The analysis (dotted box) consists of four components (middle column)
that operate on shared data structures (right column). Clients (bottom) trigger the
constraint propagator component of the analysis, and consume the outputs. The
outputs are represented as points-to sets in the constraint graph. In an online set-
ting, the points-to sets conservatively describe the pointers in the program until
there is an addition to the constraints.
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Figure 10.2: Architecture for performing Andersen’s pointer analysis online. The
numbers in parentheses refer to sections in this chapter.

When used offline, Andersen’s analysis requires only a part of the architecture
in Figure 10.2. In an offline setting, the only input comes from method compilation.
It is used by the constraint finder and the call graph builder to create a constraint
graph. After that, the constraint propagator finds a fixed-point on the constraint
graph. The results are consumed by clients.

Four additions to the architecture make Andersen’s analysis work online:

Building the call graph online. Andersen’s analysis relies on a call graph for
interprocedural constraints. This chapter uses an online version of CHA (class
hierarchy analysis [44, 51]) for the call graph builder. CHA is an offline whole-
program analysis, Section 10.3.3 describes how to make it work online.

Supporting re-propagation. Method compilation and other constraint-generating
events happen throughout the execution. Where an offline analysis can prop-
agate once after all constraints have been found, the online analysis has to
propagate whenever a client needs points-to information and new constraints
have been created since the last propagation. Section 10.3.4 describes how the
propagator starts with its previous solution and a worklist of changed parts in
the constraint graph to avoid incurring the full propagation cost every time.
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Table 10.1: Constraint graph representation.
Node kind Represents concrete entities Flow sets Points-to sets
h-node Set of heap objects, e.g., all objects al-

located at a particular allocation site
none none

v-node Set of program variables, e.g., a static
variable, or all occurrences of a local
variable

flowTo[v],
flowTo[v.f ]

pointsTo[h]

h.f -node Instance field f of all heap objects rep-
resented by h

none pointsTo[h]

v.f -node Instance field f of all h-nodes pointed
to by v

flowFrom[v],
flowTo[v]

none

Supporting unresolved types. The constraint finder may find constraints that
involve as-yet unresolved types. But both the call graph builder and the
propagator rely on resolved types for precision; for example, the propagator
filters points-to sets by types. Section 10.3.5 describes how the resolution
manager defers communicating constraints from the constraint finder to other
analysis components until the involved types are resolved.

Capturing more input events. A pointer analysis for Java has to deal with fea-
tures such as reflection and native code, in addition to dynamic class loading.
Section 10.3.6 describes how to handle all the other events during virtual ma-
chine execution that may generate constraints.

10.3.2 Constraint finder

Section 10.3.2.1 describes the constraint graph data structure, which models the
data flow of the program. Section 10.3.2.2 describes how code is translated into
constraints at method compilation time. The approach to representing the constraint
graph and analyzing code in this chapter combines ideas from various earlier papers
on offline implementation of Andersen’s analysis.

10.3.2.1 Constraint graph

The constraint graph has four kinds of nodes that participate in constraints. The
constraints are stored as sets at the nodes. Table 10.1 describes the nodes, intro-
ducing the notation that is used in the remainder of this chapter, and shows which
sets are stored at each node. The node kinds in “[· · ·]” are the kinds of nodes in the
set.

Flow-to sets (Column 3 of Table 10.1) represent a flow of values (assignments,
parameter passing, etc.), and are stored with v-nodes and v.f -nodes. For example,
if v′.f ∈ flowTo(v), then v’s pointer r-value may flow to v′.f . Flow-from sets are the
inverse of flow-to sets. In the example, this would mean v ∈ flowFrom(v′.f).

Points-to sets (Column 4 of Table 10.1) represent the set of objects (r-values)
that a pointer (l-value) may point to, and are stored with v-nodes and h.f -nodes.
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Since it stores points-to sets with h.f -nodes instead of v.f -nodes, the analysis is field
sensitive [91].

The constraint finder models program code by v-nodes, v.f -nodes, and their
flow sets. Based on these, the propagator computes the points-to sets of v-nodes
and h.f -nodes. For example, if a client of the pointer analysis is interested in whether
a variable p may point to objects allocated at an allocation site a, it checks whether
the h-node for a is an element of the points-to set of the v-node for p.

Each h-node has a map from fields f to h.f -nodes (i.e., the nodes that repre-
sent the instance fields of the objects represented by the h-node). In addition to
language-level fields, each h-node has a special node h.ftd that represents the field
containing the reference to the type descriptor for the heap node. A type descriptor
is implemented as a TIBp.188 object in Jikes RVM, and thus, must be modeled by the
analysis. For each h-node representing arrays of references, there is a special node
h.felems that represents all of their elements. Thus, the analysis does not distinguish
between different elements of an array.

There are many alternatives for storing the flow and points-to sets. For example,
the analysis described here represents the data flow between v-nodes and h.f -nodes
implicitly, whereas Bane represents it explicitly [54, 105]. Thus, the analysis saves
space compared to Bane, but may have to perform more work at propagation time.
As another example, CLA [70] stores reverse points-to sets at h-nodes, instead of
storing forward points-to sets at v-nodes and h.f -nodes. The forward points-to sets
are implicit in CLA and must therefore be computed after propagation to obtain
the final analysis results. These choices affect both the time and space complexity of
the propagator. As long as it can infer the needed sets during propagation, an im-
plementation can decide which sets to represent explicitly. In fact, a representation
may even store some sets redundantly: for example, to obtain efficient propagation,
the representation for this chapter uses redundant flow-from sets.

Finally, there are many choices for how to implement the sets. The Spark
paper evaluates various data structures for representing points-to sets [91], finding
that hybrid sets (using lists for small sets, and bit-vectors for large sets) yield the
best results. The shared bit-vector implementation from CLA [68] turns out to be
even more efficient than the hybrid sets used by Spark.

10.3.2.2 Method compilation

The left column of Figure 10.2 shows the various events during virtual machine
execution that invoke the constraint finder. This section is only concerned with
finding intraprocedural constraints during method compilation; later sections discuss
other kinds of events.

The intraprocedural constraint finder analyzes the code of a method, and models
it in the constraint graph. It is a flow-insensitive pass of the optimizing compiler of
Jikes RVM, operating on the high-level register-based intermediate representation
(HIR). HIR decomposes access paths by introducing temporaries, so that no access
path contains more than one pointer dereference.

Column “Actions” in Table 10.2 gives the actions of the constraint finder when it
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encounters the statement in Column “Statement”. Column “Represent constraints”
shows the constraints implicit in the actions of the constraint finder using mathe-
matical notation.

Table 10.2: Intraprocedural constraint finder.
Statement Actions Represent constraints
v′ = v (move v → v′) flowTo(v).add(v′) pointsTo(v)⊆pointsTo(v′)
v′ = v.f (load v.f → v′) flowTo(v.f).add(v′) ∀h ∈pointsTo(v) :

pointsTo(h.f)⊆pointsTo(v′)
v′.f = v (store v → v′.f) flowTo(v).add(v′.f), ∀h ∈pointsTo(v′) :

flowFrom(v′.f).add(v) pointsTo(v)⊆pointsTo(h.f)
`: v = new . . . (alloc h` → v) pointsTo(v).add(h`) {h`} ⊆pointsTo(v)

In addition to the actions in Table 10.2, the analysis needs to address some more
issues during method compilation.
10.3.2.2.1 Unoptimized code

The intraprocedural constraint finder is implemented as a pass of the Jikes RVM
optimizing compiler. However, as discussed in Section 2.1.1, Jikes RVM compiles
some methods only with a baseline compiler, which does not use a representation that
is amenable to constraint finding. The analysis handles such methods by running
the constraint finder as part of a truncated optimizing compilation. Other virtual
machines, where some code is not compiled at all, but interpreted, can take a similar
approach.
10.3.2.2.2 Recompilation of methods

Many JVMs, including Jikes RVM, may recompile a method (at a higher op-
timization level) if it executes frequently. The recompiled methods may have new
variables or code introduced by optimizations (such as inlining). Since each inlining
context of an allocation site is modeled by a separate h-node, the analysis generates
new constraints for the recompiled methods and integrates them with the constraints
for any previously compiled versions of the method.
10.3.2.2.3 Magic

Jikes RVM has some internal “magic” operations, for example, to allow direct
manipulation of pointers. The compilers expand magic in special ways directly into
low-level code. Likewise, the analysis expands magic in special ways directly into
constraints.

10.3.3 Call graph builder

For each call-edge, the analysis generates constraints that model the data flow
through parameters and return values. Parameter passing is modeled as a move
from actuals (at the call-site) to formals (of the callee). Each return statement in a
method m is modeled as a move to a special v-node vretval(m). The data flow of the
return value to the call-site is modeled as a move to the v-node that receives the
result of the call.

The analysis uses CHA (Class Hierarchy Analysis [44, 51]) to find call-edges. A
more precise alternative to CHA is to construct the call graph on-the-fly based on
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the results of the pointer analysis. We decided against that approach because prior
work indicated that the modest improvement in precision does not justify the cost in
efficiency [91]. In work concurrent with the work for this chapter, Qian and Hendren
developed an even more precise alternative based on low-overhead profiling [103].

CHA is a static whole-program analysis, but to support Andersen’s analysis
online, CHA must also run online, i.e., deal with dynamic class loading. The key to
solving this problem is the observation that for each call-edge, either the call-site is
compiled first, or the callee is compiled first. The constraints for the call-edge are
added when the second of the two is compiled. This works as follows:

• When encountering a method m(vformal1(m), . . . , vformaln(m)), the call graph
builder

– creates a tuple Im = 〈vretval(m), vformal1(m), . . . , vformaln(m)〉 for m as a
callee,

– finds all corresponding tuples for matching call-sites that have been com-
piled in the past, and adds constraints to model the moves between the
corresponding v-nodes in the tuples, and

– stores the tuple Im for lookup on behalf of call-sites that will be compiled
in the future.

• When encountering a call-site c : vretval(c) = m(vactual1(c), . . . , vactualn(c)), the
call graph builder

– creates a tuple Ic = 〈vretval(c), vactual1(c), . . . , vactualn(c)〉 for call-site c,

– looks up all corresponding tuples for matching callees that have been
compiled in the past, and adds constraints to model the moves between
the corresponding v-nodes in the tuples, and

– stores the tuple Ic for lookup on behalf of callees that will be compiled
in the future.

Besides parameter passing and return values, there is one more kind of interpro-
cedural data flow that an analysis needs to model: exception handling. Exceptions
lead to flow of values (the exception object) between the site that throws an ex-
ception and the catch clause that catches the exception. For simplicity, the initial
prototype assumes that any throws can reach any catch clause; type filtering elim-
inates many of these possibilities later on. One could easily imagine making this
more precise, for example by assuming that throws can only reach catch clauses in
the current method or its (transitive) callers.

10.3.4 Constraint propagator

The propagator propagates points-to sets following the constraints that are implicit
in the flow sets until the points-to sets reach a fixed point. In order to avoid wasted
work, the algorithm maintains two pieces of information, a worklist of v-nodes and
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isCharged-bits on h.f -nodes, that enable it to propagate only the changed points-
to sets at each iteration (rather than propagating all points-to sets). The worklist
contains v-nodes whose points-to sets have changed and thus need to be propagated,
or whose flow sets have changed and thus the points-to sets need to be propagated
to additional nodes. The constraint finder initializes the worklist.

The algorithm in Figure 10.3, which is a variation of the algorithm from Spark [91],
implements the constraint propagator component of Figure 10.2.

1: while worklist not empty, or isCharged(h.f) for any h.f -node
2: while worklist not empty
3: remove node v from worklist
4: for each v′ ∈flowTo(v) // move v → v′

5: pointsTo(v′).add(pointsTo(v))
6: if pointsTo(v′) changed, add v′ to worklist
7: for each v′.f ∈flowTo(v) // store v → v′.f
8: for each h ∈pointsTo(v′)
9: pointsTo(h.f).add(pointsTo(v))

10: if pointsTo(h.f) changed, isCharged(h.f)← true
11: for each field f of v,
12: for each v′ ∈flowFrom(v.f) // store v′ → v.f
13: for each h ∈pointsTo(v)
14: pointsTo(h.f).add(pointsTo(v′))
15: if pointsTo(h.f) changed, isCharged(h.f)← true
16: for each v′ ∈flowTo(v.f) // load v.f → v′

17: for each h ∈pointsTo(v)
18: pointsTo(v′).add(pointsTo(h.f))
19: if pointsTo(v′) changed, add v′ to worklist
20: for each v.f
21: for each h ∈pointsTo(v), if isCharged(h.f)
22: for each v′ ∈flowTo(v.f) // load v.f → v′

23: pointsTo(v′).add(pointsTo(h.f))
24: if pointsTo(v′) changed, add v′ to worklist
25: for each h.f
26: isCharged(h.f)← false

Figure 10.3: Constraint propagator.

The propagator puts a v-node on the worklist when its points-to set changes.
Lines 4-10 propagate the v-node’s points-to set to nodes in its flow-to sets. Lines
11-19 update the points-to set for all fields of objects pointed to by the v-node. This
is necessary because for the h-nodes that have been newly added to v’s points-to
set, the flow to and from v.f carries over to the corresponding h.f -nodes. Line 12
relies on the redundant flow-from sets.

The propagator sets the isCharged-bit of an h.f -node to true when its points-to
set changes. To discharge an h.f -node, the algorithm needs to consider all flow-to
edges from all v.f -nodes that represent it (lines 20-24). This is why it does not
keep a worklist of charged h.f -nodes: to find their flow-to targets, it needs to iterate
over v.f -nodes anyway. This is the only part of the algorithm that iterates over all
(v.f -) nodes: all other parts of the algorithm attempt to update points-to sets while
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visiting only nodes that are relevant to the points-to sets being updated.
To improve the efficiency of this iterative part, the implementation uses a cache

that remembers the charged nodes in shared points-to sets. The cache speeds up
the loops at Lines 20 and 21 by an order of magnitude.

The propagator performs on-the-fly filtering by types: it only adds an h-node
to a points-to set of a v-node or h.f -node if it represents heap objects of a subtype
of the declared type of the variable or field. Lhoták and Hendren found that this
helps keep the points-to sets small, improving both precision and efficiency of the
analysis [91]. Our experiences confirm this observation.

The propagator creates h.f -nodes lazily the first time it adds elements to their
points-to sets, in lines 9 and 14. It only creates h.f -nodes if instances of the type of
h have the field f . This is not always the case, as the following example illustrates.
Let A,B, C be three classes such that C is a subclass of B, and B is a subclass of A.
Class B declares a field f . Let hA, hB, hC be h-nodes of type A,B, C, respectively.
Let v be a v-node of declared type A, and let v.pointsTo = {hA, hB, hC}. Now, data
flow to v.f should add to the points-to sets of nodes hB.f and hC .f , but there is no
node hA.f .

We also experimented with the optimizations partial online cycle elimination [50]
and collapsing of single-entry subgraphs [104]. They yielded only modest perfor-
mance improvements compared to shared bit-vectors [68] and type filtering [91].
Part of the reason for the small payoff may be that the data structures in this
chapter do not put h.f -nodes in flow-to sets (á la Bane [50]).

10.3.5 Resolution manager

The JVM specification allows a Java method to have unresolved references to fields,
methods, and classes [95]. A class reference is resolved when the class is instantiated,
when a static field in the class is used, or when a static method in the class is called.

The unresolved references in the code (some of which may never get resolved)
create two main difficulties for the analysis.

First, the CHA (class hierarchy analysis) that implements the call graph builder
does not work when the class hierarchy of the involved classes is not yet known. Our
current approach to this is to be conservative: if, due to unresolved classes, CHA
cannot yet decide whether a call edge exists, the call graph builder adds an edge if
the signatures match.

Second, the propagator uses types to perform type filtering and also for deciding
which h.f -nodes belong to a given v.f -node. If the involved types are not yet
resolved, this does not work. Therefore, the resolution manager defers all flow sets
and points-to sets involving nodes of unresolved types, thus hiding them from the
propagator:

• When the constraint finder creates an unresolved node, it registers the node
with the resolution manager. A node is unresolved if it refers to an unresolved
type. An h-node refers to the type of its objects; a v-node refers to its declared
type; and a v.f -node refers to the type of v, the type of f , and the type in
which f is declared.
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• When the constraint finder would usually add a node to a flow set or points-to
set of another node, but one or both of them are unresolved, it defers the
information for later instead. Table 10.3 shows the deferred sets stored at
unresolved nodes. For example, if the constraint finder finds that v should
point to h, but v is unresolved, it adds h to v’s deferred pointsTo set. Con-
versely, if h is unresolved, it adds v to h’s deferred pointedToBy set. If both
are unresolved, the points-to information is stored twice.

Table 10.3: Deferred sets stored at unresolved nodes.
Node kind Flow Points-to
h-node none pointedToBy[v]
v-node flowFrom[v], flowFrom[v.f ], flowTo[v], flowTo[v.f ] pointsTo[h]
h.f -node there are no unresolved h.f -nodes
v.f -node flowFrom[v], flowTo[v] none

• When a type is resolved, the resolution manager notifies all unresolved nodes
that have registered for it. When an unresolved node is resolved, it iterates
over all deferred sets stored at it, and attempts to add the information to the
real model that is visible to the propagator. If a node stored in a deferred set
is not resolved yet itself, the information will be added in the future when that
node gets resolved.

With this design, some constraints will never be added to the model, if their types
never get resolved. This saves unnecessary propagator work. Qian and Hendren
developed a similar design independently [103].

Before becoming aware of the subtleties of the problems with unresolved refer-
ences, we used an overly conservative approach: we added the constraints eagerly
even when we had incomplete information. This imprecision led to very large points-
to sets, which in turn slowed down the analysis prohibitively. Our current approach
is both more precise and more efficient.

10.3.6 Other constraint-generating events

This section discusses the remaining events in the left column of Figure 10.2 that
serve as inputs to the constraint finder.

10.3.6.1 VM building and start-up

As discussed in Section 2.1.2, Jikes RVM itself is written in Java, and begins ex-
ecution by loading a boot image (a file-based image of a fully initialized VM) of
pre-allocated Java objects for the JIT compilers, GC, and other runtime services.
These objects live in the same heap as application objects, so an analysis must model
them.

The analysis described here models all the code in the boot image as usual,
with the intraprocedural constraint finder pass from Section 10.3.2.2 and the call
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graph builder from Section 10.3.3. The analysis models the data snapshot of the
boot image with special boot image h-nodes, and with points-to sets of global v-
nodes and boot image h.f -nodes. The program that creates the boot image does
not maintain a mapping from objects in the boot image to their actual allocation
site, and thus, the boot image h-nodes are not allocation sites, instead they are
synthesized at boot image writing time. Finally, the analysis propagates on the
combined constraint system. This models how the snapshot of the data in the boot
image may be manipulated by future execution of the code in the boot image.

The above techniques for correctly handling the boot image can be extended to
form a general hybrid offline/online approach, where parts of the application are
analyzed offline (as the VM is now) and the rest of the application is handled by
the online analysis presented in this work. Such an approach could be useful for
applications where the programmer asserts no use of the dynamic language features
in parts of the application.

10.3.6.2 Class loading

Even though much of this chapter revolves around making Andersen’s analysis work
for dynamic class loading, most analysis actions actually happen during other events,
such as method compilation or type resolution. The only action that does take place
exactly at class loading time is that the constraint finder models the ConstantValue
bytecode attribute of static fields with constraints [95, Section 4.5].

10.3.6.3 Reflection execution

Java programs can invoke methods, access and modify fields, and instantiate objects
using reflection. Although approaches such as String analysis [37] could predict
which entities are manipulated in special cases, this problem is undecidable in the
general case. Thus, when compiling code that uses reflection, there is no way of
determining which methods will be called, which fields manipulated, or which classes
instantiated at runtime.

One solution is to assume the worst case. We felt that this was too conservative
and would introduce significant imprecision into the analysis for the sake of a few
operations that were rarely executed. Other pointer analyses for Java side-step this
problem by requiring users of the analysis to provide hand-coded models describing
the effect of the reflective actions [91, 133].

This chapter uses the solution of handling reflection when the code is actually
executed. This is done by instrumentations of the virtual machine service that
handles reflection with code that adds constraints dynamically. For example, if
reflection stores into a field, the constraint finder observes the actual source and
target of the store and generates a constraint that captures the semantics of the
store at that time.

This strategy for handling reflection introduces new constraints when the reflec-
tive code does something new. Fortunately, that does not happen very often. When
reflection has introduced new constraints and a client needs up-to-date points-to
results, it must trigger a re-propagation.
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10.3.6.4 Native code execution

The Java Native Interface (JNI) allows Java code to interact with dynamically loaded
native code. Usually, a JVM cannot analyze that code. Thus, an analysis does not
know (i) what values may be returned by JNI methods and (ii) how JNI methods
may manipulate data structures of the program.

The approach for this chapter is to be imprecise, but conservative, for return
values from JNI methods, while being precise for data manipulation by JNI methods.
If a JNI method returns a heap allocated object, the constraint finder assumes that
it could return an object from any allocation site. This is imprecise, but easy to
implement. The constraint propagation uses type filtering, and thus, will filter the
set of heap nodes returned by a JNI method based on types. If a JNI method
manipulates data structures of the program, the manipulations must go through the
JNI API, which Jikes RVM implements by calling Java methods that use reflection.
Thus, JNI methods that make calls or manipulate object fields are handled precisely
by the mechanism for reflection.

10.4 Validation

Implementing a pointer analysis for a complicated language and environment such
as Java and Jikes RVM is a difficult task: the pointer analysis has to handle nu-
merous corner cases, and missing any of the cases results in incorrect points-to sets.
An automatic validation mechanism helped debug the pointer analysis to a high
confidence level.

10.4.1 Validation mechanism

Validation of the pointer analysis results occurs at GC (garbage collection) time. As
GC traverses each pointer, it checks whether the points-to set captures the pointer:
(i) When GC finds a static variable p holding a pointer to an object o, the validation
code finds the nodes v for p and h for o. Then, it checks whether the points-to set
of v includes h. (ii) When GC finds a field f of an object o holding a pointer to an
object o′, the validation code finds the nodes h for o and h′ for o′. Then, it checks
whether the points-to set of h.f includes h′. If either check fails, it prints a warning
message.

To make the points-to sets correct at GC time, validation runs propagate the
constraints (Section 10.3.4) just before GC starts. As there is no memory available
to grow points-to sets at that time, Jikes RVM’s garbage collector sets aside some
extra space for this purpose.

The validation methodology relies on the ability to map concrete heap objects to
h-nodes in the constraint graph. To facilitate this, it adds an extra header word to
each heap object that maps it to its corresponding h-node in the constraint graph.
For h-nodes representing allocation sites, the allocation routine installs this header
word. Only validation runs use the extra word; except for validation, the pointer
analysis does not require any change to the object header.
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10.4.2 Validation anecdotes

The validation methodology helped find many bugs, some of which were quite subtle.
Below are two examples. In both cases, there was more than one way in which
bytecode could represent a Java-level construct. Both times, the analysis dealt
correctly with the more common case, and the other case was obscure, yet legal.
The validation methodology showed where the analysis missed something; without
it, we might not even have suspected that something was wrong.

10.4.2.1 Field reference class

In Java bytecode, a field reference consists of the name and type of the field, as well
as a class reference to the class or interface “in which the field is to be found” ([95,
Section 5.1]). Even for a static field, this may not be the class that declared the
field, but a subclass of that class. Originally, we had assumed that it must be the
exact class that declared the static field, and had written our analysis accordingly
to maintain separate v-nodes for static fields with distinct declaring classes. When
the bytecode wrote to a field using a field reference that mentions the subclass,
the v-node for the field that mentions the superclass was missing some points-to
set elements. That resulted in warnings from our validation methodology. Upon
investigating those warnings, we became aware of the incorrect assumption and
fixed it.

10.4.2.2 Field initializer attribute

In Java source code, a static field declaration has an optional initialization, for
example, “final static String s = "abc";”. In Java bytecode, this usually translates
into initialization code in the class initializer method <clinit>() of the class that
declares the field. But sometimes, it translates into a ConstantValue attribute of
the field instead ([95, Section 4.5]). Originally, we had assumed that class initializers
are the only mechanism for initializing static fields, and that we would find these
constraints when running the constraint finder on the <clinit>() method. But our
validation methodology warned us about v-nodes for static fields whose points-to sets
were too small. Knowing exactly for which fields that happened, we looked at the
bytecode, and were surprised to see that the <clinit>() methods didn’t initialize the
fields. Thus, we found out about the ConstantValue bytecode attribute, and added
constraints when class loading parses and executes that attribute (Section 10.3.6.2).

10.5 Clients

This section investigates two example clients of the analysis, and how they can deal
with the dynamic nature of the analysis.

Method inlining can benefit from pointer analysis: if the points-to set elements
of v all have the same implementation of a method m, the call v.m() has only one
possible target. Modern JVMs [8, 38, 99, 120] typically use a dual execution strategy,
where each method is initially either interpreted or compiled without optimizations.
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No inlining is performed for such methods. Later, an optimizing compiler that may
perform inlining recompiles the minority of frequently executing methods. Because
inlining is not performed during the initial execution, the analysis does not need
to propagate constraints until the optimizing compiler needs to make an inlining
decision.

Since the results of the pointer analysis may be invalidated by any of the events
in the left column of Figure 10.2, an inlining client must be prepared to invali-
date inlining decisions. Techniques such as code patching [38] and on-stack replace-
ment [52, 83] support invalidation. If instant invalidation is needed, the analysis
must repropagate every time it finds new constraints. There are also techniques for
avoiding invalidation of inlining decisions, such as pre-existence based inlining [45]
and guards [10, 84], that would allow the analysis to be lazy about repropagating
after it finds new constraints.

CBGC (connectivity-based garbage collection) is the topic of this dissertation.
Cbgc uses pointer analysis results to partition heap objects such that connected
objects are in the same partition, and the pointer analysis can guarantee the absence
of certain cross-partition pointers. Cbgc exploits the observation that connected
objects tend to die together [82], and certain subsets of partitions can be collected
while completely ignoring the rest of the heap.

Cbgc must know the partition of an object at allocation time. However, Cbgc
can easily combine partitions later if the pointer analysis finds that they are strongly
connected by pointers (Section 5.2.3). Thus, there is no need to perform a full
propagation at object allocation time. However, Cbgc does need full conservative
points-to information when performing a garbage collection; thus, Cbgc needs to
request a full propagation before collecting. Between collections, Cbgc does not
need conservative points-to information.

10.6 Performance

This section evaluates the efficiency of the pointer analysis implementation in Ji-
kes RVM 2.2.1. Prior work (e.g., [91]) has evaluated the precision of Andersen’s
analysis. In addition to the analysis itself, the modified version of Jikes RVM includes
the validation mechanism from Section 10.4. Besides the analysis and validation
code, the implementation also includes number of profilers and tracers to collect the
results presented in this section. For example, at each yield-point (method prologue
or loop back-edge), a stack walk determines whether the yield-point belongs to
analysis or application code, and counts it accordingly. All experiments use a 2.4GHz
Pentium 4 with 2GB of memory running Linux, kernel version 2.4.

Since Andersen’s analysis has cubic time complexity and quadratic space com-
plexity (in the size of the code), optimizations that increase the size of the code
can dramatically increase the constraint propagation time. In our experience, ag-
gressive inlining can increase constraint propagation time by up to a factor of 5 for
the benchmarks. In default mode, Jikes RVM performs inlining (and optimizations)
only inside the hot application methods, but is more aggressive about methods in
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Table 10.4: Benchmark programs.
Program Analyzed methods Loaded classes Run time
null 15,598 1,363 1s
javalex 15,728 1,389 37s
compress 15,728 1,391 14s
db 15,746 1,385 28s
mtrt 15,858 1,404 14s
mpegaudio 15,899 1,429 27s
jack 15,962 1,434 21s
richards 15,963 1,440 4s
hsql 15,992 1,424 424s
jess 16,158 1,527 29s
javac 16,464 1,526 66s
xalan 17,057 1,716 10s

the boot image. For the experiments in this chapter, Jikes RVM is more cautious
about inlining inside boot image methods by using a FastAdaptiveMarkSweep image
and disabling inlining at build time. During benchmark execution, Jikes RVM does,
however, perform inlining for hot boot image methods when recompiling them.

10.6.1 Benchmark characteristics

This chapter uses 12 of the Java benchmarks described in Section 2.2. Table 10.4
gives some benchmark characteristics relevant for pointer analysis. Column “Ana-
lyzed methods” gives the number of methods analyzed. A method is analyzed when
it is part of the boot image, or when the program executes it for the first time.
The analyzed methods include the benchmark’s methods, library methods called by
the benchmark, and methods belonging to Jikes RVM itself. The benchmark null
provides a baseline: its data represents approximately the amount that Jikes RVM
adds to the size of the application. This data is approximate because, for example,
some of the methods called by the optimizing compiler may also be used by the
application (e.g., methods on container classes). Column “Loaded classes” gives the
number of classes loaded by the benchmarks. Once again, the number of loaded
classes for the benchmark null provides a baseline. Finally, Column “Run time”
gives the run time for the benchmarks using the same configuration of Jikes RVM
as for the rest of this chapter, but without the pointer analysis.

The Jikes RVM methods and classes account for a significant portion of the code
in the benchmarks. Thus, the analysis has to deal with much more code than it
would have to in a JVM that is not written in Java. On the other hand, writing the
analysis itself in Java had significant software engineering benefits; for example, the
analysis relies on garbage collection for its data structures. In addition, the absence
of artifical boundaries between the analysis, other parts of the runtime system, and
the application exposes more opportunities for optimizations. Current trends show
that the benefits of writing system code in a high-level, managed, language are
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Figure 10.4: Yield-points versus analyzed methods for mpegaudio. The first shown
data point is the main() method.

gaining wider recognition. For example, Microsoft is pushing towards implementing
more of Windows in managed code.

Figure 10.4 shows how the number of analyzed method increase over a run of
the mpegaudio benchmark. The x-axis represents time measured by the number
of thread yield-points encountered in a run. There is a thread yield-point in the
prologue of every method and in every loop. The figure ignores yield-points that
occur in analysis code (this would be hard to do if one used real time for the x-axis).
The y-axis starts at 15,500: all methods analyzed before the first method in this
graph are in the boot image and are thus analyzed once for all benchmarks. The
graphs for other benchmarks have a similar shape, and are therefore omitted.

Figure 10.4 shows that there are two significant stages (around the 10 and 25
million yield-point marks) when the application is executing only methods that it
has encountered before. At other times, the application encounters new methods as
it executes. We expect that for longer running benchmarks (e.g., a webserver that
runs for days), the number of analyzed methods stabilizes after a few minutes of run
time. That point may be an ideal time to propagate the constraints and use the
results to perform optimizations.

10.6.2 Analysis cost

The analysis has two main costs: constraint finding and constraint propagation.
Constraint finding happens whenever the virtual machine compiles a new method,
loads a new class, etc. Constraint propagation happens whenever a client of the
pointer analysis needs points-to information. Define eager propagation to be prop-
agation after every event from the left column of Figure 10.2, if it generated new
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Table 10.5: Total allocation (in megabytes).
Benchmark Eager At GC Lazy No propagation No analysis
null 48.5 48.1 48.8 13.5 9.7
javalex 621.7 104.7 110.6 70.0 111.8
compress 416.2 230.0 167.0 129.3 130.2
db 394.4 213.8 151.0 112.7 113.6
mtrt 721.9 303.8 240.5 201.5 172.9
mpegaudio 755.9 145.8 83.1 42.8 137.0
jack 1,782.4 418.4 354.8 309.2 322.8
richards 1,117.8 61.3 67.7 26.6 12.6
hsql 4,047.0 3,409.6 3,343.8 3,291.1 3,444.6
jess 4,694.8 458.0 394.4 341.4 398.3
javac 2,023.0 450.4 381.3 328.2 429.3
xalan 6,074.9 166.4 200.4 131.5 37.6

constraints. Define lazy propagation to be propagation that occurs just once at the
end of the program execution.

10.6.2.1 Cost in space

Table 10.5 shows the total allocation for the benchmark runs. Column “No analy-
sis” gives the number of megabytes allocated by the program without the analysis.
Column “No propagation” gives the allocation when the analysis generates, but does
not propagate, constraints. Thus, this column gives the space overhead of just repre-
senting the constraints. Columns “Eager”, “Lazy”, and “At GC” give the allocation
when using eager, lazy, and at GC propagation. The difference between these and
the “No propagation” column represents the overhead of representing the points-to
sets. Sometimes doing more work actually reduces the amount of total allocation
(e.g., mpegaudio allocates more without any analysis than with lazy propagation).
This phenomenon occurs because the analysis is interleaved with the execution of the
benchmark program, and thus the Jikes RVM adaptive optimizer optimizes different
methods with the analysis than without the analysis.

Finally, since the boot image needs to include constraints for the code and data
in the boot image, the analysis inflates the boot image size from 31.5 megabytes to
73.4 megabytes.

10.6.2.2 Cost of constraint finding

Table 10.6 gives the percentage of overall execution time spent in generating con-
straints from methods (Column “Analyzing methods”) and from resolution events
(Column “Resolving classes and arrays”). These executions did not run any propa-
gations. Table 10.6 shows that generating constraints for methods is the dominant
part of constraint generation. Also, as the benchmark run time increases, the per-
centage of time spent in constraint generation decreases. For example, the time
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Table 10.6: Percent of execution time in constraint finding.
Program Analyzing methods Resolving classes and arrays
null 69.16% 3.68%
javalex 2.02% 0.39%
compress 5.00% 1.22%
db 1.77% 0.39%
mtrt 7.68% 1.70%
mpegaudio 6.23% 6.04%
jack 6.13% 2.10%
richards 21.98% 5.88%
hsql 0.29% 0.09%
jess 5.59% 1.24%
javac 3.20% 1.60%
xalan 26.32% 8.66%

spent in constraint finding is a negligible percentage of the run time for the longest
running benchmark, hsql.

10.6.2.3 Cost of propagation

Table 10.7 shows the cost of propagation. Columns “Count” give the number of
propagations that occur in the benchmark runs. Columns “Time” give the arith-
metic mean ± standard deviation of the time (in seconds) it takes to perform each
propagation. Table 10.7 includes the lazy propagation data to give an approximate
sense for how long the propagation would take if one were to use a static pointer
analysis. Recall, however, that these numbers are still not comparable to static anal-
ysis numbers of these benchmarks in prior work, since, unlike them, the analysis in
this chapter also analyzes the Jikes RVM compiler and other system services.

Table 10.7 shows that the mean pause time due to eager propagation varies
between 3.8 and 16.8 seconds for the real benchmarks. In contrast, a full (lazy)
propagation is much slower. Thus, the algorithm is effective in avoiding work on
parts of the program that have not changed since the last propagation.

Other results (omitted) showed that the propagation cost did not depend on
which of the events in the left column of Figure 10.2 generated new constraints that
were the reason for the propagation.

Figure 10.5 presents the spread of propagation times for the javac benchmark.
A point (x,y) in this graph says that propagation “x” took “y” seconds. Out of
1,107 propagations in javac, 524 propagations take under 1 second. The remaining
propagations are much more expensive (10 seconds or more), thus increasing the
average. The figure also shows that more expensive propagations occur later in
the execution. The omitted graphs for other benchmarks have a similar shape.
Although the figure presents the data for eager propagation, clients of the analysis
do not necessarily require eager propagation (Section 10.5).

As expected, the columns for propagation at GC in Table 10.7 show that if the
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Table 10.7: Propagation statistics (times in seconds).

Eager At GC Lazy
Program Count Time Count Time Count Time
null 1 135.6±0.0 1 120.7±0.0 1 137.8±0
javalex 166 13.6±22.0 1 120.7±0.0 1 158.4±0
compress 127 8.6±18.7 3 104.7±23.6 1 142.8±0
db 140 10.0±20.2 3 106.1±24.8 1 144.5±0
mtrt 262 5.5±14.4 3 106.8±24.7 1 148.0±0
mpegaudio 317 5.5±13.4 3 105.4±24.1 1 144.3±0
jack 392 10.9±17.8 3 114.4±33.8 1 161.8±0
richards 410 3.8±10.9 1 120.8±0.0 1 134.8±0
hsql 391 10.1±20.6 6 76.6±94.8 1 426.7±0
jess 734 16.8±20.5 3 117.7±38.5 1 182.4±0
javac 1,103 12.5±22.9 5 114.3±97.6 1 386.7±0
xalan 1,726 11.2±21.4 1 120.5±0.0 1 464.6±0
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Figure 10.5: Propagation times for javac (eager).
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analysis propagates less frequently, the individual propagations are more expensive;
they are still on average cheaper than performing a single full propagation at the
end of the program run. Recall that, for Java programs, performing a static analysis
of the entire program is not possible because what constitutes the “entire program”
is not known until it executes to completion.

10.6.3 Understanding the costs of constraint propagation

The speed of the constraint propagator (a few seconds to update points-to informa-
tion) may be adequate for long-running clients, but may not be feasible for short-
running clients. For example, a web server that does not touch new methods after
a few minutes of running can benefit from the current analysis: once the web server
stops touching new methods, the propagation time of the analysis goes down to zero.
Since the benchmark suite for this chapter does not include a server application, we
confirmed this behavior by running two benchmarks (javac and mpegaudio) multiple
times in a loop: after the first run, there was little to no overhead from constraint
finding or constraint propagation (well under 1%). On the other hand, an applica-
tion that only runs for a few minutes may find the analysis to be prohibitively slow.
Profiling the analysis showed that the worklist part (lines 2 to 19 in Figure 10.3)
takes up far more of the propagation time than the iterative part (lines 20 to 26 in
Figure 10.3). Thus, future work should first focus on the worklist part to improve
propagator performance.

10.7 Conclusions

This chapter describes and evaluates the first non-trivial pointer analysis that han-
dles all of Java. Java features such as dynamic class loading, reflection, and native
methods introduce many challenges for pointer analyses. Some of these prohibit
the use of static pointer analyses. This chapter validates the results of the analy-
sis against actual pointers created during program runs. It evaluates the analysis
by measuring many aspects of its performance, including the amount of work the
analysis must do at run time. The results show that the analysis is feasible and fast
enough for server applications.

Coming up with this analysis was probably the largest hurdle on the way to-
wards performing connectivity-based garbage collection in a Java virtual machine.
Chapter 11 describes Cbgc in Jikes RVM using the analysis from this chapter.
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Chapter 11

CBGC in a Virtual Machine

This chapter describes the design and prototype implementation of a Cbgc algo-
rithm in Jikes RVM. It discusses the various challenges that a Cbgc in a virtual
machine needs to overcome, presenting an engineering solution for each of these
challenges. The prototype is a proof of concept: it demonstrates that Cbgc can
work in a real-world system.

Sections 11.1 to 11.4 describe instances of the four building blocks of any collec-
tor in the family of connectivity-based garbage collectors. The prototype of Cbgc
in Jikes RVM uses an online version of Andersen’s pointer analysis for the parti-
tioning (Section 11.1); the greedy chooser (Section 11.3; the combined estimator
(Section 11.2); and mostly mark-sweep for partial garbage collection (Section 11.4).
Section 11.5 shows experimental results evaluating the performance of the prototype.
Section 11.6 concludes this chapter.

11.1 Partitioning

This section describes how the Cbgc implemented in Jikes RVM comes up with
partitions (Section 11.1.1), and how it represents the components of the partitioning,
namely the partition dag (Section 11.1.2) and the partition map (Section 11.1.3).

11.1.1 Coming up with partitions

The online version of Andersen’s analysis from Chapter 10 comes up with the par-
titioning for the prototype Cbgc in Jikes RVM. As Section 9.5.1 shows, an analysis
based on types is too imprecise to yield a partitioning for good Cbgc performance.
The analysis from Section 10 is the first pointer analysis for Java that is based on
allocation sites instead of types, and may therefore be precise enough for Cbgc. Of
course, Cbgc is a client of the online analysis that triggers propagations at garbage
collection time, since that is when it needs conservative analysis results.

Since propagation can happen at garbage collection time, and propagation usu-
ally allocates objects, Cbgc in Jikes RVM must allow for allocation at garbage
collection time. Usually, this is not possible, because the collection is triggered ex-
actly because no memory is available to perform allocation. To work around this
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difficulty, objects allocated on behalf of the analysis reside in a different area of the
heap that is not “full” at the collection. This segregation of regular objects and
analysis objects into different heap areas also has the useful side-effect of facilitating
separate measurements of the heap usage of the two kinds of objects.

Whereas the analysis as described in Chapter 10 uses an extra header word in
each object to keep track of its h-node id for validation, Cbgc in Jikes RVM does
not use this extra header word. This makes it possible to build a boot image of
Jikes RVM where no objects in the boot image or allocated at runtime have the
extra header word. Of course, the configuration with the extra header word is still
available, and it is useful for regression tests that validate the pointer analysis in
case new bugs crop up.

11.1.2 Partition dag

Conceptually, the partition dag is a directed acyclic graph where partitions are
nodes, and edges represent may-points-to information of objects in the partitions.
Cbgc in Jikes RVM uses a straight-forward adjacency list representation [42, Sec-
tion 23.1] based on Java objects: it maintains an array of partition nodes, each of
which is an object. Each partition has a list of partitions that are targets of its
outgoing edges.

When the online pointer analysis discovers new points-to relations that lead
to cycles in the partition dag, those are collapsed into a single partition. In the
representation, partitions reside in a fast union-find data structure [42, Chapter 22].
In other words, partitions are referenced via handles. When two partitions are
merged, one of them is chosen as the representative. An access of either handle
finds the representative, caches it, and returns it.

11.1.3 Partition map

The partition map maps objects to partitions. At allocation time, it determines into
which partition the new object goes. At garbage collection time, it tells the garbage
collector which partition the object belongs to; among other things, this determines
whether the collector even considers the object in the partial reachability traversal.

At allocation time, the partition map is based on the h-node id of the allocation
site. The pointer analysis in the compiler picks the h-node id and hardcodes it into
the allocation sequence. When the allocation sequence executes, it maps the h-node
id to a partition, and allocates the new object into that partition.

At garbage collection time, the partition map works differently for objects in
the boot image than for objects allocated at run time. Hence, as a first step, it
determines whether the object belongs to the boot image based on its address.

For objects in the boot image, the partition map then proceeds to look up the
type from the object header. As discussed in Section 10.3.6.1, the online pointer
analysis is flexible in which h-node ids it assigns to objects in the data snapshot of
the boot image. To enable the partition map, it just uses the same h-node id for
all objects of a given type in the boot image. Thus, at runtime, the type maps to a
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unique h-node, which in turn yields the partition.
For objects allocated at runtime, the partition map first determines the block

containing the address of the object. At runtime, blocks are dedicated to partitions,
and an array maps block ids to the partition they belong to. The partition map uses
this as the second step for mapping an object to its partition.

In all cases, the partition map employs the fast union-find data structure of
partitions from Section 11.1.2 to return the correct partition of an object even after
its original partition may have merged with others.

11.2 Estimator

Cbgc in Jikes RVM can use one of two estimators: the combined estimator or the
oracle estimator. Per default, it uses the combined estimator. But for validation or
as a point of reference, a build can opt to compile the oracle estimator into the boot
image instead, so it is used at every runtime garbage collection.

The combined estimator yields the best results among the realistic estimator
compared by Section 9. In Cbgc in Jikes RVM, it works exactly as discussed earlier,
except that it takes into account that some objects are immortal. Immortal objects
include objects in the boot image, as well as certain objects allocated at runtime,
such as TIBsp.188. Of course, the estimator “estimates” that all immortal objects
survive and none die.

In contrast to Section 9, where the oracle estimator was based on perfect Merlin
death times computed from a trace [72], the oracle estimator in Jikes RVM does not
have the luxury of a trace or any other device for predicting the future. Instead, it
obtains complete knowledge of the present (which objects are dead and which are
live) by performing two full reachability traversals. The first traversal marks and
counts all reachable objects, whereas the second traversal unmarks all reachable
objects again.

This two-traversal mechanism of the oracle estimator works because both traver-
sals reach exactly the same set of objects. Before the first traversal, all objects are
unmarked. At the end of the first traversal, all reachable objects are marked, whereas
all unreachable objects are still unmarked. The second traversal views marked ob-
jects as white, and thus, unmarks objects when it reaches them. By definition, it
never reaches an unreachable object, and thus, never gets confused that unmarked
objects can be either unreachable (not reached by the first traversal) or reachable
(reached by the first traversal, but also already reached by the second traversal). At
the end of the second traversal, all objects are unmarked again, which means that
everything looks exactly like before the oracle estimator started.

While the oracle estimator takes a long time and is not useful for realistic Cbgc,
where the goal is to avoid the cost of full traversals, it is useful for validation. In
a build with the oracle estimator, the reclamation phase of the garbage collector
asserts that it reclaims exactly as many objects as the oracle estimator predicted.
If that is not the case, either the estimator or the garbage collector have bugs.
Since the estimator code base is stable, it helps quickly detecting bugs introduced
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by changes to the code base of the rest of the garbage collector. In addition to
this GC validation, the implementation of Cbgc in Jikes RVM also piggy-backs the
validation of the pointer analysis onto the oracle estimator.

A limitation of the oracle estimator implementation is that while it perfectly
predicts how many bytes are live and dead in each partition, that does not necessarily
translate directly into reclaimed memory due to fragmentation. For example, if 1,000
bytes of a 4,096-byte block are dead, but 12 bytes survive, the block does not become
available for allocation of objects belonging to different partitions than the partition
that owns the block.

In Jikes RVM, both the combined estimator and the oracle estimator must care-
fully avoid any allocation. If an estimator were to allocate memory, it would change
the amount of live memory, which is exactly what it is trying to predict in the first
place. Of course, for the same reason an estimator must also avoid making any
objects unreachable.

11.3 Chooser

The prototype of Cbgc in Jikes RVM uses the greedy chooser, just as described
in Section 7.2. As the results in Section 9 show, the greedy chooser comes up with
near-optimal choices more quickly than the flow-based chooser.

Cbgc in Jikes RVM segregates objects into regular objects and analysis objects.
Analysis objects are allocated at garbage collection time, from a different area of the
heap than regular objects. The chooser uses different lower bounds for how much
memory must at least be reclaimed among regular and among analysis objects. That
way, if the estimates are accurate, the chooser makes sure that after the collection,
enough memory is available for the regular allocation that triggered the allocation
in the first place.

In Jikes RVM, the chooser must be careful to avoid allocating any objects or
making any objects unreachable. This is because the chooser relies on the accuracy
of the estimates; accurate estimates will become inaccurate if the amount of live
objects changes during chooser execution.

11.4 Partial garbage collection

Partial garbage collection is the second most difficult component of the prototype
Cbgc in Jikes RVM (the most difficult component is the online pointer analysis). It
can be described as mark-sweep Cbgc only to the same extent that that term applies
to the JMTk mark-sweep collector; in reality, it manages many objects with different
tricolor abstractions. The exact implementation details of partial garbage collection
for Cbgc in Jikes RVM are what shows that Cbgc works in a real system. The
material of this section is what the simulator of Section 9 abstracts from: challenges
that need to be solved for running Cbgc in a virtual machine.

Partial GC for Cbgc in Jikes RVM poses the following challenges:
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• Boot image objects are not segregated by partition, posing two challenges:
the partition map can not use the object address like for runtime-allocated
objects, and it is not easy to sweep all objects belonging to a given partition.
Section 11.1.3 described how the partition map deals with the first challenge
by using the type of boot image objects; Section 11.4.4.1 discusses how it solves
the second challenge with per-partition black object data structures.

• The propagator allocates objects at garbage collection time, which is prob-
lematic because garbage collections are triggered precisely because there is
no memory available to allocate objects into. As mentioned earlier, Cbgc in
Jikes RVM solves this challenge by segregating regular from analysis objects;
Section 11.4.1 describes how that works in the implementation.

• In Jikes RVM, the fields of scalars reside at lower memory addresses than their
headers, whereas the elements of arrays reside at higher addresses than their
headers (see Figure 2.1). However, unless small objects are segregated by size,
a sweep needs to find the header of an object from its address. Section 11.4.1
describes how to solve this challenge by segregating small scalars from small
arrays, and using the highest address of the one and the lowest address of the
other during sweeps.

• In Java, pointer analysis must run online to deal with dynamic class loading,
and new pointer analysis results may lead to merging of partitions. When that
happens, a fast union-find data structure allows retrieving the representative
partition, as discussed in Section 11.1.2. However, the challenge remains that
the state of mark bits in objects of merged partitions may be inconsistent;
Section 11.4.3 discusses how to avoid that by making sure mark bits remain
consistent in the presence of partial garbage collection.

• The abstract Cbgc algorithm from Figure 4.2 relies on the operation pickGray(p)
to pick a gray object in a given partition p, but JMTk provides only one global
shared work queue to keep track of all gray objects in all partitions. The solu-
tion to this challenge is to maintain per-partition gray object sets, as discussed
in Section 11.4.4.

• Finalizers may resurrect objects, which creates the challenge that a garbage
collector may not be able to reclaim an object even though it is unreachable.
Section 11.4.5 describes how to change the abstract Cbgc algorithm from
Figure 4.2 to make it correct even in the presence of finalizers.

The rest of this section describes partial garbage collection for Cbgc in Jikes RVM
in the following steps. Section 11.4.1 discusses how the prototype Cbgc organizes
its heap. Section 11.4.2 explains when and how it triggers garbage collections.
Section 11.4.3 introduces global data structures that the collector relies on. Sec-
tion 11.4.4 provides details on how it maintains the tricolor abstraction in data
structures local to spaces of partitions. Section 11.4.5 describes how to change the
abstract Cbgc algorithm from Figure 4.2 to make it correct in the presence of
finalizers.
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11.4.1 Heap organization

Figure 11.1 shows how the prototype Cbgc in Jikes RVM organizes the heap into
areas, partitions, and spaces. Areas are large contiguous ranges of virtual memory
addresses. Partitions are the unit of garbage collection of a Cbgc, and may span
different areas; the memory belonging to a partition is, in general, not contigu-
ous. Each space belongs to exactly one (area, partition) combination, and contains
objects segregated into blocks by how the collector deals with them.
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Figure 11.1: Heap organization into areas, partitions, and spaces.

There are four areas, or contiguous ranges of virtual memory addresses: the boot
area, the regular area, the analysis area, and the meta area. The boot area contains
the boot image. The regular area contains normal objects allocated by the mutator,
whereas the analysis area contains objects allocated by the pointer analysis, which
may propagate constraints at garbage collection time. The meta area contains data
structure for maintaining raw addresses to gray or black objects during garbage
collection. In a garbage collector requiring a write barrier, the meta area would also
contain remembered sets, but in Cbgc, the meta area is empty between garbage
collections. The meta area is unique in that the data it contains is managed with
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explicit memory management, and does not belong to any of the garbage collected
partitions or spaces.

Each object resides in a block, or in the case of a large object, in multiple
consecutive blocks. A block is part of exactly one space. For example, a small
object might occupy the memory addresses from 124×4096 + 12 to 124×4096 + 28,
and thus reside in the 4096-bytes block number 124. That block might belong to a
regular small scalar space. Only in the boot image are blocks shared among the boot
image spaces of different partitions; but even for the boot image, each object is part
of exactly one space of one partition. A space belongs to exactly one (area, partition)
combination. In the above example, the regular small scalar space containing block
124 would belong to the regular area and to some partition pi.

The prototype Cbgc in Jikes RVM uses three kinds of spaces: immortal object
spaces, mark-sweep spaces, and treadmill spaces. Each space kind manages different
kinds of objects with a different tricolor abstraction. Each of the 8 spaces of a
partition shown in Figure 11.1 is an instance of one of these three space kinds.

Immortal spaces manage boot image objects, which Jikes RVM treats as immor-
tal, and runtime objects such as TIBs, which also never die. Immortal objects must
not die, because the Jikes RVM runtime system may keep using them even if no
Java-level pointer refers to them anymore. Also, immortal objects must not move
(change their address); for example, the stack of the garbage collector thread is im-
mortal, and if it could move, that would make the stack variables that the collector
relies on inconsistent. An immortal space of objects allocated at runtime consists
of a set of not necessarily consecutive blocks that are dedicated only for objects of
that space.

Mark-sweep spaces manage small mortal objects allocated at runtime. Other
Cbgc algorithms could also use copying for these objects. A mark-sweep space
consists of a set of not necessarily consecutive blocks that are dedicated only for
objects of that space.

Treadmill spaces manage large mortal objects allocated at runtime. It is not
advisable to move those objects, since for large objects without outgoing pointers,
a copy would require work proportional to the object size, whereas a non-copying
collector only needs to expend a constant amount of work on it. A treadmill space
consists of a set of superblocks, each of which is a sequence of consecutive blocks
occupied by a large object spanning all of them. Blocks for different objects are not
necessarily consecutive.

As shown in Figure 11.1, each partition has 8 spaces. Both the boot image space
and the immortal space belong to the immortal space kind. Each of the regular
and analysis small array and scalar spaces is a mark-sweep space. Finally, both the
regular and the analysis large object space are treadmill spaces.

The prototype of Cbgc in Jikes RVM manages scalars and arrays with different
spaces, because they have different layouts. Figure 2.1 shows that the fields of scalars
reside at lower memory addresses than their headers, whereas the elements of arrays
reside at higher addresses than their headers. This means that the collector can
sweep arrays in ascending address order only, and can sweep arrays in descending
address order only. On the one hand, when sweeping in ascending address order,
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after processing an object, the collector knows the next higher base address of an
object, and for an array, that is sufficient to find the header, whereas for a scalar,
there may be an unknown number of fields before the header. On the other hand,
when sweeping in descending address order, after processing an object, the collector
knows the next lower end address of an object, and for a scalar, that is sufficient to
find the header, whereas for an array, there may be an unknown number of elements
behind the header.

JMTk’s mark-sweep collector solves the problem of sweeping scalars or arrays
by segregating them by size, and using a parallel array of mark-bits and in-use bits.
Since the bits are stored in parallel, the sweep does not need to find the object
header to manipulate them; and since the objects are segregated by size, the sweep
does not need to find the object header to determine the size. Cbgc in Jikes RVM
chooses not to segregate objects by size, because they are already segregated by
partition and by space, and thus an addition level of segregation might lead to too
much indirection, too much fragmentation, and too much meta-data. Instead, it
segregates small objects by whether they are scalar or arrays, and then sweeps them
in descending or ascending address order. This has the additional benefit of being a
step towards allowing a Cheney scan in a copying collector; JMTk does not support
Cheney scans, and uses an explicit data structure for the set of gray objects even in
copying garbage collection.

11.4.2 Garbage collection triggering

The prototype Cbgc in Jikes RVM triggers a garbage collection when the regular
area is full, i.e., when the sum of blocks in use in the regular area has reached
the specified heap size. The analysis area, on the other hand, is dimensioned large
enough so that Cbgc never needs to trigger a garbage collection on behalf of the
analysis. This is necessary because the analysis may perform constraint propagation
at the start of a garbage collection, and that must not trigger a recursive garbage
collection by filling up the analysis space. In the prototype, the analysis area spans
much more virtual memory than any of the benchmarks ever needed. Pages from
that memory are only mapped on demand.

Sometimes, the garbage collector does not reclaim enough memory in the regular
area to satisfy the pending allocation request. This may happen for example because
the estimator’s guess was off, or because of fragmentation. When the collector does
not reclaim enough memory, it tries again, and during the retry, the estimator
knows that all partitions chosen in previous attempts will have 100% survivors in
the current attempt. To limit the number of retries, the chooser exponentially
increases its lower bound of how much memory needs to be freed at least by each
new attempt. If a fixed number of retries, for example four, still did not reclaim
enough memory, Cbgc in Jikes RVM falls back to doing a full garbage collection.

In addition to the implicit triggering of garbage collection because memory in
the regular area is exhausted, it is also possible to explicitly trigger a full collec-
tion. For example, the experiments described at the end of this chapter invoke the
benchmark’s main() method twice, explicitly triggering a full GC between the two
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runs. That way, the second run is largely unperturbed by the analysis, since no new
constraints are generated, and the analysis area contains the live objects of a fixed
set of constraints that is not mutated anymore.

11.4.3 Global data structures

While Cbgc maintains most of its state on the level of partitions and spaces, it also
uses some global data structures. They include the partition dag and partition map,
the mark state and mark bits in the object headers, and some per-area data.

Section 11.1.2 describes the data structures implementing the partition dag, and
Section 11.1.3 describes the data structures implementing the partition map.

Cbgc in Jikes RVM uses one global mark state to support merging of parti-
tions. The mark bit of all objects in all partitions always means the same thing: it
is 0 between garbage collections, and 1 during garbage collection for gray or black
objects. That means that when partitions are merged after propagation at the be-
ginning of a garbage collection, the mark bits of all objects in the merged partitions
are 0. Maintaining the global mark state includes sweeping all survivor objects after
garbage collection and resetting their mark bits to 0.

Cbgc in Jikes RVM uses a two-word object header. Only one bit out of those
two words is dedicated to GC, namely the mark bit. The rest of the object header
stores the pointer to the TIB, and bits to support locking and hashing [12]. In
other words, Cbgc does not require any extra header word; both the online pointer
analysis and the partition map work without relying on additional information in
the object header.

A global array maps block ids to integers identifying which of the 8 spaces of
its partition each block belongs to (see Figure 11.1), or to a constant for the meta
area. All areas except the boot image area also have a free list of blocks, supporting
explicitly acquiring or releasing blocks for individual spaces. Finally, each area keeps
track of the number of blocks in use in that area. The number of blocks in use in
the regular area triggers garbage collection, as described in Section 11.4.2.

11.4.4 Concrete per-space CBGC operations

This section describes how Cbgc in Jikes RVM implements the tricolor operations of
the abstract Cbgc algorithm from Figure 4.2. Regardless of which space an object
belongs to, the operation that checks whether color(o) = white uses the mark bit
of the object: object o is white if and only if it is not marked. The remaining
operations work differently for objects in different spaces, and are discussed per
space kind below. This means that the abstract algorithm in Figure 4.2 delegates
each action to the appropriate space of the appropriate partition.

The format of the following discussion of per-space tricolor operations follows Ta-
ble A.1, which shows the tricolor operations for the canonical full garbage collection
algorithms.
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11.4.4.1 Space kind of immortal spaces

The boot image space and the immortal space of each partition belong to this space
kind. For allocation, each immortal space includes a pointer to the current block
into which it allocates objects, along with an allocation bump-pointer to the next
free address at which to allocate an object. For tracing, each boot image space
and each immortal space includes a mark buffer storing addresses of gray and black
objects, and two indices in the mark buffer: scan and top. All objects from the
bottom to scan are black, and all objects from scan to top are gray.

Table 11.1 shows how spaces containing immortal objects implement the opera-
tions of the algorithm in Figure 4.2. Since boot image objects of different partitions
may be mixed in the same block, the algorithm can not sweep all boot image objects
belonging to a given space in address order. Instead, action color(o)← black keeps
black objects in the mark buffer for future sweep with the action color(o)← white.
When the garbage collector is done processing the current partition, the mark buffer
can be discarded.

Table 11.1: Concrete connectivity-based stop-the-world garbage collector operations
for the space kind of immortal spaces. The numbers in parentheses in the middle
column refer to the lines in the algorithm in Figure 4.2 that use the operations in
the left column.

alloc(p, size) increase bump pointer, and return old value
(for boot image, this happens globally, whereas
at runtime, it happens per space)

merge(p1, p2) nothing to do
color(o)← gray (5,13) mark and push on mark buffer
pickGray(p) (8) at scan index in mark buffer
color(o)← black (9) increment scan index of mark buffer
reclaim memory (15) nothing to do: by definition, immortals never die
color(o)← white (16) unmark during sweep of mark buffer

11.4.4.2 Space kind of mark-sweep spaces

The space kind of mark-sweep spaces encompasses the regular and analysis small
scalar and array spaces of each partition. Each space contains a set of doubly-linked
free-lists for different size classes. While objects are not segregated by size, free
objects are chained into lists by size to allow quick retrieval of a given size object
for allocation. In addition, a mark-sweep space steals an in-use bit from the object
header to keep track of which objects are in-use and which are free (whereas the
mark-bit of an in-use object keeps track of whether it is white or not). For tracing,
each mark-sweep space includes a mark-stack storing addresses of gray objects, and
a singly-linked list of all its blocks.

Table 11.2 shows how mark-sweep spaces implement the operations of the al-
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gorithm in Figure 4.2. The sweep for performing the memory reclamation and
unmarking operations processes objects of one block at a time; as discussed earlier,
within a block, the sweep works either in ascending or in descending address order,
depending on whether the objects are arrays or scalars. Most of the operations are
almost the same as in the canonical concrete full mark-sweep collector from Ta-
ble A.1, except that the mark stack is local to the given space, instead of global for
the whole heap.

Table 11.2: Concrete connectivity-based stop-the-world garbage collector operations
for the space kind of mark-sweep spaces. The numbers in parentheses in the middle
column refer to the lines in the algorithm in Figure 4.2 that use the operations in
the left column.

alloc(p, size) take off free list for size
if the free list is empty, try splitting a larger free
object, or acquire a block

merge(p1, p2) concatenate block lists and free lists
color(o)← gray (5,13) mark and push on mark stack
pickGray(p) (8) top of mark stack
color(o)← black (9) pop o from mark stack
reclaim memory (15) put white objects on free lists, release empty blocks
color(o)← white (16) during sweep, unmark survivors

11.4.4.3 Space kind of treadmill spaces

The space kind of treadmill spaces encompasses the regular and analysis large object
spaces of each partition. Each space maintains three doubly linked lists, one each for
white, gray, and black objects. Large objects can span multiple, consecutive blocks.
The first three words of the first block of an object are used as extra header words
to maintain the previous and next pointer of its doubly-linked list, and to store the
object reference itself, to allow accessing the header regardless of whether the object
is an array or a scalar. The extra 3 header words per object incur only a moderate
per-object overhead: in the current implementation, the smallest large objects have
size 4,096 bytes, so 12 bytes of header use up less than 0.3% of the object size.

Table 11.3 shows how treadmill spaces implement the operations of the algorithm
in Figure 4.2. Most of the operations are almost the same as in the canonical concrete
full-heap treadmill collector from Table A.1, except that the three lists for white,
gray, and black objects are local to the given space, instead of global for the whole
heap.

11.4.5 Finalizers

A finalizerp.186 is a finalize() method of an object, which the runtime system auto-
matically invokes when the object has become unreachable, but before its memory
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Table 11.3: Concrete connectivity-based stop-the-world garbage collector operations
for the space kind of treadmill spaces. The numbers in parentheses in the middle
column refer to the lines in the algorithm in Figure 4.2 that use the operations in
the left column.

alloc(p, size) acquire consecutive blocks large enough for size,
and put the new object on the white list

merge(p1, p2) concatenate the white lists
(the gray and black lists are empty)

color(o)← gray (5,13) mark and move from white to gray list
pickGray(p) (8) at end of gray list
color(o)← black (9) move from gray to black list
reclaim memory (15) release all blocks of the white list
color(o)← white (16) flip meaning of white and black lists

is reclaimed. To finalize an object means invoking its finalize() method, and the act
of doing that for all objects that require it is called finalization.

Finalizers pose a challenge to garbage collectors, because they may resurrect
objects. When invoking finalize(), the runtime system passes a pointer of the object
in the implicit variable this. The finalize() method can then proceed to store this
into a global or into the field of another object, thus making the finalized object
reachable again, along with all objects it points to, directly or transitively. The
Java language specification states that should the object become unreachable again
in the future, the runtime system does not invoke its finalizer again, so each object
can be resurrected at most once [60, Section 12.6].

Garbage collectors can treat objects with finalizers by preemptively making
them gray. Whenever an object becomes unreachable, the garbage collector checks
whether it has a non-empty finalizer (if finalize() has an empty method body, it can
not possibly resurrect any objects). If so, it continues its reachability traversal from
this object as if it were itself still reachable, and thus, reaches all objects that the
finalizer could resurrect. Furthermore, it schedules the object for finalization. Final-
ization happens at any time before the next collection. It might indeed resurrect the
object, in which case it is reachable at the next collection. If it does not resurrect
the object, the next collection reclaims it.

When JMTk allocates an object, it checks whether it has a non-empty finalizer,
and if yes, adds it to a global data structure finalizerSet. Then, at collection time,
it scans all objects in finalizerSet, and for each objects that is still white, removes
it from the set and makes it black. Unfortunately, in Cbgc, this strategy would
prevent early reclamation.

Instead, Cbgc in Jikes RVM maintains a separate finalizerSet(p) for each parti-
tion p. When it allocates an object, it puts it into the finalizerSet(p) of its partition.
When two partitions p1 and p2 are merged due to new results of the online pointer
analysis, the representative keeps the union finalizerSet(p1) ∪ finalizerSet(p2).
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Figure 11.2 shows how Cbgc in Jikes RVM treats finalizers at garbage collec-
tion time. At the end of the reachability traversal for a given partition (Line A),
it makes all white objects of that partition that have finalizers gray (Lines B-F).
Then it repeats the reachability traversal starting from these gray objects (Line G).
This algorithm ensures that none of the objects reachable from the object with the
finalizer are reclaimed at the current collection: they become gray and eventually
black either in the second reachability traversal, or the reachability traversal of one
of the successor partitions. If one of the successor partitions is not chosen at the
current collection, its objects will not be reclaimed anyway.

1: estimate how many objects are dead and live in each partition
2: choose a set C of partitions

Partial garbage collection
3: for each root v
4: if v 6= null and partition(target(v)) ∈ C
5: color(target(v))← gray
6: for each chosen partition p ∈ C in topological order
A: process gray objects in p (see Lines 7-13 of Figure 4.2)
B: for each object o ∈ finalizerSet(p)
C: if color(o) = white
D: remove o from finalizerSet(p)
E: schedule o for finalization
F: color(o)← gray
G: process gray objects in p (see Lines 7-13 of Figure 4.2)

14: for each heap object o with partition(o) = p
15: if color(o) = white, reclaim its memory
16: else color(o)← white

Figure 11.2: Abstract connectivity-based stop-the-world garbage collector in the
presence of finalizers.

11.5 Results

This section investigates the performance of the prototype Cbgc implementation
in Jikes RVM, and gives optimization recommendations for improving the perfor-
mance. The prototype uses the Andersen partitioning, but to put those numbers
into perspective, this section also experiments with other partitionings implemented
for the system in Jikes RVM. Section 11.5.1 describes the experimental methodology.
Section 11.5.2 investigates the performance of a Cbgc with just one partition, which
is equivalent to a full-heap collectorp.189. Sections 11.5.3 and 11.5.4 look at the per-
formance of Cbgc in Jikes RVM with partitioning based on Harris’s and Andersen’s
analysis, respectively. Section 11.5.5 concludes with optimization recommendations
derived from the experimental results.
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11.5.1 Methodology

This section uses a 2.4GHz Intel Pentium 4 with 2GB of memory running Linux (ker-
nel version 2.4) for its experiments. It uses Jikes RVM 2.2.1 with the “FastAdaptive”
compilers configuration, which uses the optimizing compiler for the boot image, and
the adaptive system at runtime. Like Section 10.6, this section disables inlining for
boot image methods to keep the work load for the pointer analysis manageable. In
addition, it runs Jikes RVM with deterministic yield-points to facilitate profiling.

All numbers in this section measure the second invocation of the application’s
main() method. After the first invocation, the virtual machine disables the adaptive
recompilation system and performs a full-heap garbage collection. This way, there
is no compilation activity during the second invocation of main(), and thus, the
numbers in this chapter are less perturbed by background activity of the virtual
machine.

This section experiments with the three example benchmarks jess, db, and pseu-
dojbb; Section 2.2 describes the benchmark suite. The prototype also works for
many other programs, but this section presents detailed results focusing on just
three representative programs. The harness of the two SPECjvm98 benchmarks jess
and db explicitly triggers one garbage collection at the beginning and one at the end
of the run, and the current prototype Cbgc treats such explicitly triggered collec-
tions as full-heap collections that collect all active partitions. For this section, jess
uses a heap size of 40MB, db uses a heap size of 30MB, and pseudojbb uses a heap
size of 100MB. A recent paper with in-depth results on these three benchmarks [19]
characterizes jess as a program with high GC load and generational behavior, db
as a program with lower GC load, and pseudojbb as a program with high GC load,
but also high nursery survival rate when run with generational collectors.

All experiments with Cbgc in this chapter use the combined estimator, the
greedy chooser, and the mostly mark-sweep partial collector described earlier. The
only component that varies is the partitioning: in addition to the partitioning based
on Andersen’s analysis, this section looks at a trivial partitioning with just one
partition containing all objects, and at the Harris partitioning. The data structures
supporting the Harris or Andersen analysis reside in the analysis heap, which is
separate from the regular heap, and thus does not count towards the heap size. Of
course, Cbgc may still need to traverse analysis objects in its reachability traversal
to find out which regular objects are garbage.

11.5.2 Full-heap collections

The individual operations of the reachability traversal and reclamation phases of a
Cbgc are more complex than those of a full-heap collector. For example, Cbgc
needs to look up the partition and the space of each pointer it traverses, and based
on the result, decide how to treat the object. To compare the cost of the basic GC
operations of Cbgc and other collectors, this section looks at full-heap collectors:
that way, any performance differences stem from GC operations, not from partial
or opportunistic collection.
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This section compares two collectors: “JMTk/MS” is the mark-sweep full heap
collector that comes with Jikes RVM; and “Cbgc/trivial” is a connectivity-based
collector with the trivial partitioning. Cbgc/trivial runs the general combined es-
timator and greedy chooser before every GC, even though the outcome is obvious.
Also, Cbgc/trivial uses the general partition map and the general mostly mark-
sweep partial garbage collector, even though it is clear which partition each object
maps to.

Table 11.4 shows the arithmetic mean of garbage collection pause times for
JMTk/MS and Cbgc/trivial. Since both collectors collect the full heap every time,
the pause times hardly vary from collection to collection. The table shows that
Cbgc/trivial incurs much longer pauses than JMTk/MS, even though both collect
the same amount of memory (the full heap).

Table 11.4: Average full-heap collection pauses, in seconds.
Benchmark JMTk/MS Cbgc/trivial
jess 0.54 1.75
db 0.60 1.73
pseudojbb 1.04 3.24

To explain why the Cbgc/trivial collections take longer than the JMTk/MS col-
lections, Table 11.5 shows how long each phase of the Cbgc/trivial garbage collection
takes. This table uses the second-to-last garbage collection of each benchmark as an
example; the time break-down in other collections is similar. The numbers show that
the cost of the actual collection dominates. Both the reachability traversal and the
reclamation phase are expensive. For pseudojbb, the reclamation phase is actually
more expensive than the reachability traversal, probably because the survivor rate
is high [19]. The costs of the estimator (around 16ms) and root scan (19ms) do not
vary much from benchmark to benchmark. Both phases scan the roots, but the root
scan for the reachability traversal is slightly more expensive, since it makes target
objects gray. With the trivial partitioning, the chooser costs less than 0.3ms, since
the lone partition is the only choice.

Table 11.5: Full-heap garbage collection pause breakdown, in seconds. The numbers
in parentheses refer to lines in the algorithm in Figure 4.2.

Benchmark Estimator Chooser Root scan Rest of reachability Reclamation
(1) (2) (3-5) traversal (7-13) phase (14-16)

jess 0.016,400 0.000,296 0.021,251 1.097,837 0.637,922
db 0.014,999 0.000,121 0.018,144 0.971,414 0.608,978
pseudojbb 0.015,179 0.000,118 0.018,367 1.463,552 1.924,101

The experiments with full-heap collectors show that each individual operation
of the reachability traversal and the reclamation phase of garbage collection is more
expensive with the current version of the prototype Cbgc than with JMTk/MS.
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11.5.3 Partitioning based on Harris’s analysis

Chapter 9 used a simulator to experiment with CbgcHCG, which uses the Harris
partitioning, the combined estimator, and the greedy chooser. This section looks at
a very similar collector in the prototype implementation in Jikes RVM. It uses the
same partitioning, estimator, and chooser. The most important aspect in which it
differs is that it uses mostly mark-sweep GC, whereas CbgcHCG in Chapter 9 uses
copying GC. Another difference is that the Harris analysis runs online in Jikes RVM,
and allocates some auxiliary data structure. While the objects representing those
data structures incur additional work for the garbage collector, that overhead is much
lower than for Andersen’s more sophisticated pointer analysis. Hence, this section
demonstrates how truly partial Cbgc in Jikes RVM works with less perturbation
by analysis data structures.

Table 11.6 shows the arithmetic mean of garbage collection pause times for
Cbgc/Harris, and also repeats the numbers for JMTk/MS and for Cbgc/trivial
from Table 11.4 for comparison. Cbgc/Harris incurs about the same cost as Cbgc/tri-
vial for jess, a higher cost for db, and a lower cost for pseudojbb.

Table 11.6: Average collection pauses with Harris partitioning, in seconds.
Benchmark JMTk/MS Cbgc/trivial Cbgc/Harris
jess 0.54 1.75 1.76
db 0.60 1.73 1.98
pseudojbb 1.04 3.24 2.63

Table 11.7 shows how long each phase of the Cbgc/Harris garbage collection
takes. This table uses the second-to-last garbage collection of each benchmark as
an example; the time break-down in other collections is similar. The estimator
cost is usually around 34ms, up from 16ms for Cbgc/trivial. The chooser cost is
usually around 19ms, instead of less than 0.3ms as with Cbgc/trivial. Without
the increased costs of the estimator and chooser, Cbgc/Harris would outperform
Cbgc/trivial for both jess and pseudojbb, and perform similarly for db.

Table 11.7: Garbage collection pause breakdown with Harris partitioning, in sec-
onds. The numbers in parentheses refer to lines in the algorithm in Figure 4.2.

Benchmark Estimator Chooser Root scan Rest of partial
(1) (2) (3-5) GC (6-16)

jess 0.037,670 0.035,106 0.016,121 1.626,075
db 0.032,324 0.010,839 0.019,815 1.967,683
pseudojbb 0.032,797 0.011,926 0.019,743 2.536,604

To explain why the estimator and chooser take longer with Cbgc/Harris than
with Cbgc/trivial, Table 11.8 investigates how many partitions there are in the
Harris partitioning on average at a garbage collection. An active partition is a
partition that contains at least one objects at the beginning of a garbage collection,
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and must therefore be considered by the estimator and the chooser. There are on
the order of 120 to 220 active partitions. For jess, which has more partitions, the
chooser is more expensive than for db or pseudojbb. This indicates that the chooser
takes noticeably more time for larger partition dags. To a smaller degree, that is
also true for the estimator: it is slower for jess than for the benchmarks with fewer
partitions. This indicates that the estimator scales better than the chooser when
the size of the partition dag increases.

Table 11.8: Average size of Harris partitioning, in number of partitions.
Benchmark Active Chosen
jess 219.7 163.8
db 122.5 84.5
pseudojbb 128.4 73.2

In the simulator experiments from Chapter 9, CbgcHCG improved more clearly
upon Semi than Cbgc/Harris improves over Cbgc/trivial. As mentioned earlier,
one reason for that is that the estimator and the chooser cost time. Another reason is
that the partitioning costs space. More specifically, the Harris analysis has auxiliary
data structures that the garbage collector may need to traverse. The size of the boot
image of Cbgc/Harris is 38.3MB, whereas the size of the boot image of Cbgc/trivial
is only 34.8MB.

The additional 3.5MB of boot image are occupied by three data structures for the
Harris analysis. For each type, the Harris analysis maintains a set of its supertypes,
a set of its subtypes, and a set of fields whose contents are declared to be of that
type. The Harris analysis uses these data structures to find all may-point-to edges
from and to previously resolved types when processing a newly resolved type. In
the current implementation of the Harris analysis in Jikes RVM, those sets are not
optimized for space; one could probably change their representation so they use far
less than 3.5MB of the boot image.

Since Cbgc performs partial collections, it could theoretically ignore the addi-
tional analysis data structures, if they reside in partitions that it can avoid collecting.
Unfortunately, this is not the case. The additional data structures do increase the
work of the traversal and reclamation phase. This becomes clear from an inspection
of the partition dag. Cbgc/Harris has one big “pivot” partition that is a predecessor
of most of the remaining partitions.

Table 11.9 characterizes the topology of the Harris partitioning at the second-
to-last garbage collection of a benchmark run with verbose output. The pivot is a
predecessor of all but a hand full of other partitions. Any garbage collection that
tries to collect a partition behind the pivot has to collect the pivot as well.

When the pivot partition is small, Cbgc can perform well even if it has to choose
the pivot at most collections. Table 11.10 shows the size of the pivot before and
after the second-to-last garbage collection, and shows the size of the boot image
space of the pivot partition. The pivot includes around 7.5MB of the boot image.
A majority of the objects that survive each collection in the pivot belong to the
boot image. The size of the boot image space of the pivot varies slightly between
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Table 11.9: Number of partitions in given position relative to pivot partition, for
Harris. Column “Behind” gives the number of active partitions that are immediate
or transitive successors of the pivot; Column “Total” gives the total number of active
partitions at that garbage collection.

Benchmark Pivot Behind Total
jess 1 210 218
db 1 113 121
pseudojbb 1 120 128

benchmarks due to partition merging when Harris finds new may-point-to edges.

Table 11.10: Size of pivot partition in megabytes, for Harris. Column “Before”
gives the total number of bytes in dead or live objects before the collection, Column
“After” gives the total number of bytes in surviving objects after the collection, and
Column “Boot” gives the total number of bytes in the boot image space of the pivot.

Benchmark Before After Boot
jess 22.0 9.2 7.4
db 23.4 9.2 7.5
pseudojbb 30.6 12.0 7.4

To conclude, this section experimented with Cbgc/Harris (Cbgc in Jikes RVM
using the Harris partitioning), and found that it performs slightly better than
Cbgc/trivial (which uses just one partition). The reason why it does not perform
significantly better is that the garbage collector needs to traverse the data structures
of the Harris analysis itself, and that the chooser becomes more expensive due to
the increased number of partitions. The performance improvements due to oppor-
tunistic partial collections are clearly not enough to overcome the overheads of the
current Cbgc prototype implementation compared to a full-heap JMTk collector.

11.5.4 Partitioning based on Andersen’s analysis

Because the simulator results from Chapter 9 showed that type-based partition-
ings are too weak, this chapter focuses on a Cbgc with a partitioning based on
Andersen’s analysis, a non-trivial pointer analysis that works on the granularity of
allocation sites. This section explores the performance with that partitioning. In
the experiments for this section, the benchmark jess crashed due to race conditions,
hence this section presents numbers for db and pseudojbb only.

Table 11.11 shows the pause times of collections with the Andersen partitioning.
The distribution turns out to form three clusters. There are many fast collections,
some collections of medium duration, and a few slow collections. The fast collec-
tions of Cbgc/Andersen are in fact faster than garbage collections of Cbgc/Harris.
However, there are too many collections, and each individual fast or medium col-
lection reclaims too little memory to support enough allocation requests from the
mutator, so the collector soon has to run again.



CHAPTER 11. CBGC IN A VIRTUAL MACHINE 169

Table 11.11: Garbage collection pauses with Andersen partitioning. There are three
clusters of collections “Fast”, “Medium”, and “Slow”. For each cluster, “#” shows
how many such collections there are, “Range” shows the range of their pause times
in seconds, and “Avg.” shows the average pause times of collections of that kind.

Benchmark Fast Medium Slow
# Range Avg. # Range Avg. # Range Avg.

db 56 0.88-1.12 0.97 2 2.33-2.58 2.46 5 9.92- 9.94 9.50
pseudojbb 12 1.55-1.82 1.68 13 3.25-3.70 3.41 3 10.34-11.25 10.91

Table 11.12 shows how long each phase of the Cbgc/Andersen partitioning takes.
This table uses the second-to-last garbage collection of db and pseudojbb as an
example; in both cases, that collection belongs to the fast cluster. The estimator cost
increased further from Harris, to 239ms. The chooser cost increased even worse than
the estimator cost, to 958ms. The rest of the partial GC, on the other hand, became
extraordinarily fast: these collections spend hardly any time on their reachability
traversal and reclamation phases.

Table 11.12: Garbage collection pause breakdown with Andersen partitioning, in
seconds. The numbers in parentheses refer to lines in the algorithm in Figure 4.2.

Benchmark Estimator Chooser Root scan Rest of partial
(1) (2) (3-5) GC (6-16)

db 0.216,623 0.658,441 0.019,450 0.020,927
pseudojbb 0.260,567 1.258,146 0.019,657 0.002,110

To see why the chooser and estimator became so much slower, Table 11.13 in-
vestigates how many partitions there are in the Andersen partitioning on average at
a garbage collection. A comparison with Table 11.8 shows that the Andersen par-
titioning leads to significantly more partitions than the Harris partitioning. Also, a
comparison with Table 11.12 shows that the number of partitions and the perfor-
mance of the chooser are clearly correlated: the chooser is much slower for pseudojbb
than it is for db, since pseudojbb has more partitions.

Table 11.13: Average size of Andersen partitioning, in number of partitions.
Benchmark Active Chosen
db 749.9 86.0
pseudojbb 976.1 133.7

Another difference to Cbgc/Harris is that Cbgc/Andersen has to contend with
much bigger analysis data structures. Where the boot image size was 34.8MB with
the trivial partitioning and 38.3MB with the Harris partitioning, the data struc-
tures for Andersen’s partitioning almost double the boot image size to 76.5MB.
Section 10.6.2.1 investigates the space cost of the online Andersen analysis in more
detail.
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Just like for the Harris partitioning, the Andersen partitioning also contains a
“pivot” partition that dominates large parts of the partition dag. The fast and
medium collections from Table 11.11 are those collections that do not choose the
pivot partition. However, those collections do not reclaim enough, so the collector
must occasionally fall back to a GC that chooses the pivot. While that garbage
collection is not a full GC, it is slower than a GC in Cbgc/trivial due to the large
analysis data structures in the heap.

To conclude, this section found that the chooser does not scale well enough, and
that the analysis data structures for Andersen are too large. Andersen’s analysis
itself is not precise enough to reliably allow Cbgc to ignore the analysis data struc-
tures in partial collections. On the bright side, on average, the reachability traversal
and reclamation phases with the Andersen partitioning are much faster than with
the Harris partitioning.

11.5.5 Optimization recommendations

The previous sections investigated the performance of the prototype Cbgc in Jikes
RVM, and found that for various reasons, it falls short of the performance of
JMTk/MS, a well-optimized, full-heap garbage collector in Jikes RVM.

This is a discrepancy to the simulator results from Chapter 9, where a simplistic
Cbgc outperformed a full-heap collector. One of the reasons for this discrepancy is
that individual operations of Cbgc’s reachability traversal and reclamation phase
are more costly than in JMTk/MS, whereas the simulator assumes uniform cost for
all operations. But even when taking these costs into account, a partial Cbgc gains
less over a full-heap collector than the simulator predicted. One reason for this is
that the greedy chooser takes more time when there are many partitions, whereas
the simulator assumed that the chooser’s cost in time was insignificant. Another
reason is that the program analyses for the partitioning take a significant amount of
heap space, whereas the simulator assumed an ahead-of-time static analysis where
those objects are not around anymore at runtime.

To improve the performance of the prototype Cbgc in Jikes RVM, one needs to
attack the problem on multiple fronts simultaneously. One needs to:

• Reduce the constant cost of individual CBGC operations. Two concrete steps
in that direction would be to treat the boot image more uniformly with the
other heap areas (speeding up the reachability traversal), and to use copying
GC for small mortal objects (speeding up the reclamation phase).

• Optimize the greedy chooser for the case with many partitions. One way to
do that might be to pick an even simpler chooser algorithm; it might be that
that yields choices of similar quality, just like the greedy chooser yields choices
of similar quality to the optimal flow-based chooser.

• Improve the precision of the pointer analysis. When the pointer analysis is
more precise, its points-to sets are smaller, which saves analysis space, reducing
the load on the garbage collector. Ideally, a more precise pointer analysis
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would also allow a partitioning where objects for the pointer analysis reside in
partitions that the garbage collector can ignore when collecting regular objects.

11.6 Conclusions

The prototype Cbgc in Jikes RVM described in this chapter works, it is fully im-
plemented and successfully runs a large suite of benchmarks and regression tests.
All benchmarks from Table 2.2 for which Column “Used in” includes Chapter 11
execute successfully and produce correct outputs; this is also the case for a variety
of regression tests targeting key virtual machine components that are not listed in
Table 2.2. The fact that the prototype Cbgc works proves that connectivity-based
garbage collection can be implemented in a Java virtual machine, and can deal with
all real-world challenges that that poses.

Unfortunately, at the time of the writing of this chapter, the prototype Cbgc
implementation is too slow to compete with other Jikes RVM garbage collectors in
terms of performance. A lot of this inefficiency is due to the fact that the imple-
mentation is not tuned for performance. With more time spent on performance
tuning its performance will most likely improve, and may even become better than
the performance of the most efficient competitor garbage collectors in Jikes RVM.
Section 11.5 investigates the performance of Cbgc in Jikes RVM.

11.6.1 Future work

The first item of future work is to improve the performance of the prototype Cbgc
implementation. When the performance reaches acceptable levels, the next item of
future work is to do more detailed experiments comparing the performance of Cbgc
and of other collectors in Jikes RVM. Those experiments need to measure metrics
for throughput, space efficiency, and responsiveness. More specifically, they would
measure throughput at a given heap size by time in seconds it takes to execute
each benchmark, and measure space efficiency by performing the throughput exper-
iments for a range of heap sizes. The experiments would measure responsiveness by
tracing the start time and end time of each garbage collection, and then computing
MMUp.182 for a range of time intervals. Since the prototype Cbgc relies on the
online pointer analysis from Chapter 10, which itself takes a lot of time and space
resources, the performance experiments for Cbgc would separate out the time and
space taken by the analysis, and report numbers both with and with out it. More
specifically, running the benchmark’s main() method twice and measuring the per-
formance in the second run factors out the time cost of pointer analysis, whereas
the segregation of regular and analysis objects described above factors out the space
cost of pointer analysis.

11.6.1.1 Space kind for copying spaces

Another item of short-term future work is to add an additional space kind for copying
spaces, and to use that for small mortal runtime objects. The current Cbgc in
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Jikes RVM uses mark-sweep for small mortals, but in fact, Cbgc can use any tricolor
abstraction for its spaces; in fact, the experiments in Section 9 used copying for
small mortals. Just like the space kind for mark-sweep spaces from Section 11.4.4.2,
the space kind for copying spaces would segregate arrays from scalars due to their
different object layout (see Section 11.4.1).

Each copying space contains two singly-linked lists of blocks for the two semis-
paces from-space and to-space. To support allocation, it maintains an allocation
pointer in from-space; and to support copying during garbage collection, it main-
tains an allocation pointer in to-space. To support garbage collection, a copying
space uses forwarding pointers in the original copies of objects left in from-space
after copying them to to-space; and a scan-pointer on to-space to enable Cheney
scanp.184, as well as clearing mark-bits of survivors to maintain the global mark-
state.

Table 11.14 shows how copying spaces implement the operations of the algorithm
in Figure 4.2. Most of the operations are almost the same as in the canonical concrete
full copying collector from Table A.1, except that the semispaces are local to the
given space, instead of global for the whole heap.

Table 11.14: Concrete connectivity-based stop-the-world garbage collector opera-
tions for the space kind of copying spaces. The numbers in parentheses in the middle
column refer to the lines in the algorithm in Figure 4.2 that use the operations in
the left column.

alloc(p, size) increase bump pointer, and return old value
merge(p1, p2) concatenate the from-space lists of blocks

(the to-space list of blocks is empty)
color(o)← gray (5,13) copy to to-space and forward
pickGray(p) (8) at scan pointer in to-space
color(o)← black (9) move scan pointer past o

reclaim memory (15) release all blocks of the from-space block list
color(o)← white (16) flip meaning of from-space and to-space

11.6.1.2 Longer-term future work

A short-term future work item was to improve the performance of the garbage
collector implementation. Equally important is the future work of improving the
performance of the online pointer-analysis. Right now, it is the first non-trivial
pointer analysis that works for Java; performance improvements could turn it into
the first efficient non-trivial pointer analysis that works for all of Java.

Depending on the shape of the partition dag, connectivity-based garbage collec-
tion may not ever need copy reserve for all from-semispaces of all copying spaces.
An item of future work would be to modify the chooser algorithm and the partial
collector to exploit this property, by reserving only as much memory as necessary
to ensure that garbage collections never fail because of insufficient copy reserve.
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In the context of a virtual machine, a lot of information is available that could
help the estimator come up with better estimates. Future work in this area would
use techniques from low-overhead profiling and dynamic adaptive optimization to
make the estimator more accurate.

An important way in which garbage collectors affect application throughput is
by changing mutator locality. Cbgc probably already improves mutator locality by
allocating connected objects together. It would be interesting to study whether this
is indeed the case, to quantify it, and to make Cbgc locality-aware so it can actively
augment this effect.

The prototype Cbgc in Jikes RVM described in this chapter runs only on unipro-
cessor machines. But there is no fundamental reason why Cbgc should not work
also on multi-processor machines. Making any garbage collector parallel is, however,
a major engineering effort. In the case of Cbgc, it might pay off because the parti-
tion dag makes some independence guarantees for partitions that a parallel collector
could exploit to avoid object-level synchronization in many cases.

11.6.2 Discussion

This chapter describes how to implement Cbgc in a virtual machine. It is based on
an actual working implementation that uses a given design, and demonstrates that
the design and implementation are correct. The collector is completely realistic, it
uses no oracles and works in a real-world system. However, it does not perform well
yet; improving the performance is subject for future work.



CHAPTER 12. CONCLUSIONS 174

Chapter 12

Conclusions

This dissertation introduces a new family of garbage collection algorithms (Cbgc)
that are based on object connectivity properties. Cbgc segregates objects into par-
titions based on their connectivity, and also uses the connectivity information to
decide which partitions to collect at each collection. Cbgc is motivated by experi-
ments that demonstrate that there is a strong correlation between connectivity and
the lifetime and deathtime characteristics of programs. This dissertation describes
a number of collectors from the Cbgc family and evaluates them using a simulator.
Furthermore, it describes the first non-trivial pointer analysis for all of Java, and an
implementation of Cbgc in a Java virtual machine that uses that pointer analysis.
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Appendix A

Definitions

This chapter defines terminology for use in the rest of this dissertation. The reader
may skip it and refer to it on demand when chapters use terms that the reader
is unfamiliar with, or when they use familiar terms in unfamiliar ways. When a
chapter refers to a definition in this appendix, it uses the notation termp.n , where n
is the number of the page with the definition for the term.

Garbage collection literature uses some terminology differently than is common
in other parts of computer science, such as “heap” or “object”. Furthermore, even
among different garbage collection papers, words such as “block” or “incremental”
do not always mean the same thing. This chapter defines terminology to avoid
confusion in the remainder of the dissertation. It also gives some background to avoid
cluttering the subsequent discussion with material that may already be familiar to
the reader.

A.1 Data structures

stack:

1. LIFO (last-in-first-out) buffer.

2. The LIFO buffer of activation records of routines for one thread of execu-
tion. Among other things, a stack stores local variables that may point
to heap objects.

heap:

1. All of the memory of a process holding dynamically allocated objects.
This is the default meaning of “heap” in this dissertation.
This definition follows: [86, Section 1.7].

2. Binary tree where each node carries a key, and the nodes are partially
ordered such that the relation key(parent(n)) ≤ key(n) holds for each
non-root node n.
This definition follows: [42, Section 7.1].
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dag: Directed acyclic graph.

This definition follows: [42, page 89].

SCC: Strongly connected component, a maximal set S of nodes in a directed graph
such that for all pairs of members n1 ∈ S and n2 ∈ S, there is a path from n1

to n2 and a path from n2 to n1. All nodes in an SCC are reachable from each
other.

This definition follows: [42, Section 23.5]

WCC: Weakly connected component, a maximal set W of nodes in a directed graph
such that in the undirected version of the graph, for all pairs of members
n1 ∈W and n2 ∈W , there is a path from n1 to n2 and a path from n2 to n1.
All nodes in a WCC would be reachable from each other if one ignored the
directions of edges.

This definition follows: [82, Section 2]

A.2 Virtual machines

VM:

1. Virtual machine, engine for executing intermediate language code on con-
crete hardware, providing runtime support such as garbage collection. A
well-known example is the Java virtual machine.

2. Virtual memory, memory addresses as seen by running processes, which
are mapped to physical addresses by the operating system.

In this dissertation, VM always stands for virtual machine, not virtual memory.

JVM: Java Virtual Machine. Engine for executing a Java program in form of byte-
code on top of hardware and an operating system. A JVM includes runtime
support such as a garbage collector, a thread scheduler, and JNI, and is tied
closely to a set of libraries. Many JVMs include JIT compilers.

JIT: A JIT is a just-in-time compiler in a virtual machine. In Java, JIT compilers
compile Java bytecode instructions into machine code for the hardware that
the virtual machine is running on.

This definition follows: [95, Section 3.13].

JNI: The Java Native Interface, which allows Java code to interact with compiled
code that is native to the hardware and operating system on which the Java
virtual machine runs. Usually, the native code is compiled from C or C++.
JNI provides facilities for Java code to call native code in the form of native
methods, and for native code to call Java code in the form of a fixed set of C
functions.

This definition follows: [96].
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reflection: A language feature that allows data to determine code to be executed
by stepping outside of the usual syntax of the language. More specifically,
in Java, reflection allows manipulating methods, fields, and classes as explicit
entities. The example code in Figure A.1 writes the value 123 to a field that
is not known statically, but determined by reflection based on data from user
input.

1: String fieldName = readFieldName();
2: Field f = A.class.getField(fieldName);
3: A a = new A();
4: f.setInt(a, 123);

Figure A.1: Reflection example.

Jikes RVM: An open-source research virtual machine for Java from IBM Re-
search [5, 29]. All components of the runtime system, including JIT compilers,
garbage collectors, and the thread system, are written in Java.

Jalapeño: Original name of Jikes RVM.

A.3 Objects and GC

object:

1. Contiguous chunk of memory allocated by one dynamic allocation on the
level of the programming language. In the case of Java, an array or a
scalar allocated by the keyword new. Usually, objects include a header.
This is the default meaning of “object” in this dissertation.
This definition follows: [86, Section 1.7] and [135, Section 1].

2. An instance of a class in object-oriented programming.

scalar: Non-array object. In Jikes RVM, all scalars are instances of classes, and
their size is determined by the number of fields in the class.

This definition follows: [5].

pointer: A variable or a field containing the address of an object. Low-level lan-
guages like C also allow pointers to things other than objects. In Java ter-
minology, pointers are called “references”, and their targets can be scalars or
arrays.

block: Contiguous chunk of memory. In this dissertation, for a given garbage collec-
tor, all blocks have the same size, which is a power of 2 (for example, 212 = 4096
bytes). All blocks are aligned to the block size. A block in a garbage collector
does not necessarily have to be the same as a page in an operating system. A
block may contain one or more small objects, or be part of a large object.

This definition follows: [78, Section 3.1], [86, Page 98].
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This definition differs from: [135], where a block is the exact memory used to
store one object.

garbage collection: Depending on the context, garbage collection can mean one
of the following.

1. Automatic memory reclamation.

2. One cycle of executing a garbage collector. Often shortened to “collec-
tion”. Each garbage collection consists of a reachability traversal and a
reclamation phase, where the reachability traversal includes a root scan.

3. The research discipline of studying garbage collectors.

garbage collector: Automatic memory manager, supports dynamic allocation and
automatic reclamation of heap objects. As discussed in Section 1.2, the two
main kinds of collectors are reference counting and tracing. Another approach
to automatic memory management without a garbage collector is regions. This
dissertation focuses on tracing garbage collectors only.

GC: This acronym is overloaded and can mean either garbage collection or garbage
collector, depending on the context in which it is used.

This definition follows: [18, 23].

reference counting GC: Garbage collection based on counting references to an
object as they are written, as opposed to tracing GC which performs a reach-
ability traversal. As discussed in Section 1.2, reference counting garbage col-
lection maintains a counter with each object that counts how many references
(i.e., pointers) there are to it. Writing a pointer to the object increments the
counter, and deleting a pointer to the object decrements the counter. When
the counter drops to zero, the object is dead and will not be used anymore,
so it is freed. In addition, the reference counters of all successor objects are
decremented.

This definition follows: [40].

mutator: The part of a program that is not the garbage collector. From the point
of view of a tracing garbage collector, everything that is not GC just mutates
the object graph, possibly making objects unreachable. For Java applications
executing on top of Jikes RVM, the mutator includes the application itself,
as well as all Jikes RVM runtime system components except for the GC. For
example, the JIT compilers are part of the mutator.

This definition follows: [47].
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A.4 Reachability

root:

1. Stack or global variable that may point to an object. The roots are the
starting point for a garbage collector’s reachability traversal: all objects
not reachable from roots are dead. This is the default meaning of “root”
in this dissertation.
This definition follows: [86, Section 1.2].

2. In a directed graph, a node without incoming edges.

global: A statically allocated variable that can in principle be used by any method
during the entire program execution. In Java, a global is a static field of a
class, which is shared among all instances of the class, and can also be used
from other classes if it is visible from them.

reachable: Figure A.2 illustrates the following three notions of “reachable”.

1. An object on is reachable from an object o1 if there exist objects o2, . . . , on−1

and pointer fields f1, . . . , fn−1 such that target(oi.fi) = oi+1 for i =
1, . . . , n− 1.

2. An object o is reachable from the root r if o is reachable from the object
target(r).

3. An object o is reachable if there exists a root r such that o is reachable
from r.

R
oo

ts r f1 fn-1o1 o2 on–1 on

Figure A.2: Reachability example.

live:

1. A live object is an object that is reachable from the roots by following
pointers.
This definition follows: [86, Section 1.2].

2. A live variable is a variable that will be used in the future.
This definition follows: [3, Section 10.2].
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dead:

1. A dead object is an object that is not reachable from the roots by following
pointers.
This definition follows: [86, Section 1.2].

2. A dead variable is a variable that will not be used in the future.
This definition follows: [3, Section 10.2].

garbage: One or more dead objects.

This definition follows: [86, Section 1.3].

A.5 Time

time:

1. Time in seconds is the usual, physical notion of wall-clock time.

2. Time in bytes is the total number of bytes that a program has allocated
up to a given point. Every allocation of an object of size s byte advances
time by s. In the experiments for this dissertation, all benchmarks are run
on a uniprocessor machine; if there are multiple threads, their allocations
are serialized, so the notion of time in bytes is still well-defined. Time in
bytes is the traditional notion of time in memory management research.
In the usual case, garbage collection only happens if an allocation request
can not be satisfied without reclaiming some memory first, and hence,
discrete values of time in bytes are the only possible collection points.
This is true for the experiments in this dissertation.
This definition follows: [86, Page 145].

throughput: Speed at which a program gets its work done, see Section 1.3.1.

responsiveness: Absence of disruptive periods where a program responds slug-
gishly or not at all, see Section 1.3.3.

age: The age of an object is the time in bytes since it was allocated.

birth time: The birth time of an object is the time in bytes when it is allocated.

death time: The death time of an object is the time in bytes at which it transitions
from being live to being dead. In other words, the death time is when the
object first becomes unreachable because the mutator deletes a pointer on the
last path from roots to the object. For the kind of garbage collectors that this
dissertation considers, the death time of an object is the earliest time at which
it can be reclaimed.

This definition follows: [72, Section 6.1], which describes how to compute
precise death times efficiently.
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lifetime: The lifetime of an object is the duration of its life, measured in bytes from
its birth time to its death time.

This definition follows: [18, 67]

immortal: An immortal object is an object that survives until close to the end
of the program execution. A garbage collector should not traverse immortal
objects if it can avoid it, since they do not become garbage.

This definition follows: [18].

truly immortal: An object is truly immortal if its deathtime coincides with the
program end time, where time is measured in bytes.

This definition follows: [82].

quasi immortal: An object is quasi immortal if it is not truly immortal, but the
time (in bytes) from its death to the end of the program execution is at most
as long as its lifetime. Figure A.3 illustrates the distinction between quasi
immortal and truly immortal.

tbirth tdeath ttotal

time in bytes

Quasi immortal:
ttotal – tdeath < lifetime

Truly immortal:
ttotal – tdeath = 0

lifetime

(program exit)(death time)(birth time)

Figure A.3: Terminology for immortal objects.

This definition follows: [82].

utilization: For the time interval [t1, t2], utilization(t1, t2) is the fraction of [t1, t2]
spent in the mutator and not the garbage collector. In this definition, time
means time in seconds. Figure A.4 illustrates utilization.

Mutator

Collector

t1 t2

time in seconds

utilization(t1,t2) = ¾

Figure A.4: Utilization example.

This definition follows: [33].
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MMU: Minimum mutator utilization in all time intervals of a given length ∆t. In
this definition, time means time in seconds. MMU is a measure of respon-
siveness for non-concurrent collectors, where higher values of MMU indicate
better responsiveness. If the program starts running at t = 0 and runs for a
total time of ttotal,

MMU(∆t) = min{utilization(t, t + ∆t) | 0 ≤ t and t + ∆t ≤ ttotal}
Figure A.5 shows an MMU plot. For an example interval of length ∆t =
d1 on the x axis, the minimum mutator utilization is the y-value MMU(d1),
indicating that all intervals of length d1 anywhere in the program execution
have a utilization of at least MMU(d1). The intercept with the x-axis is the
maximum pause time, because for smaller intervals, the interval fits into a
pause where the mutator does not run at all.

�
t: Interval size in seconds, on a log scale.

MMU(
�
t):

Minimum
mutator
utilization,
on a linear
scale
from 0 to 1.

1

0

MMU(d1)

maximum pause d1 ttotal

overall
utilization

Figure A.5: Example MMU plot.

An easy way to determine the MMU experimentally is to trace all start and end
times of garbage collections (time in seconds), and then compute the minimum
of all utilization(tgcStart, tgcStart + ∆t) values for all garbage collection start
times tgcStart.

This definition follows: [33].

This definition differs from: [21], who alter it to make it monotonous. For
them, MMU(∆t) is the minimum mutator utilization in all time intervals of
at least the given length ∆t.

A.6 Accuracy

type accuracy: Ability of a garbage collector to distinguish pointers from non-
pointers. A collector that is not fully type accurate is conservative. A strong
type system prevents pointer stores into non-pointer variables. In languages
without a strong type system, on the other hand, the collector has to assume
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that all non-pointers whose values look like pointers are pointers. Even in
languages with a strong type system, the compiler may lose type accuracy for
simplicity, making the collector type inaccurate for some or all pointers.

This definition follows: [86, Section 9.1].

liveness accuracy: Ability of a garbage collector to distinguish live variables from
dead variables. A collector can obtain imperfect liveness accuracy from a com-
piler analysis, but perfect liveness accuracy is undecidable. A collector with
liveness accuracy can ignore dead pointers during its reachability traversal, and
thus potentially identify more objects as garbage, making it more effective.

This definition follows: [1], [80].

accuracy: Type accuracy and liveness accuracy.

This definition follows: [77].

conservative GC: A garbage collector that is not fully type accurate, and may
interpret some non-pointer values as pointers during its reachability traversal.

This definition follows: [24], [86, Section 9.1].

A.7 Tracing GC

tricolor abstraction: A reasoning device for reachability traversals that comes
from basic graph traversal algorithms such as depth-first search and breadth-
first search, and is useful for proving correctness and termination of tracing
garbage collectors.

The tricolor abstraction assigns each object that participates in a collection one
of three colors white, gray, and black. Figure A.6 shows the algorithm for full
tracing garbage collection using the tricolor abstraction. All objects start out
white, encoding that they have not been reached yet. When the reachability
traversal encounters a white object, it colors it gray, encoding that it has been
reached. When the reachability traversal has traversed all outgoing pointers
of a gray object, it colors it black, encoding that it has been reached and all
of its successors have also been reached.

The algorithm in Figure A.6 maintains the invariant that no black objects
point to white objects. Since it is a stop-the-world GC, no pointers change
throughout the algorithm. It is easy to see that at the end of the loop in
Lines 3-9, all live objects have been colored black, and that Lines 10-12 reclaim
all dead objects.

This definition follows: [42, Sections 23.2, 23.3], [47, Section 4], and [86, Sec-
tion 6.1].

white: Color of an object that has not been reached yet.

gray: Color of an object that has been reached, but may have white successors.
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Reachability traversal
Invariant: {All objects are white.}

1: for each root v
2: if v 6= null, color(target(v))←gray
3: while there are gray objects
4: o ← pickGray()
5: color(o)← black
6: for each field f of o
7: if o.f 6= null
8: if color(target(o.f)) = white
9: color(target(o.f))←gray

Invariant: {All live objects are black, all dead objects are white.}
Reclamation

10: for each heap object o
11: if color(o) = white, reclaim its memory
12: else color(o)←white

Invariant: {All objects are live and white.}

Figure A.6: Abstract full stop-the-world tracing garbage collector.

black: Color of an object that has been reached, along with all its successors.

tracing GC: A garbage collector that performs a reachability traversal to find
which objects are live, as opposed to a reference-counting garbage collector.
Figure A.6 shows the abstract algorithm for a tracing collector using the tri-
color abstraction.

The canonical concrete algorithms for tracing collectors include copying, mark-
sweep, and the treadmill (see Table A.1). More sophisticated collectors, such
as aged-based or connectivity-based GCs, are usually extensions of tracing GC.

copying GC: Garbage collection where the reachability traversal copies live objects
into a target memory area, and the reclamation phase reclaims all memory of
the originating memory area. The originating area is called from-space, and
the target area is called to-space. Since in a full collector, from-space and
to-space occupy half of the heap each, they are called semispaces. After an
object has been copied, the original memory location in from-space contains
a forwarding pointer to the copy. Copying collectors usually maintain gray
objects with a Cheney scan. Table A.1 shows how a copying full stop-the-
world collector using Cheney scan keeps track of the tricolor abstraction, and
implements the actions of the abstract full tracing collector from Figure A.6.

semispace: From-space or to-space in a copying collector.

Cheney scan: Algorithm for performing copying collections that maintains gray
objects by keeping a scan-pointer in to-space, rather than requiring a separate
mark-stack [31]. Figure A.7 illustrates the Cheney scan. When the collector
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Table A.1: Concrete full stop-the-world tracing garbage collectors. The numbers
in parentheses after actions in the left column refer to the lines in the algorithm in
Figure A.6 that use these actions.

Copying Mark-Sweep Treadmill
white in from-space and not marked not marked and

not forwarded on white list
gray in to-space before marked and marked and

scan pointer on mark stack on gray list
black in to-space after marked and not marked and

scan pointer on mark stack on black list
color(o)← gray copy to to-space mark and push mark and move from
(2, 9) and forward on mark stack white to gray list
pickGray() at scan pointer top of at end of
(4) in to-space mark stack gray list
color(o)← black move scan pointer pop o from move from
(5) past o mark stack gray to black list
color(o)← white flip meaning of unmark flip meaning of
(12) from- and to-space white and black list

copies a live object from from-space to to-space, it places it at the allocation
pointer, and advances the allocation pointer, making the object gray. When
the collector scans a gray object to reach all its successors, it advances the
scan pointer, making the object black.

white

black gray unused

scan pointer

to-space

from-space

allocation pointer

copying

Figure A.7: Cheney scan.

mark-sweep GC: Garbage collection where the reachability traversal marks live
objects by setting a mark-bit, and the reclamation phase sweeps all objects,
reclaiming the unmarked ones. The sweep takes time proportional to the total
number of objects. Mark-sweep collectors usually maintain gray objects with
a mark stack. Table A.1 shows how a mark-sweep full stop-the-world collector
using a mark stack keeps track of the tricolor abstraction, and implements the
actions of the abstract full tracing collector from Figure A.6.

mark/cons ratio: Metric for characterizing garbage collector throughput; the lower
the mark/cons ratio, the better the throughput. In the ratio mark

cons , “mark”
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stems from the action that colors white objects gray in mark-sweep garbage
collection, and “cons” stems from the Lisp function for dynamic allocation.
Thus, “mark” measures GC cost: most collectors perform work proportional
to how much their reachability traversal encounters; and “cons” measures GC
benefit: the purpose of a collection is to reclaim memory to satisfy future allo-
cation (cons) requests. If mark

cons is low, the collector spends little cost to achieve
high benefit, indicating good throughput.

As a side note, one could claim that the throughput of a mark-sweep collector
should be measured as mark+cons

cons , to account for the cost of the sweep phase.
However, the sweep phase is often performed lazily during subsequent alloca-
tions; and, comparisons between collectors yield the same result with either
metric, since(

mark1
cons1

< mark2
cons2

)
if and only if

(
mark1+cons1

cons1
< mark2+cons2

cons2

)
treadmill GC: Garbage collection where the reachability traversal puts live objects

on a doubly-linked list of survivors, and the reclamation phase reclaims all
objects remaining on the original doubly-linked list of objects [15]. Treadmill
collectors usually maintain gray objects by keeping them on a separate list from
black objects. That makes for three lists (for white, gray, and black objects),
commonly maintained by extra header words with pointers to the previous
and next object. Table A.1 shows how a treadmill full stop-the-world collector
using a gray list keeps track of the tricolor abstraction, and implements the
actions of the abstract full tracing collector from Figure A.6.

finalizer: Method invoked on an instance of a class after the garbage collector has
determined that it is unreachable, but before its memory is reclaimed. The
code of the finalizer may resurrect the object and any objects reachable from
it, complicating the garbage collector.

This definition follows: [60, Section 12.6].

reachability traversal: Lines 1-9 of the algorithm in Figure A.6. The first part
of the reachability traversal is the root scan in Lines 1-2. The reachability
traversal colors all objects reached from roots gray, and transitively colors
white successors of gray objects gray, and gray objects black, until all live
objects are black, and all remaining white objects are dead.

root scan: Lines 1-2 of the algorithm in Figure A.6, the initial part of the reach-
ability traversal that colors all targets of root pointers gray. Since the roots
include pointers stored on thread stacks, the root scan needs stack walking
support to be able to identify those pointers.

reclamation: Lines 10-12 of the algorithm in Figure A.6. The reclamation phase
frees up the memory of dead white objects and makes it available for future
allocation requests.
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early reclamation: Early reclamation happens when the reclamation phase starts
before the reachability traversal is finished. Harris describes early reclamation
in the context of a full-heap incremental treadmill collector [65]. Connectivity-
based garbage collection also supports early reclamation, which reduces the
footprint of a copying partial collector [78].

A.8 Space

space efficiency: Smallness of the memory that a program runs in, see Section 1.3.2.

heap size: Amount of memory available for the heap. In this dissertation, heap
size is a constant determined upon program start. The garbage collector has
to satisfy all allocation requests of the mutator without ever exceeding the
heap size; this may require setting aside a part of the heap for copy reserve.

Traditionally, static variables and stacks are not part of the heap. In Jikes RVM,
on the other hand, they are also represented as Java objects residing on the
heap.

footprint: Complete memory usage at a moment in time, including live and dead
objects, headers, fragmentation, and auxiliary data structures such as remem-
bered sets or mark stacks, but not vacant copy reserve.

time× space product: Product of the time in bytes for which memory is occupied
with the number of bytes of memory that are occupied, measured in square
bytes (byte2). This is an integral under the curve of space usage over time,
see Figure A.8.

time in bytes

space
in bytes

time × space
product

Figure A.8: Time× space product.

copy reserve: In a copying collector, the copy reserve is the amount of memory
set aside to copy live objects into. In the absence of fragmentation, a pure
copying collector requires one byte of copy reserve for each allocated byte in
the heap, because in the worst case, all objects are live and are temporarily
stored in both semispaces.

This definition follows: [21, Section 3.1].

space rental: The space required by an object over time, measured as a time× space
product. In a non-moving collector, the space rental of an object with lifetime
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` byte and size s byte is `×s byte2. In a copying collector, it is usually 2×`×s
byte2 due to copy reserve.

Copying collectors can improve space efficiency by not providing a copy reserve
for immortal objects. Whether the object is quasi immortal or truly immortal,
its space rental is lower if it is never reclaimed than if it has a copy reserve so
it may be reclaimed.

This definition follows: [18, Section 3.1].

fragmentation: Fragmentation is the part of the heap size that is not part of the
space rental of objects, but the garbage collector is unable to use it to satisfy
allocation requests either.

1. External fragmentation: There is an unused chunk of memory large
enough to fit the object to be allocated, but the collector is unable to
use it.

2. Internal fragmentation: All unused chunks of memory are too small to fit
the object to be allocated, but their total size would be large enough if
they were adjacent.

This definition follows: [135, Section 2].

header: Part of each object used by the runtime system. For example, in Java,
object headers usually support determining the size, type, hash value, and
lock status of the object, and also contain information for use by the garbage
collector, such as a mark bit for mark-sweep collectors.

This definition follows: [12], [135, Section 3.2].

TIB: Type information block. Each object can be mapped to a TIB, usually by a
pointer in the header. The TIB describes the type of the object, and allows
virtual method dispatch.

This definition follows: [5].

A.9 Partial GC

partial GC:

1. A partial garbage collection is a garbage collection of only a part of the
heap: the reachability traversal walks only a part of the object graph,
and the reclamation phase reclaims only dead objects in that part. A
garbage collection that is not partial is full.

2. A partial garbage collector is a garbage collector for which some, or even
all, collections are partial. Most collectors require occasional full col-
lections for completeness. The train collector is an exception [85], it is
complete without ever requiring full collections.



APPENDIX A. DEFINITIONS 189

full GC:
1. A full garbage collection is a garbage collection of the entire heap: the

reachability traversal walks the entire object graph, and the reclamation
phase reclaims all dead objects. A collection that is not full is partial.

2. A full garbage collector performs only full garbage collections.

complete GC: A complete garbage collector is a garbage collector that is able
to reclaim all dead objects if needed. Examples for collectors that are not
complete include pure reference counting GC [40], conservative GC [24], and
some partial collectors [117].

This definition follows: [21, Section 2.1].

remembered set: Data structure with which a write barrier communicates addi-
tional roots to a partial collection.

write barrier: Bookkeeping mechanism required to allow partial collections in
some collectors, such as generational GC. The write barrier performs addi-
tional actions upon mutator writes, and stores information into a remembered
set that allows a future partial collection to treat some objects in the un-
collected part of the heap as roots. For example, the generational GC write
barrier records all old objects into which a write stores a pointer to a young
object. Those objects serve as additional roots in a the next minor collec-
tion. Connectivity-based garbage collectors do not require write barriers, even
though they perform partial collections.

nepotism: A phenomenon of partial garbage collectors that rely on write barriers,
where a dead “uncle” object in the uncollected part of the heap points to a
dead “nephew” object, and since the uncle is treated like a root, it keeps the
nephew from being reclaimed.

This definition follows: [17, Section 3.1].

A.10 Age-based GC

age-based GC: Partial garbage collector that segregates objects by age, and uses
age to decide which objects to collect. Age-based GC includes generational
collectors [94, 130], older-first collectors [39, 116], and generalizations [21, 117].

generational hypothesis:
1. Weak generational hypothesis: “Newly created objects have a much lower

survival rate than objects that are older.”

2. Strong generational hypothesis: “Even if the objects in question are not
newly created, the relatively younger objects have a lower survival rate
than the relatively older objects.”

This definition follows: [67].
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generational GC: Younger-first age-based partial garbage collector. Divides the
heap into generations G1, . . . , Gn by age, where the youngest generation G1 is
also known as nursery. Usually, a generational collector only collects generation
Gi if collecting generations G1, . . . , Gi−1 did not reclaim enough garbage to
satisfy the next allocation request.

generation: A space used by a generational garbage collector to store objects of a
certain age range.

nursery: Youngest generation in a generational GC.

mature space: Oldest generation of a generational GC.

Appel’s collector: Flexible-size nursery copying generational collector with two
generations (nursery and mature space), and en-masse promotion of nursery
objects that survived one collection [7]. Let h be the heap size, and m be the
current total size of all objects in the mature space. The mature space requires
copy reserve, which leaves h−2m for the nursery, half of which is copy reserve
for the nursery. That means the nursery will be collected when the total size
of young objects reaches h/2 − m. Since m grows after each collection, the
nursery size is flexible and shrinks after each collection. Occasionally, a full GC
will reclaim some of the mature space memory, reducing m and thus increasing
the size available for the nursery again.

major GC: A major garbage collection is a full garbage collection of a generational
collector, i.e., it collects all generations.

minor GC: A minor garbage collection is a partial garbage collection of a gener-
ational collector, i.e., it collects only (some of the) younger generations. A
philosophical question is whether the first collection of Appel’s GC should be
considered major or minor.

A.11 On-the-fly GC

on-the-fly GC: An on-the-fly collector allows the mutator to make progress during
its collection, rather than stopping the world until it completes the reachabil-
ity traversal and reclamation phase. As shown in Figure A.9, on-the-fly GC
includes incremental GC (on a uniprocessor machine) as well as concurrent
GC (on a multiprocessor machine).

concurrent GC: A concurrent garbage collector performs its collection in a thread
on one processor at the same time as the mutator executes on one or more
other processors. As shown in Figure A.9, concurrent GC is on-the-fly GC on
a multiprocessor machine.

parallel GC: A parallel collector performs its collection on multiple threads si-
multaneously, with each collector thread running on its own processor. Most
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Mutator

Collector

Mutator

Collector

Mutator

Collector

Mutator

Collector

Incremental Concurrent

Parallel

Uniprocessor Multiprocessor

Stop-
the-

world

On-
the-
fly

Figure A.9: Terminology for mutator/collector interleaving. Each picture shows
one garbage collection cycle (including reachability traversal with root scan, and
reclamation phase). Time runs from left to right, and horizontal lines are threads
of execution.

garbage collectors in Jikes RVM are parallel, but stop-the-world, occupying
the top right quadrant of Figure A.9.

This definition follows: [11].

This definition differs from: [22], what they call “parallel” is called “concur-
rent” in this dissertation, following [16].

incremental GC: An incremental garbage collector performs its collection inter-
leaved with the mutator execution, performing only a few collector actions
at a time. As shown in Figure A.9, incremental GC is on-the-fly GC on a
uniprocessor machine.

This definition follows: [86, Chapter 8].

This definition differs from: [85]; what they describe as “incremental” is called
“partial” in this dissertation. Table A.2 shows how, with the terminology in
this dissertation, the distinction between full and partial GC is orthogonal to
the distinction between stop-the-world and incremental GC.

Table A.2: Examples for combinations of full/partial and stop-the-
world/incremental garbage collection.

Full Partial
Stop-the-world [31] [7]
Incremental [15] [22]

stop-the-world GC: A stop-the-world garbage collector sends the mutator to sleep
before it starts its collection, and only wakes it up again after completing the
reachability traversal and reclamation phase. As shown in Figure A.9, stop-
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the-world GC may happen on a uniprocessor machine, as well as in the form
of parallel GC on a multiprocessor machine.

A.12 Connectivity

CBGC: Connectivity-based garbage collection, the subject of this dissertation.

connectivity: Manner in which pointers connect objects to each other and to roots,
either directly or transitively.
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