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Abstract—Both soft computing (SC) and hard computing (HC)
techniques are often successful for solving real-world control prob-
lems. In cases where problems could be solved by either or both
methodologies, an important research problem is to find what are
the advantages for fusing SC methods together with HC methods,
rather than using the HC method alone. Hence, in this paper, a
performance comparison is detailed for a fused soft control/hard
observer type controller (where a classical or HC type observer is
fused with an adaptive fuzzy or SC type controller) and a hard con-
trol/hard observer type controller (where both the observer and
feedback linearization controller are classical HC types). The do-
main in which this comparison is made is for the sensorless speed
control of switched reluctance motors (SRMs). This is because this
type of motor has highly nonlinear characteristics, and the HC type
controller can often be detrimentally affected by modeling inaccu-
racies, as well as noise.

Simulation and experimental results are illustrated to show the
performance comparison of the soft control/hard observer type
controller and the hard control/hard observer type controller
under a wide range of identical operation conditions including
transient speed and torque, SRM model parameter variations,
and measurement noise. It can be seen from the results that the
soft control/hard observer type exhibits a better performance than
the hard control/hard observer type controller.

Index Terms—Adaptive fuzzy control, feedback linearization,
hard computing, observer, Lyapunov methods, soft computing.

I. INTRODUCTION

SWITCHED reluctance motors (SRMs) can be applied in
many industrial applications due to their cost advantages

and ruggedness. However, the motor is highly nonlinear and op-
erates in saturation to maximize the output torque. Moreover,
the motor torque is a nonlinear function of current and rotor po-
sition. This highly coupled nonlinear and complex structure of
the SRM makes it difficult to design a controller. Various con-
trol strategies have been proposed for control of SRM, such as
feedback linearizing control [1], variable structure control [2],
hybrid control [3], and adaptive fuzzy control [4].

Furthermore, in order to obtain high performance from an
SRM, its stator windings must be excited in synchronism with
the angular position of the rotor. Position sensors are commonly
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employed to obtain rotor position measurements, however, in
many systems advantages can be found in eliminating these sen-
sors. These benefits include the elimination of electrical connec-
tions to the sensors, reduced size, low maintenance, and insus-
ceptibility to environmental factors. Hence a diverse range of
indirect, or sensorless position estimation methods, has previ-
ously been proposed [5]–[8].

However, the prior research in sensorless control of SRM has
two limitations.

• There have been few attempts to combine position and/or
velocity estimation with advanced control to obtain a high
performance sensorless control system [9].

• There has been scarce vigorous attempts to compare the
performance among the hard computing type and soft
computing type control strategies for this and similar
applications.

Both soft computing (SC) and hard computing (HC) tech-
niques are often successful for solving the SRM control problem.
Hence, an important research question is what are the advantages
for fusing SC methods together with HC methods, rather than
using the HC methods alone. In particular HC type controllers
canoftenbe detrimentally affectedbymodeling inaccuraciesand
noise, and hence one should directly demonstrate the advantage
of fusing soft and hard methods under these circumstances.

Thus, in this paper, two sensorless speed controllers for SRM
have been proposed and compared: one is a fused soft con-
trol/hard observer type controller (SCHOC) (where a classical
or HC type observer is fused with an adaptive fuzzy SC type
controller), and the other is a hard control/hard observer type
controller (HCHOC) (where both the observer and feedback lin-
earization controller are classical HC types).

A nonlinear reduced order observer is used in both the
HCHOC and the SCHOC to provide position and velocity
estimations for the SRM. In the HCHOC, a feedback lineariza-
tion controller with a robust term is adopted. In the SCHOC,
instead of utilizing feedback linearization technique (which
essentially demands a high-precision model parameters and
accurate position and velocity information), a soft computing
type adaptive fuzzy controller is proposed.

The adaptive fuzzy controller has the following three features.

• It uses fuzzy sets which have an ability to be robust to
noise.
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• It uses adaptive fuzzy systems to replace the analytic func-
tions derived from the SRM model. Hence it can reduce
the sensitivity to modeling errors and noise.

• It deals with external disturbances and measurement
noises by employing both a robust term and online tuning
of the adaptive fuzzy systems.

The first feature arises from the width or size of the mem-
bership functions of the fuzzy sets in fuzzy systems. This width
can be considered as an allowable level of noise [10], [11]. This
means that an input data point with error or noise can still be
placed in the same fuzzy set as the same input data with no error
or noise. Thus, by fuzzification of the input signals, input data
which is corrupted by noise can be accepted in the same set as
the same data without noise but with a different membership
function [12]. The length or range of the fuzzy set membership
function will determine the range of values that will be accepted
as part of the same set. The range can be defined such that small
deviations or noise in the input data do not have a significant
effect on the output position estimation.

However, it should also be noted that a disadvantage of using
fuzzy rule based modeling is that an inverse relationship ex-
ists betweenrobustnessand resolution. As the robustness to
input signal noise and error increases due to a widening of the
fuzzy sets, the output resolution decreases due to the wider par-
titioning of the input and output signal domains. Therefore a
balance must be found between error robustness and output res-
olution.

Thus, as it will be shown below, by the combination of the
observer and adaptive fuzzy controller, the SCHOC provides
a high performance speed controller for SRM and can reduce
the sensitivity to modeling the highly nonlinear characteristics
of SRM seen in hard-only methods. Furthermore, it provides
satisfactory position and velocity estimations, and therefore
overcomes the disadvantages of using sensors. Additionally,
the scheme provides a high robustness to modeling errors,
measurement noises and inaccurate position and velocity infor-
mation, which is inevitable when the observer is converging.

The paper is organized as follows. First, the SRM model is de-
scribed in Section II. The reduced order observer is introduced
briefly in Section III. In Section IV, the HCHOC for SRMs with
robustness consideration is presented. Then in Section V, the
SCHOC for SRMs is formulated. In Section VI, simulation re-
sults are illustrated to show the performance comparisons be-
tween the SCHOC and the HCHOC under a wide range of iden-
tical operation conditions of SRM to confirm the advantages
of the SCHOC. Finally, experimental results are shown in Sec-
tion VII, and conclusions are given in Section VIII.

II. SRM MODEL

The principle of operation of SRMs is introduced here first, in
order to derive the model used in this research later. A cross-sec-
tioned picture of a four-phase SRM is shown in Fig. 1, where for
clarity only one of the four phases winding has been drawn. The
SRM consists of stators and rotors with salient poles. Each stator
phase circuit is composes of two coils, wound around opposite
stator poles. Due to the symmetry of the motor phases, the mu-
tual inductance between the phases is negligible, and the rotor

Fig. 1. Cross-sectional view of a four-phase SRM.

Fig. 2. Measured magnetic characteristics of an SRM.

position is detectable modulo , where is the number
of rotor poles.

The excitation of a phase produces a torque which causes the
rotor to align, in a position of minimum reluctance with the poles
of the driven phase circuit. A continuous rotation of the SRM
can therefore be obtained by sequentially energizing the stator
phases. It should be noted though that the excitation must be
synchronous to the rotor position.

As mentioned above, the SRM has highly nonlinear charac-
teristics and often operates in saturation to maximize the output
torque. In Fig. 2, the highly nonlinear magnetic characteristics
of an SRM can be seen in the relationship of the flux-linkage
with rotor position and current. In the figure, zero degrees rep-
resents the unaligned rotor position and thirty degrees represents
the aligned position.

In this work, an SRM model is needed to design the ob-
server and controllers. The model suggested in [1] which takes
magnetic saturation into account is adopted here. The general
voltage equation of a-phase SRM is given by

(1)
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where is the voltage across the stator terminals of theth
phase, is the phase resistance,is the current flowing in the
th phase, and is the flux-linkage of the th phase respec-

tively.
The flux-linkage is a nonlinear function of rotor position,

due to the alignment between rotor and stator poles. It is also
a nonlinear function of stator current due to the magnetic
saturation. Hence, the flux-linkage can be modeled [1] as

(2)

where is the saturation flux-linkage, and can be repre-
sented by

(3)

where and are suitable constants with , is the
number of rotor poles, and and are the un-
aligned and aligned positions, respectively.

Using the coenergy function, the electromagnetic torque pro-
duced by th phase can be given by [13]

(4)

Finally, we give the motor model in order state space
form. As a usual assumption, the load torque is assumed to be
the combination of viscous friction of value and an unknown
one

(5)

(6)

(7)

where is rotor velocity, and is rotor acceleration. The non-
linear terms , and are modeled according
to equations (1)–(4).

III. H ARD COMPUTING TYPE OBSERVER

To provide position and speed information for sensorless con-
trol of the SRM, a classical hard computing (or analytic model
based) type observer introduced in [8] is adopted here. The ob-
server is introduced by modeling the SRM dynamics and adding
appropriate correction terms. Sincestator phase currents in
SRM are easily measured without resorting to special sensors,
they are suitable to design the correction terms. Hence, the posi-
tion and velocity are the only two states to be estimated, which
means a lower computational load and less complexity to design
and analysis, especially when the SRM has many stator poles.
Furthermore, we add a new state variablefor observer to es-
timate the external unknown load torque since controller itself
has no means to obtain such information.

It is a reasonable and frequent assumption to let the unknown
load torque be almost constant. This is because that, in practice,

load variations are usually much slower than the electrical time
constants. Thus we have

(8)

The whole order three observer is presented in the following
equations:

(9)

(10)

(11)

(12)

where , and are observer gains to be designed and

(13)

(14)

(15)

Note that acquirement of the order three observer (9)–(12) is
independent of the specific form of the SRM model. In other
words, any other forms of SRM model (such as the classic non-
linear SR model of [14]) could be adopted, as long as (12) is
calculatable.

Then, the error dynamics can be obtained as the difference
between (8)–(11) and (5) and (6). As has been demonstrated in
[8], the observer gains , and can be designed using Lya-
punov technique so as to guarantee the observer’s exponential
convergence. Furthermore, the observer presents a very satis-
factory performance in the whole speed range, and is robust to
parameter variations and modeling errors.

IV. HARD CONTROL–HARD OBSERVER TYPE

CONTROLLER (HCHOC)

As mentioned above, in this research the direct advantages
of fusing soft computing with hard computing are investigated.
Hence the first step is to derive a hard controller which uses
classical feedback linearization [15]. To derive this controller
we first differentiate (6) and get

(16)
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where , , and is
dictated by the electronic commutation signals and is defined as

when the th phase should be on
when the th phase should be off and
when the th phase should be off and

(17)

Note that can be avoided because a two-phase-on
scheme is adopted in this work [16], thus the dynamics (16) are
controllable.

We define the tracking error as , estimation error
, observation error , tracking error vector
, and the estimation error vector , where

is the reference speed.
Since and are known functions derived from the

SRM model, we can design control law using feedback lin-
earization as form of

(18)

where , is feedback
gain vector, and is the robust term to be designed to compen-
sate for disturbance.

Substituting (18) into (16), we can obtain the error dynamics

(19)

Rewrite (19) and we can have

(20)

where

(21)

and is the disturbance term due to the observation error

(22)

Note that is bounded because of observer’s exponential
convergence [8]. Thus, could be assumed to satisfy

(23)

where is a positive constant.
Now our objective is to design the robust termusing Lya-

punov techniques to guarantee the overall stability of the sensor-
less control system. First, we define a Lyapunov function can-
didate

(24)

where is a positive definite matrix.
Differentiating (24) we can get

(25)

Fig. 3. Overall scheme of the HCHOC.

Since we can easily choose the feedback gain vectorto
make a stable matrix, the following Lyapunov equation stands

(26)

where is also a positive definite matrix.
Furthermore, we can choose the robust termas

(27)

Substituting (26) and (27) into (25), we have

(28)

Thus, is bounded because of (24) and (28). Further-
more, is bounded hence bothand are bounded. Now we
can have

(29)

where is the minimum eigenvalue for the matrix.
Equation (29) implies is square integrable, thus

is square integrable. Note that is also bounded and thus
. Note that and ,

hence .
From the above deduction, we can see that if the control law

is designed as (18) where the robust termdesigned as (27), it
is guaranteed that the control system is stable.

To summarize the above discussion, Fig. 3 shows the overall
scheme of the HCHOC. It processes measured phase currents

as well as driving voltages from the hard controller, and
estimates the velocity and position of the rotor. The feedback
linearization controller receives the estimated information and
reference speed signal to calculate the driving voltages.

Note that in this scheme, the phase voltages must be mea-
sured and known. This requires high-voltage sensors, with re-
lated isolation amplifiers and analog to digital converters. These
circuits are normally expensive and require extra connections to
the motor controller and drive. Thus, other methods which do
not require the individual measurement of voltage can be used.
For example, it is possible to calculate the phase voltages from
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measuring the inverter dc link voltage only, together with knowl-
edge of the PWM pulses [17]. This will be more beneficial and
economical. However in this research, the main aim is to con-
centrate on two exact control schemes which differ in terms of
being hard or soft. Thus, we use a simpler but more expensive
phase voltage measurement scheme.

However, there are two problems associated with this
HCHOC. First, is difficult to obtain since there could be
many possible factors contributing to the presence of, such
as SRM model parameter inaccuracies, or external noise. If
is not large enough, the overall stability cannot be guaranteed
since it cannot fully compensate for the disturbance. On the
other hand, too large a value ofis not desirable because it
could cause the control saturation or chattering. Thus, problems
can certainly arise when there are modeling inaccuracies and
noise.

In addition, successful implementation of the HCHOC de-
mands an accurate SRM model and position and velocity feed-
back. As we can see from (18), accurate control input could
be obtained only when and can be calculated accu-
rately. Thus, once again, problems can arise in this method when
there are modeling inaccuracies.

Hence, the above difficulties with using a hard type analytic
model give an incentive to fuse soft computing techniques with
this hard controller, and to directly compare their performance.
This is to help overcome the demands for a high-precision
model and accurate position and velocity information seen in
the HCHOC scheme.

V. FUSED SOFT CONTROL–HARD OBSERVER

TYPE CONTROLLER (SCHOC)

As mentioned above, there has been few vigorous attempt to
compare the performance among the hard computing type and
soft computing type control strategies for the SRM control and
similar applications. However, an important research question
is to determine and demonstrate the advantages for fusing SC
methods together with HC methods, rather than using the HC
method alone.

This is because, as mentioned above, the HC type controller
can often only have a good performance if the model parameters
are calculated correctly, and the noise is not high. Hence, in
order to make a direct comparison, a fused soft control/hard
observer type controller (SCHOC) is now defined.

Soft computing and fuzzy logic can be used to design
nonlinear controllers, as is well justified by the Universal Ap-
proximation Theorem [18]. Furthermore, with adaptive fuzzy
schemes, the controller can be made robust toward to plant
model parameter variations and external bounded disturbance.
Thus, a soft computing type adaptive fuzzy controller was
adopted, as described in this section.

A. Description of Fuzzy System

Before proceeding with adaptive fuzzy controller design, a
short description of fuzzy systems will be introduced first.

The basic configuration of fuzzy logic systems [19] consists
of some fuzzy IF–THEN rules and a fuzzy inference engine.
The fuzzy inference engine uses the fuzzy IF–THEN rules

to perform a mapping from an input linguistic vector
to an input linguistic variable . The th

fuzzy IF–THEN rule is written as

if is and and is then is (30)

where are fuzzy sets.
By using product inference, center-average and singleton

fuzzifier, the output of the fuzzy logic system can be expressed
as

(31)

where is the membership function value of the fuzzy

variable , is the number of the total IF–THEN rules, is
the point at which , is the
adjustable weight vector, is the fuzzy basis
vector, and is defined as

(32)

B. Adaptive Fuzzy Controller Design

To overcome the problems associated with the HCHOC
discussed in the Section IV, instead of using and
directly, we use two adaptive fuzzy systems and

in the form of (31) here.
According to SRM dynamics (16), based on the Certainty

Equivalence Approach [20], the control law can be designed as
the form

(33)

where and are the adjustable weight vectors, andand
share the same definitions in Section V-A.
Substituting (33) into (16), the error dynamics can be written

as

(34)

Rewrite (34) and we have

(35)

where , , and are the
optimal weight vectors which lie in some convex regions [21],
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is the same as in Section IV, is the disturbance term due
to minimum approximation error

(36)

For purpose of comparison of the two algorithms, first we
adopt the same robustness termas (27). Now our objective
is to design adaptive laws for the two adaptive fuzzy systems

and . To achieve this goal, we define a Lya-
punov function candidate

(37)

where and are positive constants.
Differentiating equation (37) with respect to time gives

(38)

Now we choose the adaptive laws as

(39)

(40)

Substituting (27) and (39) into (38), we can obtain

(41)

Based on the Universal Approximation Theorem [18], we
can expect that the minimum approximation error should
be small enough so that

(42)

Using the same procedures described in Section V-A, we can
approve .

However, adaptive laws (39) and (40) themselves cannot
guarantee the convergences of and . To solve this
potential problem, parameter projection algorithm can be used
to modify the adaptive laws such that and will remain
inside their constrain sets respectively [21], which are specified
by the designer.

To summarize the above discussion, Fig. 4 shows the overall
scheme of the SCHOC proposed in this paper. It processes mea-
sured phase currents and driving voltages from the hard
controller and estimates the velocity and position of the
rotor. The adaptive fuzzy SCHOC controller receives the esti-
mated information and reference speed signal to calculate the
driving voltages and adjust the parameters of the fuzzy system
online using the adaptive laws (39).

As the SCHOC fuses both soft computing methods (fuzzy
logic) and hard computing methods (mathematical observer), it
can help overcome the disadvantages of sensitivity to inaccurate
modeling and noise that can arise in the hard-only method. As

Fig. 4. Overall scheme of the SCHOC.

discussed above the hard-only method requires a high-precision
model and accurate position and velocity information. Hence it
is sensitive to noise and modeling errors.

Moreover, it is interesting to compare between the computa-
tional loads of the SCHOC and the HCHOC, which should be
taken into account for practical implementation. As can be seen
from equation (16), the model-based calculation of functions

and is rather complex. Meanwhile, the computa-
tional load of functions of and is much lower due to
the employment of the fuzzy rules. However, its overall compu-
tational load is increased due to the need to calculate the adap-
tive laws in equations (39) and (40). Thus, it could be concluded
that the computational load of the SCHOC is higher than that of
the HCHOC. In the experimental results that are shown below,
it was found for the particular system, using exactly the same
microprocessor and hardware, the sampling frequency could be
set to a maximum of 8.7 kHz for the SCHOC and 10.8 kHZ for
the HCHOC.

VI. SIMULATION RESULTS

In the above discussion, two types of high performance
sensorless SRM control methods were detailed, namely the
hard-only HCHOC and the fused soft–hard SCHOC. Both
of them combine position and velocity estimation with ad-
vanced control. However, one uses classical control methods
exclusively whereas the other applies soft computing/fuzzy
logic together with the hard computing methodology. One of
aim of this research is to throughout compare the two control
techniques under identical operating conditions.

Thus, in this section, we will illustrate the performance com-
parisons of the SCHOC and the HCHOC under a wide range
of identical operation conditions by MATLAB simulations. For
purpose of fair comparison, all the common parts of the two sen-
sorless controllers are set to be exactly the same.

The motor employed in these simulations has eight stator and
six rotor poles with a step angle of 15. Its parameter values are
listed in the Appendix.
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Fig. 5. (a) Actual speed responses and (b) position estimation errors of the SCHOC (dotted line) and the HCHOC (solid line) under initial position error 10 ,
! = 150 rad/s.

The design parameters are selected as ,
, , , , ,
, , . The sampling frequency is

10 KHz.
In our research, the design parameters ,

and are selected so as to guarantee the ob-
server’s exponential convergence [8]. Furthermore, the selec-
tions of , and are based on the very rough ranges of func-
tions , , and , which can be derived from
the SRM model parameters and simulations. This is justified
by the fact that if these parameters are selected appropriately,
the adaptive fuzzy systems could approximate the functions ob-
tained from the model in a shorter time. Meanwhile, note that
only very rough ranges (for example, in the same powers of ten
of order), are needed to be known, due to the use of the adaptive
laws. Thus, a very rough initial estimate is adequate.

For simplicity, in each of the two fuzzy systems, we only use
the estimation velocity error and acceleration error as the
inputs, each with seven fuzzy sets on their ranges respectively.
Because the number of states are two, the total numbers of fuzzy
rules are 49. The initial values of adjustable weights are selected
as

(43)

Using the algorithms developed in Sections IV and V, the per-
formances of both types of controllers have been simulated for
a wide range of identical operating conditions. The results of
these tests will be detailed below. Specifically, the robustnesses
of both the HCHOC and the SCHOC toward parameter varia-
tions, external disturbance, and measurement noise will be ex-
amined and compared.

A. Startup

Successful startup of the SRM could be affected by many fac-
tors. Given a noise free environment and accurate SRM model
parameters, startup of the SRM will be still affected by the ini-
tial position error between the actual rotor position and initial
position used in the observer. For sensorless control system for
SRM, initial position error is inevitable since sensorless algo-

rithms always need time to converge. Thus in this test, the ro-
bustness against the initial position error is shown, while the ro-
bustness test to external noise will be examined later. The speed
command in this test is set as 150 rad/s.

Fig. 5 shows the speed responses and position estimation er-
rors of the HCHOC and the SCHOC when the SRM is started
with an initial position error 10, or 16% of one electrical cycle.
It can be seen that for the SCHOC, it takes only about 0.05 s for
the actual speed and position estimation error to converge, while
for the HCHOC, it temporarily loses synchronism and reaches
a new synchronism position of60 in about 0.15 s. Note that

60 is equal to 0 due to the electrical cycle of 60deriving
from the structure symmetry of the four-phase SRM (which has
an electrical cycle of four times 15). Furthermore, the tran-
sient response of the SCHOC is much more smoother than the
HCHOC. This is well justified by the fact that the HCHOC, as
a fully model-based controller, also demands accurate position
and velocity information in order to gain a high performance.
However, for this sensorless system, the position and velocity
information from the observer in transient period is not accu-
rate when the observer is converging.

Hence, in this test, it is clearly shown that comparing with the
HCHOC, the SCHOC is much more robust to initial position
error, which is very important for a sensorless controller.

B. Step Changes in Reference Speed

In this test, the motor is started from zero speed with a speed
command of 100 rad/s. The initial position error is set as 5. The
speed command changes to 200 rad/s at s and 150 rad/s
at s.

Fig. 6 shows the actual speed responses and position estima-
tion errors of the SCHOC and the HCHOC under these step
changes in speed command. For clarity, its expanded view is
shown in Fig. 7. We can see that in steady state, the SCHOC ex-
hibits no noticeable steady state error and speed ripples, whereas
for the HCHOC, both steady state error and speed ripples exist.

Furthermore, the SCHOC has demonstrated a much better
transient state response than HCHOC after a change in the ref-
erence speed. This is despite a similar performance of position
estimation in both the SCHOC and the HCHOC.
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Fig. 6. (a) Actual speed responses and (b) position estimation errors of the SCHOC (dotted line) and the HCHOC (solid line) under step changes in! : 100 rad/s
(0–0.2 s), 200 rad/s (0.2–0.4 s), 150 rad/s (0.4–0.6 s).

Fig. 7. Expanded view of (a) actual speed responses and (b) position estimation errors of the SCHOC (dotted line) and the HCHOC (solid line) under step changes
in ! : 100 rad/s (0–0.2 s), 200 rad/s (0.2–0.4 s), 150 rad/s (0.4–0.6 s).

Therefore the results above have shown that comparing with
the HCHOC, the SCHOC can track variable reference speed
more rapidly and smoothly without noticeable steady state error
and speed ripples.

C. Unknown Load Torque

It is common that in many cases the SRM may be operated
with an unknown load torque . Thus, the performance com-
parison of the SCHOC and the HCHOC under unknown load
torque is examined here. In this test, the external load torque
is set to 0.4 Nm during the period 0–0.3 s, 0.1 Nm during the
period 0.3–0.6 s, and 0.7 Nm during the period 0.6–1.0 s. The
reference speed is 150 rad/s and the initial estimated load
torque is set as 0 Nm.

The unknown load torque and its estimates from the SCHOC
and the HCHOC are shown in Fig. 8. Note that this is an extreme
assumption regarding the load torque variation because the rate
of load torque variations are usually much smaller in practice.
From Fig. 8, we can see that the HCHOC exhibits a very large
overshoot in load torque estimation, which will deteriorate the
speed response accordingly. However, the SCHOC has a much
smaller overshoot and settling time for the same condition.

Fig. 8. Load torque estimation by the HCHOC (solid line) and by the SCHOC
(dotted line) under step changes inT (dashed line): 0.4 Nm (0–0.3 s), 0.1 Nm
(0.3–0.6 s), 0.7 Nm (0.6–1.0 s),! = 150 rad/s.

Fig. 9 shows the speed responses and position estimations of
the SCHOC and the HCHOC under these large step changes in
the load torque. During the period 0–0.3 s, we can clearly see the
overshoot in both speed response and position estimation error
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Fig. 9. (a) Actual speed responses; (b) position estimation errors of the HCHOC (solid line) and the SCHOC (dotted line) under step changes inT : 0.4 Nm
(0–0.3 s), 0.1 Nm (0.3–0.6 s), 0.7 Nm (0.6–1.0 s),! = 150 rad/s.

Fig. 10. (a) Actual speed responses; (b) position estimation errors of the HCHOC (solid line) and the SCHOC (dotted line) under model parameter variations:
r = 1:4 
 (0–0.2 s),r = 2:1 
 (0.2–0.4 s),! = 150 rad/s.

for the HCHOC, whereas the SCHOC presents a much smoother
response. In addition, during the period 0.6–1.0 s, it can be seen
that speed ripples still exists for the HCHOC even after the load
torque estimation has converged.

Hence, the results above have shown a higher robustness of
the SCHOC compared to the HCHOC with variable load torque.
Comparing with the HCHOC, the advantages of the SCHOC for
a step change in load torque include much less speed ripple in
the steady state, a much smoother transient response, and faster
convergence of load torque estimation and position estimation
errors.

D. Parameter Variations

In this test the robustness of the SCHOC and the HCHOC to-
ward parameter variations is examined. We distinguish between
mechanical parameters and electrical parameters. The
mechanical parameters can not always be obtained accu-
rately and they may also vary during the SRM operation. How-
ever, the uncertainties on the mechanical parameters can be well
handled by the process of load torque estimation. The reason is
that the observer can estimate their effects as these are equiva-
lent to load torque variations. Thus, in this section, only the test
under electrical parameter variations is done here.

We illustrate the robustness toward electrical parameters by
using stator phase resistanceas an example. During an SRM
operation, can increase due to temperature rise. At the begin-
ning of this test, the measured and changes to

when s. The speed command is 150 rad/s.
The results of Fig. 10 show quite similar performance of the

SCHOC and the HCHOC against this resistance variation. For
position estimation errors, we can see that there is a steady state
error for both the SCHOC and the HCHOC.

However, it is acceptable that the steady state error is below 1,
or 1.5% of an electrical cycle when the stator phase resistance
varies its initial value by 50%. The reason is that in practice, the
resistance will only vary slowly due to temperature changes.

Hence in this test, we demonstrated that both the SCHOC
and the HCHOC are robust to the electrical parameter varia-
tions. Meanwhile, the mechanical parameter variations can be
well handled by the observer as if they were due to load torque
variations. This fact has been shown in Section VI-C.

E. Measurement Noise

Another very important aspect of robustness in the compar-
ison of the soft computing type and classical type controllers is
the robustness toward noise. In practice, motor drives are elec-
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Fig. 11. Expanded comparison of current waveforms of one test: with (dotted
line) and without noise (solid line),! = 150 rad/s.

tromagnetically noisy environments, and in addition, measure-
ment circuits of electronic signals are imperfect.

In this work, the measurements of voltages were relatively un-
affected by noise for the following reasons. A high voltage con-
stant dc supply was used, which contained a high level of capac-
itance across the dc bus. Thus, electromagnetic noise would not
affect the high voltage amplitude with great significance, and
the high capacitance ensured a filtering of any rapid changes of
voltage arising from the supply of the motor phase currents. In
addition, the voltage fed to the motor phases is a pulse width
modulated form of the dc voltage, and thus it is a binary type
signal (having either a high voltage dc value, or zero), and thus
software or hardware filters can be fairly easily employed.

However the phase current can be critically affected by noise
as it is a highly nonlinear waveform (and thus difficult to filter),
and can have a low or high amplitude according to the exact
phase condition. Thus, the measured currents will usually be
corrupted by noise and error.

Furthermore, error will be introduced into the flux-linkage
due to the integration process of (1). This will result in error
in the estimated position because of the relationship of position
with flux-linkage and current through magnetic characteristics

of the SRM. The quantitative analysis of the effect
of simultaneous errors in both the flux-linkage and current on
position estimation has been detailed in [22].

To compare the robustness of the SCHOC and the HCHOC
toward noise, firstly a very high noise with an amplitude of 20%
of the maximum level of the measured current is added as an
example. Note that in this test the motor is also started under
external noise.

The added noise is Gaussian in nature, and therefore, has a
finite variance. The expanded view of a typical current in Fig. 11
clearly shows that the current with noise deviates significantly
at various points in time from the current without added noise.
In this test, the speed command is 150 rad/s.

The speed response and the position estimation error of the
SCHOC for one test are shown in Fig. 12. Thus we can clearly
see the high robustness of the SCHOC. However, as we found
out, the HCHOC fails to work under 20% noise in current mea-
surement.

For comprehensive and fair comparisons, we have done ten
tests for both the SCHOC and the HCHOC under added random
Gaussian noises with an amplitude of 5%, 10%, and 20% of the
maximum level of the measured current, respectively. A sum-
mary of the robustness tests toward noise is presented in Ta-
bles I–III, which give the average position estimation errors,
maximum position estimation errors, average speed errors, and
maximum speed errors of the ten tests.

The results of Tables I and II show when the amplitude of
the added noises are relatively low, both the SCHOC and the
HCHOC can work well. However, the advantage of the SCHOC
can still be seen from the performance improvements. For a high
current noise such as 20%, the SCHOC consistently shows its
robustness whereas the HCHOC fails to work under these con-
ditions.

Thus we can see that the HCHOC has a limited capacity
to deal with the measurement noise in current. However, by
adopting adaptive fuzzy systems, the SCHOC has shown more
robustness toward external noise.

F. Standstill and Stall

One of the harshest tests of sensorless motor drive control is
operation under a sudden stall. Thus, in this section, the perfor-
mances of the SCHOC and the HCHOC when the SRM comes
into a sudden stall are demonstrated. Actually, it can be treated
as a special case when the SRM operates under variable load
torque in that a very large unknown load torque is applied sud-
denly. In this test, the speed command is 150 rad/s. A very
large load torque for the SRM is suddenly applied at s,
which causes a standstill to the SRM.

Fig. 13 shows the performances under this situation. It can be
seen that when SRM suddenly comes across a stall, the speed of
both the HCHOC and the SCHOC will drop to around zero im-
mediately. While the position estimation error from the HCHOC
fails toconverge, the SCHOCtemporarily losessynchronism and
reaches a new synchronism position of60 in about 0.6 s. Note
that 60 is in fact the same angle as 0, thus the position es-
timation error converges to approximate zero. Thus, it is shown
the SCHOC can estimate the rotor position even when the SRM
comes across a sudden standstill, which is a demonstration of the
higher robustness of the SCHOC comparing with the HCHOC.

VII. EXPERIMENTAL RESULTS

The actual operating effects of the SRM drive includes
measurement error, noise, calculation error, non ideal devices,
electromagnetic coupling, controller delays, quantization error,
mutual inductance between motor phases, parameter variation
of motor inductances and resistances, asymmetrical inductance
variation in the motor phases, variation in the magnetization
curves in each of the phases, and effects on the motor wave-
forms of eddy currents (which can distort the phase current,
especially during current transients). Therefore, experimental
waveforms should be used to verify the ability of the sensorless
scheme to operate with a real SRM, as the above effects will
affect the position estimation and prediction accuracy.

To obtain experimental results, an SRM drive system was
designed and constructed with a controller. The drive consists
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Fig. 12. (a) Actual speed response; (b) position estimation error of one test of the SCHOC when 20% of maximum amplitude noise in current is added,! =

150 rad/s.

TABLE I
ROBUSTNESSTESTSAGAINST 5% NOISE IN CURRENT MEASUREMENT

TABLE II
ROBUSTNESSTESTSAGAINST 10% NOISE IN CURRENT MEASUREMENT

TABLE III
ROBUSTNESSTESTSAGAINST 20% NOISE IN CURRENT MEASUREMENT

Fig. 13. (a) Actual speed responses; (b) position estimation errors of the HCHOC (solid line) and the SCHOC (dotted line) under standstill fromt = 0:2 s,
! = 150 rad/s.
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Fig. 14. Experimental system block diagram.

of several distinct subsystems: four-phase IGBT inverter (two
switch per phase type), a dsp board (dSPACE 1003/1004 alpha
combo DSP board), which performs data acquisition as well
as real time data processing, a DS2201 Multi-I/O board which
provides an interface between the DSP board and the measure-
ment sensors. The current was measured with a hall effect cur-
rent transducer which was based on the principle of magnetic
compensation. The voltage was measured using isolated voltage
sensors. Both the current sensor and the voltage sensor provide
electronic measurement with galvanic isolation between the pri-
mary and the secondary circuits. A 12 bit absolute encoder was
used to measure the rotor position. A regulated dc power supply,
which can supply up to 20 A dc current, is used to energize the
phase winding of SRM. The SRM tested by the measurement
system was the same as that in the simulations. Fig. 14 shows
the block diagram of the system setup, and Fig. 15 shows pic-
tures of the laboratory setup as well as a close up of the motor
system used for the experiment.

A. Startup and Transient Speed/Load Operation

In this test the motor is initially started with a mechanical load
of 0.5 Nm and a reference speed of 100 rad/s. At time s
the speed command is step changed to 130 rad/s. Then at time

s, the load torque is doubled to 1.0 Nm. The test results
can be seen in Fig. 16.

The conditions of this test allow the control methods to be ex-
perimentally tested for a number of important conditions. This
includes start-up speed operation, change in speed command,
and change in load torque.

The actual software was developed using Matlab, which is
then converted to real time dsp code using the dSPACE system.
Thus, due to this technique, it is not possible to predict the exact
execution time of the algorithms (developed in Matlab) until the
actual code running on the dsp is executed (although we aimed
for 10 kHz because this was used for the simulation frequency).
Hence it was found that in this system, using exactly the same
microprocessor and hardware, the sampling frequency could be
set to a maximum of 8.7 kHz for the SCHOC and 10.8 kHz for
the HCHOC.

In the experimental tests, it was seen that similar to the sim-
ulation results that the SCHOC has a much faster response and
settling time than the HCHOC. However, it was found that in

Fig. 15. Laboratory system photographs: (a) Complete system setup [note that
the encoder is only used for measurement purposes and not control, and the dc
generator is used for active loading (a separate torque transducer is not shown)]
and (b) switched reluctance motor used in the experiment.

the experimental results that the transient over-shoot after start
up was not acceptable for the SCHOC. Thus the results are not
as ideal as the simulation results. The poorer performance in the
experimental results can be explained by the fact that the actual
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Fig. 16. Experimental results.

Fig. 17. Simulation of speed responses of the SCHOC under speed and load
torque change as in the experiments for different sampling rates: (a) 10 kHz and
(b) 8.7 kHz.

execution frequency for the SCHOC in the implemented system
(8.7 kHz) was lower than that of the simulation frequency (10
kHz). However, with future faster versions of the dsp board, this
problem should be able to be overcome.

In order to verify this assumption, the SCHOC system was
resimulated at a lower execution frequency of 8.7 kHz (with the
same speed commands and torque as for the above experimental
results). The results of this simulation are shown in Fig. 17,

where the simulated results comparing 8.7 kHz with 10 kHz
are shown. The results are not exactly the same as for the
experimental results at 8.7 kHz (due to the above men-
tioned experimental actual operating effects). However, the
general observation that the transient overshoot is poorer for
the lower frequency can be verified by the simulation results
again.

VIII. C ONCLUSION

As mentioned earlier, in cases where problems could be
solved by either soft or hard computing, or both methodologies,
an important research question is what are the advantages for
fusing SC methods together with HC methods, rather than
using the HC method alone. Hence, in this paper, a perfor-
mance comparison of a fused soft control–hard observer type
controller and a hard control–hard observer type controller was
given.

Hence, two sensorless speed controllers for the SRM were
proposed, namely the HCHOC and the SCHOC. The first
type is based on classical hard computing control exclusively
where the second is based on the fusion of both hard and soft
computing control methodologies. In both the HCHOC and
the SCHOC, a reduced order nonlinear observer is adopted to
provide position and velocity estimations and thus provide a
sensorless system. In the HCHOC, the observer is combined
with a robust feedback linearization controller, whilst in the
SCHOC, the observer is combined with a adaptive fuzzy
controller.

A major aim of the research was to compare rigorously the
performance of both the soft computing and classical type con-
trollers under exactly the same condition. Thus, performance
comparisons were made for a wide range of operating condi-
tions for SRM. These included startup, step changes in refer-
ence speed, unknown load torque, parameters variations, mea-
surement noises, and standstill and stall.

As feedback linearization technique essentially need accurate
modeling parameters and position and estimation information,
it was found that the HCHOC gives a poor performance under
the different SRM operating conditions tested even after a robust
term is added.

On the other hand, the SCHOC was found to provide a very
satisfactory performance for SRM sensorless speed control. In-
corporating a nonlinear SRM model, an observer and adaptive
fuzzy control, the SCHOC overcomes the problem associated
with the motor complex and nonlinear characteristics and pro-
vides a high performance speed controller for SRM under the
wide range of operation conditions tested.

Furthermore, the SCHOC also provide a very satisfactory po-
sition and speed estimation under the above mentioned opera-
tion conditions, thus overcomes the disadvantages of requiring
position and speed sensors.

Experimental results, although not as ideal as the simulation
results, also confirm the advantage of fused SC and HC control.

Hence, it can be concluded that the fused soft and hard com-
puting type SCHOC offered significant advantages comparing
with the classical hard type HCHOC.
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APPENDIX

SRM PARAMETERS

HP

V

A

A

A

rpm

Wb

Nms/rad

Kg-m

REFERENCES

[1] M. Spong, R. Marino, S. Peresada, and D. G. Taylor, “Feedback lin-
earizing control of a switched reluctance motors,”IEEE Trans. Automat.
Contr., vol. AC-32, pp. 371–379, May 1987.

[2] G. Buja, R. Menis, and M. Valla, “Variable structure control of an SRM
drive,” IEEE Trans. Ind. Electron., vol. 40, pp. 56–63, Feb. 1993.

[3] S. Panda, C. Low, and P. K. Dash, “Hybrid feedback linearization-fuzzy
controller for variable reluctance motors,”Int. J. Electron., vol. 80, no.
2, pp. 155–167, 1996.

[4] S. Mir, M. Elbuluk, and I. Husain, “Torque-ripple minimization in
switched reluctance motors using adaptive fuzzy control,”IEEE Trans.
Ind. Applicat., vol. 35, pp. 461–468, Mar./Apr. 1999.

[5] A. Cheok and N. Ertugrul, “Sensorless rotor position detection tech-
niques in switched reluctance motor drives,” inProc. Australasian Univ.
Power Eng. Conf., Perth, Australia, 1995, pp. 84–89.

[6] A. Lumsdaine and J. Lang, “State observers for variable reluctance mo-
tors,” IEEE Trans. Ind. Electron., vol. 37, pp. 133–142, Apr. 1990.

[7] Y. Zhan, C. Chan, and K. Chau, “A novel sliding-mode observer for indi-
rect position sensing in switched reluctance motor drives,”IEEE Trans.
Ind. Electron., vol. 46, pp. 390–397, Apr. 1999.

[8] J. Solsona, M. Etchechoury, M. Valla, and C. Muravchik, “Position and
speed estimation of a switched reluctance motor,”Int. J. Electron., vol.
86, no. 4, pp. 487–507, 1999.

[9] M. Islam and I. Husain, “Torque ripple minimization with indirect po-
sition and speed sensing for switched reluctance motors,”IEEE Trans.
Ind. Electron., vol. 47, pp. 1126–1133, Oct. 2000.

[10] P. J. C. Branco and J. A. Dente, “An experiment in automatic modeling
an electrical drive system using fuzzy logic,”IEEE Trans. Syst. Man
Cybern. C, vol. 28, pp. 254–262, May 1998.

[11] G. C. Mouzouris and J. M. Mendel, “Dynamic nonsingleton fuzzy logic
systems for nonlinear modeling,”IEEE Trans. Fuzzy Syst., vol. 5, no. 2,
pp. 199–208, 1997.

[12] J. van den Berg and D. Ettes, “Representation and learning capabilities
of additive fuzzy systems,” inProc. 1998 IEEE Int. Conf. Intelligent
Engineering Systems, 1998, pp. 121–126.

[13] A. Fitzgerald, C. Kinglsey, and S. Umans,Electric Machinery. New
York: McGraw-Hill, 1983.

[14] T. Miller and G. McGilp, “Nonlinear theory of the switched reluctance
motor for rapid computer-aided design,”Proc. Inst. Elect. Eng. B, vol.
137, pp. 337–347, Nov. 1990.

[15] J. Slotine and W. Li,Applied Nonlinear Control. Englewood Cliffs,
NJ: Prentice-Hall, 1991.

[16] S. Panda and P. K. Dash, “Application of nonlinear control to switched
reluctance motors: a feedback linearization approach,”Proc. Inst. Elect.
Eng., Elect. Power Applicat., vol. 143, no. 5, pp. 371–379, 1996.

[17] F. Blaabjerg, L. Christensen, S. Hansen, J. Kristoffersn, and P. Ras-
mussen, “Sensorless control of switched reluctance motor with vari-
able-structure observer,”Electromotion, vol. 3, pp. 141–152, 1996.

[18] L. Wang and J. Mendel, “Fuzzy basis fuctions, universal approximation,
and orthogonal least squares learning,”IEEE Trans. Neural Networks,
vol. 3, pp. 807–814, Sept. 1992.

[19] C. G. Lee and C.-T. Lin,Neural Fuzzy Systems: A Neuro-Fuzzy Syn-
ergism to Intelligent Systems. Upper Saddle River, NJ: Prentice-Hall,
1996.

[20] S. Sastry and A. Isidori,Adaptive Control: Stability, Convergence, and
Robustness. Englewood Cliffs, NJ: Prentice-Hall, 1989.

[21] L.-X. Wang,Adaptive Fuzzy Systems and Control: Design and Stability
Analysis. Upper Saddle River, NJ: Prentice-Hall, 1994.

[22] A. Cheok and N. Ertugrul, “High robustness and reliability of fuzzy
logic based position estimation for sensorless switched reluctance motor
drives,” IEEE Trans. Power Electron., vol. 15, pp. 319–334, Mar. 2000.

Chunming Shi (S’00–M’01) received the B.Eng de-
gree from the Department of Automation, University
of Science and Technology of China, in 1999, and the
M.Eng degree from the Department of Electrical and
Computer Engineering, National University of Sin-
gapore, in 2002. His research interests include non-
linear control, signal processing, and soft computing.

Adrian David Cheok (M’92) received the B.Eng
(Hons. First) and Ph.D degrees from the University
of Adelaide, Australia, in 1993 and 1998 respec-
tively.

From 1996 to 1998, he worked at Mitsubishi Elec-
tric Research Labs, Japan. Since 1998, he has been
Assistant Professor in the Department of Electrical
Engineering, National University of Singapore. His
research interests include power electronics and
motor drives, fuzzy logic and soft computing, real-
time systems, wearable computers, and mixed reality.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


